CHAPTER I

FUNDAMENTAL INVERSE SEMIGROUPS

Munn has characterized a fundamental inverse semigroup as a
certain semigroup of mappings in [5]. In this chapter, we intro-
duce his significant result . We study further about necessary and
sufficient conditions of some kinds of inverse semigroups to be funda-
mental. An example to show that' an inverse subsemigroup and a homo-
morphic image of a fundamental inverse semigroup need not be funda-
mental is given. Moreover, it is shown that a homomorphism from a
fundamental inverse semigroup which is one-to-one on the set of all

idempotents is an isomorphism.

A semigroup Sris said to be fundamental if and only if the
only congruence on S contained in the Green's relation }{ is the
identity congruence on S.

A congruence p on a semigroup S is an idempotent-separating

congruence if every p-class contains at most one idempotent of S.
Howie has shownin [ 4] that any inverse semigroup S has the
maximum idempotent-separating congruence, u(S) or u,and

pu =1 (a,b) €S xS | a Yoy = B Yeb for all e €E(S) };

equivalently,

p ={ (a,b) €S xS | aea ! = beb™! for all e € E(S) 1,

moreover, W& H
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Let S be a semigroup. Any )r(-class of S contains at most
one idempotent [[2] , Lemma 2.15 ]. Then any congruence on S
contaiﬁéd'in‘}{_is an idempotent-separating congruence.

Hence, an inverse semigroup S is fundamental if and only if
the maximum idempotent-separating congruence u of S is the identity

congruence. -

Let X be a set. A one-to-orepartial transformation of X is

a one-to-one map from a subset of X onto a subset of X. For a
one-to-one partial transformation o of X, let Aa and Va denote the
domain and the range of a ; respectively. Let IX denote the set of
all one-to-one partial transfofmations of X. If a & IX with

Ao = Vo = ¢, then a is called the empty transformation and denoted

by 0. The product on IX is defined as follows : For a,B € IX’ let
aB = 0 if VaNAB = ¢, otherwise, et aB : (Va N AB) ofl——*(Vaﬂ AB)B
be the composite map; it is clear that V(aB) = (Va N AR)B . Then IX

is an inverse semigroup with zero and identity,

E(Iy) {a € I, | o is the identity map on Aa} ,

and for each o € IX’ the inverse map of «a, a-l, is the inverse
element of & in I, and Ay = vy, vl =A@ [[2]]. The

inverse semigroup IX is called the symmetric inverse semigroup on the

set X.

Let S be a semigroup. An ideal A of S is called a principal

1

ideal if and only if A = S'as! for some a € S. Then, if E is & semi-

lattice, then a principal ideal of E is of the form Ee for some e €E.
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Let E be a semilattice. The notation TE denotes the following :

TE = {a €& IiE | @ is an isomorphism, Aa and Vo are principal ideals
of E} . °

Then

TE = {a€ I‘E | o is ar homomorphism,Aa = Ee and Va = Ef for some
e,f€ E} .

Recall that the relation < definedon a semilattice E by
e <& if ‘and only if e = ef (= fe)
is the natural partial order on E.
Then for a semilattice E, for e € E, Ee is a principal ideal
of E having e as the maximum element, and hence for any f € E,
f € Ee if and only if f'< e .

We give a following remark : Let o € I., Aa and Vo be ideals

E)
of E. If o is an isomorphism and Aa is-a principal ideal, then Va
is also principal. A proof is given as follow : Let e € E such that

Ao, = Ee. Then ea € Va. Let x€Vo. Then xa-le Ao = Ee, so xa'lie.'

Thus (xa_l)e = xo7 .. Since & is a homomorphism,
x(ea) = ((xa_l)e)oc = (xa_l)a =X
which implies x < ea and xfe Va. Therefore Va = E(ea) and so
(Ee)o = E(eon).
From the above proof, we also have the following : If a €T,

e € Ao , then (Ee)o = E(ea). Hence we have

T, = {o € I | « is a homomorphism, Aa = Ee and Va = E(ea) for
some e € E} .

For any e € E, let Ce denote the identity map on Ee. Then
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Ee E_TE for all e € E.

The first proposition shows that TE is an inverse subsemi-_

group of IX' The following lemma is required first :

1.1 Lemma. Let E be a semilattice. Then the following hold :
(1) For e,f € E, Ee\ Ef = Eef.
(i1) For e,f € E, if e € Ef then Ee C Ef and e < f,

(i11) For e,f € E, Ee = Ef ~if and only if e = f.

Proof : To show Ee M Ef = Eef for all e,f € E, let a€ EeNEf.
Then there exist x,y €-E such/that a = xe = yf. Thus a = xee = ae
and a = yff = af. Hence a = aef. Therefore a € Eef, and so
Ee NEf C Eef. Now, since/'Ee C E, (Ee)f © Ef. Because Ef C E,
(Ef)e CEe. Therefore Eef = Efe C Ee N\ Ef. Hence Ee N Ef = Eef.
Next, we show that e € Ef implies Ee C Ef and e < f. Assume
e € Ef. Let a € Ee, then a = xe for some x € E. Since e € Ef,
e = yf for some y € E. Therefore a = xyf € Ef. Hence Ee C Ef.
Because e € Ef, e < f.
Finallyweshow that Ee = Ef if and only if e = £ for all
e,f € E. Assume e,f € E such that Ee = Ef. Then e € Ee = Ef,so
e < f. Because f € Ef = Ee, f < e. Therefore e = £ . The converse

of (iii) is trivial. #

1.2 Proposition [5]. Let E be a semilattice. Then T, is an in-

verse subsemigroup of I and

i
tm
*

E(Tg) ={€_|ecE }.
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*
Moreover, the mapping ¢ : E — E defined by

ey = € (e € E)

e

is an onto isomorphism.

Proof : It is clear from the definition of TE that o € IE’
. . -1
a € T, implies o € Tp -
Let o, oy € T}3 . Then Vul = Ee1 and Aaz = Ee2 for some
. -1
el,ezE.E. By Lemma 1.1 (i), Valﬂ Aaz 6, A(alaz = (Valﬂ Aaz).al

=1 -1 . ) -1
= (Eelﬂ Eez)m1 = (Eelez)ot1 . (Since ee, = e2e1€ Aal , we have

A(alaz = E(elez)oti1 , that is, A(alaz) is a principal ideal generated

-1 .
by (elez)u1 . Since €8 € Aaz, we have V(alaz) = (Valﬂ Aaz)az

= (Eelez)oc2 = E(elez)az. Therefore o, € TE. Hence TE is an

inverse subsemigroup of IE .

*
Now, we show that the semilattice of T, is E = {E_el e € E}.

E
* *
It is clear that E © E(T;)~—To show E(Ty) C E, let o €E(Tg). Then

o € E(I Therefore o is the identity map on a subset A of E.

E)'

Since a € TE’

*
HenceLE(TE) = E .

*
A = Ee, for some e € E, that is,a = id. = €e€ E .

*
- Next, we show the mapping V : E — E defined by
ey = €e (éeE) is an onto isomorphism. Obviously, ¥ is onto. To

show ¢ is 1-1, let el,e2€ E such that e,v = e,y . Then €e1 = €e2.

Then A€_ = A€ _ which implies Ee. = Ee,. By Lemma 1.1 (iii),
e e, 1 2

1 2 We now show thaty is a homomorphism. Let e,f € E. Then

ey = €e, fy = €f, (ef)y = eef and (ey) (fy) = €, €. Since
€, is an identity map, A€_ €, = (E_ O Ef)€;1 - ENE.. By Lemia

1.1 (i), A €e €f = E_g. Again, since €e and Ef are identity maps,
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ee €f is the identity map on Eef. Therefore eef = €e €f.
Thus, (ey) (fY) = (ef)y . Hence ¥ is a homomorphism. The proof is

completed. #

A subsemigroup T of a semigroup S is said to be full if and

only if E(S)C T .

The next theorem has been shown by Munn in [ 5] that any
fundamental inverse semigroup S is isomorphic to a full inverse subsemi-

groupof'%(SjThe following two lemmas are required first :

1.3 Lemma [ 5] . Let S be an inverse semigroup and let E = E(S).
Then the following hold :
(i) For each a € S, the map 6, Eaa ' — Ea la defined by
. -1
x6, = a xa (x € Eaa )
is an onto isomorphism, and hence ea E,TE .
(ii) The map 6 : S — TE defined by
ag = ea (a€S)
is a homomorphism. Moreover, the congruence on S induced by the
homomorphism 6 is the maximum idempotent-separating congruence u of
S, that is,
TR {(a,b)Gstlea = 8 1.

(iii) S6 1is a full inverse subsemigroup of T., and hence

S/u 1is isomorphic to S .

Proof : (i) Let x,y € Eaa~l. Then x = eaa ! and y = faa~ L

for some e,f € E, and
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(xy) 6, a—lxya = a_l(eaa'l)(faa'l)a

-1 -1 -1. -1 -1 -1
a eaa aa faa 'a = a "xaa "ya

(x6,) (y8,)

Thus Ga is a homomorphism. To show that ea is one-to-one, let

x0, = yb_ where x = eaa 1€ Eaa~! and y = faa ' € Eaa™l. Then

a xa = a_lya. Thus a~‘eaa la = a-lfaa-lé, so a lea = a~lfa which

implies a(a_lea)a_1 = a(a-lfa)a-l. Therefore eaa ! = faa—l, that is,

X = y. Hence Ga is one-to-one. ~ Next, to show Sa is onto, let
- < -1 -
m € Ea 1a. Then m = ea 1a for some e € E. Let x = aea "aa 1. Then

x € Baa~) since aea 1 E, and

x6, = 2 7 b NE a_l(aea—laa_l)a
= a2/ abtimatiien  laa1a (because a-laGE)
-1
= ea ‘a =p

Thus ea is onto. Therefore ea is an onto isomorphism. This proves
eae TE , as required.
(ii) To show that eab £ eaeb, for all a,b € S, let a,b € S.

First, we claim that the map v : Ea-la — Eaanl'defined by

1

yb = aya (y € Ea”ta)

is an onto isomorphism and ¢ is e;l. By the same proof as in (i),

. . . . -1
¥ is also an onto isomorphism. Next,we show that ¢ is ea . Let

x = éa 1 € Ea—la'(e.ﬁ E). . Then we have

_ -1 _ -1 -1
xwea = (ea a)wea = (aea "aa )Oa
-1 -1 -1 -1
= a "(aea )a = ea aa "a
-1
= ea "a = X

Thus Y6, is the identity map on Fa la, For y = eaa-le,Eaa-l(e € E),
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we have

(a_leaa_la)w

yo v = (eaa'l)eaw

-1 -1 -1
= a(a "ea)a eaa ~aa

-1
= eaa =y

Therefore eaw‘is the identity map on Eaa—l. These imply that ¥ is

6;1 . Next, consider the following :
Aeab = E(ab)(ab)_1 = Eabb la~?

- -1 1, -1

and 80 6, = (Ea alVEb” b)6_
=3 g ke
= _Pa Tab b)@a (by Lemma 1.1(3))
4 N
=/ a(Ea 1ab b)a "
< /aEbb ™ talt
: -1 -1 -1 -1 . -1 -1
Claim that Eabb "a = = aEbb/ 7a 7. To show this, let x € Eabb "a .
Then x = eabb la™! for' somep® € E, and so x = eaa tabb la ! =
a(a_lea)bb_la-l. Since &G E E, x € aEblpia L. Hence
Eabb-la-lg aEbb Ya™1% i To_show aEbb ™ 1 e Eabb—la-l, let y€ aEbb la L
Then y = afbb Ya ! Ear.some£.E E, and hence y = (afa—l)abb-la-l.
Because afa ! € E, y E,Eabb-la-l. Thirkfenedipb ta Y = aBbb la ™.
This shows that Aeab = Aeaeb. To show yeab = yeaeb for all
y € Aeab = Aeaeb , let y € Aeab. Then
Yo, = (ab)_ly(ab) = b-la-lyab
=] _

= (a ya)Gb = yeaeb

Therefore eab = eaeb . Hence 6 is a homomorphism.

The next proof is to show that the congruence on S induced by
the homomorphism 6 is the maximum idempotent-separating congruence u

of S, that is, to show u = {(a,b)€S x S |ea = eb} . Let



p = {(a,b)ES x S | 6, =6, }. Let (a,b)€p. Then 6, = a6 =Db6 =0
so AB_ = AB.. Hence Eaa © = Ebb 1.

a b

) -1 el =1 -
(eaa )Sb and (ebb )ea = (ebb )eb, so b “eaa

. 1 % = b eb,  Simes ema € E, eaa

Let e € E. Then (eaa—l)ea =

Iy = o T la e a-lea,

a Teub™la = b tebp™ b le mpbl.

Therefore (eaa—lbb-l) 6, = (eaa_lbb-l) 6, and hence g Neas ™ bb g =

- -1.. - - - S = |
b 1eaa 1bb 1b which implies a 1ebb 1a =b 1eaa 1b. Hence aea = beb .

This shows (a,b)€ u. Therefore p € u . Next, let (a,b)€u. Then

alea = b leb for all e € E; equivalently, aea™l = beb™! for all e€E.

We want 6, = 6, let x € AB_ = Eaa_l. Then x = eaa for some e€E,

so b~ leb €E(S) and

x Zad VeaaliGlab tena ! = bb~lebb ! = ebb ] _
which belongs to Ebb . Thus Eaa-lg Ebb L. Similarly,we also have
that Ebb—lg Eaa l. Therefore A8 =48, . Let x€ Eaa™! = Ebb 1.
Then x = eaa-l, x = foa for some e,f€ E. 'Hence x = cena”? = ex =
efbb_l and x = £fbb ! = fx = feaa-1 = efaa-l, It then follows that

FiIRNASalEn a8 a lefa
and

bxb = blemb b = b lesp

Since ef€E and (a,b) € u, a Yefa = b efh, Thus @ ga = b -xb, Henee
x6, = X6, . This shows that ea = eb which implies (a,b) €p. Therefore
HWCp . Hence m = p as desired. |

(iii) We now show that S6 is a full inverse subsemigroup of
TE and S/u= S8 . Since S is an inverse semigroup and S6 is a homo-

morphic image of S, S6 is an inverse subsemigroup of TE [Introduction,

page 4 ]. To show E(TE) C S6, let eeeE(TE) (e€E). It is clearly
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seen that ee = Be. Then Ee = e6 € S6 . Hence E(TE) C S8 . There-
fore SO is a full inverse subsemigroup of TE' Since u is the congru-

ence induced by the homomorphism 6, we have S/u = S8 . #

1.4 Lemma. Let o,B€ I,, X be a nonempty set. If a HB, then

X,
Ao = AB and Va = VB .

Proof : Suppose aH-B. Then ayB and a R B, so I,o = I_B

X X

and aIX= BIX. SinceaG.IXBandBG,Ixa,u=Yeand B = y“a for

some Y,Y € I,. Froma = ¥B, we have Va & V8 , and from B =y a,we

have VB & Va . Hence Vo = VB, Sincea€BIXandB€aI a = BA

X’
BA , Aa © AB . Since

and B = o)™ for some A,A € Ix.- Since a

B = ad”,we have AB € Ao’. / Therefore Aa = AB . #

1

1.5 Theorem [5] . Let S be an inverse semigroup and E = E(S). Then
S is fundamental if and only if S is isomorphic to a full inverse sub-

semigroup of TE .

Proof : First, let S be isomorphic to a full inverse subsemi-
group ST of TE . Let (0,B) € u(ST), the maximum idempotent-separating
’ .
congruence of S7. Since u(S7)C H, the Green's relation Hon StT, it
follows from Lemma 1.4 that Ao =AB and Va = VB . Then there exists

e€E such that Ao = Ee = AB . Let g€Ee. Then Eg CEe and g < e by

Lemma 1.1 (ii). Thus g = ge = eg. Therefore
A (egd) = (V E’g N Aa)C;I = EgNEe = Ege = Eg.

Since Ao = Ee, we have va~l = Ee; and hence
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baTle @) = (EenEg
= (Eeg)a (Lemma 1.1 (i))
= (Eg)a
= E(ga) = A€
But a_lega is an idempotent in T_, , hence a_lega is the identity
map on A(a-le ga) = A(ega) which implies a_1€.ga= ega Similarly,
B'legs = Egs . Because S~ is full and egeE(TE) ; eg € E(S%)

But (,8) € u(S7), so a‘lega 3 s”lege . Thus €, =€, and hence

go
Ego = A(ega) = A(egB) = EgB . By Lemma 1.1 (iii) , go = gB .
Since this holds for all g€ Fe, it follows that o = B8 . Thus u(S”)
is the identity congruence on S”.  Hence S* is fundamental, and then
S is fundamental.

Conversely, assume S is fundamental. Let 6 be the homomor-

phism from S into Tg defined as in Lemma 1.3 (ii). By Lemma 1.3 (iii),

S6 is a full inverse supsemigroup of TE and S/u = S6 . Because S is
fundamental, u = 1, the identity congruence on S, and so S/u £ S .
Hence S = S6 which is a full inverse subsemigroup of TE . #

From Theorem 1.5, the following corollary follows easily:

1.6 Corollary. If E is a semilattice, then TE is a fundamental .

inverse subsemigroup of Ie .

Let S be a semigroup and T be a subset of S. The centralizer
of Tin S is the set { x € SI xt = tx for all t€T } which is denoted

by C(T). Because any two idempotents of an inverse semigroup commute,
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it follows that for any inverse semigroup S, E(S) € C(E(S)).
It has been shownin [4] that an inverse semigroup S is funda-

mental if and only if E(S) = C(E(S)), the centralizer of E(S) in S.
A symmetric inverse semigroup on any set is fundamental.

1.7 Theorem [1] . For any set X, Iy is- fundamental.

Proof : To show that IX is fundamental, it suffices to show

C(E(IX)) = E(IX)" Because I, 1s an ‘inverse semigroup, E(IX)Q C(E(IX)).

X
Suppose C(E(Ix)) # E(IX). Then, there exists ae?C(E(IX)) such that
o ¢E(Ix). Since |

E(LY A1/ 1X| B is the identity map on AB },
o is not the identity map/on” Ao, 'Then there exists x €Aa such that
xa # x. Let & be the identity map on-the set {x} . Then § € E(IX),
Since A8 = V8 = {x} , we have
L {x} NAa)é {x}

A (5) (760 Ao} &=

If x € Vo , then

..1}

A(ad) (Vo ﬂAé)a-l (Vonﬂ{x})a_l = {xa
If x ¢ Vo, then a8 = 0. Since xa # x and o is one-to-one, X # xa_l.
Hence A(8a) # A(ad), soda# as. It follows that o ¢ C(E(Iy)), which

is a contradiction. Thus C(E(Ix)) = E(IX). This proves I, is funda-

X

mental as required. #

Let S be a semilattice. Then E(S) = S = C(E(S)). Hence S is
fundamental. An another way to prove this, let a,b€S such that aub.

Then aea-1 = beb-1 for all eE. E(S) = S. Since S is a semilattice,
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be for all e€E(S) = S .

a”=a=a and b =b=>b ", and so ae =
Then
a = a2 = ba
2
and b = b™ =ab = ba,

so a = b. This showsthat p is the identity congruence on S, and

therefore S 1s fundamental.

Let G be a group. Then E(G) = {1} where 1 is the identity
of G. Then C(E(G)) = G. Hence the group G is fundamental if and

only if G is a trivial -group

Let S be a semigroup.  For each a€S, let Ha denote the
)—L -class of S containing/a. If e is an idempotent of S, then H is
the maximum subgroup of S having e as its identity [Introduction,

page 7 1] .

Let s = U G, be ;1 semilattice Y of groups 6, . For each

a€Y, let e deno:eet}ze identity of the group G, - Then
E(S) =1{ e, | aey 1}.

Since S is the disjoint union of the subgroups Ga , it follows that
for each a € Y, Ga is the maximum subgroup of S having e, as its
identity. Therefore, Gd is an Yl -class of S for all o €Y. More-
over, H is a congruence. To show this, let a,b,c €S and aHb.
Then a,bE:GB for some B E€ Y. Let A€ Y and c € G)\. Then ac,bc,

cb€ G'B)\ and so ac .H.bc and caXcb. Hence H is an idempotent-

separating congruence. But the maximum idempotent-separating con-

gruence u is contained in H . Therefore u = .H, . Thus, if
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s = U G, is fundamental, then S = E(S) = {ea | « € Y}
a€e Y

Hence any semilattice Y of groups is fundamental if and only

if it is a semilattice which is isomorphic to Y .

We further study an inverse subsemigroup and a homomorphic
image of a fundamental inverse semigroup. We can show that an in-
verse subsemigroup and a homomorphic image of a fundamental inverse
semigroup are not necessarily fundamental. An example is given as
follows :

Let X = {a,b} . Thert the symmetric inverse semigroup on X,
IX’ is fundamental [Theorem 1.7 }. Let Gx be the permutation group
on X. Then G, is a group of order 2 and it is an inverse subsemi-

X

group of IX' Because Gx is not a nontrivial group, GX is not funda-

mental.

Let 0 and 1 be the zero and the identity of IX and % 4y,

Gz, Oy, Of be one-to-one partial transformations on X defined as

follow :
Boy = {a} = Vo, ,
Aaz = {b} = Vaz s
Aa3 = {al}l, Vo = {b} ,
Ao, = {b} , Vo, = f{al ,
Bag = {a,b} = Vag such that ao; = b, bag = a.

Hence IX = {0, A1y Oy, Ggy O, Og, 1} and its multiplication table

is as. follows :



. 0 ) Gg QA ias 1
0 0 0 O 0 o0 iO 0
ay 0 oy 0 &z 0 Eas ay
o, 0 O a, 0 ay §a4 o,
oy 0 O g 0 oy gal oy
) 0 By 0wy 8- m Wy
ag 0 Gy Oz Gy Oy El, ac
|
1 0 L ias 1
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Let T = {0, o, 1} ///From the above table, we have T as a

subsemigroup of IX' Since ugl = O, T is an inverse subsemigroup of

S. Moreover, o = 1,/so’ E(T) = {0, 1} . It is clearly seen that

5

T is commutative. Then the centralizer of E(T) in T is T. Hence,
C(E(T)) = T # E(T), so T is not fundamental [[ 4], Theorem 2.7] .

1% Oz, a4} . It follows from the table

that A is an ideal of IX and IX = K { ag, 1 }

To show that T = {0, o, 1} is a homomorphic image of I

Let A = {0, a

Xl

let : I, — T be defined by

X

o if aE{as, 1y .
oy =
0 if o€ A

Let a, BE Ix .

Case o, B € A. Since A is a subsemigroup of Ix , aB € A, so ay ,
By, aBy are all 0. Therefore (aB)Y = (ay) (BY)

Case a,B,G{qs-, 1} . Then oB E.{as, 1} and hence
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1 ifa=8=1,
(aB)Y =4 1 ifa=8=o0,
ac if either a = Oy B=1lora=1, 8= dc
and (1.1 =1 ifa=8= 1,
Ul = 1 ifa=8= ac
(g () = < asl = ag if o = O s B = 1,
klas = o if a = 1, B.= o,

Case a € A, BE{o_, 1} . Then oB , Ba € A since A is an ideal of S.

Therefore
ap = 0, (aB)y . = O, (su)¢ = 0, so
(o) (BY) /=000 = (aB)Y
and (BY) (ap)” = 07 = (Ba)y

Hence ¢y is an onto homomorphism. Thus T is a homomorphic

image of IX'

The following proposition shows that a homomorphic image of
a fundamental inverse semigroup S by a homomorphism which is one-to-

one on E(S) is isomorphic to S, and hence it is fundamental.

1.7 Proposition. Let ¥ : S — T be a homomorphism from an inverse -
semigroup S onto an inverse semigroup T such that for e,f€E(S),
ey = £y implies e = £f. If S is fundamental, then ¥ is an onto iso-

morphism, and hence T is isomorphic to.S.

Proof : Let p be the congruence on S induced by ¥, that is,

apb &y ay = by (a,b€S)
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Since ¥ is one-to-one on E(S), each class of p contains at most one
idempotent of S. Then P is an idempotent-separating congruence on
S, and hence pC u , the maximum idempotent-separating congruence on
S. Because S is fundamental, u is the idéntity congruence, so p is
the identity congruence on S. Then 'y is one-to-one. Therefore ¥ is

an onto isomorphism, and hence T is isomorphic to S. #
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