RELATION BETWEEN W_{C} AND W

In this chapter we will consider a certain behaviour of the transformation of the Wiener integral, under the scalar multiplication $y \mapsto y / \sqrt{c}$, which leads to the relation between W_{c} and W.

Definition 6.1. Let A be a subset of C. We define

$$
A / \sqrt{C}=\{x \in C: x=y / \sqrt{C}, \quad y \in A\} \text {. }
$$

Theorem 6.2. If $A \in B(c)$ then $A / \sqrt{c} \in B(c)$.

Proof. We divide the proof into 3 steps :
Step 1. We show that $(A / \sqrt{C})^{\prime}=A^{\prime} / \sqrt{C}$, where $(A / \sqrt{C})^{\prime}=C-A / \sqrt{C}$ and $A^{\prime}=C-A$.

If $x \in(A / \sqrt{C})^{\prime}$, then $x \notin A / \sqrt{c}$, so that $\sqrt{c} x \notin A$. Therefore $\sqrt{c} x \in A^{\prime}$ and hence $x \in A^{\prime} / \sqrt{c}$. Conversely, if $x \in A^{\prime} / \sqrt{c}$, then $\sqrt{c} x \in A^{\prime}$, so that $\sqrt{c} x \notin A$. Therefore $x \notin A / \sqrt{C}$ and hence $x \in(A / \sqrt{c})^{\prime}$.

Step 2. We show that $\bigcup_{i=1}^{\infty}\left(A_{i} / \sqrt{c}\right)=\bigsqcup_{i=1}^{\infty} A_{i} / \sqrt{c}$.
If $x \in \bigcup_{i=1}^{\infty}\left(A_{i} / \sqrt{c}\right)$, then $x \in A_{i} / \sqrt{c}$ for some i, so that $\sqrt{c} x \in \bigcup_{i=1}^{\infty} \Lambda_{j}$.
Therefore $x \in \bigsqcup_{i=1}^{\infty} A_{i} / \sqrt{c}$. Conversely, if $x \in \bigcup_{i=1}^{\infty} A_{i} / \sqrt{c}$, then
$\sqrt{c} x \in \bigcup_{i=1}^{\infty} A_{i}$, so that $x \in A_{i} / \sqrt{c}$ for some i. Therefore $x \in \bigsqcup_{i=1}^{\infty}\left(A_{i} / \sqrt{c}\right)$.

Step 3. Let $A=\{A \in B(c): A / \sqrt{c} \in B(c)\}$. Then
(i). Since $y \longmapsto y / \sqrt{c}$ is a homeomorphism on C, it follows that if $A \subseteq C$ is open then A / \sqrt{c} is open and hence $A / \sqrt{c} \in B(C)$. Therefore \mathcal{A} contains all open sets in C.
(ii). Let $A \in A$, then A and $A / \sqrt{c} \in B(c)$. since $B(c)$ is a 6 -algebra, A^{\prime} and $(A / \sqrt{C})^{\prime} \in \mathcal{O}(C)$. It follows from step 1 that $A^{\prime} \in A$.
(iii). Let $A_{i} \in A$ for $i=1,2, \ldots$, then A_{i} and $A_{i} / \sqrt{c} \in B(c)$ for all i. Since $\beta(c)$ is a σ-algebra, $\bigcup_{i=1}^{\infty} A_{i}$ and $\bigcup_{i=1}^{\infty}\left(A_{i} / \sqrt{c}\right) \in \varnothing(c)$. It follows from step 2. that $\sum_{i=1}^{\infty} A_{i} \in \mathbb{A}$.

From (i), (ii) and (iii) we have that \mathcal{A} is a 6-algebra containing all open sets in C and must therefore contain the collection $\beta(c)$ of all Bored sets, since $\beta(c)$ is the smallest 6 -algebra containing open sets. Hence of $=B(c)$.
Q.E.D.

Theorem 6.3. Let T be a Wiener measurable subset of C. Then $W_{c}(T)=W(T / \sqrt{c})$. Moreover if F is any measurable functional defined on T

$$
\int_{\Gamma} F(y) d W_{c}(y)=\int_{\Gamma / \sqrt{c}} F(\sqrt{c} x) d W(x)
$$

in the sense that the existence of one side implies that of the other and the validity of the equality.

Proof. We first let F be a functional satisfying the conditions in Theorem 5.5 and let $n, M, C_{M, n}$ and C_{M} be as in the proof of Theorem 5.5. Then according to (5.8), we have $\int_{C M, n} F\left(L_{n}(y)\right) d W_{c}(y)=\gamma_{n} \int_{-M}^{M} \ldots \int_{-M}^{M} H\left(\xi_{1}, \ldots, \xi_{n}\right) \exp \left\{-\sum_{j=1}^{n} \frac{\left(\xi_{j}-\xi_{y-1}\right)^{2}}{c t_{j}-c t_{j}}\right\} d \xi_{1}, \ldots d \xi_{n}$.
$\ldots \ldots \ldots \ldots \ldots$ (1)
where $\gamma_{n}=\left\{\pi^{n} c^{n} t_{1}\left(t_{2}-t_{1}\right) \ldots\left(t_{n}-t_{n-1}\right)\right\}^{-\frac{1}{2}}$.
If x is the image of y under the transformation $y \longmapsto y / \sqrt{c}$ and if $L_{n}(x), L_{n}(y)$ are the polygonalized functions corresponding to x and y respectively, then according to Definition 5.1

$$
\begin{align*}
L_{n} y(t) & =\sqrt{c} x\left(t_{j}\right)+\frac{\sqrt{c} x\left(t_{j}+1\right)-\sqrt{c} x\left(t_{j}\right)}{t_{j+1}-t_{j}} \cdot\left(t-t_{j}\right) \\
& =\sqrt{c} L_{n} x(t) . \tag{2}
\end{align*}
$$

If we write

$$
\xi_{j}=y\left(t_{j}\right), \eta_{j}=x\left(t_{j}\right), \quad j=0, \ldots, n,
$$

then under (2) we have

$$
\begin{align*}
\xi_{j} & =\sqrt{c} \eta_{j}, \quad j=0, \ldots, n . . \tag{3}\\
\text { Since } \frac{\partial\left(\xi_{1}, \ldots, \xi_{n}\right)}{\partial\left(\eta_{1}, \ldots, \eta_{n}\right)} & =\left|\begin{array}{ccc}
\sqrt{c} & 0 & 0 \ldots .0 \\
0 & \sqrt{c} & 0 \ldots . .0 \\
0 & 0 & 0 \ldots . . \sqrt{c}
\end{array}\right|=c^{n / 2},
\end{align*}
$$

on applying the transformation (3) to the Lebesgue integral in (1) we find that

$$
\begin{aligned}
\int_{C_{M, n}} F\left(L_{n}(y)\right) d W_{c}(y) & =c^{n / 2} \gamma_{n} \int_{-M / \sqrt{c}}^{M / \sqrt{c}} \ldots \int_{-M / \sqrt{c}}^{M / \sqrt{c}} H\left(\sqrt{c} \eta_{1}, \ldots, \sqrt{c} \eta_{n}\right) \\
& \cdot \exp \left\{-\sum_{j=1}^{n} \frac{\left(\eta_{j}-\eta_{j-1}\right)^{2}}{t_{j}-t_{j-1}}\right\} d \eta_{l_{1}} \ldots \ldots d \eta_{n} \\
& =\int_{C_{M, n} / \sqrt{c}} H\left(\sqrt{c} x\left(t_{1}\right), \ldots, \sqrt{c} x\left(t_{n}\right)\right) d W(x) \\
& \left.=\int_{C} \frac{F\left(L_{n}\right.}{}(\sqrt{c} x)\right) \operatorname{dW}(x) .
\end{aligned}
$$

This gives us a transformation formula over $C_{M, n}$ for the polygonalized functions under the transformation $y \longmapsto y / \sqrt{c}$. If we let $n \rightarrow \infty$ (over the sequence $\left\{2^{\circ}, 2^{1}, \ldots\right\}$) and then M, according to the properties of F we obtain

$$
\int_{C} F(y) d w_{c}(y)=\int_{C} F(\sqrt{C} x) d w(x) .
$$

Thus, if T is any Wiener measurable set and F is a measurable functional defined on T, then as the same proof as in Theorem 5.10 we obtain the theorem,
Q.E.D.

