CONTINUOUS SOLUTION OF $g\left(x_{0} y^{-1}\right)=g(x) g(y)+f(x) f(y)$ ON ABELIAN TOPCLOGICAL GROUP

Let G be an abelian topological group, F be a topological field of characteristic different from 2. In this chapter we shall determine all continuous solutions of
(A)

$$
g\left(x_{0} y^{-1}\right)
$$

$$
g(x) g(y)+f(x)_{f}(y)
$$

on G to F. This result is also applied to the case where G is any abelian 2 - divisible topological group.

Definition 4.1 Let G be a topological group, F be a topological field. By a continuous solution of the functional equation

$$
\begin{equation*}
g\left(x \circ y^{-1}\right)=g(x) g(y)+f(x) f(y) \tag{A}
\end{equation*}
$$

on G to F, we mean any solution (f, g) for which f and g are continuous.

Lemma 4.2 Let S_{1}, \ldots, S_{n} be disjoint subsets of a topological space X such that $\prod_{i=1}^{n} S_{i}=X, f$ be any function from the topological space X into a T_{1} - space Y such that for each $i=1, \ldots, n$, there exist c_{i} such that $f(x)=c_{i}$ for all x in S_{i}, i.e. f is constant on each $S_{i}, i=1, \ldots, n$. Then f is continuous if and only if each S_{i} is open, for $i=1, \ldots, n$.

Proof Assume that $\mathrm{f}: \mathrm{X} \longrightarrow \mathrm{Y}$ is a continuous function such that $f(x)=c_{i}$ on S_{i}, $i=1, \ldots, n$. Since Y is a T_{1} - space, hence we can choose open neighborhoods $N_{i}{ }^{\text {s }}$ of c_{1} in V such that $c_{i} \notin N_{i}, i=2, \ldots, n$. Let $N=\bigcap_{i=1}^{n} N_{i}$. We see that N is a non-empty open neighborhood of c_{1} such that $c_{2}, \ldots, c_{n} \& N$ 。 Since f is continuous, hence $f^{-1}(\mathbb{N})$ is open. Observe that $f^{-1}(\mathbb{N})=S_{1}$. Hence S_{1} is open. Similarly we can show that S_{2}, \ldots, S_{n} are open. Hence S_{i} is open for $i=1, \ldots, n$. Conversely, assume that $f(x)=c_{i}$ on each open set S_{i}, $i=1, \ldots, n$. Let 0 be any open set in Y, and $I=\left\{i: c_{i} \in 0\right\}$ Observe that $f^{-1}(0)=\bigcup_{i \in I} f^{-1}\left(c_{i}\right)=\bigcup_{i \in I} S_{i}$. Hence $f^{-1}(0)$, being a union of open sets, is open. Therefore f is continuous. Corollary 4.3 จथLet fl being function from a topological group G into a T_{1}-topological field such that f is constant on each coset of a subgroup H of finite index in G. Then f is continuous if and only if H is open.

Proof Since H is of finite index in G, hence G is the finite union of distinct coset of H. According to Lemma 4.2 we see that f is continuous if and only if each coset of H is open. But each coset of H is open if and only if H is open. Hence f is continuous if and only if H is open.

Theorem 4.4 Let G be an abelian topological group, F be a topological field of characteristic different from 2. Then a solution (f, g) of
(A)
$g\left(\right.$ roy $\left.^{-1}\right)$ $=\quad g(x) g(y)+f(x) f(y)$
on G to F of the form
(4.4.1) $f(x)=\frac{h(x)-h\left(x^{-1}\right)}{2 i}, g(x)=\frac{h(x)+h\left(x^{-1}\right)}{2}$,
where h is a homomorphism f om G into $M(F)$, is continuous if and only if h is continuous.

Proof Assume that (f, , g) given by (4.4.1) is a continuous solution of (A). It follows that

$$
\begin{aligned}
& \begin{aligned}
g(x)+i f(x) & =\frac{h(x)+h\left(x^{-1}\right)}{2}+i\left[\frac{h(x)-h\left(x^{-1}\right)}{2 i}\right] \\
& =\frac{2 h(x)}{2} \text { วิทยาลยย }
\end{aligned} \\
& \text { CHULALONGI } \mathrm{h}(\mathrm{x}) \text { • UNIVERSITY }
\end{aligned}
$$

Since f and g are continuous, hence h is continuous. Conversely, if h is a continuous homomorphism from G into $M(F)$, then it is clear that

$$
f(x)=\frac{h(x)-h\left(x^{-1}\right)}{2 i}, \quad g(x)=\frac{h(x)+h\left(x^{-1}\right)}{2}
$$

are continuous.

Theorem 4.5 Let G be an abelian topological group, F be a T_{1} - topological field of characteristic different from 2. Then the continuous solution of
(A)

$$
g\left(x \circ y^{-1}\right)=g(x) g(y)+f(x) f(y)
$$

on G to F are those and only those (f, g) of the forms :

(4.5.1) $f(x)=b, \quad g(x)=a$ for all x in G, where a, b are

 elements of F such that $\neq 1, a-a^{2}=b^{2}$; or(4.5.2) $f(x)=\left\{\begin{array}{ll}b, x \in H \\ -b, x \notin H\end{array}, f(x)=\left\{\begin{array}{l}a, x \in H \\ -a, x \notin H\end{array}\right.\right.$
where H is an open subgroup of index 2 in G and a, b are elements of F such that $a \neq 1$, $a-a^{2}=b^{2}$; or

where H is an open subgroup of index 2 in G and c, d are elements of F such that $c \neq 1, c^{2}+d^{2}=1$; or
(4.5.4) $f(x)=\left\{\begin{array}{cl}0, & x \in H \text { or } x_{1} H \\ d, & x \in x_{2} H \\ -d, & x \in x_{3} H\end{array}, g(x)=\left\{\begin{array}{c}1, x \in H \\ -1, \\ x \in x_{1} H \\ c, \\ x \in x_{2} H \\ -c, x \in x_{3} H\end{array}\right.\right.$
where H is an open subgroup of index 4 in G such that G / H is the Klein four group and c, d are elements of F such that $c \neq \pm 1$, $c^{2}+d^{2}=1$; or
(4.5.5) $f(x)=\frac{h(x)-h\left(x^{-1}\right)}{2 i}, g(x)=\frac{h(x)+h\left(x^{-1}\right)}{2}$
where h is continuous homomorphism from G into $M(F)$.

Proof By Theorem 3.30, the solution of (A) are those and only those (f, g) of the forms:
(4.5.1) $f(x)=b, g(x)=a \quad$ for all x in G, where
a, b are elements of F such that $a \neq 1, a-a^{2}=b^{2}$; or
$(4.5 .2)^{\prime} f(x)=\left\{\begin{array}{l}b, x \in H \\ -b, x \notin H\end{array}, g(x)=\left\{\begin{array}{l}a, x \in H \\ -a, x \notin H\end{array}\right.\right.$
where H is a subgroup of index 2 in G and a, b are elements of F such that $a \neq 1, a-a^{2}=b^{2}$; or
$(4.5 .3)^{\prime} f(x)=\left\{\begin{array}{ll}0, & x \in H \\ d, & x \notin H\end{array} \quad, g(x)= \begin{cases}1, & x \in H \\ c, & x \notin H\end{cases}\right.$
where H is a subgroup of index 2 in G and c, d are elements of F such that $c \neq 1, c^{2}+d^{2}=1$; or
$(4.5 .4)^{\prime} f(x)=\left\{\begin{array}{l}0, x \in H \text { or } x_{1} H \\ d, x \in x_{2} H \\ -d, x \in x_{3} H\end{array}, g(x)=\left\{\begin{array}{l}1, x \in H \\ -1, x \in x_{1} H \\ c, x \in x_{2} H \\ -c, x \in x_{3} H\end{array}\right.\right.$
where H is a subgroup of index 4 in G such that G / H is the Klein four group and c, d are elements of F such that $c \neq \pm 1, c^{2}+d^{2}=1$; or
$(4.5 .5)^{\prime} f(x)=\frac{h(x)-h\left(x^{-1}\right)}{2 i}, g(x)=\frac{h(x)+h\left(x^{-1}\right)}{2}$
where h is a homomorphism from G into $M(F)$.
By Corollary 4.3, f, g in $(4.5 .2)^{\prime},(4.5 .3)^{\prime}$ and (4.5.4) are continuous iff the subgroup Hts are open, and by Theorem 4.4 , f, g in (4.5.5) are continuous if h is continuous. Note that f, g in (4.5.1) are constant on G, thus they are continuous. Hence the continuous solutions of (A) are those and only those (f, g) given by $(4.5 .1)$ or $(4.5 .2)$ or $(4.5 .3)$ or $(4.5 .4)$ or $(4.5 .5)$. Remark 4.6 Note that if G has no open subgroup of index 2 , then it can not have any open subgroup of index 4. Hence, for such G the continuous solutions of (A) must be those and only those (f, g) of the forms :
(4.6.1) $f(x)=b, f(x)=a \quad$ for all x in G where a, b are elements of F such that $a \neq 1, a-a^{2}=b^{2}$; or
(4.6.2) $f(x)=\frac{h(x)-h\left(x^{-1}\right)}{2 i}, g(x)=\frac{h(x)+h\left(x^{-1}\right)}{2}$
where h is a continuous homomorphism from G into $M(\mathbb{F})$.
Note that our proof of Theorem 4.5 makes uses of the property T_{1} of the topological field F only when G has open subgroup H of index 2 or 4 . Hence in the case where G has no
open subgroup of index 2, we need not assume that F is T_{1}, ie. we may omit the assumption that F is T_{1} from the hypothesis of the Theorem.

Lemma 4.7 Any abelian 2 -divisible group G has no subgroup of index 2.

Proof Suppose that there exists a subgroup H of index 2 in G. Hence $G-H \neq \varnothing$. Choose $X \in G-$ H. Since G is 2 - divisible, hence there exists y in G such that $x=y o y$. If $y \notin H$, then $y H \neq H$. However H is of index 2, hence H and $y H$ are the only two elements of the quotient group G / H^{*} Since G / H has order 2, therefore $H=y H o y H=(y o y) H$. Thus $x=$ goy $\in H$. If ye H, then $x=$ you $\in H$. In any case we have $x \in H$, which is a contradiction. Hence G has no subgroup of index 2 .

Theorem 4.8 Let G be an abelian 2-divisible topological group, F be a topological field of characteristic different from 2. Then the continuous solutions of

$$
\begin{equation*}
g\left(x \not y^{-1}\right)=g(x) g(y)+f(x) f(y) \tag{A}
\end{equation*}
$$

on G to F are those and only those (f, g) of the forms:
(4.8.1) $f(x)=b, g(x)=a$ for all x in G where a, b are elements of F such that $a \neq 1, a-a^{2}=b^{2}$; or
(4.8.2) $f(x)=\frac{h(x)-h\left(x^{-1}\right)}{2 i}, g(x)=\frac{h(x)+h\left(x^{-1}\right)}{2}$
where h is a continuous homomorphism from G into $M(F)$.

Proof Since G is an abelian 2 -divisible topological group, by Lemma 4.7, G has no subgroup of index 2, hence G has no open subgroup of index 2. It follows from Remark 4.6 that the continuous solutions of (A) must be those and only those (f, g) of the forms (4.8.1) or (4.8.2).

Corollary 4.9 Let V be a topological vector space over 7 , where F is \mathbb{R} or \mathbb{C} - Then the continuous solutions of
(A) $\quad g(x-y) \quad=\quad g(x) g(y)+f(x) f(y)$
on V to F are those and only those (f, g) of the forms:
(4.9.1) $f(x)=b, g(x)=a$ for all x in V where a, b are elements of F such that $a \neq 1, a-a^{2}=b^{2}$; or (4.9.2) $f(x)=\frac{h(x)-h(-x)}{2 i}, g(x)=\frac{h(x)+h(-x)}{2}$
where h is a continuous homomorphism from V into $M(\mathbb{F})$.

Proof Observe that V is an abelian 2-divisible topological group. By Theorem 4.8, continuous solutions of (A) on V to F must be those and only those (f, B) of the forms (4.9.1) or (4.9.2).

