CHAPTER IV
THE WIENER INTEGRAL

The purpose of this chapter is to extend the measure in
chapter III to the measure on the Carathéodory extension of y in the
usual way. With this Carathéodozy extension measurable functionals

on C may be defined and their integration on C may be considered.

Definition 4.1. The outer measure of an arbitrary set [ < C is

defined to be

o0
*
W (7)) = inf kg W (1,)
f 00
where {Ik} ranges over all sequences from such that |’ L L_I Ik .
k=1
Definition 4.2. Aset [T & C is called Wiener measurable if for

every set A C C we have
V. (A) = W (A~T)+W (ANT)
c Mg =1 c :

The collection :ﬁ of all Wiener measurable sets, the

c
Carathéodory extension of jg y is a c( -algebra containing f and if we

define for each ¢ > 0

W(r) = W; (1) for |7 € j; :

c

then ﬁc is a measure on .:f; . Let us deno’cé this measure space by
c

c, £ ,#).

c
c



€l

Theorem 4.3. The §. -algebra § [cf] generated by je is the collection

B(C) of all Borel sets of C.
Proof. We divide the proof into 4 steps :

Step 1. We show that 5 [ij contains all closed balls. To prove this
let r > 0 be any real number and let Tys Toseens be an enumeration of
rational numbers in [0,1]. Then for an arbitrary fixed zoe_c,

{xec: Hx-’boﬂ <r )= él{x € C: -r+'50(rn) < x(rn) < ﬁzogrn)] .

Since {x € C : -r+:'0(rn) < x(rn) 4r+’~o(rn)} € f el jp s

.it follows that 1x ¢ C : ilx-zol A - t/‘ﬁ < 41{3 :

Step: 2. Since C with sup-norm is separable we have that every open
set in C is a countable union of open balls and hence every closed set

is a countable intersection of closed balls. But then, step 1 implies
that 61;'.39'} 1sa £ -algebra containing all closed sets and must
therefore contain the collection (8(C) of all Borel sets, since _B(C)

is the smallest { -algebra containing closed sets.

Step: 3. We show that if E < R" is open, then the quasi-interval I

defined by I ={x € C : (2(ty)si0e,x(£,)) € B, 02 4y <oveee <t & 1]

d:

, * *
is open. Let Z*E_ I, Then ('E- (tl),cn-)z (tn)) ¢ E, B}' 1etting

. # # o %
z (tJ) \{1 » we have ? = ('%_,...,gn) € E. Since E is open, there

exists a real number r > 0 such that B(‘g':r) < E vhere

B(“gtr) = {€er": [t }’*I < r}. Claim that B(z ,r) € I where
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B(z*,r) = {xec: Ix3"1 <r}. To see this, let x € B(z*,r) then

fx-2"l« r and hence max x(£)-2*(t) < r. In particular,
0<t <]

L l(t,)-2"(6,)] < r. Thus (x(t;),...,x(t,)) € B( ¥ir) C k.
=<j<n

Therefore x € I.

Step L. Let n be any positive integer and let 0 < by € e < tn‘ 3
Detine H={E ¢ B(RY: 1 = {x € :(x(t)),...,x(t ) € E} eB@}.
Then

(i). If E is en open set in R", then it follows from step 3 that I € B).
(1i). If E ej4', then £ € B(R®) and I = {x € C : (x(,)50005x(t ))e B }

€ E(c). since B(C) and B (R?) are (—a.lgebras, (o J, E(C) and
R"— E EB(RH). But then, by Lemma 2,10 (iv), C ~I = {x € C :

(x(tl),...,x(tn)) € R®"—~E} and hence R"— ® 634‘.’
(411), IF Eiejq' for i = 1,2,..., then E; € @(Rn) and I, = {x€c:
(x(tl),...,::(tn)) € Ei} € B(c) for all i. Since B(C) and &5 (R) are

"—"O (2]
{—algebraa, |t b o B(C) and [} Ei € B(Rn). But then, by Lemma
i=1 -~ i=1l

2.10 (i), Qli:{xé G i (x(tl),..., x(tn))e [_oj Ei} and hence

% 1 =1
(J B, eJJ{'.
i=1

From (i), (1i) and (iii) we have that %is a {-a.l,gebra. containing
2ll open 2% in R" end must .th#-rei‘ore contain the collection B(Rn] of
all Borel sets, since B(Bn) is the smallest ( -algebra containing open
setz Hence J’#"—'B(Rn). Since n is arbitrary, J C Bic) spa‘bense
{Effj < B(c). Tt follows fom step 2 that ([fﬁ =@(c).

Q.E.D.
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Remark 4.L. {[.ﬁo = 6/[5% = B(c).

o (-]
Proof.  Since f (8 tf 5 {[‘ﬁ < {Efl = 5(C) and from the proof
of steps 1 and 2 in the above theorem we also have that B(C) & ﬁ:f_l

Tﬁus (l:.f]a ={[§] =B(C).

%o
Since J s a semi-algebra of sets, if we define WS(IO) = Wc(IO)
T P
for every I~ € then according to the properties of Wc and the fact

(e]
that j < jg, we have that W: satisfies the conditions in (1.9) and

hence Wg has a unique extension to a measure on the algebra &

(o] .
generated by f . If we extend Wz on C% by the Carathéodory extension,

we have (for each ¢ > 0) a measure ;Pc on the §. -algebra ;F WP
c

o ——
containing 4 . Let us denote this measure space by (C, ]:o 3 WZ).
c

5 ﬁc) = (e} ff " Eg). This will enable us

We want to show that (C, :F o

WC

5 e
to express any Wiener measurable set in terms of members of f) .

Lemma 4.5. For any ' € C , define
o¥* e O =0
Ve (T = inf” 390 (20)
k=1
o jb : e
where {Ik} ranges over all sequences from such that T < (J 1° .
k=1
o* *
Then W (T") = w.(T).
Erfo 3‘,’ # o* ;
Proof. Since = , we have that WC(T’) < W (T") for any TV < C.

¥
It remains to show that Wz (T™) ' W: (7).
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Step 1. We show that for any I € f 3

inf[z w(r).xcfj 15 I € 960}

W (1)
e n=1 n=1

Let T €& ff Then there exists a finite collection of points
{tl,...,tm} where 0 <tl < ....4‘tm < 1 and a Borel set E in R®

such that I ={xé 0 i (x(tl),...,x(tm))e E} Given € > 0 and

m 1/2
let €, = €. ty (b=t )t - tm_l)} N S & 4

Then according to (1.18) (i.e. (Leb.) m*(E) = inf{Zm(E ): BEC L] Eﬁ}
n=1

where the Eg are rectangles in Rm.), we have that there exists a

sequence {Eg} of rectangles in K" which we may assume that Eg's

o0 =
are disjoint and such that & < | | E° and m(E>) < m*(E) + B

n=1 n=
Since E is measurable and Eg's are disJoint, it follows that
m((_J E -ME)¢€ Let I = {xec: (x(tl),...,x(tm))eEz},
n=1

0
n=1,2,... . Then by Lerma 2.10 (ii), Io's are disjoint sets in 38 :

According to Lemme 2.10 (i) and (iv) and the fact that [ | E°—E € B(r"),
n=1

we have LJ 1§-_I={xec (x(t ),...,x(t )) e LI E - E}e j

n=1 n=1

and hence

W (U I — I)= ! K[tl,...,tm, gl,...,fm}dlfl...d'gm vesoslB)

n=1
QEO ~E
n= a
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where K[t ""’tm’?’“" \Em}z -
| Ja‘]‘f " ty (-t )l -t o)

"\51 = I8+ En-—l)a} :

-exp c-u---ononct-ct
m-1

=37
Since K {tl,...,tm, Coeens € F g [ byt )t )1 2

for all (?l,...,fm)én and & ([} E;~E) < €, , it follows from (1)
n=1 :

ard (2) that W_ (0 I~ 1) Lo (tymt)) (bt )} 2.
n=1

e m (l__l‘ E —~ E) < &€, But Io's are disjoint and Wc is countebly
n=1

additive and E ¢ L_’ E ~inmplies T < \__) I , Wwe have that
n=] n=1

]

W (LJ I —~ I) £ €. since € is arbitrary,
n=1

g WC(I::) - W (1)

v (1) = 1nf[gW(I)'ICL_| 79 ,Ig e‘jeo_} .

n=1"72

*
Step 2. We show that 1-r° (P) < w*(T’) TT&C. Let T &C.
Then according to the definition of W (T’) there exists a sequence
{I } in jﬁ such that 7 < L J L and% W (L) <Wi(T)+ €/5 . .....(3)
k=1

Since I}: € J, it follows from step 1 that there exists a sequence

{I in ‘f such that I, < [__[ I. and z W (I ) < W (L) Efekﬂ.

n=1
oy (2),
“ it < 5 i £
Fedn sl ““‘“g e Wo(Tp) < gy V(T )+ €/,

< W () +€
' c
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*
But then, it follows from the definitions of Wg and Wg . that
o¥* %3- — o *
W, (T < "IEEInZ—l W (L) < W, (T) + €.

*
Since € is arbitrary, we have that Wg (1) W:(T').

Q.E.D.

W c

Theorem 4.6. (C, ‘J;o, T}g) « (0, ‘j? , W),
c c

Proof. It follows from Definition 4,2 and Lemma 4.5 that f o :jp

W
c

w
c
and hence WO(T7) =W () < W) =9 (™) for Tef = .
\ : WO W
c ]

Q.E.D.

o)
Definition 4.7. Let o@ denote the collection of all countable union

gﬁ
of elements of -

ol
By g} we mean the collection of limits of decreasing sequences

O
of members ofcfj 3

Lemma 4.8, If T &£ C is Wicner measureble, then we can write

o
T"=G~N vwhere G € 8 and N < ¢ with #_(m) = o.

Proof. Let T” be a Wiener measurable set. Then according to
Theorem 4.6, we have that for any positive integer n there exists a

o
sequence {ng} in f such that

o0 o0
Fe U em 2 ) < (M) B s iis el
"= k=
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Let J{)n = [j ng. Then f éo@o for all n and
k=1
oo o0 oz
AR = (LN D 12 = [0 L] (1%, 1 ad,) e P
4 2 e WU ey oo g 2yl

(o]
because Iik N Igj € Cf . By induction, Jfl f‘l_ffa Elys:5:0 _hcfn € cg)

n
for all n. Let G = N A, . Then c_ € FF for all n. Also
{=1

G, 2 G ,, eand hence fGn} converges. Let G =1lim G = (;] G .
n—= oo n=l

Then by Definition 4.7, G € @QL. Moreover, since J{{ 27" for all {/,
G, =T for all n and hence G 2 7. Thus according to (L4), we have

- B la) ot o) G
0@ (6-T) < AT V&R L~ T7) =¥ (A )=R(T) &

]

Wc(Izk) -R(TYV <

=R

k=1
By letting n — oo, we have i'rc(c}-ur') =0 and by teking N = G~T ,
it fellows that

M = G- N, N< G and w,(m = o.

Q.E.D.

Definition 4.9. From now on, we shall simply write WC(T') instead of
?c(]") or F_I‘Z(]") even for set " in :]ﬁw « W, is called Wiener meesure
¢

in C. In case ¢ =1, we will denote Wl by W. The integral in C with

respect to Wc is called Wiener integral, If F is 2 Wiener measurable

functional on C, its integral will be dencted by f F(x)dWc(x).
C



T1

Theorem 4.10, Let 0O<t)<...ct <1 ondH( gl,...,vgn) be a

-

Borel measurable function cf n real varisbles E,.. w3 \g,n' Then the
functional H(y(tl),...,y(tn)) defined on C is Wiener measurable and

for each c¢=> 0
w -

[+ 7]
JH(y(tl),...,y(tn))dwc(y) = f H(?l,...,'gl)fc{tl,...,tn,‘fl,...',‘511}
o

C )

a‘§1...d‘§n. i kA

-I - -
where K ‘[tl,...,tn, ?l,...,‘§n I defined by (3.2) and the existence of
one side implies that of the other and the velidity of the equality.
Proof. Let 0< t, < ...«.’_tn < 1 be given and let H(\i,...,\%) be &
Borel measurable functicn defined on R".
Case 1. If H is the characteristic function 7(?: of & Borel set E & RP,

Let I be a quasi-intervel in € defined by I =[x € C : (x{tl),..'.,x(tn))

€ E} Then

n

Hy(e;)seenny(t ) = g (3(t)),0n,v(e )

[1 . (y(tl),...,y(tn)) € F

0 (y(tl),...,y(tn)) ¢ E

(1 y €1
‘(0 vyeglI

xl( ¥) is Wiener measurable and for

n

each ¢> 0,



T2

wc(I) = fdwc(y) = E'XII(y)dWc(y) = fﬂ(y(tl),...,y(tn)) dwc(y) g
I c c

On the other hand, according to (3.1) and (3.2),

SVJK {tl,...,tn, ‘gl,...,‘§n} d’ﬁl...ag’n
E

]

w (1)

]

j‘w ..‘(M’X/E(El,. O < e i (I, 38 a%..dE

- -00

=J: , _J::H(El,. >y § K {tl,.. R .,g'rl} a5, . ..dfn.

Thus (5) holds for H in this case.

Case 2. If H is a simple function, i.e. if H is any finite linear
combination of characteristic functions of disjoint Borel sets of Rn,
then the functional H(y(tl),...,y(tn)) is also a simple functional

and hence (5) also holds.

Case 3. If H is a measurable extended non-negative valued function on
Rn, then there exists a non-decreasing sequencé of non-negative simple
functions Hk which converges to H at each point in R”, Hence the
corresponding sequence of non-negetive non-decreasing simple functionals

Hk(y(tl),...,y(tn)) converges to the functional H(y(tl),...,y(tn)) at

each y € C. By case 2, (5) hclds for each H . The limit may be passed
under the integral sign by Lebesguc's Monotone Convergence Theorem and

(5) holds for H in this case.
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Cese 4. Finelly, if H is a measurable extended real-valued function
on Rn, then by virtue of (1.23) we have H = H+_ H . Hence by case 3,
(5) holds for each of H' and H™. In casc the integrals of H' and H™

are not both infinite, the integral of H exists and (5) holds.

g.EIDI

Example 4,11. Let t and s be any two points in [0,1]. Then

J' (x(t) -x(s))3a v (x) = -;-'lt-sl |

C
Solution. Assume t < s.
Case 1. If t =0, then according to (5) we have

: f(X(S))dec(x) = i f?? exp {f} d?. oo ubeieeen e s s )
c & cs |

fes

Let M = —=— . Then (6) decrmcs
J¢s

5' (x(s)JQdWc(x) = T.;—_,E- f’ff exp{- 'rf}d*rl= ;Ts— j"ftexp{—"f]‘d"fle
C =00 Q

5 = S—S = *g‘!t—s' o
since ‘J"lexp {- -‘rf}d"rlg = -;i and t =0

[

Case 2. If t # 0, then according to (5) we have
i e f (5,8
“np 4B VR T | }
i‘fﬁ(’?l ?2) exp{ ct cs-ct d;ldg

evavevesvssap skl

f(x(t)—x(s))gdwc(x) = —2
c .I’ﬂgc t(s-t)

Let ql=£,%=ﬁ.men
ket Jes=ct



Th

ol 7t 8 : o
a( \gl’ E'a) {ct 4c2t(s-t)
-1 L
les = ¢t {m

and hence (7) becomes

P [Resctrem T- 7= 72 angan,

(x(t)-x(s))°a¥_(x)

a—

[+ e] (]
'ﬁ-’l(cs-c‘t) fexp{—’rli}d Ny f'?zg exp{-‘r}:_} an, -

But then, since lexp{ ’Ql} d’l‘ll Fir and
J’IIQ exp {-Qe}d’q_g = —@ s We have

J’ (x(t)-x(s))edwc(x} =§(S-t) = f:_lt-sl .
C

1
Examplc 4,12, f [j (x(t))zdt:ldwc(x) - %

C 0

Ans.

Solution. According to the Fubini Theorem and Example k.11,

1 1
.(' [f (x())? at dec(x) =f U (x(t))? dWc(x)]dt
0 c

C 0
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