CHAPTER V

TRANSFORMATIONS OF WIENER INTEGRALS UNDER TRANSLATIONS

The purpose of this chapter is to show how the Wiener integral
transforms under a translation, and we consider special cases of
translations which Seem to lead to rather interesting results. Moreover,
we alsc find a necessary and sufficient condition under which the

integral is invariant,

Definition 5.1. Let n be a positive integer, denote hy t’ the point

tJ = ﬁ-, and for any y € C define a polvgonalized form of y by the

relations

Yy b

Ly(t) = y(tJ) + . (t-—tj) s for t ., & t <4

3 J+1°

11 x 0’1'0|.’ n-lo
i.e. for y €, Ln(y) is defined to be equal to y at each tJ,J €10, alt

and linear on each of the intervals [tJ, t1+13= J = 0,1,.50%L 10

follows that Ln(y) € C.

Theorem 5.2, Let F be a functicnal defined on C, let F be continuous

in the sense that 1lim F(y,) = F(y,) wvhenever fyk} is any sequence
k— o0 3

in C which converges uniformly in [0,1]1 to Yo € C. Then the functioral
Y — F(Ln(y)) defined on C is Wiener measureble and there exists a
continuous extended real-valued function H(?és"';g;) defined on R"

such that
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F(L (y)) = Hy(t;),...,¥(t)).
Proof. We divide the proof into 3 steps :

Step 1. Since for any (ﬁ,...,‘gn) € R® there exists y € C such

that y(t,) = fl,..., y(t,) =€ ana L (y) depends only upon the values

of y at the n points tl""’tn’ it follows that by defining H as follow :
H(y(t;),..., ¥(¢)) = F(L (¥)) .

Thus H is an extended real-valued function of n real variasbles ?1,...,'%.
Then this is well defined, since if there exists z € C such that

z(t,) =‘§1,.;.,z(tn) = ‘fn ve will have that L (z) = L (v) and hence

R(L,(2)) = F(1_(¥)).

Step 2. We show the continuity of H.

= = n =
Let ;i:nw w v, vhere u, (“kl""’ u]m) € R for k = 0,1,,...

Then for each k, there exists y, € C such that y (t,) = and is
, k A

linear on each [ti—l’ t:l] where ti = % o OE 1, ...,0. Since

and hence 1lim yk(ti) = yo(ti) for a1l ¥ w1, oeulis wessisssvanseiratiN
koo

But for eny point té€ [(0,1] , ti 1€ t <t for some i, it

follows from the linearity of each Yy on (t 410 t 1] that

v (t)=y (t, )
yk(t) = yk(ti_l) +-k—tii-_-£k-—’£-1— P (t-ti) s X0 cuils
i-1



(i

Thus, for any point t € [0,1]
t—ti

600 = g [l 08) = yo(8) + (rgle 1) - m (e, )]

* Oty )= wolty p)).
But then
|yk(t)_y0(t)]=g ka(ti-l)'yo(t1-1)|*lyk(ti)'yn{ti)l+|yk(ti-1)'y0(t1-1” :

It follows from (1) that{}k}cnnverges uniformly to Yo in lb,l] and hence

by hypothesis,

11 F( = T - Siavdseveiantans i)
k:; (yk) (yo)

Alsc, by Definition 5.1 we have L;_I(yk) =y ,k=0,1,... and hence

k)
F(y,) = F(L (v )) = H(yk(tl),..., ¥y (£)) = H(uu,...,u]m), k= O N

It follows from (2) that 1im H(uk) = H(uo) and hence H is continuous,
k- 0

Step 3. It remains to show the Wiener measuzability of yr— F(Ln(y)).

Since for any reasl number db,

n

{yec:ra (v > o(.o}

Sdlo

Ayecue), ., v(e)) > o)

n

X €T o« (5t Vyuons v(t )) e Bl

where E= { ue B? : H(u) > «0}  which is e Borel set sinee K ia
continuous. Thus Q¢O € :( and hence is Wiener measurable. Therefore
the functional y —s F(Ln(y)) is Wiener measurable, since db is

artitrary.
Q.E.D
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Definition 5.3. Let A £ C and let X € C. We define

A—xo={x€C: x=y-xo,y£A}.

Theorem 5.4, If A € $B(C) then A - x; & B(c).
Proof. We divide the proof into 3 steps :

/ " 4
Step 1. We show that (A-xo) = A X4 vhere (J‘-‘L—xo) = C-—(A-xo)

/ /
and A =C—~A, Ifx € (!‘.—xo) , then x ¢ A=x,, SO that x + x0¢ s

/ ! /
Therefore x + x, € A and hence x € A - x.., Conversely if x € L - x

0 0 0’
/
then x + x € A, so that x + Xy & A. Therefore x & £ - x, and hence
/!
X € (A—xo) -
00 P o
Step 2. We show that [ J (A.-x) = {J A-x.Ifxe | ](A~-x),
Tl i 0 i=1 i 0 inE < R

o0
o Tor semc i, But then x + X € I_I!&._,L and hence
i=1

o0
o then x + x, € i[_=J1Ai.

then x € Ai- b's

® 0
x: & L_[Ai- X,» Conversely, if x ¢ [ | A~ x
i=1 i=Y.

(%]
But then x + x € A, for some i and hence x € | _{(A.- x.).
0 i i i 0]

Step 3. Let Jé ={are B(C) : ﬂ—xo e B(c)}. Then

(i) Since y+r— ¥y-x4 is a homeorcrphism on C, it follows that if

A < C is open then A-x, is open and hence A-x, € B (C). Therefore

0
j‘%ontains all open sets in C.

(ii) Let A € ,,54’, then A and A-x, € B(c). Since ?B(C) is a

/ ‘
(—algebra., A and (A-xo) € -B (C). It follows from step 1 that

e,



& o# ) = f L= [ C

w m —
for all i, Since B(C) is a K-a.lgebra, [ A end I (Ai-xo)tB(C).
i=1 i=1

(11i) Let A

o
It follows from step 2 that | J ApE 651.
i=1

From (i), (ii) and (iii) we have that % is a o/-algebra
containing all open sets in C and must thercfore contain the cellection

E}(c) of all Borel sets, since Z;(C) is the smallest 6<-algebra

containing open sets, Hence J‘ﬁ = B(C).

Theorem 5.5. Let F be a functional defined and Wiener integrable

over C. Let F be bounded in any uniformly bounded subhset of C and
let F be continuoue in the sense as in Lemma 5.2.
Let xo € C be a given function with a first derivative x‘a

of bounded variation on [0,1]. Then under the translation

Y'_'—-* Y-x }F 6 c ......-.---‘.-....(3)

0 ¥

the Wiener integral undergoes the transformation

1 1
f F(Y)dwc(}') = exp {- % J (x:,)(t))gdt}j F(x+x0)exp {— % xa(t)dx(t)}dwc(x)
c 0 C

Remark 5.6. Let X, € C satisfy the condition in Theorem 5.5.

Then the functional S defined on C by

1
S(x) = exp{—%-f (xa(t))adt-gfxg(t)dx(t)}
0 Y0

is Wiener measursable.
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Proof. Let {kn} be any sequence in C which converges uniformly
to x in [0,17. Then according to (1.51) and (1.55) and the fact

that x (0) 0 for all n, we have

n— o =0 n--> a0

= x(1)x(1) -f x(t)ax (t)
0

L) 4
f x’o(t)dx(t).
0

It follows that 1lim S(xn} = 8(x). Thus the functional & is
N 00

il ' :
lim j xfj(t)dxn(t) lim x’o(l)xn(l)-lim fﬂxn(t)dx,o(t)
0
0

n

continuous and hence by Theorem 4.3 is Wiener measurable.
G.E.D.

In order to prove the theorem, we need the following Lemmas :

0 0

n 5.5. = £ et = _-_.J.
Theorem 5.5 ILet O to tl tn 1, where tJ "

Lemma 5.7. Let x, x. € C and let x_ satisfy the condition in

for J = 0,...,n. Then

J_ J-l tj— Ctj-l

3 18
= %f (xg(t))gdt + %\Lv xfo(t)dx(t),
0 .

and the convergence teing bounded in x for all x in any uniformly

Z[x o(ts)=x (t1 1))2+ 20 (84) x5 (65 1)) xlt )=x(t, )
n—= o

bounded set.



81

(Remark : Since n now varies, it must be mentioned that the points

tJ = ‘3{ vary with n. For the sake of simplicity in writing, we do

not add another index n to the t ,1')

Proof. Let ¥ (x;t) - xo(t) + 2x(t) and

n

3 JLO(t )-xo(t. _1)
Pn(x) = ; c%‘j_ Ct‘jjl {"f’(x;tj} - ’f’(x;tj_l)} x

Then by the mean-value theorem,

n

P_(x) = %.gi; xg(tg) {“P(x;tji- N’(x;tj_ll} g

for scme t¥ such that + == t}" 2B\ T "

J J=1 J

7
Since X, is of bounded variation and ¥ is continuous in t,

1
it follows that f @(x;t)dx;(t) exists and hence by (1.51),
0

i
f xg(t)d?(x;t) exists. According to the definition of Piemann-
0

Stieltjes integral, Pn(x) approaches the integral % xg(t)d'}"(x;t)

0
as n—> o0 "

8. x (t)=x.(t. .) i
b S 0" j=1
But E (x 3 t,)-¥Y(x;¢t,.)
i J=1 Ctj- Ct,j-l {-ﬂf/ * J ’]V ¢ -)"l}

2
S Gy )y 50 S
J%L ctj- Ctj-l

so we have that es n —» o0 , the right hand side of the above equality

L L
bhecomes -E—L xi)(t)d";"(x;t) = %—j (xg(t))gdt + %fﬂ"g(t)d"(t)'
0 0

(xo(t,)-x, (¢ 3_1))(x(t3)—X(tj_l))}

Chgmiet,
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It remains to show that the convergence is bounded in x for
all x in any uniformly bounded set. Let B bLe any uniformly bounded

set of C; i.e., there is & constant K, = lil(B) such that

1

|x(t)] < Kk for all x €B and t ¢ [0,1].

Let 4

3 xg(tg), bj = “F(:-:;t.j) Y T vangtle THER

n
P (x) -d Z & (b.-1b )=l(h (4,-a,)+b, (a,.-d_)+...+h_ .(d_ .~-d )+ d )
i . n-1
1
< E(bndn- Ji bj(djﬂ— d;j))

n-1

Since Xy € C, there exists a constanthe such that Ixo(t) |« X,
for all t € [0,1]. since W (x;t) = xo(t)+2x(t), it follows that
¥V (xst) | £ |xgled ]+ 2lxtt)]

= Kh2aoalitET0hadsee € By cocverivsamnmaih)

b
but x, is of bounded variation on [0,11, there exists a constant X3

such that

n-1 y
; |x0(t§+l) —xo(tg)] < K FOr 631 £y senensimie ok S

' /
also by (1..48), X, is hounded and hence there exists a constant Kh

/
* “"(- - L L B R I I I I I
such that !xo(tn)| K), (6)
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From (4), (5) and (6), we have that

; n-1 i' '
o ol = L [l o) | 1) |+ ; EAG L (:t;)l ‘*_‘fiif

<& 1
= (Kh(1<2+ 2K, )+ Ky(Ky+ 2}(1))_

= %(K2+ 2K1)(K3+ K,) for all nand x € B.

Hence the Pn(x) are bounded in n and x € B, since ¢ is a positive

constant. Q.E.D.

Lemma 5.8. If Ln(y) is the polygonalized form of y € C, then

Ln(y) converges uniformly to y in [0,1].

Proof. Let y. be any given function in C and let € > 0 be given.
Since y is continuous on [0,1] which is compact, y is uniformly

continuous, Thus there exists an integer n. = no(E) such that

0

|y(t‘ ) -y(tﬂ)l < €/2 vhenever Itf-f.’l * % PPRPERL SR R L,
0

Since for any point +tE€ [0,1] SNV ENdle it for some j, according

J J+l
to Definition 5.1 and (7) we have that for n > ng
y(t, ,)-v(t,)
L y(t)-y(t)| < L) =t |+ |v(t,)- y(t)]
n | tj+l- tj J J



Proof of Theorem 5.5. Let M, n be any twe positive integers.

Define

cM={ye c: lyte)l = M, te S’J,l]} and

P n} i

Oyt {yec: ly(a/m)l=wm, 3

Then {CM 2:1} is a monotone decreasing sequence of sets and hence
L]

converges to ﬂ C = CH’ i.es 1lim. ¢ T CM , and
n=l M, 2" n»>e M2 ;
O & G if < M, vhich implies that 1im C, = C,.
M T i 2 w B
Step 1. By letting &, {(‘i,...,ﬁﬂ)ea 2 =M fi
f= l‘_,...,n:‘l , we have CM,n ={y Ak (y(tl),..,,,y(tn))e }“N’n} and

Vi ve Gy, [ Gl yle ) ER
% ) = “
M,n Oy [0 ((e),ye ) €8,

- /x? (y(tl)'.'.’y(tn))-

M,n

But then by Lemma 5.2, (1.30) snud Thecrem 4.10,

M,n

f F(L, (v) 2w (y)
C

f X & - F(L_(y))aw, (v)
C
M,n

[XJEM n(l‘r(tl) g sY(tn) ) .H(Y(tl); e $y(tn))dwc(}')

'a'nj_:.fﬁ%n(gl,...,v;nmc*gl,...,gn)
g exp[ ; e ct }cﬂfl...
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=% I 5 H(E , . ..,gn)exp{ ; b - ct } a% ....d8

vhere 'arn={°rf°ct(t-t) n-nl)}e

We next ohserve that if x is the image of y under the
trenslation (3) and if Ln(x), Ln(xo) and Ln(y) are the polygonalized

functions corresponding to x, x. and y respectively, then according

0
to Definiticn 5.1

it g gy )t )-xo (8 ]

L y(t) = {x(td)+x0(tj)}+ RS, (t=t,)
(x(t,, ;)=x(t,)) o{ti41)"%4 (t ))
E {t(ta)* xt T .(t.—td} JL- e (=t )
bify 7 . . J*1 :
+x0(tj)}
= Lnx(t) * Lnxo(t). ......... P PO P b e ...(9)
If we write
5 = y(tj), My = x(t,), Ay = xo(6,), 5 = 0,0uiim, el s oa(10)
then under (9) we have
§j= qjﬂlj v J miliaees BE  sesssssnpisersatie
g( seeey )
Since Igl \§£ =1, on applying the transformation (11)
'2(711,...,730)

to the Lebesgue integral in (8) we find that
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Men, M—an
L F(Ln(y))dwc(y) = ?HI k[ H(’Ql+ al....,"l'!{l- an)

- M‘- »
M,n M-z &

1
( -
el { ;i; j; = ;tJ ;} e { ~l ct - ot }

(a -2 1)(71J "la-l)}
.exp{ : cf_‘ = ct d'rtl...d'qn

By virtue of Theorem L4.10 and using (10) and the facts that

x(tJ) = Lnx(t,j)' xO(tJ) = Lnxo(tj)’ we have that

('c )=x (t )
F(L (v))av (y) = exp{ ZL t 2 ctj 11 jf F(L (x+x,))

‘, CM,n-xO

(x4(t, )-x, (t 1) () -x(t

))
; 24
.exp{ 2; ctJ— CtJ_l J- }dwc(x}.

RPN . o

This gives us a transformation formula over C‘M A for the
L

polygonalized functions under the transformation (9).

Step 2. We show that 1lim ',7(/,, (y) = 7{@ (y) and
N0 'M,2n 1

(x). Teo sce this, let € > 0

and lim % (x) = A, _
D> o0 CM,E’.‘-" *0 %o
be given.
Cagse 1. If y & C, then, since lim M, ﬂ Cys ,on = Cy »

N—> 0 n=1

we have that y & C for all n. Hence
M,2"

|7(ICM’2n(¥) - WCM(y) | < ‘&,  for 11 n,
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Case 2. If yé&C, theny € C for some N. Since {¢ }
= M N n
M,2 M,2
is a monotone decreasing sequence, ¥ ¢ c = for 211 n > N. Hence
M,2
I%C n(y) B X/C‘ (Y)| < & for all n > N,
M,2 M
It follows from both cases that
lim X,C & (y) = -X/C (y). ORI ot 0.,/ (1051
n—> M, 2 M
Stmilerly, lim S, GEZEEA, o (x). coeiereecnsivanes(ih)
ns>© M,2n 0 S0
Step 3. Since L n(y) cenverzes uniformly to y in (0,11, by the
2
continuity of F we have
lim F(L n(.V)) =, F(:\r). .I!ll.!.l.....'l.ll(ls)

n=> 2

But then by (13),(1k),(15) and the fact that y = x+x,, ve have

11 (y).F(L _(¥)) = X (y).F(y) ,
n—.u;o 7(1011,2“ . i Cm dia |

R Lo
lim 7({: pn_xo(x).F(Len(x-i-xo)) = %’CM-xo(x)'F(x*.xO) .

N—» o0 M, 2
Also, since by hypothesis F is bounded over CM we have that

x+—> F(x+x.) and hence x+—-> F(L (x+x.)) is bounded over C, = X..
0 A e M~ o

Thus, if we let n#>s © (over the sequence {20,21,... } ) in
equation (12), then accordinz to (16), Lemma 5.7 and Lebesgue's

Dominated Convergence Theorem we obtain
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1
7(6 (y).F(y)dWc(y) = exp {—% J' (x (t)) dt}f (x) F(x+x )
. M 5
s (T
. €xp t::f xio(t)d.x(ti‘ dwc{x).
0

Since F is Wiener integrable and {CM} is a monotcone increasing

sequence of sets where 1lim CM = C, =according to Lebesgue's
M0 ¥

Monotone Convergence Theorem, on letting M—> «@ we obtain the

desired result.

Corollary 5.9. Let Xy € C satisfy the condition in Theorem 5.5.

Then exp { -2 f X (t)dx(t)} is Wiener integrable and

4 4
j exp {- —f x (t)d.x(t dw (x) = exp % (x‘:}(t))"’at ;

Proof. By taking F = 1 in Theorem 5.5.

E.D.

Theorem 5.10. Let x, € C satisfy the condition in Theorem 5.5

0

and let |7 be a Wiener measurable subset of C. Then

1 i S
W, (™) = exp {— %J‘ (x‘(’)(t))gdt} exp {-— —g— xa(t)dx(t)} aw,(x).
0 ]"-xo 0
R RPN R | (1

Moreover if F is a Wiener measurable functional defined on T’
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} al

F(y)av,(y) = exp {- %Fu{o(t))?a P(x+x, ) exp {- %j :;;(t)ax(t)}auc(x)
0 X

0

sessesusaseietiasasesbae i)

in the sense thet the existence of one side implies that of the other

and the validity of the equality.
Proof. We begin our proof by establishing (17).

Case 1. If " & (B(C) then, by Theorem 5.bL, T-x, € B(c).

To prove (17), we divide the proof into 3 steps :

Step 1. We consider the case [ = Io, where

1 ={y60 : o _ey(tj) < F&J »d=1,...,nend 0t < .ao<t < 1] 5

J 1

Let Xk > 0 be any integer. Then according to Urysohn Lemma, there
exists for each j, a continuous real-valued function ¢ 3k defined
]

on R which equals cne on LRJ, ﬁjj s equals zero outside the interval

(Of:j- % i PJ+ %) and is linear on the remaining intervals.

Iﬁtﬂ

Let 7@191{(3!) = By x Wt y € C.

1

(9
|

Since each @J x 1s continuous on R, it is Borel measurable. Hence,
;]

by Theorem 4,10, ﬁj k(_v('t:j)) is Viener measurable and so is 7(,0 b
]
Tk
Since 0 =< g, . < 1 onR, 0 <X, (y) <1 forall ye C and
. 3.k Iok

hence ?[;0 is uniformly bounded on C, by (1,37) 7[/0 is Wiener
1% Tok

integrable., Finally, if {yn] is any sequence in C which converges
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uniformly in [0,1! to y € C, then the continuity of ¢, , implies
oy

e

1im ¢ (v (t,)) = ¢ (y(t,)). Hence

N> 00 J.k n' J J,k J

e K. ) = %X, (¥). It follows that %Yo :
n-> o0 I,k T, Xk Ik

satisfies the conditions on F in Theorem 5.5 and hence we have

f Hog (NI () = exp{— < (xg(t))th} J" Ao, (x¥xp)ex {- ff X/ (t)ax(t)
c 4 g - 0 ;

dWSx). Vit erpneek iy

Step 2. We show thet lim X o (y) = A (y), vy € C.
ko | I,k T

Given € > 0. If'y €1I°, then y(t,) € [ P and hence

ﬁj k(y(tj)) =1 forall 3=1,...,n and for all k, which implies
]

that % , (y) =1 for ail k. Thus
Ik

[ % o (e ryleyliv= € for ell k.
I,k I

If y é IO, then there exists at least one j such that y(t‘j)¢ D{:‘j’ PJ_'[
I

-
Since k -— 00, there exists a sufficiently large k. such that

0

y(t,) € (=0, - %0) UGy %o, ©) and hence §, 4 (y(t,)) = 0

for all k » k,.Therefore |7

0 0

Ik

Thus lm Xy (3) = A (y), yec.
k—w % sk I

()= Aoly)| € € for all k > k.
¥ 0
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Step 3. Since 0 < 7L0 (y) = 'X’O (y) for all k, by
I°,k+1 I°,k

letting k— w0 and applying Lebesgue's Monotone Convergence

Theorem to (19), we have

0 J
w.(17) = r 'X,Io(y)dhc(y)
c

1

exp{-%‘- (xB{t))adii}AIxio(x-bxo)exp{- 22‘ xs(t)dx(t—)}dwc(x)
1 1( 14))% ] (x) 21 ¥/ (t)ax(t)raw (x)
expq - 3 %, dtJ» X,Io-x x)expi- =| X, .
oy 1% 0

1 7

exp {— %’-L (xg(t))zd% exp{- %fx‘;}(t)dﬂt) dWc(x) s
IO—XO

vhich is equivalent to (17) when T” = I°. The equality (17) holds

L}

Yo
wvhen 7 € O@, since both sides of it are countably additive functions
of I” . Finally, when |° is an arbitrary set in 5 (C), by Lemme 4.8,

%
it cen be writtenas |7 = ¢ - N where G € 0@ with N € G and

o
W (N) = 0. Since G ¢ 9 , G=1im G where {Gn} is a
- O

decreasing sequence of members of o@u. Applying (17) to each G,

and taking the 1limit as n-»00 , we obtain (17) for " by Lebesgue's

Monotone Convergence Theorem.

Case 2. If |7 is any Wiener measurable set then, according

to (1.14), T = T(’}LJA where ra € B(c) and A & B,Be?B(c),

wc(B)=0. But then T-x_ = (T

5 2 xo) Li(A - xo) and by substituting
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- i i = - = ;o =
X, to x, in (17), we have wc(B xo) o.. Since A-x, < B-x, it
follows from Theorem 5.4 and (1.14) that r-xo is Wiener measurable.

Since Lemma 4.8 holds for any Wiener measurasble set [° , we have that

steps 1-3 in case 1 also hold for " in this case .
To prove (18), we first note that for any real number dfo,
{_y : Fly) > o(b} X, J:x : F(x+x0) > DQO} %
It follows that F is measurable on [° if and only if xr—> F(x-l-xo)
is measurable on T’-xo, but then Remark 5.6 and (1.22) imply that

if and only if x +r—> S(x)F(x+x0) is measurable on 7 -X,.

Case 1. If F is bounded and non-negative. Let M be an integer

such that 0 < F(y) = M on |7 . Let n be a fixed positive integer

and let
E={y6r-: :l:;_l —é F(Y)é —E}’k=_1’oo., M.l’.l.. ..ll!tli!.lltczo)
Mn
Since F is measurable, T"s are measurable and clearly | = U T’k 3
k k=1
Also, Tl;'s are disjoint and
k-1 . Eu(r
W () < F(y)dwc(y) AR wc({;i) T I R oy
rk
From Remark 5.6, (17) and (20) we have
k-1 k-1 "
Twc”;c) B wee S(x)dwe(x) < S(x)F(x+x0)dWc(x)
k%0 k%o
< k a = E B it
n s(x)av_(x) WA e (22)
%o
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But then (21) and (22) imply that

v(F(;};’)dwc(y) -J' S(x)F‘(x-l-xo)dWc(x) < %WC(E) -
Tk T %o
Thus
F(y)dwc(y) - S(x)F(x+x0)dWc(x) = F(y)aw (y)
‘ r-x, A
4.4 F(y)dwc(y) - S(x)F(x+x0)dWc(x) = awnaneaesehadlie e
Ma 1%
-k£7 S(x)F(x+x0)dwc(x)
Mn~ 0
< 0| rma e sl strtesga
k= I; € I;—;xo c i
R e
< I 4 TbhdatsaB¥d i

On letting n—> @ , we obtain (18) for bounded non-negative

functional.

Case 2. If F is non-negative but not bounded. Let FM(y) = min(M,F(7)).

Then Fy, is bounded for all M. By case 1, we have (18) holds for Fy

Since F,, < F+

o 1
M weq 204 lim FM(y) F(y), according to Lebesgue's

M=o

Monotone Convergence Theorem we have (18) holds for F.
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Case 3. If F is any real functional, the theorem holds for Irl.
I + -
Then if the integrsls exist for IF|, they exist for F and F ,

and (18) holds for both and hence for F itself.

@.E.D.

Corollary 5.10. For each r > 0, Wc{x €0 x|l = =0,

Proof. We divide the proof into 2 steps :

Step 1. We show that the collcetion
3% = {p : pis a polynomial in (0,1] with rational

coefficients and p(0) = 0} isa countable dense subset of C,

To prove this, let
fp= {-p : p is a polynomial in [0,1] with p(0) = OJ' .

Since for any x € C, the scquence {pq} of Bernstein polynomials

defined by

p (£) = §£L x (D)(D)* (1-4)"E
k=0 \

'converges uniformly to x. (for a proof see e.g.[2]) But x(0) =0

implies that pn(O) = 0 and hence p_ € u@ for all h. This shows

that ﬁO is dense in C. It follows that 9% is countable dense

subset of C.

Step 2. Let C* =~£x €C: ¥ exists and ¥ is of bounded variation
i / |
on 10,13}. Since for any p € 3% » we have p(0) = 0, p and p//exist and 1

/
is bounded in (0,1). Thus p 1is of bounded variation on [0,11 and



-

95

hence Q@O & C* & (. It follows from step 1 that there exists

a countable dense subset {zl, 22,...,zn,...} of C such that

00
z, € C* for sll n. Thus for eny r > 0, we have C = | | B(zn,r)
n=1

vwhere B(zn,r) = {y €cC: | y-2 I < r]’ . Suppose for some r > 0 ,

W {xec: yx| = r} =0. Then by (17), we have W (8(z_,r)) = 0.

for all n. Therefore WC(C) = 0, which is a contradiction.

IE.Dl
Remark 5.11. Every open ball has positive Wiener measure.

Proof. Let z €C be arhifrary fixed. Suppose for some r > 0,

V,(B(z,r)) = 0. According to step 1 in the proof of Corollary 5.10,
r

. there exists z, € C* such that | gl | < > It follcws that

B(-zn’ %‘) < B(z, r) end hence WC(B(zn, ~E)) = 0. But then by (17),

WC(B(O, Z)) = 0. This contradicts Corollary 5.10.

Q.E.D,

Note that from the above romark and the fact that C is separable,

we alsc have that every non-empty open set has positive Wiener measurc.

Theorem 5,12, Let Xq € C satisfy the condition in Theorem 5.5.

Then the Wiener integral is invariant under the translation y+— y=-x

0

if and only if X, = 0.
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Proof. It is clear that if X, = 0 , then the Wiener integral

is invariant under the translation y /— y-xo.

To prove the converse, let A be any Wiener measurable subset
of C. Then note that the set B given by B = A + X is Wiener
measurable. Thus, if F is a Wiener integrable functicnal on C then

according to Theorem 5.10 we have

A 1
(xg(t))zdfj F(x+x0)expL[ %f xg(t)dx(t)}dwc(x).
A 0

SBPRARRI VL (

1
j'F(y)dWc(y) = exp [- %
B

Therefore if the integral is invarisnt under the translation

y+—> y-x, 3y i.es AT

F(y)dWc(y) f F(x+x0) dWc(X) >
A

then it follows from (23) that
1

1
' 3 1 / 2 212
F(x+xo)dwc(x) = exp{- = (xo(t)) dt} F(x-!-xo)exp{- = xo(t)dx(tﬂ
A A

aw (x).
for any measurable set A £ C and for any integrable functional F

on C, in particular for F = 1. Therefore

5 ;
aw_(x) = exp{- %f (x‘é(t)]zd‘c} exp {— %fx’o(t)dx(t)} av_(x),
A 0 A 0

for any Wiener meassurable set A & C.
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1
If we put S(x) = exp {- %r(xlo(t))edt % f—f xg(t)ax(t)} ;
0 0

then for all Wiener measurable set A & C we have that
f (l-S(x))dWc(x) = 0. It follows from Corollary 5.9 and (1.38)
A

that 1 - 8(x) =0 a.e. on C, But 1 - S(x) is also continuous,

according to Remark 5.11 we have that S(x) =1 for 211 x € C ; i.e.

1
exp --}L (xg(t))edt = %f x:)(t)dx(‘t)}
0

1
Thus %f (x’o(t))eat + % f x;(t)dx(t)
0 0

exp(0) for all x€ C,

fi

0 forallx € C,

in particular for x = 0. Therefore %- L('l(x’o(t))zdt = 0 which
0

implies that X = constant. But X, = constant implies that

X, = 0 , since xo(o) =0,
sl
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