

CHAPTER II

IDEALS AND REES QUOTIENT SEMIGROUPS

It is shown in this chapter that any ideal of a fundamental inverse semigroup S is a fundamental inverse subsemigroup of S. Properties of Rees quotient inverse semigroups relating to being fundamental are studied. A Rees quotient semigroup of a fundamental inverse semigroup is not necessarily fundamental. It is proved that if an ideal A of an inverse semigroup S and the Rees quotient semigroup S/A are fundamental, then S is fundamental.

First, we recall that in any inverse semigroup S, the maximum idempotent-separating congruence of S, $\mu(S)$ or μ , always exists and

 $\mu = \{(a,b) \in S \times S \mid aea^{-1} = beb^{-1} \text{ for all } e \in E(S)\}$; equivalently,

 $\mu = \{(a,b) \in S \times S \mid a^{-1}ea = b^{-1}eb \text{ for all } e \in E(S)\}$ and it is contained in the Green's relation $\mathcal H$ of S. An inverse semigroup S is fundamental if and only if $\mu(S)$ is the identity congruence on S, if and only if E(S) = C(E(S)), the centralizer of E(S) in S.

It was shown in the first chapter that an inverse subsemigroup of a fundamental inverse semigroup is not necessarily fundamental.

An ideal A of an inverse semigroup S is an inverse subsemigroup of S. To see this, let $a \in A$. Then $a^{-1} \in S$, so $a^{-1} = a^{-1}aa^{-1} \in A$. It is clear that A is a subsemigroup of S. Hence A is an inverse subsemigroup of S.

The first theorem shows that an ideal of a fundamental inverse semigroup is fundamental. The two following lemmas are required:

2.1 Lemma. Let T be an inverse subsemigroup of an inverse semigroup S. Then $\mu(S) \cap (T \times T) \subseteq \mu(T)$.

 $\underline{\operatorname{Proof}}: \text{ Let } (a,b) \in \mu(S) \cap (T \times T). \text{ Then } a,b \in T \text{ and}$ $(a,b) \in \mu(S), \text{ so } \text{aea}^{-1} = \text{beb}^{-1} \text{ for all } e \in E(S). \text{ Since } E(T) \subseteq E(S),$ $afa^{-1} = \text{bfb}^{-1} \text{ for all } f \in E(T). \text{ Then } (a,b) \in \mu(T). \text{ Hence}$ $\mu(S) \cap (T \times T) \subseteq \mu(T). \text{ } \#$

2.2 <u>Lemma</u>. Let A be an ideal of an inverse semigroup S. Then A is an inverse subsemigroup of S and $\mu(A) = \mu(S) \cap (A-x-A)$.

<u>Proof</u>: We have shown that an ideal of an inverse semigroup S is an inverse subsemigroup of S.

Next, we show that $\mu(A) = \mu(S) \cap (A \times A)$. By Lemma 2.1, $\mu(S) \cap (A \times A) \subseteq \mu(A)$. It remains to show that $\mu(A) \subseteq \mu(S) \cap (A \times A)$. Let $a,b \in A$ and $(a,b) \in \mu(A)$. Then

$$aea^{-1} = beb^{-1}$$

for all $e \in E(A)$; equivalently,

$$a^{-1}ea = b^{-1}eb$$

for all $e \in E(A)$. To show $(a,b) \in \mu(S)$, let $f \in E(S)$. Then

$$afa^{-1} = a(a^{-1}afa^{-1}a)a^{-1}$$

$$= b(a^{-1}afa^{-1}a)b^{-1} (because a^{-1}afa^{-1}a \in E(A))$$

$$= bb^{-1}ba^{-1}afa^{-1}ab^{-1}bb^{-1}$$

$$= ba^{-1}a(b^{-1}bfb^{-1}b)a^{-1}ab^{-1}$$

$$= ba^{-1}b(b^{-1}bfb^{-1}b)b^{-1}ab^{-1} (because b^{-1}bfb^{-1}b\in E(A))$$

$$= ba^{-1}(bfb^{-1})ab^{-1}$$

$$= bb^{-1}(bfb^{-1})bb^{-1} (because bfb^{-1}\in E(A))$$

$$= bfb^{-1}$$

Therefore (a,b) $\in \mu(S)$.

Hence, we have $\mu(A) = \mu(S) \cap (A \times A)$ as required. #

2.3 Theorem. An ideal of a fundamental inverse semigroup is fundamental.

<u>Proof</u>: Let A be an ideal of a fundamental inverse semigroup S. By Lemma 2.2, A is an inverse subsemigroup of S and $\mu(A) = \mu(S) \cap (A \times A)$. Because S is fundamental, $\mu(S)$ is the identity congruence on S, so $\mu(S) \cap (A \times A)$ is the identity congruence on A. Therefore $\mu(A)$ is the identity congruence on the ideal A. This shows that A is fundamental. #

If S is a semigroup and $a \in S$, it is clear that SaS is an ideal of S. Let A be an ideal of a semigroup S. Then A is called a <u>principal ideal</u> if and only if A can be generated by an element of S; equivalently, $A = S^1aS^1$ for some $a \in S$. If S is an inverse semigroup and $a \in S$, then $S^1aS^1 = SaS$. To show this, let $xay \in S^1aS^1$, $x,y \in S^1$. Since $x,y \in S^1$, $xaa^{-1} \in S$ and $a^{-1}ay \in S$. Then

 $xay = xaa^{-1}ay = xaa^{-1}aa^{-1}ay = (xaa^{-1})a(a^{-1}ay) \in SaS.$

Hence, A is a principal ideal of an inverse semigroup S if and only if A = SaS for some a \in S.

By Theorem 2.3, the following corollary follows:

2.4 <u>Corollary</u>. Let S be a fundamental inverse semigroup. Then for each a s, the principal ideal SaS is fundamental.

The next proposition shows that the converse of Corollary 2.4 is true.

2.5 <u>Proposition</u>. Let S be an inverse semigroup. If every principal ideal of S is fundamental, then S is fundamental.

 $\frac{\text{Proof}}{\text{Since } \mu \subseteq \mathcal{H} \subseteq \mathcal{G}} \text{ . (a,b)} \in \mathcal{G} \text{ .}$ Thus $S^1 a S^1 = S^1 b S^1$, so $SaS = S^1 a S^1 = S^1 b S^1 = SbS$. Then $a,b \in SaS$.

Since $(a,b) \in \mu(S)$,

$$a^{-1}ea = b^{-1}eb$$

for all $e \in E(S)$. But $E(SaS) \subseteq E(S)$, then

$$a^{-1}fa = b^{-1}fb$$

for all $f \in E(SaS)$. Hence $(a,b) \in \mu(SaS)$. By assumption, SaS is fundamental, so $\mu(SaS)$ is the identity congruence on SaS. Hence a = b.

This proves that $\,\mu(S)$ is the identity congruence on S, hence S is fundamental. #

Let S be a semigroup and A be an ideal of S. Let $\boldsymbol{\rho}_A$ be the

Rees congruence on S induced by the ideal A, that is,

$$a\rho_A = \begin{cases} \{a\} & \text{if } a \notin A, \\ A & \text{if } a \in A. \end{cases}$$

Then the quotient semigroup S/ρ_A is a semigroup with zero, and $a\rho_A$ is the zero of S/ρ_A if and only if $a \in A$. Recall that the semigroup S/ρ_A is called the Rees quotient semigroup of S induced by the ideal A, and denoted by S/A. Because a homomorphic image of an inverse semigroup is an inverse semigroup, if S is an inverse semigroup, then S/A is an inverse semigroup. By Introduction, page S, if S is an inverse semigroup, then

$$E(S/\rho_A) = \{e\rho_A \mid e \in E(S)\}$$
,

SO

$$E(S/A) = \{e\rho_A \mid e \in E(S) \setminus A\} \cup \{a\rho_A\}$$

if a $\in A$.

Theorem 2.3 shows that an ideal A of a fundamental inverse semigroup S is fundamental, but the following example shows that the Rees quotient semigroup S/A need not be fundamental.

Example. Let
$$S = \{ I, K, E_{11}, E_{12}, E_{21}, E_{22}, 0 \}$$
 where $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $K = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, $E_{11} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $E_{12} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $E_{21} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$, $E_{22} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$, $\mathbf{O} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$. Then under the usual matrix multiplication, we have the following table:

•	I	K	E ₁₁	E ₁₂	E ₂₁	E ₂₂	0
I	Ι	K	E ₁₁	E ₁₂	E ₂₁	E ₂₂	0
K	K	I	E ₂₁	E ₂₂	E ₁₁	E ₁₂	0
E ₁₁	E ₁₁	E ₁₂	E ₁₁	E ₁₂	0	0	0.
E ₁₂	E ₁₂	E ₁₁	0	0	E ₁₁	E ₁₂	0
E21	E ₂₁	E ₂₂	E ₂₁	E ₂₂	0	0	0
E ₂₂	E ₂₂	E ₂₁	0	0	E ₂₁	E ₂₂	0
0	0	0	0	0	0	0	0

Thus, S is a semigroup and $E(S) = \{I, E_{11}, E_{22}, 0\}$. From the table, we can see that any two idempotents of S commute. Moreover,

$$KKK = K$$
, $E_{12}E_{21}E_{12} = E_{12}$, $E_{21}E_{12}E_{21} = E_{21}$.

Then every element of S is regular. By Introduction, page 2 , S is an inverse semigroup, and

$$K^{-1} = K$$
, $E_{12}^{-1} = E_{21}$, $E_{21}^{-1} = E_{12}$, $I^{-1} = I$, $E_{11}^{-1} = E_{11}$, $E_{22}^{-1} = E_{22}$, $O^{-1} = O$.

To show that S is fundamental, it is equivalent to show C(E(S)) = E(S). Since $E(S) \subseteq C(E(S))$, it suffices to show that for each $x \in S$, $x \notin E(S)$, there exists $e \in E(S)$ such that $ex \neq xe$, which implies $x \notin C(E(S))$.

All the nonidempotents of S are K, E_{12} , E_{21} . From the table, we have

Therefore C(E(S)) = E(S), so S is fundamental.

Let A = {E $_{11}$, E $_{12}$, E $_{21}$, E $_{22}$, O} . From the table, A is an ideal of S. Let ρ_A be the congruence on S induced by the ideal A. Then

$$S/A = \{I\rho_A, K\rho_A, O\rho_A\},$$
 and
$$E(S/A) = \{I\rho_A, O\rho_A\}, (K\rho_A)^{-1} = K^{-1}\rho_A = K\rho_A.$$

Because

$$(I\rho_{A})(I\rho_{A})(I\rho_{A})^{-1} = I\rho_{A}$$
,
 $(K\rho_{A})(I\rho_{A})(K\rho_{A})^{-1} = I\rho_{A}$,
 $(I\rho_{A})(O\rho_{A})(I\rho_{A})^{-1} = O\rho_{A}$,
 $(K\rho_{A})(O\rho_{A})(K\rho_{A})^{-1} = O\rho_{A}$,

and

it follows that $(I\rho_A, K\rho_A) \in \mu(S/A)$. But $I\rho_A \neq K\rho_A$. Then $\mu(S/A)$ is not the identity congruence on S/A. Hence S/A is not fundamental.

Since $E_{11} = IE_{11}I$, $E_{12} = IE_{11}E_{12}$, $E_{21} = E_{21}E_{11}I$, $E_{22} = E_{21}E_{11}E_{12}$, $0 = OE_{11}O$, we have $A = SE_{11}S$, hence A is a principal ideal of S.

This also shows that the Rees quotient of a fundamental inverse semigroup S induced by a principal ideal of S is not necessarily fundamental.

Let S be a semigroup. An ideal A of S is called a <u>completely</u> prime <u>ideal</u> of S if for a,b \in S, ab \in A imply a \in A or b \in A. The ideal A from the above example is completely prime by checking from the table of multiplication.

Hence, we have a remark that a Rees quotient of a fundamental inverse semigroup S induced by a completely prime principal ideal of S is still not necessarily fundamental.

It is obviously seen that if the Rees quotient semigroup of an inverse semigroup S is fundamental, the inverse semigroup S need not be fundamental. However, we have that if the Rees quotient semigroup of an inverse semigroup S induced by an ideal A is fundamental and the ideal A is fundamental, then so is S.

2.6 Theorem. Let A be an ideal of an inverse semigroup S. If A and the Rees quotient semigroup S/A are fundamental, then S is fundamental.

<u>Proof</u>: Assume that A and S/A are both fundamental inverse semigroups. To show S is fundamental, let $a,b \in S$ such that $(a,b) \in \mu(S)$. Then

$$aea^{-1}$$
 = beb^{-1}

for all $e \in E(S)$. To show that a = b, first we show that the case $a \in A$, $b \in S \setminus A$ and the case $b \in A$, $a \in S \setminus A$ cannot occur.

Suppose $a \in A$, $b \in S \setminus A$. Since $(a,b) \in \mu \subseteq \mathcal{H} \subseteq \mathcal{R}$, we have $a \mathcal{R} b$, so aS = bS. Then b = ax for some $x \in S$. Because A is an ideal of S and $a \in A$, it follows that $b = ax \in A$ which is a contradiction. Therefore, it is impossible that $a \in A$ and $b \in S \setminus A$. Similarly, the case $b \in A$, $a \in S \setminus A$ cannot occur.

Hence, we have either $a,b \in A$ or $a,b \in S \setminus A$.

Assume $a,b \in A$. Since A is an ideal of S, $\mu(A) = \mu(S) \cap (A \times A)$ [Lemma 2.2]. Because $(a,b) \in \mu(S)$, $(a,b) \in \mu(A)$. The ideal A is fundamental by assumption, so $\mu(A)$ is the identity congruence on A. Hence a = b.

Assume a,b \in S\A. Let ρ_A be the Rees congruence on S induced by the ideal A. Then S/A = S/ ρ_A . Because aea⁻¹ = beb⁻¹ for all e \in E(S), we have, for each e \in E(S),

$$(a\rho_{A})(e\rho_{A})(a\rho_{A})^{-1} = (a\rho_{A})(e\rho_{A})(a^{-1}\rho_{A})$$

$$= (aea^{-1})\rho_{A}$$

$$= (beb^{-1})\rho_{A}$$

$$= (b\rho_{A})(e\rho_{A})(b\rho_{A})^{-1}.$$

But $E(S/A) = E(S/\rho_A) = \{ e\rho_A \mid e \in E(S) \}$ [Introduction, page 5]. Then $(a\rho_A, b\rho_A) \in \mu(S/\rho_A) = \mu(S/A)$. Because S/A is fundamental, $\mu(S/A)$ is the identity congruence on S/A, so $a\rho_A = b\rho_A$. Since $a,b \in S \setminus A$, we have $a\rho_A = \{a\}$ and $b\rho_A = \{b\}$, hence a = b.

This proves that $\mu(S)$ is the identity congruence on S, and hence S is fundamental as required. #