CHAPTER III

SEMILATTICES OF INVERSE SEMIGROUPS

Let $S = \bigcup_{\alpha \in Y} S_{\alpha}$ be a semilattice Y of inverse semigroups S_{α} . In this chapter, the properties of being fundamental of S, S_{α} 's, some kinds of ideals and some kinds of Rees quotient semigroups of S are studied, and many relations among them are given.

The first proposition of this chapter shows that a semilattice Y of inverse semigroups S_{α} is fundamental if S_{α} is fundamental for all $\alpha \in Y$. The following lemma is required:

3.1 Lemma. Let $S = \bigcup_{\alpha \in Y} S_{\alpha}$ be a semilattice Y of inverse semigroups S_{α} . For each $\alpha \in Y$, let \mathcal{H}_{α} denote the Green's relation \mathcal{H} on S_{α} . Then for a,b \in S, if a \mathcal{H} b, then a,b \in S $_{\alpha}$ for some $\alpha \in Y$ and a \mathcal{H}_{α} b.

Proof: Let $a,b \in S$ such that $a \not\vdash b$. Then $a \not\vdash b$ and $a \not\vdash b$. Since $a,b \in S = \bigcup_{\alpha \in Y} S_{\alpha}$, $a \in S_{\alpha}$ and $b \in S_{\beta}$ for some $\alpha,\beta \in Y$. Since $a \not\vdash b$, Sa = Sb, so a = xb and b = ya for some $x,y \in S$, say $x \in S_{\gamma}$, $y \in S_{\gamma}$. Then $a = xb \in S_{\gamma}S_{\beta} \subseteq S_{\gamma\beta}$ and $b = ya \in S_{\gamma}S_{\alpha} \subseteq S_{\gamma'\alpha}$. But $a \in S_{\alpha}$, $b \in S_{\beta}$, we have $\alpha = \gamma\beta$ and $\beta = \gamma'\alpha$. Hence $\alpha \leq \beta$ and $\beta \leq \alpha$ [Introduction, page 3], it then follows that $\alpha = \beta$. Therefore $a,b \in S_{\alpha}$. Next we show that $a \not\vdash A_{\alpha}b$. From $\alpha = \gamma\beta$ and $\beta = \gamma'\alpha$, we have $\beta \leq \gamma$ and $\beta \leq \gamma'$, so $\beta \leq S_{\gamma'\alpha} = S_{\alpha}a$ and $\beta = \gamma'\alpha$, we have $\beta \leq \gamma'$ and $\beta \leq \gamma'$, so $\beta \leq S_{\gamma'\alpha} = S_{\alpha}a$ and $\beta = \gamma'\alpha$. Then $\beta \leq S_{\gamma'\alpha} = S_{\alpha}a$. This

proves a \mathbf{L}_α b where \mathbf{L}_α denotes the Green's relation \mathbf{L} on \mathbf{S}_α . Dually, a R b implies a \mathbf{R}_α b where \mathbf{R}_α denotes the Green's relation R on \mathbf{S}_α . Hence a \mathbf{H}_α b. #

3.2 <u>Proposition</u>. Let $S = \bigcup_{\alpha \in Y} S_{\alpha}$ be a semilattice Y of inverse semigroups S_{α} . If S_{α} is fundamental for all $\alpha \in Y$, then S is fundamental.

<u>Proof</u>: By Introduction, page 8 , S is an inverse semigroup. To show S is fundamental, let $(a,b) \in \mu(S)$. By Lemma 3.1, there exists $\alpha \in Y$ such that $a,b \in S_{\alpha}$ and $a \not\vdash_{\alpha} b$. From Lemma 2.1, we have $\mu(S) \cap (S_{\alpha} \times S_{\alpha}) \subseteq \mu(S_{\alpha})$. Then $(a,b) \in \mu(S_{\alpha})$. Since S_{α} is fundamental, a = b.

Hence $\mu(S)$ is the identity congruence, so S is fundamental as desired. #

The converse of Proposition 3.2 is not true in general as shown in the following example:

Example. Let $S = \{I, K, E_{11}, E_{12}, E_{21}, E_{22}, 0\}$ where $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $K = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, $E_{11} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $E_{12} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $E_{21} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$, $E_{22} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$, $O = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$. As shown in the example of Chapter II, under the usual matrix multiplication, S is a fundamental inverse semigroup. Let $Y = \{\alpha, \beta\}$ be a semilattice with its Hasse diagram:

Let $S_{\alpha} = \{ I,K \}$ and $S_{\beta} = \{ 0,E_{11},E_{12},E_{21},E_{22} \}$. Then S_{α} and S_{β}

are inverse subsemigroups of S and S = $S_{\alpha} \cup S_{\beta}$ is a disjoint union. Moreover, from the table of multiplication, $S_{\alpha}S_{\beta} = S_{\beta}$. Hence S is a semilattice Y of inverse semigroups S_{α} and S_{β} . We can easily see that S_{α} is a nontrivial subgroup of S. Hence, S_{α} is not fundamental.

Let S = $\bigcup_{\alpha \in Y} S_{\alpha}$ be a semilattice Y of inverse semigroups S_{α} . For each $\alpha \in Y$, let

$$A_{\alpha} = \bigcup_{\beta \leq \alpha} S_{\beta}$$
;

equivalently,

$$A_{\alpha} = \bigcup_{\beta \in \alpha Y} S_{\beta} .$$

Then for every $\alpha \in Y$, A_{α} is an ideal of S. To prove this, let $a \in A_{\alpha}$ and $x \in S$. Then $a \in S_{\beta}$ for some $\beta \leq \alpha$ and $x \in S_{\gamma}$ for some $\gamma \in Y$. Since $\beta \leq \alpha$, $\beta = \beta \alpha$ and so $\beta \gamma = \beta \alpha \gamma = (\beta \gamma) \alpha$. Then $\beta \gamma \leq \alpha$. Hence $S_{\beta \gamma} \subseteq A_{\alpha}$. Because ax, $xa \in S_{\beta \gamma} = S_{\gamma \beta}$, ax and $xa \in A_{\alpha}$. Hence A_{α} is an ideal of S. Since αY is a semilattice, A_{α} is a semilattice αY of inverse semigroups S_{β} .

From the above proof and Theorem 2.3, we have the following :

3.3 <u>Proposition</u>. Let $S = \bigcup_{\alpha \in Y} S_{\alpha}$ be a semilattice Y of inverse semigroups S_{α} . Then for each $\alpha \in Y$, A_{α} is an ideal of S, and it is fundamental if S is fundamental.

Since A_α is a semilattice $~\alpha~Y$ of inverse semigroups S_β , the following proposition follows from Proposition 3.2 :

3.4 Proposition. Let $S = \bigcup_{\alpha \in Y} S_{\alpha}$ be a semilattice Y of inverse

semigroups $S_\alpha.$ Let $\alpha\in Y.$ If for each $\beta\le\alpha$, S_β is fundamental, then A_α is fundamental.

The following corollary follows directly from Proposition 3.4:

3.5 <u>Corollary</u>. Let $S = \bigcup_{\alpha \in Y} S_{\alpha}$ be a semilattice Y of inverse semigroups S_{α} . If S_{α} is fundamental for all $\alpha \in Y$, then A_{α} is fundamental for all $\alpha \in Y$.

The next example shows that the converse of Corollary 3.5 is not true in general.

Example. Let \overline{S} be the semigroup $S = \{I, K, E_{11}, E_{12}, E_{21}, E_{22}, 0\}$ (as in the first example of this chapter) adjoined the new element \overline{O} and define the operation * on \overline{S} by

$$x * y = \begin{cases} xy & \text{if } x,y \in S, \\ \overline{0} & \text{if } x = y = \overline{0}, \\ 0 & \text{otherwise}. \end{cases}$$

Let Y be a semilattice with the Hasse diagram

and let $S_{\alpha} = \{I,K\}$, $S_{\beta} = \{0,E_{11},E_{12},E_{21},E_{22}\}$ and $S_{\gamma} = \{\overline{0}\}$. Then S_{α},S_{β} and S_{γ} are inverse subsemigroups of \overline{S} and $\overline{S} = S_{\alpha} \cup S_{\beta} \cup S_{\gamma}$ is a disjoint union. Moreover, $S_{\alpha}S_{\beta}\subseteq S_{\beta}=S_{\alpha\beta}$, $S_{\beta}S_{\alpha}\subseteq S_{\beta}=S_{\beta\alpha}$, $S_{\gamma}S_{\beta}=S_{\beta}S_{\gamma}=\{0\}\subseteq S_{\beta}=S_{\gamma}S_{\gamma}=S_{\gamma}S_{\gamma}=\{0\}\subseteq S_{\beta}=S_{\gamma}S_{\gamma}=S_{\gamma}S_{\gamma}=\{0\}\subseteq S_{\beta}=S_{\gamma}S_{\gamma}=S_{\gamma}S_{\gamma}=\{0\}\subseteq S_{\beta}=S_{\gamma}S_{\gamma}=S_{\gamma}S_{\gamma}=\{0\}\subseteq S_{\beta}=S_{\gamma}S_{\gamma}=S_{\gamma}S_{\gamma}=S_{\gamma}S_{\gamma}=\{0\}\subseteq S_{\beta}=S_{\gamma}S_{\gamma}=S_{\gamma}S$

Hence \overline{S} is a semilattice Y of inverse semigroups S_{α} , S_{β} and S_{γ} . We have $A_{\alpha} = S_{\alpha} \cup S_{\beta} = S$, $A_{\gamma} = S_{\gamma} \cup S_{\beta}$ and $A_{\beta} = S_{\beta}$. We have shown that $A_{\alpha} = S$ is fundamental. A_{β} is an ideal of S, so it is fundamental. Since S_{γ} and S_{β} are fundamental and $A_{\gamma} = S_{\gamma} \cup S_{\beta}$ is a semilattice γY of inverse semigroups S_{γ} and S_{β} , it follows from Proposition 3.2, A_{γ} is fundamental.

Hence A_α , A_β and A_γ are fundamental. But S_α which is a nontrivial subgroup of S is not fundamental.

Let $S = \bigcup_{\alpha \in Y} S_{\alpha}$ be a semilattice Y of inverse semigroups S_{α} . The following proposition shows that a sufficient condition for S to be fundamental is that A_{α} is fundamental for all $\alpha \in Y$.

3.6 <u>Proposition</u>. Let $S = \bigcup_{\alpha \in Y} S_{\alpha}$ be a semilattice Y of inverse semigroups S_{α} . Then A_{α} is fundamental for all $\alpha \in Y$ if and only if S is fundamental.

Proof: For each $\alpha \in Y$, A_{α} is an ideal of S. Then, if S is fundamental, then A_{α} is fundamental for all $\alpha \in Y$ [Theorem 2.3].

Conversely, assume A_{α} is fundamental for all $\alpha \in Y$. To show S is fundamental, let $(a,b) \in \mu(S)$. Then by Lemma 3.1, $a,b \in S_{\lambda}$ for some $\lambda \in Y$. Then $a,b \in A_{\lambda}$ since $A_{\lambda} = \bigcup_{\beta \leq \lambda} S_{\beta}$. Since A_{λ} is an ideal of S, by Lemma 2.2, we have $\mu(A_{\lambda}) = \mu(S) \bigcap (A_{\lambda} \times A_{\lambda})$. Then $(a,b) \in \mu(A_{\lambda})$. Since A_{λ} is fundamental by assumption, $\mu(A_{\lambda})$ is the identity congruence on A_{λ} , so a = b. Hence $\mu(S)$ is the identity congruence on S, which implies S is fundamental. #

Let $S=\bigcup_{\alpha\in Y}S_{\alpha}$ be a semilattice Y of inverse semigroups S_{α} and A be an ideal of S. Let ρ_A be the Rees congruence on S induced by A. Then we have

3.7 Lemma. Let $a,b \in S$. If $(a\rho_A,b\rho_A) \in \mu(S/A)$, then either $a,b \in A$ or $a,b \in S_\alpha \setminus A$ for some $\alpha \in Y$.

 $\underline{ \text{Proof}}: \text{ Assume } (a\rho_A, b\rho_A) \in \mu(S/A). \text{ Since }$ $E(S/A) = E(S/\rho_A) = \{ e\rho_A \mid e \in E(S) \} \text{,}$ it follows that $(a\rho_A) (e\rho_A) (a\rho_A)^{-1} = (b\rho_A) (e\rho_A) (b\rho_A)^{-1} \text{ for all }$ $e \in E(S) \text{, so }$

 $(aea^{-1})\rho_A = (beb^{-1})\rho_A \qquad \qquad \text{for all } e \in E(S) \,.$ Suppose that $a \in A$ and $b \in S \setminus A$. Then $b^{-1}b \in E(S)$ and so

 $(ab^{-1}ba^{-1})\rho_A = (bb^{-1}bb^{-1})\rho_A = (b^{-1}b)\rho_A$.

Because A is an ideal of S and $a \in A$, $ab^{-1}ba^{-1} \in A$ which implies $b^{-1}b \in A$. Hence $b = bb^{-1}b \in A$, a contradiction. Similarly, the case $b \in A$ and $a \in S \setminus A$ cannot occur. Hence we have either $a,b \in A$ or $a,b \in S \setminus A$.

Assume $a,b \in S \setminus A$. Then there exist $\alpha,\beta \in Y$ such that $a \in S_{\alpha}$ and $b \in S_{\beta}$. Then $a^{-1}a \in S \setminus A$, $a^{-1}a \in S_{\alpha}$ and $a^{-1}a \in E(S)$, $(aa^{-1})\rho_{\Lambda} = (a(a^{-1}a)a^{-1})\rho_{\Lambda} = (b(a^{-1}a)b^{-1})\rho_{\Lambda} .$

Hence $b(a^{-1}a)b^{-1} = aa^{-1} \in S_{\alpha}$. But $ba^{-1}ab^{-1} \in S_{\alpha\beta}$, so $\alpha = \alpha\beta$. Because $b \in S \setminus A$, $b^{-1}b \in S \setminus A$. Since $b^{-1}b \in E(S)$ and $b^{-1}b \in S \setminus A$,

 $(a(b^{-1}b)a^{-1})\rho_A = (b(b^{-1}b)b^{-1})\rho_A = (b^{-1}b)\rho_A = \{b^{-1}b\} ,$ and hence $a(b^{-1}b)a^{-1} = b^{-1}b \in S_\beta. \text{ But } ab^{-1}ba^{-1} \in S_{\alpha\beta}, \text{ so } \beta = \alpha\beta .$ Therefore $\alpha = \beta$ and then $a,b \in S_\alpha$. #

Let $S = \bigcup_{\alpha \in Y} S_{\alpha}$ be a semilattice Y of inverse semigroups S_{α} . Let I be an ideal of Y. Then $A_{I} = \bigcup_{\alpha \in I} S_{\alpha}$ is an ideal of S because for $\alpha \in I$, $\beta \in Y$, $a \in S_{\alpha}$, $b \in S_{\beta}$, we have $\alpha\beta = \beta\alpha \in I$ and ab, ba $\in S_{\alpha}S_{\beta} \subseteq S_{\alpha\beta}\subseteq A_{I}$. Since I is a semilattice, A_{I} is a semilattice I of inverse semigroups S_{α} .

From Lemma 3.7, we have the following proposition:

3.8 Proposition. Let $S = \bigcup_{\alpha \in Y} S_{\alpha}$ be a semilattice Y of inverse semigroups S_{α} , and let I be an ideal of Y. If $a,b \in S$ and $(a\rho_{A_{\mathbf{I}}}^{b\rho_{A_{\mathbf{I}}}}) \in \mu(S/A_{\mathbf{I}})$, then either $a,b \in A_{\mathbf{I}}$ or $a,b \in S_{\beta}$ and $(a,b) \in \mu(S_{\beta})$ for some $\beta \in Y \setminus I$.

Proof: Let a,b \in S such that $(a\rho_{A_{\overline{1}}}, b\rho_{A_{\overline{1}}}) \in \mu(S/A_{\overline{1}})$. By Lemma 3.7, we have either a,b \in A_T or a,b \in S_B A_T for some $\beta \in$ Y.

Assume a,b \in S_{\beta} \hat A_{\beta}. Since A_{\beta} = $\bigcup_{\alpha \in I}$ S_{\alpha} and S_{\beta} \notin A_{\beta}, it follows that $\beta \notin$ I, so S_{\beta} \hat A_{\beta} = \phi . Because $(a\rho_{A_{\beta}}, b\rho_{A_{\beta}}) \in \mu(S/A_{\beta})$ and $E(S/A_{\beta}) = \{e\rho_{A_{\beta}} \mid e \in E(S)\}$, we have

 $(a\rho_{A_{I}})(e\rho_{A_{I}})(a\rho_{A_{I}})^{-1} = (b\rho_{A_{I}})(e\rho_{A_{I}})(b\rho_{A_{I}})^{-1}$

for all e \in E(S) and hence

 $(aea^{-1})\rho_{A_T}$ $(beb^{-1})\rho_{A_T}$

for all $e \in E(S)$. Let $f \in E(S_{\beta})$. Then $(afa^{-1})\rho_{A_{I}} = (bfb^{-1})\rho_{A_{I}}$.

But afa^{-1} and $bfb^{-1} \in S_{\beta}$, so afa^{-1} and $bfb^{-1} \notin A_{I}$. Thus $afa^{-1} = bfb^{-1}$.

This proves $afa^{-1} = bfb^{-1}$ for all $f \in E(S_{\beta})$. Therefore $(a,b) \in \mu(S_{\beta})$. #

Because for each $\alpha \in Y$, $A_{\alpha} = \bigcup_{\beta < \alpha} S_{\beta} = \bigcup_{\beta \in \alpha Y} S_{\beta}$, we have

3.9 Corollary. Let $S = \bigcup_{\alpha \in Y} S_{\alpha}$ be a semilattice Y of inverse semigroups S_{α} . Assume $\alpha \in Y$, a,b $\in S$. If $(a\rho_{A_{\alpha}}, b\rho_{A_{\alpha}}) \in \mu(S/A_{\alpha})$, then either a,b $\in A_{\alpha}$ or a,b $\in S_{\beta}$ and $(a,b) \in \mu(S_{\beta})$ for some $\beta \in Y$, $\beta \not = \alpha$.

Proposition 3.8 gives the following proposition:

3.10 <u>Proposition</u>. Let $S = \bigcup_{\alpha \in Y} S_{\alpha}$ be a semilattice Y of inverse semigroups S_{α} and I be an ideal of Y. If S_{α} is fundamental for all $\alpha \in Y$, then A_{I} and the Rees quotient semigroup S/A_{I} are fundamental.

Hence $\mu(S/A_{\rm I})$ is the identity congruence on $S/A_{\rm I}$ which implies $S_0/A_{\rm I}$ is fundamental. #

Hence the following corollary follows clearly:

3.11 Corollary. Let $S = \bigcup_{\alpha \in Y} S_{\alpha}$ be a semilattice Y of inverse semigroups S_{α} . If S_{α} is fundamental for all $\alpha \in Y$, then the Rees quotient semigroup S/A_{α} is fundamental for all $\alpha \in Y$.

Finally, a conclusion about semilattices of inverse semigroups relating the property of being fundamental should be given as follows:

3.12 Theorem. Let $S = \bigcup_{\alpha \in Y} S_{\alpha}$ be a semilattice of inverse semigroups S_{α} . If S_{α} is fundamental for all $\alpha \in Y$, then we have

- (1) S is fundamental,
- (2) A is fundamental for all α E Y,
- and (3) S/A_{α} is fundamental for all $\alpha \in Y$.