CHAPTER III
CONSTRUCTION OF WIENER MEASURE
The purpcse of this chapter is to define, for each ¢ = 0, a set
function Wc on the algebra § of subsets of C and then prove that this
set function is indeed a measure. The main theorem in this chapter is

about the countably additivity of the set function.

Definition of Wiener measure for C

Definition 3.1. Let ¢ be a positive constant and let W, : é—aﬁ‘.

If I € éj is defined by (2.1), then ‘-JC(I) is given by

W (1) = 5,,,51{{1:1,...,1‘,“, 'ﬁl,...,g‘n} d‘gl...dgn IOMRPARE b 5 ¢
3

1
where K{t t f}
i S 1’ ? n n
e, (b=t ). (bt )

(? ?-1

.exp - ct R o e o o
L 1 J J-1
with the understanding that fo =0 = t .

(Throughout this thesis, let c be an arbitrary positive number).

In view of the fact that wc( I) for the interval I as given by (2.1)
is defined by ﬁeans of the restriction points and the restricting set that
appear in (2.1) and since, by Remark 2.6, the expression of an interval by

restriction points and restricting set is not unique, so it is necessary
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to prove that the value of WQ(I) is independent of the choice of

restriction points and restricting set that describe I.

Unigueness of the definition of the set function Wc_

To prove the uniqueness of the definition of WC(I) we show that
when a finite number of the points of the interval (0,1] are added-and
trivial restrictions are added at the additional restriction points, the
value of Wc(I) remains unchanged. By induction, it suffices to consider
in the case of only one additional point t satisfying t, =<t =t
together with trivial restriction at £*. '

3*

t .t I

Proof. With the partition points t IR

o by g 0

WC(I) is given according to (1) and (2) by

W (1) = .Ji.:J'K-{tl,...,tk_l,tk,...,tn, R s Ek-l’\fk"""fn‘}'
k {tk BT ?k} a%,...a%

where L {tk l’ k’ ?lr l,v ‘gk} J

(tm by )

* ¥
me(t ~t, 1) (t, -t )

2 - 2
fxp{ v B __(i_v) I (8- 50) -

*
off - ctk 1 ctk- ct ct - ct
- 2
% ) ($-%,)° { o (5o y
* * . g i
| Telt -t )(t,~t) ctk~ ct, _ et~ et ctk—c?

...........(3)
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Thus, for the uniqueness of WE we only have to show that

3¢
L{tk-l’ E b Sege Vs fk} = 1.

For the integrands in (3) we write

et -

vhere

Hence

et

) 2 2 2 2 2 2
(v- ?k—l) - (gk- v) Y V=2 ?k_lv + ‘gk—l . ‘g__k— 2§kv + Vv
2
ct, , ct - ct ctf - Ctk-l ct, - ct
2 2
=Av2+2Bv+D = A(vi-%)d-(D—% )
1 g 1 / ctk - Ctk—l ;
et - ctk_l ctk— ctt (cf* - ctk_l)(ctk- ot )
—‘?i-l _ ‘gk
¥* W
ct’ - Ctk—l ctk- ct .
2 2
€1 5 Sk \+%
% \‘... d
ct = Ctk-l ctk- c'E* =
‘ 2 2 l
Sk . i 2 &;1 %
* 2 *.2 * *
hfct -ctk_l) {ctk—ct ) (ct -ctk_l)(ctk-ct ) 'y
(ct <
ct —ctk_l)(ctk- et )
(ctk- ctk_l)
* 2
32-1(“1; s8.) Golef - ety y) e §k-1 %

*
(ct' = ct, . )(et

K Shey)

*
(Ctk_ ct )(ctk- ct

k—l)

et )

(et, - Mk

k
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A (et - ctk_l)(ctk- ctk_l)
2 (ot ct. .) - €2 (cff ) 2
o S o o) -6 Lo s $x-1 S
(et - ct*)(ctk- ct, ;) (_ctk- ct, )
2
( fk—l_ gk)
ctk— Ctk—l
Thus
G Y G i S(E Y
j‘”xp{ ) G )7 %%
-~ ct - ctk-l ctk— ot ctk— Ctk-l
oo
J exp {- A (v + %)2} o R L || (L)
Since exp (- fz)df =@ , we have
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bkﬁ, ghé““i
Lo}
r‘“—;--\
L
iy
<
+
= |
o
5|
(=1
S
=l
q
+
>
~—
e

9 (ct - ct, ;) (et - ey (5)

\ ctk- Ctk-—l

It follows from (3), (4) and (5) that

L {tk-l’ ", te € 15 Vs fk } L
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Properties of W_

(i). From the definition of WC(I), the value of Wc(I) is non-negative

for anyIGf.

(ii). Sinee ¢ = {x €C:x(t)ep, 0=t < 1}, by (1),(2) and (1.31)

we have

| . _¢?
Wc(lﬁ) = 2 fexp{ 1 }d§1 = 0,
“'rrctl ctl

()

(iii). Since C '-'-'{xé (o x(tl) €R, O tl‘ 1} and

jexp-[— ?Z}df = I, by (1) and (2) we have

-}

1 X ﬁ
w (C) = j a il o
. Tet exp{ ct, } 51

1l R

Ej,InI =@ a.ndIlUIaé‘f

(iv). Wc is additive, i.e. if Il’ 12 1 5

then Wc(IlLJ 12) = Wc(Il) + wc(Ie).

Proof. By Remark 2.9, we may assume that
I, = {x; (o (x(tl),..., x(tn)) € E } and
I, ={xec: (x(t),.00, x(£)) € B, }
Since Iy, = @ , by Lemma 2.10 (ii) we have Eln E, = @ and

according to Lemma 2,10 (i), LUuI, ={x€C : (x(tl),...,x(tn)) € E-.LLJE2 }

Hence, by Definition 3.1 and (1.35), we obtain

V18022426
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wc(xlu 12)

J....J'K{tl,...,tn, L ' } 4% . At
E, UE,

1
fE IK {epsenty §honns ﬁn}dgl“'d?n
2

WC(Il) + wc(I2)'

By induction, we can show that w is finite additive ; i.e. if

TioeeesI € ff I ﬁIJ $ for i # J and U I, € .Cf, then
W (I U o UT ) = W (I))+.. .+ WAL ).

(v). W, is countably additive.

Theorem 3.2. Let ¥ be a fixed constant satisfying 0 & & 4-32; and

a be an arbitrary positive number. Let a subset of G Aa be defined by

_ . 5 ¥ :
= {x €03 !_x(te)-x(tl)l = ao (ty-t)) , O£t < t,= 1}.

Then for any quasi-interval I disjoint from Aa

W(I) £ o W(1-2%)
{2

where ¢ is a positive number and is independent from a.
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o

r

The proof of countably additive of W_ is ‘based-on this estimate and
is given in Theorem 3.13. We prove this theorem by showing that if an
element x of C does not belong to Aa then it belongs to an element of a

finite collection of quasi-intervals {Jn} so that if I n Aa = § then

I C tfx—) J  end WC(I) £ ?WC(JH). The quasi-intervals J, are so chosen

that E'Wc(Jn) < &a kR-2¥) . The above is done by means of Lemma 3,5-3.0.
n

Notation. Let n be a positive integer and consider a sequence of numbers
= L = = -'j— = n_
0=uy< W £ ... 4un =1 where u, o for J =.0;2.0, 000

k
Let J° be the collection of points of [0,1] defined by

F* . {PK{L}

u ’ b= 05132)00-1 2n_k}! k= 0,1,...,11.

o5

{ P{1} =y , < TS Qe 2“}

o
‘For example, f

(g wpeeees un }

i

n

1 -
{P{'t} =,y 5= 1=0, 1,...,2“1}
- {“o’ Tl R “gn} ;

We shall often write Pk to mean a member of @k .
Let Xk{tf be the straight segment connecting the two points

P*{1-1} and {1} for 1=1,2,...,2°%, k = 0,1,2,....0. When ve

are not particularly concerned about their positions we will write merely

}(k for Xk-[‘lf]‘ .
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k
k-n
The length of Xk{‘u} will be denoted by N+ Then ?Ec o 'Q_n' =2

2
independently of \ in case k = 1,...,n, but vhen k = 0, ?tk depends on L

and we only have the estimate 0 < Ny & 7\1 w gH R

In connection with the sbove definitions we make a few remarks.

% Jesa +
Remark 3.3. From the definition of ;:f"’k it follows that & D fk 1,

k = 0,1,..., n-1. Thus for any point on 0,17 which is also an element
of f’o , the superscript k is not unique. However the largest superscript
for the point is unique and will be called the index of the point.

For example, the index of Uy is O and the index of any point u, where {

is an odd number in {1,2,..., 2n'} will also be 0, the index of u,

is 1, the index of u), is 2, the index of ug is 1, the index of ug 18 3
Then it follows that if ko is the index of P € ‘990’ then P € f‘k
for k « kj and P ¢ PE ooy ky+ On the other hand for a segment on

[0,11 which is an XX the superscript k is unique and such a segment will

be referred to as an edge of index k.

K
Remerk 3.4, If P=P % {} where k, is the index of P and P € =

then either

(1) 'Pisanendpointokaandhencef’ € Tk and k £ k_, or

0

(ii) P is not an end point of XK and hence P & ,'7* and k > ko .
1

For example, let P = g ®.P {3} . Then ue is an end point of Xk for

k <1 and u. is not an end point of X for k > 1.
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Lemma 3.5, Let f be a real-valued function defined on 3g{ Suppose

f is such that if Pi, Pé are the end points of some Xk then

| 22) - 2¥)] < bac® | pp- )|

X
=Y
where a> 0 , b = -(-]-'--—6-2-——-—2- and 0 < "’L%.
o i 7
Then for any P., P2 € fﬁn,
¥
it /4 3 r A .‘J!
|2e) - )| < el B .
Let P., P & J° S B Ir th
Proof. et 1 P2 < and Pl = up, 5= uq. p = q, then

¥ Ui

y v
P, =P, and hence f(Pl) * f(P2) = 0. Therefore, without loss of

generality, we may assume that p < q.

Step 1. Consider the set of integers{p, DPPYynn ey @ }. Each of these integers
except possibly for p which may be 0, can be written as 2k0 with an odd
integer 1. For an odd integer the exponent k is 0 and for an even integer
k can not be 0 and is the largest possible integer for that number because
{ is an cda integer. Let ¥* be the greatest of all the unique exponents

of p, ptl,...,q. Let r be a member of the set { Ps PFleeins q} with this

greatest exponent X*. Then r is unique for the existence of two such

%
numbers would contradict the choice of ¥*. Let r = 2E2 Then p < r < q

/l
with p £q. Let P3 = u_ and consider f(P;) - f(P3)' If r = q then

y "
P, = P3 and f(P2 ) - f(PB)-= 0. Therefore, without lgss of generality,

we may assume that r < q and express q - r in the binary scale :
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R o k. &k
q""r= 2 +2d‘ l+...+ 2l+20 l;l-ol-loluoooo.loo(s)

with k, 7 k

g ; P
&l-—-l ?.oo ‘?klz ko? 0

Step 2. We want to show that ¥ > k, . Suppose on the contrary.

* oo kK ks G
Since r=2f‘fr , by (6) we have q-2d‘ mves= 2 1o 2 O Gt RN
*
Let a = 2% 48" i wars waida b e R
Then T - d - qn ..-....--.........-...(8)
< MWl
Case 1. If K, =k¥, then a=2 CATEAY: covies S ie RN

* E 3
Since 1 is an odd integer, L+l is an even integer and hence

2
4+1 = 2™ where 1 is ‘an odd integer and m > 1. But then,

*

*
2k*+m4/ . /Since g < 2k ( , +2), for otherwise the choice

by (9), 4
of r would be contradicted, it follows from (8) that
¥* * E' ¥* *
r<d=2k+m{, =2k(€+1) {1q(_2k({,+2) -./.ka({a-h?) :
i.e. d is the only integer in the set {d,...,q} with the unique exponent
%

X ¥ > K R S e e . e 10)

*
We also note that p> 25 ( Z‘«Q) » for otherwise the choice of r would

be contradicted. Thus
2k*+m(t-2) < 2}#(4,*-2} L Pl d 2}?”‘4,;
i.e. d is the only integer in the set {p,..., d} with the unique exponent
¥+ m> K Cvikis suv s v oo 0 e ara R
It follows from (10) and (11) that @ is the only integer in the set

= 3*
{P5...5 @} with the unique exponent kK +m > k¢ which contradicts

the choice of r. Therefore k, # K¥* .
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k. S¥Y N
3 o 1,
Case 2. If k, »> K, then k, - ¥ > 0 and hence 2 + is
' k, -K*
an odd integer. But then by (7), da =2 (2 + f), we have that d

is the integer such that r < d < q and has the exponent X*, This

contradicts the choice of r.

It follows from both cases that k¥ > k B @

4 ;
Step 3. Since P3 £ a, = 2 and by (6) P, = u, =u K, -
2%4 Gt o
X g %o
we have P3 is an end point of some and -P2 is an end point of some X .,
" kO
Since P, = u = P2 44 3}, vy (6) we have
2 k 0 !
2704,
N 5
PO {41} = u X - a, mird

21‘0({,0-1) ekoto-zko 2k1£1

Ko K
Thus P {{'0_1} is an end point of some X © and has the index kl.

by

k

"= = = 2
Also by (6), P {t-1}' = u L Y P {4} which
2 1 -2 2 ¢4,
X 1 €
is an end point of some X = and has the index k2 » Thus, repeating the

k
. :
process we reach a point P {‘Ld.} which is an end point of some X

Ky
and has the index k, . But then by (6), P { 4,-1} = u

n
=
il
=]
n

¥ 4 P3 with the index ¥*. In this manner we construct

k,

{ i ko kl
a sequence of points LP, = P {{ﬁ}, P Hj},...,P T, P3} which

#*
have ko, kl,...,kd‘ » k as their indices. Furthermore, any two successive
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points in the sequence are the end points of an edge vhose index is equal
te the index of the first of the two points by means of the definition

of an edge. T L 0 2y L by
n k kK,
Let us use the sequence of points P2, P 1{{1},...,P {t'g.} - P3

/4 ¥
as intermediate points between P, and P3 in estimating f(P2)_ f.‘(P3}.

Then by the hypothesis and (12) and the fact that A = PR o

k£0, 0 <A < 2v™,

ey 2 s et ook -r 2|
lf(Pg)—f(P3) < |e(P)=m(® 1{1}) +|2(P M -£(P Z(4})

s Vo™ L1 -2(e,)]

Z, bacw (?\:,lko-r n;lh..-!- h;u )
Ky 7

< ba.cz E L.
i=0—+

k
£ vac (2{1-n)% :zgf UendB g e
=1

¥
Since 0414%—, 0 L 2 -lé2g-l<l,sothat
% q
2 < 12 = _""';-"T
2 -1 1-2
-n¥ L4
and hence Q(l—n)ié -—-2:7 = (l+23+2 23'-* Enaeg
1-2
-0
= o(i-n)¥ o W e &1
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Thus, by (13) and (14) we have

- 00

l2(2)- 2(P)| 2 bad > pli-n)?¥
i 2 i=k
o
(k, -n)» .
= bac’ 2 (1+2'A6 +2"2d OIS
(k, -n)7
= 'ba..c'a 2 = ._17 . -.:‘;-.oun-o-ocuo-(ls)
1-2

1/ 1
i - i -~ P -
Step 4. We want to estimate f(Pe) f(P3) in term of QPQ 3|

Case 1. Ifky; = 0.or 1, then it follows from (€) that q-r < 3.

But then by hypothesis

It ¥ i 4 , bacz i ¥
if(PQ)-f(PB)I ~ 3 bac EPQ- PB) RN |P,- P3| g

Case 2. For k, » 2. Since if q is even, we have uq = —qE‘}" (—q*—i)—-

2 2
and if q is odd, -(-Qil — -(—qﬂ) « Thus, u > -(—Qﬂ—)
n aQ n a n
2 2 2
whether q is even or odd and similarly u, < Hﬁ + Therefore
2

according to (6) and the fact that k, =1 > 1, we have

4 o 1 - )=
P, =Bl & @ -u > leb)=(r+d) . (gr)e2

2 3 q r o o
k k, =1
ol . o
p > gk?' g gHeR
2n 2
" 1 z(kd' "'n)
B 3k
k, =n)?¥
g S 1 -(ﬂ'L
h / = = e . L B I T T S
Thus |P’2 P3l 5.2 (16)
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By (15) and (16),

; g g
l2(e) ) - 2P )} < 2Rac_pf_p ¥
2 3 -3 2 3
1-2
It follows from both cases that
¥
y f o
[f(P )_ f(P)] < bac IP -P i . ooon-ana-oc..nn(l?)
2 3 - 2 3
1-2
. U
Step 5. Exactly the same estimate as (17) holds for the pair Pl and

] " i W
P3 and from the facts that ]Pl— P21 > |P2- P3| 4 !Pl— PB'} and

b= (1-2~E)/6 we have

lf(P’é)-f(P’;H & lf(P;)-f(P3)| . |f(P3)-r(P’£) |

I
< S BN
1-2 <
i /) 4 8
= ac IPl- P2| A
I f
and the equality holds when Pi = P2 + Therefore
] W ¥ W Y]
Y - & >
le(e,. £(p))| < ac |pl P
0.E.D.
o
Lemma 3.6, Let a real number be assigned to each element of 3%.

Let f be a function defined on [0,1] in such a way that f takes on
the preassigned values on 99, is linear on each XO. Then for any P,Q
on the XO with the end points Ql and Qz,
frla,)- £(q,)|
Q- Q2I

l£(P) - £(q)] = . |p-ql .
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Proof. Let P and Q be any two points on the X° with the end points
Q, and Q,. Since f is linear on the X°, all of the values of f on the X°

must lie on the same line L which has the equation

f(P*)-f(ql) f(QQ)—f(Ql)
P-q Y-
vhere (P, £(P*)) 1is any point on L.
Thus, £(P") = f'(Qz)_f(Ql) . (P#-Q1)+f(Ql).
V-9

Since (P, £(P)) and (Q, £(Q)) are any points on L, we have

£(a,)-£(q,)

£(P) = 3 (P—Q1)+f(Q1)
-9
£(Q,)-r(Q,)
and £fQ) = —e—m 0=, (Q—Ql)'i'f(Ql) .
W= Q
Therefore,
£(Q,)-r(Q,)
l£(P)-£(Q)| = _L_E?L___El_l._ |P-Q i .
'Qe' Qli

Lemma 3.7. Let a real number be assigned to each element of éﬁw and let

U4
f be a function defined as in Lemma 3.6, Assume more that for any P_,

% o°

P, € J

" A I
lf(Pg)-f(ﬁ;) I < & Ip- Pl 4 acevsnvsecurnoninelit)
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Then for any Pl’ ,)

%
A

Proof. Let Pl’ P2 € [0,1] be arbitrary given and consider f(Pz)-f(Pl)

where P, # P, .

Case 1. If the sefment P1P2 is contained in one X .

Let P,, Py, be the end points of that %°. Then by Lemma 3.6 and (18),

we have
P~-P
lf(PQ)-f(Pl)l = ! AN if(Ph)-f(P3)|
]
P.-P
% _|1__2|3 |2(), )-£(P,)]
lpq- Ph’g

< act TPl-P Iﬁ .

2
Case 2. If the segnent P1P2 is contained in two adjacent XO.

Using the intersection of the segment P1P2 with the boundaries of the

two X° as intermediate point between P1 and P2. Ry case 1, we have

(]

1 3 ¥ =
.f{Pe) f(P1)| < 2ac IPl 23 L

2

Case 3. If the segment PlP2 is not contained in one or two adjacent .

Let X{ and X, be the two X° which contain P and P2 respectively.

2 1

Let the intersections of the segment P P2 with the boundaries of X{ and

1

X; be Pll and P21 respectively. Using P11 and P21 as intermediate points
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between Pl and P2. Then by case 1,

%
I

T
[2())-2(P)}) | < ac |p,- P and

11
¥
|2(P,)-2(P,,) | & ac® |P-P, | . and by hypothesis
2 21 2 21
'D’

2(P))-2(P,)) | < ac® |P- P . Furthermore

21
Py~ PJ > |P;- P, | ana Ip),- Byl max{iPl— P b5 FPy- PQI} ;
Therefore
le(p,)-2(p)) | < le(p,)-2(2,,) | + l£(Py, )-£(P 1) | + | £(,,)-2(P))|
< ad?|P.-P I'+ac’lp -P |"+ac® |P,.-pf
217/ 2 1n- ‘21 ;4 S |
& Y vo/ L5t 1
3ac¢ II-"1 P2| .
It follows from all cases that
l£(P)-£(P.)| < 3ac? |P.-P lx
2 1 IR

vwhere P, # P, are any points in [0,1] and the equality holds when

P1 = P2. Thus
¥
#(2)-2(p)) | < 38" |p- P, s P, P, €[0,1
g.E.D-

Lemma 3.8, Let £ be a real-valued function defined on £0,1] and

© / /
linear on each X , Furthermore let £ be such that if Pl’ P2 are the

end points of some x“
/ 1 ¥ ¥ ¥
| f(f{.‘,)-f(P]_” = ‘3—;—6 (1=27") ac lPl- P/2| holds,

Then for any P, P, € (0,1]

l£(p,)2(p))| =< ac'lp-l- % RN
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/ /
Proof'. Let Pl' P2 are the end points of some Xk.
Then by Lemma 3.5,
If I UL R o ﬂefi"
|f(P2)-f(Pl) | =< 5 ac |P)= P, | for any P,, P, .
By Lemma 3.7,

a
|£(P)=£(P)) | < ac’ IP-P  for any Pyy B, € L0ET

Q.E.D.

Lemma 3.9, Let 0 « tl = t2s 1. Ther for the quasi-interval

I={xeC: lx{te)-x(tl)l > ac’(tg- tl)Er } 5 P T P, (K & [

( Se”
W (1Y /< .
B = l (r.:te- ct1)1-23' }

Proof. Let 0 < tlf- teé- o
Case 1. If t, = 0, then the set I given by (19) is a quasi-interval with

restriction point t2 and restricting set El = [f": R : |§| Z hl]‘ where
bl = acztz, which is an open set and hence a Borel set in R, i.e.
I=1{xec: x(t,) € B J. According to (1) and (2),

W(I) = Wl'{ exp {Lj——} ag = ﬁ% -[1 exp{-;-t%} at.

2 YIgbvy 2

But then by letting v, =% ~b, , we have

o 2
w (1) 2 J { ~{vy+ b)) J
€Xp | — - " dv,
c 'fc‘ba . ct2 1

o

b? £ 2b.
2 {‘1}J {“'1‘ 1"1}
€Xp | -0 eXD ! Tr—— by
|_—°ff°'f-2 ct2 A ct? i &
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o0
2 2
( -b -V, 9
‘-—-"": 2 exp'.‘ "'"é"l%'" } exp{z’t_lj dvl . -ooooono.--(zo)
| 1i0t2 - ) o 2
(ﬂ:ﬁ' 2 e
“¥1 1 " Z - %,
Since ) exp { E;Jdvl = 5 and bl = ac t2 5
©
(20) becomes
-b
1 -a 1
w (I) < exp{-——— = exp{ e
c Ctz (Ctz‘- ctl)l-gﬁf

Casec 2. If t, # 0, then the set I given by (19) is a quasi-interval

with restriction points tl’ t2 and restricting set

p 1 -
= {(E,‘ﬁz) E-R°T lfz-gl > aca((t.:,- tl) j’ which is an open

set and hence a Borel set in Rg, i.e. I ={x EC ¢ (x(tl),x(te)) €E }.

< f 2
J'exp{cff (tg- Ei) }d‘g a%,.

E

According to (1) and (2),

Nc (1) =

J:[E—c_t(t-t)

With the trensformation v, = 'El, v, 3’2- “§1 » the restricting set E

2 g
of I becomes E2 = {(ve,VB) E& R* 2 e -ﬂ-vz L oo, IVBI 5 b2 } where

.4 ] 'a( t] )
b, = ac (t2- tl) + Since E’l ?2 = 1, we have

< ’;’iv ~ 'vgs

v2

rﬁml | (,exv{— 3 }'dv av
Ne tl(te'tf J ety ety-ct, _ 5 S
£
>

<
rn

]

W, (1)

00 _ 2 2
1 -VQ u ] -VE
fe I{cth J'dv2' = {ct -ct } g8
Tety (t-t))  J 1 2 s

v3l 7 b,

Faienstes savinEata ST
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2
-V
3 e Vim
To consider eXP 3% —ot } dv3, let v, v3 'h2 .
<, iR |
V3l 7%
Then
ol
3 _( y© T2
CXP. " cem———ter— dv3 = 2 exp e et C J- dvh
ct,~ct J o o 1
I’V3[ 3 'b2 2 1 C
100
I -l:g -VE—?.h 2vh
= 2 expt } exp —-—————} dv,
ct,.,-ctl Ct2— ety
-bg 3 o - "'VE
< 2 exp — exp l_——} dv),
r.:t.?-ct}L A ctg— ctl
b2
= exp - }. c(te- tl) ’
et - ct1
0 2 i
and since J;.' Eg} dv, = .l":]étl » Wwe bhave that (21) becomes
Yo 8 =
2
; -b‘é r -32
W, o(I) < exp { } = exp .
¢ ctz--ctl ].{ ctmct, )1_2 'JJ

.E.D.

Proof of Theorem 3.2. Let I € ff be such that I N A& = @, Since

I E if, there exists a collection of points 0 <s.< ... < smé 1 and a

1
set E € B(E®) such that T = {xec: (x(sl),...,x(am)) € E} Let n be
so large that

l-n
2 z min {Sl’ 82-— 31,..., Sm- sm-l}

apd 2B & l-s incase s #1 .
m ™
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1en
Partition the interval (0,11 into the subintervals of length 2
24 { n-1
by the partition points Bt ™ TR = 0,l,e0e952 . So each
2 \

intervel (u2($_1), u2¢) contains at most one 850 1= 1,..0,m. If it

: _ ] it o Wagy Se kil
contains one s, let Uy 1 =Sy 3 Othervise let u,, . = 2(¢ é) 24 ,

Then

" F ‘jg°
iso, 81 seees sm} C LUy Upseees u?n} = .
According to Remark 2.6, let {ﬁl,..., u n} be the restriction points
2
of T by adding trivial restrictions at the additional restriction points
)
and extending E to a Borel set B in R° 9

. o
For any x € I, 'let ® be such that ®* = x on ﬁ and x* is
linear on each X°, Since x* agrees with x on the collection of

restriction points {ul,..., u n} of I, ¥ € T and hence 2*(7,‘- Aa .
2

Thus, by Lemma 3.8, there exist P‘l, }*2 such that PY and P’; are the

end points of some Xk and
ﬂ

| x*(P3)- x™(P)) | > 3)(16 (1-2"%)ac? | ¥}~ P; L .s

4
Since x agree with x* on jD which contains endpoints of Xk,

T2 2e? | S ] L

i
[x(BF)-=(F) | > == (-2 ’

Therefore x € J{k,V} for some k = 0y1,000,n; ¥ = 1,...,2n-k
where J{k,1} ={x ¢ : Ix(P* (4} )= x(P5(L-11)| > ve? (PX{(} = PE{{-1})}

¥
and b = 3-%?3-(1-2 ) a. Since x is an arbitrary element in I,



e

- en—k
A= U .4
15;}0 4=1 { }

and from the finite additivity of Wc

n—k

W (1) = W (T {x,1}).
e k——Ogl Fel

But then, by Lemma 3.9, we have

W, (1) < Z ;
; GXP{ ) 1-2%

b 2 K(4-1)
Case 1. Fork =0, w - TR N\ 'ﬂﬁ < 210 4l hemee
2
-b £ LRt 1,(n-1)(1-29)
(cu, -cu, )27
< =1

Since the exponential function is increasi_ng, we have

211 b2 .
= 2,28-1 ,(n-1)(1-23)
Z exp (cub-cu, 1)1—276’_} s 2 exp { -b“e }
{=1 iy =1
" exp(.be 27-1 ,(n -1)(1—21)} '
kun
Case 2. For k = 1, u - u & = 2 and hence
2% ak(L-l) "k
n 2n—k n n k
2
z exp]f -b -23'} f exp{ 2,271 (n-k)(l 23)}
=1 T=1 (eu, ~cu, %=1 (=1
2 2X(h1)

= 2 2n—k exp{_b2cza'-12(n—k)(1_2'z)} .

It follows from both cases that



) n
WD <2 exp{ 2e2F1,(n-1) (1-290f, > n-k eprbQCQI—lz(n—k}(l-Q'a’)}.
k=1

n

Ao § D=k i 5_ b2c21-12(n-k](1-23')}= 2”'lexp {_ b2c27-12(n-1)(1-2‘!}}
k=1

1272 oxp {1225 (n—2)(l—c‘!)} o+ Pexp {22 0 ]

2% exp { _bzcex-lao} $eout 22 oxp { p2.2¥-1 2(n-2)(1-—21)} f:

exp{ b2, 281 2(1:1...1)(1--2‘5)}

and we notice thet

_z Jk-1 exp{_be 21 2(1:-1)(1-2'6)}

2 - - -
gt exp {-b c21 e E(n 1)(1 25)} is two times the n-[-'h member

n.
k=1

n
v (1) < 2 x 2n—1exp(_bacaz-12(n-1)(1-23)} +gek"1exp {_b2c221—12(k-1)(1—23)}

- 21‘2:121:-1 { 2,2%8-1 (k—l)(1-21)} kZlgk -1 {h2c2‘5-12(k-1)(1-23')}

& 35 &1 p {_b2c21—1 2(k_1)(1_23o)}

k=1

(o)
== 322-k 22k Bxp{-bzczﬁ-l 2k(1-23)} . o.--.--..nnoo.o..(22)-
k=0

To estimate the last series let us consider the function

2 a
Y(s) = s exp{-becnsh’} for 5 > 0 with ML> 0,

/ .
Y(s) = (28 - H.bac a’slﬂ) exp {—b2 c-'?"s;IL } .
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f -m -

Let #(s) =0, then 2s8 - 'n.b‘?c g O oo which implies that
=m0 6p 2 ~AEE" T = o,
For s =0, ¥(s) =0 and for 2 =Mb%e" "*s* = 0 we have

S 1
8 = ¢ ( 2)“’ which implies that

b

. 2 =il
- 71
Y(s) = e? f%n exp {-—2} = c?(‘!\.be e/2) . Thus
b L
1 2
we have s-max = ¢ 22 " and ¥ (s-max) = 02(hb28/2) 1.
b
Therefore, if we let & = 25 and N = 1-2% = then
_ _ 2{ 1-2%) %%
2% oep { 12e2-1 2}:(1—23)} < c 5 } e sessessss(23)
By (22) and (23)
, 2 7 =-2/(1=2%) - oo
V(1) < 3¢? {_L(I-EE : e-} é o~
=271
e {(1—2’52b2eI /(1-27)
= e
2
\ ~2/(1-2%) 4/(1-27)

« &

P [(1-23)(1-2"32 %}
2 x(3 X 6)°
= & gu/(1-27) ’

-l
3

vhere ¢ = 6¢° {11-23)(1-2 is independent of a,

~2/(1-2%)
2x(3x6)2}

Q.E.D.
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Lemma 3,10, The subset Aa of C defined. by

q %
A = {xec: |x(P2)- x(Pl)I < ac [P~ Pl| 3 P B € [0,1]}

is compact.

Proof. First, we want to show that Aa. is uniformly bounded.

Let x be any element in Aa. Then

(]
] :
|X(P2)- x(Pl)| < ac |P2- Pll s ~lorany P, P2 €[o,11.

1

In particular, |x(P)-x(0)| = ac’P’ < ac?, for any P € [0,1]. Thus
Ix(P)l < ac® , for all x « A, and for all P € (0,1}, Therefore A

is uniformly bounded.

Second, to show that Aa is equicontinuous. Given € > 0 and
/7
a

choose d = %-(E/}

+» Then for all x £ Aa,

%
|x(P)=x(P,) | < ac¥IP =P | < ad* m aa =8 = € nmenates
2 X 2 = = ac‘a

Ip, - d.
By P2| <
i )
Hence A is equicontinuous. Since AL iC f £0,17], by Arzela-Ascoli
Theorem, Aa. is relatively compact.

It remains to show that A, is a closed subset of gfo,l]. Let

fxn] be any sequence in Aa such that X, — X vhere x € %0,11 is
a limit point of A i.e. !!xn- x| — 0 as n—> o0 which implies that

{xn} converges uniformly to x on [0,11, Hence x is continuous and
x(0) = 0. So x € C. Since {xn} converges uniformly to x and &€ > 0

is given, there exists an integer n, such that
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Ixn(P)- x(P)] < €2 for all P€[0,1] and for all n » Ny
oo-.-..'o.....(2h)

Since xn & Aa .

]
|xn(P2)-xn(P1) 1 =< &ca !Pe— P 1 for any Pl,P2 ¢ [0,1]- .-.-....(25)

1

From (24) and (25) we have

|x(P2)-x(P1)[ < Ix{Pl)-xn(Pl)| + |x (P)-x (P,) + I, (P,)=x(B,)|

£ 7 IR
< 5 +ac !Pl le + 5
= ’iP Plﬁ+é f v P.. P € [0
= ac 175 or an) 1+ Fo 0,11,

Since € is arbitrary, x € Ae. and hence Aa is closed. Therefore

Aa. = Aa. and hence Aa is compact ,

Q.E.D.

Corollary 3.11. Let J € jf be defined by s restriction points
t1seees t_ and & set G closed in the usuel topology of R°. Then J N A,

is compact.

Proof. Since a set closed in the usual topology of a Euclidean space
is a Borel set, J is indeed a quasi-interval. Let fxn} be any sequence
inJ N A, . Then fxu} is a sequence in A  and by Lemma 3,10 there
exists a sub-sequence {'yn} of {xn} which converges uniformly to an

element X, € Aa. It remains to show that x0 € J also. Since *-rn — xo
uniformly on [0,1], yn(t) — xo(t) for all t € [0,1] and in particular

on the restriction points ; i.e. yn(ti) — xofti) £ord = Y nuash o
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Hence (yn(tl)’a-ogyn(ts)) - (xo(tl),...,xo(ts)). Since {xn} ia a
sequence in J and {yn} is a subsequence of ﬁcn} ’ {yn} is a sequence
in J. Thus (yn{tl),..., yn(ts)) € G and since G is closed,
(xo(tl),..., xo(ts))e' G which implies that x € J and hence

X € J N Aa. Therefore J N Aa is compact.

Q.E.D.

Lemma 3.12. Let I &£ f be defined by s restriction points tl""’ts

and a Borel set E of R® as restricting set, Then for any € >0 there
exists a closed set G < E such that the quasi-interval J defined by

the same s restriction points and with G as restrictins set satisfies

WC(I*-_J)A’_E.

1
€ =€ 8 - ' - 2
Proof.  Given € >0 and let € {;fc ty (b=, )euu(t, ts_l)} .

Since E € E (r®) » E is a Lebesgue measurable set and hence there

exists a closed set G & E such that (Leb) m(E—~G) <« 60 . Let
J = {x & C . (x(tl)’.oo, x(ts)) € G}.

Since by hypothesis, I = {x € C : (x(tl),...,x(ts)) € E} s 1t follows

from Lemma 2,10 (iv) that

I~J.% {x €0 (2(t))sensetli)) € B ~0} ;

..

wc(I-—- J) = J'... fK {tl’""ts' \gl"""gs} d-gl'" dgs
E~G
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1
1/
-[ A IR TR i

(g-g)?

- exp{ ctl LB L ct cts 1

where K {tl,...,ts, fl""’

Since K ltl....,t fl,--u‘gs} L 1
{re®ty (=t ) een (b=t )]

for all (‘i,...,fe) € E — G,

it follows that

W(I—J) < 1 . € =€,
c 0
%ﬁc t (te-‘tl)noo B 1)}
Q.E.D.

Theorem 3.13. The set function W is countably additive on ‘f i.e.

if a sequence of quasi-intervals {I } in f is such that I, N IJ =0

for i #jand I = LJI {:f, thenwc(1)=gwc (In).

n=1

Proof. We divide the proof into three steps :

n 7,
Step 1. Since is an algebra of sets, we have I — [ JI, € j(.

j=1
Let Jn = I""‘L_J IJ) l.l.G.ll.......l..'.l.l(zs)
J=1
Then Vg =, ter otheretid it 25 4 8 hen there exists an
n=1 o n=1 "
element x ¢ ﬁ J « But then x ¢ Jn for all n = 1,2,..., It follows
n=1

that x € I but x ¢ I_J I, for all n=1,2,... . Therefore x€ I but

J

x & I, for all j = 1,2,..., which is a contradiction .
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By (26), {J nJ is a monotonically decreasing sequence, Thus {Jn} is

a convergent sequence and 1lim J_ = ) J, = @. From (26) we also
n— n=1
have that

n
{ AT B)Y NS -—-ﬂandI:(UI)UJ
j=1 ¥ j=1

and since Wc is finite additive,

WC(I) W ( L__iI

n
L W () = ;%; wc(13)+ W.(J), for all n .

J

Thus for each n, 0 < i wc(IJ) - WC(I) 3 i.e. for each n
J:

i wc(I ,j) is a bounded (non-negative) monotically increasing sequence
j:

of real numbers and hence converges, Therefore for the proof of the

countably additivity of W we only have to show that lim WC(J ) =0,
ns <

i.e. given € > 0 there exists an integer Ny such that Wc(Jn)AE

for all n > no.

Step 2. Since Jn € ff » there exists a sequence of points

n n n 5n
0=toctl4... 41:a =< 1 and a Borel BetEnofR . such that
r n i
Jn =1x € C (x(t ),...,x(t - } By Lemma 3.12, given & > 0

n

there exists a closed set Gn c En such that the quasi-interval Kn
defined by the same Sh restriction points and the restricting set Gn

satisfies Wc (Jn Kn) /2 :
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n
Let L = ()K. . Thenl € jgand by Lemma 2,10 (iii), L
n j=1 J n n

has the closed set G which is the intersection of the closed sets

Gyseens G, (811 being raised to the same Fuclidean dimensionality) as

.1

its restricting set. Hence J — L 6.5/ al L' & K E 8 strsacsek2T)
n n n n n

Since J = (Jn-- Ln)LJ L, end W is finite additive,

WC(JH) = Wc(Jn“~ Ln)+ Wc(Ln). -o.oonoa-n.-a-ooao.-oo-ooooo(es)

n n
C:I__IJ‘j -—-ﬁKJ

n
Since J —~ L = Jnx (MK
=9 T =1

n n

il

n n
(] JJ ) LJ(C*“KJ)
j=1 =

‘n
(J
=1

. (i KJ)’

J

and from the finite additivity of Wc, we have

b . - % € €
W (I ~1L) < ;wc(‘rf k)< g P & 2 S 3 for &1 ne

...............(29)

Step 3. It remains to show that there exists an integer no such that

€

Wc{Ln) < 5 for all n > n, by means of Theorem 3.2,

0

First, we want to show that there exists an integer n. such that

0

N f =
Ln Aa. =@ foralln > ng. Let ?tn Lnﬁ Aa. Since an} is

monotonically decreasing, so is {Mn} and hence an} is a convergent

fa¥el
sequence and lim M = (Y M ., SinceM C L and by (27) L < J =
- 'mn n n n n

n— o n=1

0o
M ;; J . Thus’ lim M = (j M Q; !ﬁ] J = ¢ . ooo.c-oc.l..-on(Bo)
n n n
Nn—s 0 n=1 n=1
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Claim that there exists an integer n. such that Mn =@ for all

0
n > n,. Suppose on the contrary, then since erP' is monotonically

decreasing, M # # for all n. Let x, € M and consider the sequence
{xn}. Since M = L N A, fxn} is in A and by Lemma 3.10 there exists

a subsequence {xng of fxn} such that xnk—p X uniformly in fO,l]

where x &€ A . Hence
0 a

xnk(P), e xO(P) o a1l P& [0,1]s  wisesssssisvessd )

To show that Xy € Mnk for all s let nkobe arbitrarily fixed, Since
{ } is monotonically decreasing, x. € M for all = .
Mnk N 7 i,
Since M = Lnk N A, , by Corollary 3.11 we have that M_  is
0 0 n.ko
compact and hence there exists a subsequence {x } of {x 1 suzh that
A _
* i *
xnk-—a-» Xy uniformly on [0,1] and Xy €M . Thus
1 0

X (P) — IOKP) for all P ¢ E)’l:l. o-uncooto--o-ooo(32)

By virtue of (31) and the fact that {x } is a subsequence of {xn;i
“{

we have that the sequence of numbers {xnk (P)} being a subsequence

of fxnk(P)} converges to xO(P) 202 8YL P €. F0,1 s senissmonettaldz)

From (32) and (33) we have xg(P) = xO(P) for all P € [0,1] and hence

xoe M « Since nko is arbitrary, X, £ Mnk for all n . Thus X, belongs
0

to infinitely many M_and hence X, € 1im M . Since {Mn} is a
N-soco
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convergent sequence, it follows from (30) that Xy & 1im M o= 1im M e g,
N-—>c0 >0

which is a contradiction.

Therefore there must exists an integer ng such that M = ()

=L/ (1-2%)

for all n > n, and hence by Theorem 3.2, Wc(Ln) < d*a for

all n = Nys where & is a positive number and is independent of a,

Choose a> 0 be so large that

wc (Ln) < % for all n P no . uoooo-ouo-o-oo-aoonco-i.c(ﬁ)
It follows from (28),(29) and (34) that

Wc(Jn)‘C- € for all n > ng .

Q.E;D-

According to (1.8), properties (i), (i1) and (v) imply that W,
is a measure on f and together with property (iii) it is a probability

measure. Since ¢ is an arbitrary positive nmumber, Wc is a measure onf

for all ¢ > 0,
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