CHAPTER V

TRANSFORMATIONS OF WIENER INTEGRALS UNDER TRANSLATIONS

The purpose of this chapter is to show how the Wiener integral transforms under a translation, and we consider special cases of translations which seem to lead to rather interesting results. Moreover, we also find a necessary and sufficient condition under which the integral is invariant.

<u>Definition 5.1.</u> Let n be a positive integer, denote by t_j the point $t_j = \frac{1}{n}$, and for any $y \in C$ define a <u>polygonalized form of y</u> by the relations

$$L_{n}y(t) = y(t_{j}) + \frac{y(t_{j+1}) - y(t_{j})}{t_{j+1} - t_{j}} \cdot (t - t_{j}) ; \text{ for } t_{j} \leq t \leq t_{j+1},$$

$$j = 0, 1, ..., n-1.$$

i.e. for $y \in C$, $L_n(y)$ is defined to be equal to y at each t_j , $j = 0, \ldots, n$ and linear on each of the intervals $\{t_j, t_{j+1}\}$, $j = 0, 1, \ldots, n-1$. It follows that $L_n(y) \in C$.

Theorem 5.2. Let F be a functional defined on C, let F be continuous in the sense that $\lim_{k\to\infty} F(y_k) = F(y_0)$ whenever $\{y_k\}$ is any sequence in C which converges uniformly in [0,1] to $y_0\in C$. Then the functional $y\longmapsto F(L_n(y))$ defined on C is Wiener measurable and there exists a continuous extended real-valued function $H(\xi_1,\ldots,\xi_n)$ defined on \mathbb{R}^n such that

$$F(L_n(y)) = H(y(t_1),...,y(t_n)).$$

Proof. We divide the proof into 3 steps:

Step 1. Since for any $(\xi_1, \dots, \xi_n) \in \mathbb{R}^n$ there exists $y \in \mathbb{C}$ such that $y(t_1) = \xi_1, \dots, y(t_n) = \xi_n$ and $L_n(y)$ depends only upon the values of y at the n points t_1, \dots, t_n , it follows that by defining H as follow:

$$H(y(t_1),\ldots,y(t_n)) = F(L_n(y)).$$

Thus H is an extended real-valued function of n real variables ξ_1, \ldots, ξ_n . Then this is well defined, since if there exists $z \in C$ such that $z(t_1) = \xi_1, \ldots, z(t_n) = \xi_n$ we will have that $L_n(z) = L_n(y)$ and hence $F(L_n(z)) = F(L_n(y))$.

Step 2. We show the continuity of H.

But for any point $t \in [0,1]$, $t_{i-1} \le t \le t_i$ for some i, it follows from the linearity of each y_k on $[t_{i-1}, t_i]$ that

$$y_k(t) = y_k(t_{i-1}) + \frac{y_k(t_i) - y_k(t_{i-1})}{t_i - t_{i-1}} \cdot (t - t_i), k = 0,1,...,$$

Thus, for any point t ∈ [0,1]

$$y_{k}(t)-y_{0}(t) = \frac{t-t_{i}}{t_{i}-t_{i-1}} \left[(y_{k}(t_{i}) - y_{0}(t_{i})) + (y_{0}(t_{i-1}) - y_{k}(t_{i-1})) \right]$$

$$+ (y_{k}(t_{i-1}) - y_{0}(t_{i-1})).$$

But then

$$|y_k(t)-y_0(t)| \leq |y_k(t_{i-1})-y_0(t_{i-1})| + |y_k(t_i)-y_0(t_i)| + |y_k(t_{i-1})-y_0(t_{i-1})|.$$

It follows from (1) that $\{y_k\}$ converges uniformly to y_0 in [0,1] and hence by hypothesis,

$$\lim_{k\to\infty} F(y_k) = F(y_0). \qquad(2)$$

Also, by Definition 5.1 we have $L_n(y_k) = y_k$, k = 0,1,... and hence $F(y_k) = F(L_n(y_k)) = H(y_k(t_1),...,y_k(t_n)) = H(u_{k1},...,u_{kn}), k = 0,1,...$ It follows from (2) that $\lim_{k\to\infty} H(u_k) = H(u_0)$ and hence H is continuous.

Since for any real number α_0 ,

$$\theta_{\alpha_0} = \{ y \in C : F(L_n(y)) > \alpha_0 \}
= \{ y \in C : H(y(t_1), ..., y(t_n)) > \alpha_0 \}
= \{ y \in C : (y(t_1), ..., y(t_n)) \in E \}$$

where $E = \{ u \in \mathbb{R}^n : H(u) > \omega_0 \}$ which is a Borel set since H is continuous. Thus $\theta_{\omega_0} \in \mathcal{J}$ and hence is Wiener measurable. Therefore the functional $y \longmapsto F(L_n(y))$ is Wiener measurable, since ω_0 is arbitrary.

Definition 5.3. Let $A \subseteq C$ and let $x_0 \in C$. We define $A - x_0 = \{x \in C : x = y - x_0, y \in A\}$.

Theorem 5.4. If $A \in \mathcal{B}(C)$ then $A - x_0 \in \mathcal{B}(C)$.

Proof. We divide the proof into 3 steps :

Step 1. We show that $(A-x_0)' = A' - x_0$, where $(A-x_0)' = C - (A-x_0)$ and A' = C - A. If $x \in (A-x_0)'$, then $x \notin A-x_0$, so that $x + x_0 \notin A$. Therefore $x + x_0 \in A'$ and hence $x \in A' - x_0$. Conversely if $x \in A' - x_0$, then $x + x_0 \in A'$, so that $x + x_0 \notin A$. Therefore $x \notin A - x_0$ and hence $x \in (A-x_0)'$.

Step 2. We show that $\bigcup_{i=1}^{\infty} (A_i - x_0) = \bigcup_{i=1}^{\infty} A_i - x_0$. If $x \in \bigcup_{i=1}^{\infty} (A_i - x_0)$,

then $x \in A_i - x_0$ for some i. But then $x + x_0 \in \bigcup_{i=1}^{\infty} A_i$ and hence $x \in \bigcup_{i=1}^{\infty} A_i - x_0$. Conversely, if $x \in \bigcup_{i=1}^{\infty} A_i - x_0$, then $x + x_0 \in \bigcup_{i=1}^{\infty} A_i$.

But then $x + x_0 \in A_i$ for some i and hence $x \in \bigsqcup_{i=1}^{\infty} (A_i - x_0)$.

Step 3. Let $\mathcal{A} = \{ A \in \mathcal{B}(C) : A-x_0 \in \mathcal{B}(C) \}$. Then

- (i) Since $y \mapsto y-x_0$ is a homeomorphism on C, it follows that if $A \subseteq C$ is open then $A-x_0$ is open and hence $A-x_0 \in \mathcal{B}(C)$. Therefore Acontains all open sets in C.
- (ii) Let $A \in \mathcal{A}$, then A and $A-x_0 \in \mathcal{B}(C)$. Since $\mathcal{B}(C)$ is a 6-algebra, A and $(A-x_0) \in \mathcal{B}(C)$. It follows from step 1 that $A \in \mathcal{A}$.

(iii) Let $A_i \in \mathcal{A}$ for i = 1, 2, ..., then A_i and $A_i - x_0 \in \mathcal{B}(C)$ for all i. Since $\mathcal{B}(C)$ is a δ -algebra, $\bigsqcup_{i=1}^{\infty} A_i$ and $\bigsqcup_{i=1}^{\infty} (A_i - x_0) \in \mathcal{B}(C)$. It follows from step 2 that $\bigsqcup_{i=1}^{\infty} A_i \in \mathcal{A}$.

From (i), (ii) and (iii) we have that \mathcal{A} is a δ -algebra containing all open sets in C and must therefore contain the cellection $\mathcal{B}(C)$ of all Borel sets, since $\mathcal{B}(C)$ is the smallest δ -algebra containing open sets. Hence $\mathcal{A}=\mathcal{B}(C)$.

Q.E.D.

Theorem 5.5. Let F be a functional defined and Wiener integrable over C. Let F be bounded in any uniformly bounded subset of C and let F be continuous in the sense as in Lemma 5.2.

Let $x_0 \in C$ be a given function with a first derivative x_0' of bounded variation on [0,1]. Then under the translation

$$y \mapsto y - x_0$$
, $y \in C$ (3)

the Wiener integral undergoes the transformation

$$\int_{C}^{c} F(y) dW_{c}(y) = \exp \left\{-\frac{1}{c} \int_{0}^{1} (x'_{0}(t))^{2} dt\right\} \int_{C}^{c} F(x+x_{0}) \exp \left\{-\frac{2}{c} \int_{0}^{1} x'_{0}(t) dx(t)\right\} dW_{c}(x)$$

Remark 5.6. Let $x_0 \in C$ satisfy the condition in Theorem 5.5.

Then the functional S defined on C by

$$S(x) = \exp \left\{-\frac{1}{c} \int_0^1 (x'_0(t))^2 dt - \frac{2}{c} \int_0^1 x'_0(t) dx(t)\right\}$$

is Wiener measurable.

<u>Proof.</u> Let $\{x_n\}$ be any sequence in C which converges uniformly to x in [0,1]. Then according to (1.51) and (1.55) and the fact that $x_n(0) = 0$ for all n, we have

$$\lim_{n \to \infty} \int_{0}^{1} x'_{0}(t) dx_{n}(t) = \lim_{n \to \infty} x'_{0}(1)x_{n}(1) - \lim_{n \to \infty} \int_{0}^{1} x_{n}(t) dx'_{0}(t)$$

$$= x'_{0}(1)x(1) - \int_{0}^{1} x(t) dx'_{0}(t)$$

$$= \int_{0}^{1} x'_{0}(t) dx(t).$$

It follows that $\lim_{n\to\infty} S(x_n) = S(x)$. Thus the functional S is continuous and hence by Theorem 4.3 is Wiener measurable.

Q.E.D.

In order to prove the theorem, we need the following Lemmas :

Lemma 5.7. Let $x, x_0 \in C$ and let x_0 satisfy the condition in Theorem 5.5. Let $0 = t_0 < t_1 < \dots < t_n = 1$, where $t_j = \frac{j}{n}$ for $j = 0, \dots, n$. Then

$$\lim_{n \to \infty} \sum_{j=1}^{n} \frac{\left(x_0(t_j) - x_0(t_{j-1}) \right)^2}{ct_j - ct_{j-1}} + \frac{2(x_0(t_j) - x_0(t_{j-1}))(x(t_j) - x(t_{j-1}))}{ct_j - ct_{j-1}} \right\}$$

$$= \frac{1}{c} \int_0^1 (x_0'(t))^2 dt + \frac{2}{c} \int_0^1 x_0'(t) dx(t),$$

and the convergence being bounded in x for all x in any uniformly bounded set.

(Remark : Since n now varies, it must be mentioned that the points $t_j = \frac{j}{n}$ vary with n. For the sake of simplicity in writing, we do not add another index n to the t_j .)

Then by the mean-value theorem,

$$P_{n}(x) = \frac{1}{c} \sum_{j=1}^{n} x'_{0}(t_{j}^{*}) \left[\gamma(x; t_{j}) - \gamma(x; t_{j-1}) \right],$$

for some t_j^* such that $t_{j-1} \le t_j^* \le t_j$.

Since x_0' is of bounded variation and ψ is continuous in t, it follows that $\int_0^1 \psi(x;t) dx_0'(t)$ exists and hence by (1.51),

 $\int_0^1 x_0'(t) d\psi(x;t) \text{ exists. According to the definition of Piemann-Stieltjes integral, } P_n(x) \text{ approaches the integral } \frac{1}{c} \int_0^1 x_0'(t) d\psi(x;t)$ as $n \to \infty$.

But
$$\sum_{j=1}^{n} \frac{x_0(t_j) - x_0(t_{j-1})}{ct_j - ct_{j-1}} \left\{ \gamma(x; t_j) - \gamma(x; t_{j-1}) \right\}$$

$$= \sum_{j=1}^{n} \left\{ \frac{(x_0(t_j) - x_0(t_{j-1}))^2}{ct_j - ct_{j-1}} + 2 \frac{(x_0(t_j) - x_0(t_{j-1}))(x(t_j) - x(t_{j-1}))}{ct_j - ct_{j-1}} \right\},$$

so we have that as $n \to \infty$, the right hand side of the above equality becomes $\frac{1}{c} \int_0^1 x_0'(t) d \psi(x;t) = \frac{1}{c} \int_0^1 (x_0'(t))^2 dt + \frac{2}{c} \int_0^1 x_0'(t) dx(t).$

It remains to show that the convergence is bounded in x for all x in any uniformly bounded set. Let B be any uniformly bounded set of C; i.e., there is a constant $K_1 = K_1(B)$ such that

$$|x(t)| \le K_1$$
 for all $x \in B$ and $t \in [0,1]$.

Let
$$d_{j} = x'_{0}(t_{j}^{*}), b_{j} = Y(x;t_{j}), j = 1,...,n.$$
 Then

$$\begin{split} P_{\mathbf{n}}(\mathbf{x}) &= \frac{1}{c} \sum_{\mathbf{j}=1}^{\mathbf{n}} d_{\mathbf{j}}(\mathbf{b}_{\mathbf{j}} - \mathbf{b}_{\mathbf{j}-1}) = \frac{1}{c} (\mathbf{b}_{\mathbf{1}}(d_{\mathbf{1}} - d_{\mathbf{2}}) + \mathbf{b}_{\mathbf{2}}(d_{\mathbf{2}} - d_{\mathbf{3}}) + \dots + \mathbf{b}_{\mathbf{n}-1}(d_{\mathbf{n}-1} - d_{\mathbf{n}}) + \mathbf{b}_{\mathbf{n}} d_{\mathbf{n}}) \\ &= \frac{1}{c} \left(\mathbf{b}_{\mathbf{n}} d_{\mathbf{n}} - \sum_{\mathbf{j}=1}^{\mathbf{n}-1} \mathbf{b}_{\mathbf{j}}(d_{\mathbf{j}+1} - d_{\mathbf{j}}) \right) \\ &= \frac{1}{c} \left(\mathbf{x}'_{\mathbf{0}}(\mathbf{t}_{\mathbf{n}}^{*}) \psi(\mathbf{x}; \mathbf{1}) - \sum_{\mathbf{j}=1}^{\mathbf{n}-1} \left\{ \mathbf{x}'_{\mathbf{0}}(\mathbf{t}_{\mathbf{j}+1}^{*}) - \mathbf{x}'_{\mathbf{0}}(\mathbf{t}_{\mathbf{j}}^{*}) \right\} \psi(\mathbf{x}; \mathbf{t}_{\mathbf{j}}) \right\}. \end{split}$$

Since $x_0 \in C$, there exists a constant K_2 such that $|x_0(t)| \leq K_2$ for all $t \in [0,1]$. Since $\Psi(x;t) = x_0(t) + 2x(t)$, it follows that $|\Psi(x;t)| \leq |x_0(t)| + 2|x(t)|$

$$\leq$$
 $K_2 + 2K_1$, $t \in [0,1]$ and $x \in B$,(4)

but x_0' is of bounded variation on [0,1], there exists a constant x_3 such that

$$\sum_{j=1}^{n-1} |x'_0(t^*_{j+1}) - x'_0(t^*_j)| \le K_3 \quad \text{for all } n, \dots (5)$$

$$\begin{aligned} |P_{n}(x)| &\leq \frac{1}{c} \left[|x'_{0}(t_{n}^{*})| |\psi(x;1)| + \sum_{j=1}^{n-1} |x'_{0}(t_{j+1}^{*}) - x'_{0}(t_{j}^{*})| |\psi(x;t_{j})| \right] \\ &\leq \frac{1}{c} \left(K_{4}(K_{2} + 2K_{1}) + K_{3}(K_{2} + 2K_{1}) \right) - C(K_{3} + K_{3} + K_{3}$$

=
$$\frac{1}{c} (K_2 + 2K_1)(K_3 + K_4)$$
, for all n and $x \in B$.

Hence the $P_n(x)$ are bounded in n and $x \in B$, since c is a positive constant. Q.E.D.

Lemma 5.8. If $L_n(y)$ is the polygonalized form of $y \in C$, then $L_n(y)$ converges uniformly to y in [0,1].

<u>Proof.</u> Let y be any given function in C and let $\epsilon > 0$ be given. Since y is continuous on [0,1] which is compact, y is uniformly continuous. Thus there exists an integer $n_0 = n_0(\epsilon)$ such that

$$|y(t') - y(t'')| < \epsilon/2$$
 whenever $|t' - t''| < \frac{1}{n_0}$(7)

Since for any point $t \in [0,1]$, $t_j \le t \le t_{j+1}$ for some j, according to Definition 5.1 and (7) we have that for $n \ge n_0$

$$\begin{aligned} |L_{n}y(t)-y(t)| & \leq \left| \frac{y(t_{j+1})-y(t_{j})}{t_{j+1}-t_{j}} \right| |t-t_{j}| + |y(t_{j})-y(t)| \\ & \leq n \cdot \frac{\epsilon}{2} \cdot \frac{1}{n} + \frac{\epsilon}{2} = \epsilon \end{aligned}.$$

Therefore L_n(y) converges uniformly to y in [0,1].

Proof of Theorem 5.5. Let M, n be any two positive integers.

Define

$$\begin{split} & C_M = \big\{ y \in C \,:\, \big| y(t) \big| \, \leq \, M \,\,,\,\,\, t \in [0,1] \,\,\big\} \quad \text{and} \\ & C_{M,n} = \, \big\{ \, y \in C \,:\,\, \big| y(j/n) \,\big| \, \leq \, M \,\,,\,\,\, j = 0,1,\ldots,\,\, n \big\} \,\,. \end{split}$$

Then $\{c_{M,2^n}\}$ is a monotone decreasing sequence of sets and hence converges to $\bigcap_{n=1}^{\infty} c_n = c_M$, i.e. $\lim_{n\to\infty} c_n = c_M$, and

$$C_{M_1} \subset C_{M_2}$$
 if $M_1 < M_2$ which implies that $\lim_{M \to \infty} C_M = C$.

Step 1. By letting $F_{M,n} = \{(\xi_1, \dots, \xi_n) \in \mathbb{R}^n : -M \leq \xi_j \leq M, j = 1, \dots, n\}$, we have $C_{M,n} = \{y \in C : (y(t_1), \dots, y(t_n)) \in F_{M,n}\}$ and

$$\chi_{C_{M,n}}(y) = \begin{cases} 1 & y \in C_{M,n} \\ 0 & y \notin C_{M,n} \end{cases} \neq \begin{cases} 1 & (y(t_1), \dots, y(t_n)) \in E_{M,n} \\ 0 & (y(t_1), \dots, y(t_n)) \notin E_{M,n} \end{cases}$$
$$= \chi_{E_{M,n}}(y(t_1), \dots, y(t_n)).$$

But then by Lemma 5.2, (1.30) and Theorem 4.10,

$$\begin{split} \int_{C_{M,n}} F(L_n(y)) dW_c(y) &= \int_{C} \chi_{C_M,n}(y) \cdot F(L_n(y)) dW_c(y) \\ &= \int_{C} \chi_{E_{M,n}}(y(t_1), \dots, y(t_n)) \cdot H(y(t_1), \dots, y(t_n)) dW_c(y) \\ &= \Im n \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} \chi_{E_{M,n}}(\xi_1, \dots, \xi_n) H(\xi_1, \dots, \xi_n) \\ &\cdot \exp \left\{ -\sum_{i=1}^{n} \frac{(\xi_i - \xi_{i-1})^2}{ct_i - ct_i} \right\} d\xi_1 \dots d\xi_n \end{split}$$

$$= \gamma_{n} \int_{-M}^{M} \dots \int_{-M}^{M} H(\xi_{1}, \dots, \xi_{n}) \exp \left\{ -\sum_{j=1}^{n} \frac{(\xi_{j} - \xi_{j-1})^{2}}{\operatorname{ct}_{j} - \operatorname{ct}_{j-1}} \right\} d\xi_{1} \dots d\xi_{n}$$
(8)

where
$$\gamma_n = \left\{ \gamma_0^n c_1^n t_1(t_2 - t_1) \dots (t_n - t_{n-1}) \right\}^{\frac{-1}{2}}$$
.

We next observe that if x is the image of y under the translation (3) and if $L_n(x)$, $L_n(x_0)$ and $L_n(y)$ are the polygonalized functions corresponding to x, x_0 and y respectively, then according to Definition 5.1

$$L_{n}y(t) = \left\{x(t_{j}) + x_{0}(t_{j})\right\} + \frac{\left\{x(t_{j+1}) + x_{0}(t_{j+1}) - x(t_{j}) - x_{0}(t_{j})\right\}}{t_{j+1} - t_{j}} \cdot (t - t_{j})$$

$$= \left\{x(t_{j}) + \frac{\left(x(t_{j+1}) - x(t_{j})\right)}{t_{j+1} - t_{j}} \cdot (t - t_{j})\right\} + \frac{\left(x_{0}(t_{j+1}) - x_{0}(t_{j})\right)}{t_{j+1} - t_{j}} \cdot (t - t_{j})$$

$$+ x_{0}(t_{j})\right\}$$

$$= L_{n}x(t) + L_{n}x_{0}(t) \cdot (9)$$

If we write

$$\xi = y(t_j), \quad \eta_j = x(t_j), \quad a_j = x_0(t_j), \quad j = 0,...,n, \quad(10)$$

then under (9) we have

Since
$$\frac{\Im(\xi_1,\ldots,\xi_n)}{\Im(\eta_1,\ldots,\eta_n)}=1$$
 , on applying the transformation (11)

to the Lebesgue integral in (8) we find that

$$\exp\left\{-\sum_{j=1}^{n} \frac{(\eta_{j} - \eta_{j-1})^{2}}{\operatorname{ct}_{j} - \operatorname{ct}_{j-1}}\right\} \cdot \exp\left\{-\sum_{j=1}^{n} \frac{(a_{j} - a_{j-1})^{2}}{\operatorname{ct}_{j} - \operatorname{ct}_{j-1}}\right\}$$

$$\cdot \exp\left\{-2\sum_{j=1}^{n} \frac{(a_{j} - a_{j-1})(\eta_{j} - \eta_{j-1})}{\operatorname{ct}_{j} - \operatorname{ct}_{j-1}}\right\} d\eta_{1} \dots d\eta_{n} .$$

By virtue of Theorem 4.10 and using (10) and the facts that $x(t_j) = L_n x(t_j), x_0(t_j) = L_n x_0(t_j), \text{ we have that}$

$$\int_{C_{M,n}}^{F(L_n(y))dW_c(y)} = \exp\left\{-\sum_{j=1}^{n} \frac{(x_0(t_j)-x_0(t_{j-1})^2)}{ct_j-ct_{j-1}}\right\} \int_{C_{M,n}-x_0}^{F(L_n(x+x_0))} F(L_n(x+x_0))$$

$$\exp \left\{-2\sum_{j=1}^{n} \frac{(x_0(t_j)-x_0(t_{j-1}))(x(t_j)-x(t_{j-1}))}{ct_j-ct_{j-1}}\right\} dW_c(x).$$

This gives us a transformation formula over $C_{M,n}$ for the polygonalized functions under the transformation (9).

Step 2. We show that
$$\lim_{n\to\infty} \chi_{C_M,2^n}(y) = \chi_{C_M}(y)$$
 and

and
$$\lim_{n\to\infty} \mathcal{H}_{C_{M},2^{n-x_0}}(x) = \mathcal{H}_{C_{M}^{-x_0}}(x)$$
. To see this, let $\epsilon > 0$

be given.

Case 1. If
$$y \in C_M$$
 then, since $\lim_{n \to \infty} C_{M,2^n} = \bigcap_{n=1}^{\infty} C_{M,2^n} = C_M$,

we have that $y \in C$ for all n. Hence M_*2^n

$$|\chi_{C_{M,2}^{n}}(y) - \chi_{C_{M}}(y)| < \epsilon$$
 for all n.

Case 2. If $y \notin C_M$ then $y \notin C_{M,2^N}$ for some N. Since $\{C_{M,2^n}\}$ is a monotone decreasing sequence, $y \notin C_{M,2^n}$ for all $n \ge N$. Hence

$$|\chi_{C_{M,2}^{n}}(y) - \chi_{C_{M}}(y)| \leq \epsilon$$
 for all $n \gg N$.

It follows from both cases that

$$\lim_{n\to\infty} \chi_{C_{M,2}^n}(y) = \chi_{C_M}(y). \qquad \dots (13)$$

Similarly,
$$\lim_{n\to\infty} \mathcal{N}_{C_{M,2}n} - x_0(x) = \mathcal{N}_{C_{M}} - x_0(x)$$
. (14)

Step 3. Since L₂(y) converges uniformly to y in [0,1], by the continuity of F we have

$$\lim_{n\to\infty} F(L_n(y)) = F(y). \qquad \dots (15)$$

But then by (13),(14),(15) and the fact that $y = x+x_0$, we have

$$\lim_{n\to\infty} \chi_{C_{M,2}^{n}}(y).F(L_{2}^{n}(y)) = \chi_{C_{M}^{n}}(y).F(y),$$

$$\lim_{n\to\infty} \chi_{C_{M,2}^{n-x_{0}}}(x).F(L_{2}^{n}(x+x_{0})) = \chi_{C_{M}^{n-x_{0}}}(x).F(x+x_{0}).$$
(16)

Also, since by hypothesis F is bounded over C_M we have that $x \mapsto F(x+x_0)$ and hence $x \mapsto F(L_2(x+x_0))$ is bounded over $C_M - x_0$. Thus, if we let $n \mapsto \infty$ (over the sequence $\{2^0, 2^1, \dots\}$) in equation (12), then according to (16), Lemma 5.7 and Lebesgue's Dominated Convergence Theorem we obtain

$$\int_{C} \mathcal{X}_{C_{M}}(y).F(y)dW_{c}(y) = \exp\left\{-\frac{1}{c} \int_{0}^{1} (x'_{0}(t))^{2}dt\right\} \int_{C} \mathcal{X}_{C_{M}}-x_{0}(x).F(x+x_{0})$$

$$\cdot \exp\left\{-\frac{2}{c} \int_{0}^{1} x'_{0}(t)dx(t)\right\} dW_{c}(x).$$

Since F is Wiener integrable and $\{C_M^{}\}$ is a monotone increasing sequence of sets where $\lim_{M\to\infty} C_M^{} = C$, according to Lebesgue's Monotone Convergence Theorem, on letting $M\to\infty$ we obtain the desired result.

Q.E.D.

Corollary 5.9. Let $x_0 \in C$ satisfy the condition in Theorem 5.5. Then $\exp\left\{-\frac{2}{c}\int_0^1 x_0'(t)dx(t)\right\}$ is Wiener integrable and $\int_C \exp\left\{-\frac{2}{c}\int_0^1 x_0'(t)dx(t)\right\} dW_c(x) = \exp\left\{\frac{1}{c}\int_0^1 (x_0'(t))^2dt\right\}.$

Proof. By taking $F \equiv 1$ in Theorem 5.5.

Q.E.D.

Theorem 5.10. Let $x_0 \in C$ satisfy the condition in Theorem 5.5 and let Γ be a Wiener measurable subset of C. Then

$$W_{c}(\Gamma') = \exp\left\{-\frac{1}{c}\int_{0}^{1}(x'_{0}(t))^{2}dt\right\}\int_{\Gamma'-x_{0}}^{\infty}\exp\left\{-\frac{2}{c}\int_{0}^{1}x'_{0}(t)dx(t)\right\}dW_{c}(x).$$
(17)

Moreover if F is a Wiener measurable functional defined on T

$$\int_{\Gamma} F(y) dW_{c}(y) = \exp \left\{ -\frac{1}{c} \int_{0}^{1} (x'_{0}(t))^{2} dt \right\} F(x+x_{0}) \exp \left\{ -\frac{2}{c} \int_{0}^{1} x'_{0}(t) dx(t) \right\} dW_{c}(x)$$
(18)

in the sense that the existence of one side implies that of the other and the validity of the equality.

Proof. We begin our proof by establishing (17).

Case 1. If $\Gamma \in \mathcal{B}(c)$ then, by Theorem 5.4, $\Gamma - x_0 \in \mathcal{B}(c)$. To prove (17), we divide the proof into 3 steps:

Step 1. We consider the case $T' = I^0$, where

$$\mathbf{I}^0 = \left\{ \mathbf{y} \in \mathbf{C} : \alpha_j \leq \mathbf{y}(\mathbf{t}_j) \leq \beta_j \text{ , } j = 1, \dots, n \text{ and } 0 \leq \mathbf{t}_1 \leq \dots \leq \mathbf{t}_n \leq 1 \right\}.$$

Let k>0 be any integer. Then according to Urysohn Lemma, there exists for each j, a continuous real-valued function $\emptyset_{j,k}$ defined on R which equals one on $[\alpha_j, \beta_j]$, equals zero outside the interval

 $(\alpha_j - \frac{1}{k}, \beta_j + \frac{1}{k})$ and is linear on the remaining intervals.

Let
$$\chi_{j,k}^{0}(y) = \bigcap_{j=1}^{n} \emptyset_{j,k}(y(t_{j}))$$
, $y \in C$.

Since each $\emptyset_{j,k}$ is continuous on R, it is Borel measurable. Hence, by Theorem 4.10, $\emptyset_{j,k}(y(t_j))$ is Wiener measurable and so is $\chi_{0,k}$.

Since $0 \le \emptyset_{j,k} \le 1$ on R, $0 \le \chi_{0,k}(y) \le 1$ for all $y \in C$ and hence $\chi_{0,k}(y)$ is uniformly bounded on C, by (1.37) $\chi_{0,k}(y)$ is Wiener I,k

integrable. Finally, if $\{y_n\}$ is any sequence in C which converges

uniformly in [0,1] to y \in C, then the continuity of $\emptyset_{j,k}$ implies

$$\lim_{n\to\infty} \emptyset_{j,k} (y_n(t_j)) = \emptyset_{j,k} (y(t_j)). \quad \text{Hence}$$

$$\lim_{n\to\infty} \chi_{0,k}(y_n) = \chi_{0,k}(y). \text{ It follows that } \chi_{0,k}$$

satisfies the conditions on F in Theorem 5.5 and hence we have

$$\int_{C} \chi_{0,k}(y) dW_{c}(y) = \exp \left\{ -\frac{1}{c} \int_{0}^{1} (x'_{0}(t))^{2} dt \right\} \int_{C} \chi_{1,k}(x+x_{0}) \exp \left\{ -\frac{2}{c} \int_{0}^{1} x'_{0}(t) dx(t) dx(t) \right\} dW_{c}(x). \quad (19)$$

Step 2. We show that $\lim_{k\to\infty} \chi_{0,k}(y) = \chi_{0}(y), y \in C.$

Given $\[leq > 0\]$. If $y \in I^0$, then $y(t_j) \in [\alpha_j, \beta_j]$ and hence

 $\emptyset_{j,k}(y(t_j)) = 1$ for all j = 1,...,n and for all k, which implies that $\chi_{j_0,k}(y) = 1$ for all k. Thus

$$\left|\chi_{10,k}(y) - \chi_{10}(y)\right| < \epsilon$$
 for all k.

If $y \notin I^0$, then there exists at least one j such that $y(t_j) \notin [\alpha_j, \beta_j]$. Since $k \to \infty$, there exists a sufficiently large k_0 such that $y(t_j) \in (-\infty, \alpha_j - \frac{1}{k_0}) \sqcup (\beta_j + \frac{1}{k_0}, \infty) \text{ and hence } \emptyset_{j,k}(y(t_j)) = 0$ for all $k \geqslant k_0$. Therefore $|\chi_{0,k}(y) - \chi_{0,k}(y)| < \epsilon$ for all $k \geqslant k_0$. Thus $\lim_{k \to \infty} \chi_{0,k}(y) = \chi_{0,k}(y)$, $y \in C$.

Step 3. Since $0 \le \chi_{0,k+1}(y) \le \chi_{0,k}(y)$ for all k, by

letting $k \rightarrow \infty$ and applying Lebesgue's Monotone Convergence Theorem to (19), we have

$$\begin{split} & W_{c}(I^{0}) = \int_{C}^{\infty} \pi_{I^{0}}(y) dW_{c}(y) \\ & = \exp\left\{-\frac{1}{c} \int_{0}^{1} (x'_{0}(t))^{2} dt\right\} \int_{C}^{\infty} \pi'_{I^{0}}(x+x_{0}) \exp\left\{-\frac{2}{c} \int_{0}^{1} x'_{0}(t) dx(t)\right\} dW_{c}(x) \\ & = \exp\left\{-\frac{1}{c} \int_{0}^{1} (x'_{0}(t))^{2} dt\right\} \int_{C}^{\infty} \pi'_{I^{0}-x_{0}}(x) \exp\left\{-\frac{2}{c} \int_{0}^{1} x'_{0}(t) dx(t)\right\} dW_{c}(x) \\ & = \exp\left\{-\frac{1}{c} \int_{0}^{1} (x'_{0}(t))^{2} dt\right\} \int_{I^{0}-x_{0}}^{\infty} \exp\left\{-\frac{2}{c} \int_{0}^{1} x'_{0}(t) dx(t)\right\} dW_{c}(x) , \end{split}$$

which is equivalent to (17) when $\Gamma = I^0$. The equality (17) holds when $\Gamma \in \mathcal{D},$ since both sides of it are countably additive functions of Γ . Finally, when Γ is an arbitrary set in $\mathcal{B}(C)$, by Lemma 4.8, it can be written as $\Gamma = G - N$ where $G \in \mathcal{D}^{\circ \downarrow}$ with $N \subseteq G$ and $W_C(N) = 0$. Since $G \in \mathcal{D}^{\circ \downarrow}$, $G = \lim_{n \to \infty} G_n$ where $\{G_n\}$ is a decreasing sequence of members of $\mathcal{D}^{\circ \downarrow}$. Applying (17) to each G_n and taking the limit as $n \to \infty$, we obtain (17) for Γ by Lebesgue's Monotone Convergence Theorem.

Case 2. If Γ is any Wiener measurable set then, according to (1.14), $\Gamma = \Gamma_0 \sqcup A$ where $\Gamma_0 \in \mathcal{B}(C)$ and $A \subseteq B$, $B \in \mathcal{B}(C)$, $W_c(B) = 0$. But then $\Gamma - x_0 = (\Gamma_0 - x_0) \sqcup (A - x_0)$ and by substituting

 $-x_0$ to x_0 in (17), we have $W_c(B-x_0)=0$. Since $A-x_0\subseteq B-x_0$, it follows from Theorem 5.4 and (1.14) that $\Gamma-x_0$ is Wiener measurable. Since Lemma 4.8 holds for any Wiener measurable set Γ , we have that steps 1-3 in case 1 also hold for Γ in this case.

To prove (18), we first note that for any real number \mathcal{A}_0 , $\left\{y: F(y) > \mathcal{A}_0\right\} - x_0 = \left\{x: F(x+x_0) > \mathcal{A}_0\right\}.$

It follows that F is measurable on Γ if and only if $x \mapsto F(x+x_0)$ is measurable on $\Gamma - x_0$, but then Remark 5.6 and (1.22) imply that if and only if $x \longmapsto S(x)F(x+x_0)$ is measurable on $\Gamma - x_0$.

Case 1. If F is bounded and non-negative. Let M be an integer such that $0 \le F(y) < M$ on Γ . Let n be a fixed positive integer and let

$$T_{k} = \{ y \in T' : \frac{k-1}{n} \le F(y) < \frac{k}{n} \}, k = 1, ..., Mn.$$
 (20)

Since F is measurable, T_k 's are measurable and clearly $T = \bigsqcup_{k=1}^{m} T_k$.

Also, T_k 's are disjoint and

$$\frac{k-1}{n} W_{c}(\lceil \frac{1}{k} \rceil) \leq \int_{\lceil \frac{1}{k} \rceil} F(y) dW_{c}(y) \leq \frac{k}{n} W_{c}(\lceil \frac{1}{k} \rceil) . \qquad (21)$$

From Remark 5.6, (17) and (20) we have

$$\frac{k-1}{n} W_{c}(\Gamma_{k}) = \frac{k-1}{n} \int_{\Gamma_{k}'-X_{0}}^{S(x)dW_{c}(x)} \leq \int_{\Gamma_{k}'-X_{0}}^{S(x)F(x+x_{0})dW_{c}(x)}$$

$$\leq \frac{k}{n} \int_{\Gamma_{k}'-X_{0}}^{S(x)dW_{c}(x)} = \frac{k}{n} W_{c}(\Gamma_{k}'). \qquad (22)$$

But then (21) and (22) imply that

$$\left| \int_{\Gamma_{\mathbf{k}}}^{\Gamma(\mathbf{y}) dW_{\mathbf{c}}(\mathbf{y})} - \int_{\Gamma_{\mathbf{k}}' - \mathbf{x}_{\mathbf{0}}}^{S(\mathbf{x}) F(\mathbf{x} + \mathbf{x}_{\mathbf{0}}) dW_{\mathbf{c}}(\mathbf{x})} \right| \leq \frac{1}{n} W_{\mathbf{c}}(\Gamma_{\mathbf{k}}').$$

Thus

$$\left| \int_{\Gamma} F(y) dw_{c}(y) - \int_{\Gamma'-x_{0}} S(x)F(x+x_{0}) dw_{c}(x) \right| = \left| \int_{\Gamma'_{1}} F(y) dw_{c}(y) \right|$$

$$+ \dots + \int_{\Gamma'_{Mn}} F(y) dw_{c}(y) - \int_{\Gamma'_{1}-x_{0}} S(x)F(x+x_{0}) dw_{c}(x) - \dots$$

$$- \int_{\Gamma'_{Mn}-x_{0}} S(x)F(x+x_{0}) dw_{c}(x) \right|$$

$$\leq \sum_{k=1}^{Mn} \left| \int_{\Gamma'_{k}} F(y) dw_{c}(y) - \int_{\Gamma'_{k}-x_{0}} S(x)F(x+x_{0}) dw_{c}(x) \right|$$

$$\leq \frac{1}{n} \sum_{k=1}^{Mn} w_{c}(\Gamma'_{k}) = \frac{1}{n} w_{c}(\Gamma').$$

On letting $n \longrightarrow \infty$, we obtain (18) for bounded non-negative functional.

Case 2. If F is non-negative but not bounded. Let $F_M(y) = \min(M, F(y))$. Then F_M is bounded for all M. By case 1, we have (18) holds for F_M . Since $F_M \leftarrow F_{M+1}$ and $\lim_{M \to \infty} F_M(y) = F(y)$, according to Lebesgue's Monotone Convergence Theorem we have (18) holds for F.

Case 3. If F is any real functional, the theorem holds for |F|.

Then if the integrals exist for |F|, they exist for F and F,

and (18) holds for both and hence for F itself.

Q.E.D.

Corollary 5.10. For each r > 0, $W_c \{ x \in C : ||x|| < r \} > C$.

Proof. We divide the proof into 2 steps :

Step 1. We show that the collection

 $\mathcal{P}_0 = \{p : p \text{ is a polynomial in } [0,1] \text{ with rational coefficients and } p(0) = 0\}$ is a countable dense subset of C. To prove this, let

 $\mathcal{P}=\left\{p: p \text{ is a polynomial in } [0,1] \text{ with } p(0)=0\right\}.$ Since for any $x\in \mathbb{C}$, the sequence $\left\{p_n\right\}$ of Bernstein polynomials defined by

$$p_n(t) = \sum_{k=0}^{n} x (\frac{k}{n}) {n \choose k} t^k (1-t)^{n-k}$$

converges uniformly to x. (for a proof see e.g.[2]) But x(0) = 0 implies that $p_n(0) = 0$ and hence $p_n \in \mathcal{F}$ for all h. This shows that \mathcal{F} is dense in C. It follows that \mathcal{F}_0 is countable dense subset of C.

Step 2. Let $C^* = \{x \in C : x' \text{ exists and } x' \text{ is of bounded variation}$ on $[0,1]\}$. Since for any $p \in \mathcal{G}_0$, we have p(0) = 0, p' and p'' exist and p'' is bounded in (0,1). Thus p' is of bounded variation on [0,1] and

hence $\mathcal{P}_0\subseteq \mathbb{C}^*\subseteq \mathbb{C}$. It follows from step 1 that there exists a countable dense subset $\{z_1,z_2,\ldots,z_n,\ldots\}$ of \mathbb{C} such that $z_n\in \mathbb{C}^*$ for all n. Thus for any r>0, we have $\mathbb{C}=\bigcup_{n=1}^\infty \mathbb{B}(z_n,r)$ where $\mathbb{B}(z_n,r)=\{y\in\mathbb{C}:\|y-z_n\|< r\}$. Suppose for some r>0, $\mathbb{W}_{\mathbb{C}}\{x\in\mathbb{C}:\|x\|< r\}=0$. Then by (17), we have $\mathbb{W}_{\mathbb{C}}(\mathbb{B}(z_n,r))=0$. for all n. Therefore $\mathbb{W}_{\mathbb{C}}(\mathbb{C})=0$, which is a contradiction.

Q.E.D.

Remark 5.11. Every open ball has positive Wiener measure.

<u>Proof.</u> Let $z \in C$ be arbitrary fixed. Suppose for some r > 0, $W_c(B(z,r)) = 0$. According to step 1 in the proof of Corollary 5.10, there exists $z_n \in C^*$ such that $\|z_n - z\| < \frac{r}{2}$. It follows that $B(z_n, \frac{r}{2}) \subseteq B(z, r)$ and hence $W_c(B(z_n, \frac{r}{2})) = 0$. But then by (17), $W_c(B(0, \frac{r}{2})) = 0$. This contradicts Corollary 5.10.

Q.E.D.

Note that from the above remark and the fact that C is separable, we also have that every non-empty open set has positive Wiener measure.

Theorem 5.12. Let $x_0 \in C$ satisfy the condition in Theorem 5.5. Then the Wiener integral is invariant under the translation $y \mapsto y - x_0$ if and only if $x_0 \equiv 0$.

<u>Proof.</u> It is clear that if $x_0 \equiv 0$, then the Wiener integral is invariant under the translation $y \mapsto y-x_0$.

To prove the converse, let A be any Wiener measurable subset of C. Then note that the set B given by $B = A + x_0$ is Wiener measurable. Thus, if F is a Wiener integrable functional on C then according to Theorem 5.10 we have

$$\int_{B} F(y) dW_{c}(y) = \exp \left\{ -\frac{1}{c} \int_{0}^{1} (x'_{0}(t))^{2} dt \right\} \int_{A} F(x+x_{0}) \exp \left\{ -\frac{2}{c} \int_{0}^{1} x'_{0}(t) dx(t) \right\} dW_{c}(x).$$
(23)

Therefore if the integral is invariant under the translation

$$y \longmapsto y-x_0$$
; i.e. if
$$\int_B F(y)dW_c(y) = \int_A F(x+x_0) dW_c(x),$$

then it follows from (23) that

$$\int_{A}^{c} F(x+x_{0}) dW_{c}(x) = \exp\left\{-\frac{1}{c} \int_{0}^{1} (x'_{0}(t))^{2} dt\right\} \int_{A}^{c} F(x+x_{0}) \exp\left\{-\frac{2}{c} \int_{0}^{1} x'_{0}(t) dx(t)\right\} dW_{c}(x).$$

for any measurable set $A \subseteq C$ and for any integrable functional F on C, in particular for $F \equiv 1$. Therefore

$$\int_{A}^{\infty} dW_{c}(x) = \exp\left\{-\frac{1}{c} \int_{0}^{1} (x'_{0}(t))^{2} dt\right\} \int_{A}^{\infty} \exp\left\{-\frac{2}{c} \int_{0}^{1} x'_{0}(t) dx(t)\right\} dW_{c}(x),$$

for any Wiener measurable set A C C.

If we put
$$S(x) = \exp \left\{-\frac{1}{c} \int_{0}^{1} (x'_{0}(t))^{2} dt - \frac{2}{c} \int_{0}^{1} x'_{0}(t) dx(t)\right\}$$
,

then for all Wiener measurable set A ⊆ C we have that

 $\int_{A}^{\infty} (1-S(x))dW_{c}(x) = 0.$ It follows from Corollary 5.9 and (1.38)

that 1 - S(x) = 0 a.e. on C. But 1 - S(x) is also continuous,

according to Remark 5.11 we have that $S(x) \equiv 1$ for all $x \in C$; i.e.

$$\exp\left\{-\frac{1}{c}\int_{0}^{1}(x_{0}'(t))^{2}dt - \frac{2}{c}\int_{0}^{1}x_{0}'(t)dx(t)\right\} = \exp(0) \text{ for all } x \in C.$$

Thus
$$\frac{1}{c} \int_0^1 (x_0'(t))^2 dt + \frac{2}{c} \int_0^1 x_0'(t) dx(t) = 0$$
 for all $x \in C$,

in particular for x = 0. Therefore $\frac{1}{c} \int_{0}^{1} (x'_{0}(t))^{2} dt = 0$ which

implies that $x_0 \equiv \text{constant}$. But $x_0 \equiv \text{constant}$ implies that $x_0 \equiv 0$, since $x_0(0) = 0$.

Q.E.D.