CHAPTER II
ON THE WIENER SPACE

In this chapter, we will define an algebra and a semi-algebra

of subsets of the Wiener space.

Definition 2.1. The set of all real-valued continuous functions on

an interval [a,b], with the usual operations of addition of functions
and scalar multiplication, forms a linear space which will be denoted

by g[a,‘rﬁ . g[a,b] equipped with the norm fNff = max If(t)l s
attéd

=]
e g[a.,'b] is a separable Banach space.

Definition 2.2. The Wiener space C of functions of one variable is the

collection of real-valued continuous functions x defined on [0,1] and

satisfying x(0) = 0.

Since for any x, y € C and any scalars ol antfi p we have
£x + py is continuous on 0,1) and (d.x+Py)(0) = o x(0)+ py(0) = 0,
80 .t_.ha.t dx+Fy € C and clearly 0 € C, Therefc?ri C is a subspace of
g [0,11. Moreover, C is a closed subspace of g[ﬁ,ﬁ. In fact,

e
ifx, € g@,l:[ is a limit point of C, then there exists a sequence

{x ] in C such that 1%a on-#fO as n—>« , i.e. {x } converges
uniformly to x  on 0,1]. Hence X, is continuous and in particular

xo(o) = lim xntol. But xn(O) = 0 for all n. Therefore xo(O) = 0.

n-»w
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Thus X € C. We have shown that C contains all its limit points.

It follows that C is a closed subspace of }50[0,1] and hence C is
complete. Therefore C is a separsble Banach space with the norm Iu
defined by

x| = max |x(t)| S 2P
O4t41

Definition 2.3. Let {t ‘tn] be a finite collection of numbers

l’ L s
satisfying 0 <& tlé. .o £ tn 4« 1 and let E be a Borel set of the

n-dimensional Buclidean space R~ ; i.e. E € @(Rn). A subset I of C

dgfined'by
I= {xec i A5k 2t IFEE] evnnniieninens (2)

will be called a quasi-interval in C. The points t cas 1:.n and the

s 5
set E will be called the restriction points and the restricting set

of T.
In particular, if E is a rectangle in R, then I which we will

denote by 1° will be called an interval in C ; i.e.

I°={xec ol L x(ty) & B, 4 =l,....n} v e

or any set obtained by replacing any or all of the £ signs by <.

Definition 2.4. Let E be a set in R" and let k be an integer,

l< k £ n., We define

* x 7
E%R ={(aﬁl,...,u(k_l,n(.,o(k,..., oLn)GRn+l: (ocl,...,d,k_l,uk,...,ocn)é E,oée%’;.
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Theorem 2.5, If B € B(Rn) then E@R € IS(RHH').
k
Proof. We divide the proof into 3 steps :

/ /
Step 1. We show that (EXR) =E (X R,
k

/ ntl

where (E®R) =R N (EXR) and E = RO E.
k k
If (dyseeestly qoalpsclygqseees ol g) € (EIR) then

(i'l)la-’ d’k-l’ dnk’ d’k‘fl’.." dn'.’l) ¢ER £ SO th&t Q&k e R but

(o senes @y 100ly o oveos®l/ ) ) § Bi Therefore (o yeeesoly 15y nsess

/ /
...,o(.m_l)é E and hence (di,...,o(.k_l,a(,k,oékﬂ,...,o(,nﬂ)é E[’ER.

Conversely, if (dl,...,oék__l,oék, O('k-bl""’ n+1)6 E[E]R thenaﬁke R and

(&‘11"‘!"% sd

k-1’ d’k+1" =

/
n+l) € E , so that dzké R but

(dl""’“"k-l’dk+1""’dn+1)¢ E. Therefore (ecl""d'k-l’d'k’&kd-l’

ol : )e(Eu?JB)

T 5, 5 ekt n+1

""°{‘n+1)¢ E l;;:’] R and hence (0 ,eensoly 15

oG
Step 2. We show that U (E, @R) = U E @R
1=1 T g 1=1

If (dl, --" k 1’o(k’ik+l""’dn+l)6 l—fl(E %R) then

("‘1""'“k—l"’tk’“kﬂ’“" o 4a) € Ei%R for some i, so that

! ! /
(dfl, . .e ,ka-l’ d.k+l’o "y wn"'l) é Ei &ndd;k 6 R| T}lerefore
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'(uf"l"”’dk-l’d'k oy ggrrrea ol o ) € 1§_Ei {km R. Conversely, if
(o-{l,...,ol,k_l,udk,o&k+l,..., n+l)£ ;?Ei[m R, hthen

i=1l k
(ucl,...,o(,k_l, d’k+1""’°“’n+l) Ei for some i and odk € R, so that
(c(.l,...,m’,k_l,ock,o{,kﬂ,...,ot +1)E Ei[E R for some i. Therefore
(o ypunesdy dadlysnly seees o )€ U (E; I}':] R).

1=1
Step 3. Let A - [E e B : E@R e?B(-R’“l)}. Then
K

(i). It is clear that if E is a rectengle in R", then E[Y R is also

k
a rectangle in R" l. Therefore E@ R € @(Rrﬁl) and hence E €«A’.
k .
(14), TP 654, then EX)R € B (Rn+l). Since B (Rn+1) is a (—algebra,

K
/ /
(E@R) € B (R™). It follows from step 1 that E € .
k

(iii). If E, € .:54' for 1=1,2,..., then E,® R € B ("

) for
i k o
all i. Since B (R® l) is a t(—algebra, l_J (E X R)€B(Rn+l)
i=1 k
00
It follows from step 2 that L) E eﬂ 1

i=1l x

From (i), (ii) and (iii) we have that 54 is a (—algebra. containing
all rectangles in R" and must therefore contain the collection &3 (R®) of
y B (&Y i {
all Borel sets, since (R”) is the smallest -algebra containing
rectangles. Hence e?af = B (Y.

.E.D.
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Remark 2.6. For a given collection of n restriction points

t tn and a given restricting set E there is associated a unique

1, ]
subset I of C given by (1), but the converse is not true. For instance
for the subset I defined by (1) we may throw in a few more points in
(0,11, so that there are m additional points in (0,1], let the

restriction at each of the additional restriction points tk be the

J
trivial restriction - 00 < x(tk ) £ and let the restricting set be
J
E® R® ...XR , a Borel set in Rnﬂn, where
k k k
1 2 m
B RE oo R = (psirensly gady oty seeresily 0o sy 41
k, Kk, k 1 ! 1 B J 3
c m
n+m
'..,&nll@én . (d.l,-.o,dk —l’odk +1,oo-$dfk -1’&k+1,‘..,£nlnléE
1 1 J J
and o&k ,...,-ack PSR o(,k & R}. Then the subset of C defined with
1 J m
the (n+m) restriction points and the restricting set EXRE ... ®R
ki k k
6 m

is identical with the one defined by (1).

Lemma 2.7. Let I, ={x € C : (x(tl),...,x(tn))e El} and
I2 & {x € C: (x(sl),..., x(sn)) € EQ} be two quasi-intervals which

Then s =t

h € no t i i i . = = . = L o
av rivial restriction. Supposc Il I2 1 tl’ s B0

and El = E2.

Proof. Assume Il = IQ.

Step 1. We show that 8, = 1:i for all i = 1,..., n. Suppose on the

contrary and let k be the first positive integer such that s, # o
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Case 1. If 8, = tk+1 for some fz,yl. Then tk # sy for any 1 = 1, ...s0b

Since Il has no trivial restriction at the restriction point tk’ there

exist real numbers ¥ e ’a’k,..., 'a’n and Pk such that

l,l.

(B yenes Bsenns %) € By but (B,eeey Bravens 3) ¢ E,. Construct

1

a function x € C such that x(tl) = 'Kl,...,x(tk) =7 ,...,x(tn) = ¥,

k n

so that x € I,. But then x € I, and hence (x(sl),..., x(sn))€ E,.

. 5 E s bdhsdies
By letting Oh’-l x(sl),..., o-ﬁn x(sn), we have (o4 ,..., eén) (3 E, and

" it follows that

2 si=t for some q, then ¢ = 7 . ...... s AR TR
q i q

By virtue of (3) and the fact that by # s; for any i=1,...,n , we can

)=7%

construct a function vy € C such that y(tl) = 71,...,y( 1 *

s
)

y(tk) = Pk 5 iyl g DAL DY y(tn) = !g and y(sl) = o

k+1 1,...,}"(Sn)

k+1

= DLn s 80 that y € I. but y * I].’ which is a contradiction.

2
Case 2, If Sy # tk-h& for any »1. Then s, # ti for any 1 = 1,...,0.
Since 12 has no trivial restriction at the restriction point sk, there

exist real numbers a,,...,a ,...,8 and & such that (al,...,ak,...,an)EEe

but (a.l,...,dk,...,an) * E2. Construct a function x € C such that

x(sl) = al,...,x(sk) = e.k,...,x(sn) =&, s0 that x € I,. But then x € Il

and hence (x(tl),...,x(tn)) € E. By letting b = x(tl),...,bn = x(tn),

bn) € E. and it follows that

we have (b Y

l,o.u,

if 5, = tq for some q, then a; = bq. & i e e sahaiss oy
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By virtue of (L) and the fact that s, # t; for any i =1,...,n, ve can

k
construct & function y € C such that y(tl) = bl,...,y(tn) = b and

y(Bl) . al’...,y(sk-—l) = ak—l’ Y(Sk) = dk' Y(Sk+l) - ak+l""’y(sn) == ana

so that y € I, but y 4;12, which is a contradiction.

1
It follows from both cases that s, = t.,..., 5_ =1t .
1 1 n n
Step 2. It remains to show that E, = E. . Suppose on the contrary.

L 2
Then either there exists a point (‘!1,..., \‘g’n) € B but (It].’"-" 'ﬁn) ¢ E,

or there exists a point ( ‘Ql,..., 'qn) £E2 but ('q-l,..., qzn) ‘f'El

Thus we can construct a funetion Z1 € C such that z_ € Il but Zl ¢ 12

1
or a function z, € C such that z, € I, but z2¢ I,, which is a

contradiction. Therefore El = E2 . .E.D.

Theorem 2.8. Let Il ={x €C : (x(tl),..., x(tn)) € E]} and

I, = {x €C: (x(sl),..., x(sm)) € EE} be any two quasi-intervals

i

which have no trivial restriction. Then Il I if and only if n = m,

2
S, = tl,...sn = tn and E1 = EE'
Proof. Clearly, if n = m, sl = tl,..., Sn = tn and El = E2, then
Il = I2 i
To prove the converse, assume Il = I2. First, we want to show

that n = m. Suppose n « m. Then there exists a point sj where 1 £ J «m
and SJ # ti for any i = 1,..., n. Since 12 has no trivial restriction
at the restriction point B,j’ there exist real numbers o(»l,..., o(j,..., L

d e a " ea { € s .- "
an Pj such that ( oysenns uf.:', ’.'Lm) E, but & M PJ’ 5 u’,m)

3 E,. Construct a function x € C such that x(sl) = o ,...,x(sj) = ol

..,x(sm) = “m’ so that x € I But then x € I, and hence

o



26

(x(tl),...,x(tn)) € E;. By letting LA x(tl),.. . x(tn), we

have (¥ seeey z’n) < E, and it follows that

if sk = p!

By virtue of (5) and the fact that s, # ti for any i = 1,..4,n, We can

for some l, then of = B! & ensinan sadee du ey

construct a function y € C such that y(tl) = 71,..., y(tn) = "n and
y(s) =04,.ees ¥(sy 1) = o4 4, v(s,) = B y(sy4) = “,’j+1"“""(3m)

= dm, so that y € I, buty #Iz, which is a contradiction. Therefore

n> m. Similarly, we can show that m 4 n. Thus n =m. So .

I ={xe o :(x(tl),...,x(tn)jé F;} end I, = {xeC :(x(sl),...,x($n))6 E% .

Then,it follows from Lemma 2.7 that s, =t

1 1,...,sn=tnandEl=E

oooo L]
> 1 .E.D

Remark 2.9. Tt follows from the above theorem and Remark 2.6. that

when we have two quasi-intervals in C, say I, = -{x 60:(:{(171) S ,x(tn) )€ E;-}

and I, = {x £C :(x(sl),.. 24 x(sm)) e Ee} we cen make them comparable
in terms of their restricting sets by using {El, (o0 ,tn} Ufsl, o .,sm} as
their restriction points by means of adding trivial restriction at each
newly restriction point and extending their restricting sets to two

Borel sets of the same Euclidean space. By induction, this procedure

is true for any finite collection of sets I.,...,I_ in C.
i 1 n

Lemma 2.10. Let I, = {x €C: (x(tl),...,x(tn)) © EJ} and

I, = {x €C: (x(tl),...,x(tn))é E} be any two quasi-intervals in C.

2
Then
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(i) I, U1, {xe C: (x(tl),...,x(tn))G E U EJ ;

ﬂE2=¢.

(ii) T 6 T @ 4if and only if E

X
{xe C : (x(tl),...,x(‘tn)) € Elf\ EQ}'

(111 I, NI

(iv) I.~ I {xec: (x(t)),...x(t ) € Elez}.

Proof. To prove (i), we let 13 = {x €€ (x(tl),...,x(tn})€ Elu EQ}.

If x €I, UI,, then x€ I, or x€ I,, so that (x(tl),...,x(tn))e E

2

or (x(tl),...,x(tn)) € E,. Therefore (x(tl),...,x(tn)) € Elu E, and

hence X € IB. Convergely, if x € 13 , then (x(tl),...,x(tn))ﬁ E1U E2 5

so that (x(tl),..., x(tn))f E.  or (x(tl),...,x(tn)) € 1. Therefore

1 2

x€Il orxée€ I,; and hence x € IlLJI

1 -

To prove (ii), we see that if I_ N 12 # ¢, then there exists

1

x € C such that x € Il and x € I?. But then (x(tl),...,x(tn))e El

and (x(tl),...,x(tn)) 3 E,. Therefore Elﬁ E, # #. Conversely, if

E,NE, ¢ @, then there exists a point (a e ) € R such that

,1, . .

(al,...,an) € L. and (a.l,...,a.h)é E Thus, we can construct a function

32 -

« € C such that x(tl) = Byseees x(tn) 3 B Therefore x € Il and

"x € I_,. Hence Ilﬂ I # 6.

2 2

To prove (iii), we let I, ={x€C : (x(tl),...,x(tn))e Elﬁ Ez} .

. al = =
By (ii), we mey assume that Ill"‘l 12 # ¢ (for otherwise Il 12 Izl- 1))

6. IftxeIN1I

1 T then

and hence Elﬁ E2 # @. Therefore Il}

x € I, end x€ I,, so that (x(tl),...,x(tn)) € E, and (X(tl),---axftn))ﬁ.E2.
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Therefore (x(tl),...,x(tn))é El!"\ E, and hence x € I,. Conversely,

if x € I, then (x(tl),...,x(tn))e E, N E,, 8o that (x(tl),...,x(tn))

1

€E, and (x(tl),...v,x(tn)) € E.. Therefore x € I, end x € I,. Thus

2'
x € Ilf\ 12.
To prove (iv), we let I5 ={x¢—: C :(x(tl),...,x(tﬁ))EEl'--Ee}.

By Theorem 2.8, we may assume that IJ. # 12 and hence El # E2, S0

I #@. If x€ I,~T1,, then x € I, but x § I, and hence (x(t,),...

2’

..,x(tn)) € E

1

but (x(tl),...,x(tn))¢_ E,, SO (x(tl),...,x(tn))GElmEE.

Therefore x € I_. Conversely, if x€ I

: then (x(tl),...,x(tn))é E~E

5’ 23

so that (x(tl),...,x(tn))é E, but (x(tl),...,x(tn)) ¢ E,. Therefore

¥ EX but x¢12 and hence x &€ Il‘--I

1 2°

Q.E.D.

= A
Example 2.11.  Let I, = {x €C.: (x(E),X(E)) € El} and

e{xec: 6@, x3), )€ £} wnere £, € B(R%) ana

E2 5'62(33). Then according to Remark 2.6, Remark 2.9 and Lemma 2,10,
we have

. PN NP e e _
RUL = {eec: @), x@), <@, x§) e (E@rEMUE, x 1),
R 1 s (x(E. ). xA). x(2
LN = {xec: ), xG), x@), x(5) € @BERBRNGE, X R)} .

L~ 1, = {xec: (x(p), x3), x(3), x3) € (58 RO R~(z, X R)} .
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Let # be the collection of all quasi-intervals defined

by (1) and f be the collection of all intervals defined by (2).

Theorem 2.12. f is an algebra of sets and j is a semi-algebra

of sets.:

Proof. We first observe that @ = {x €C: (x(tl),...,x(’cn)) [ ﬁ} .
-
Therefore @ belongs to ¢ and 4 . Also C = {x €C : - o n‘-‘x(tl) - oD,

ceag= @ £ x(tn) = 00}. Therefore C belongs to 99 and y

From Remark 2.9 and Lemma 2.10 (i) and (iv) and from the fact
that the collection @(Rn) of Borel sets is a 6/-a.lge'bra. of sets, it
follows that ff is an algebra of setg.

Next, we want to show that y is.a semi-algebra of sets.
(i). From Remark 2.9 and Lemma 2.10 (iii) and from the fact that the
intersection of any two rectangles in R is also aorectangle in Rn,
it follows that Ig NIJe 9’ for any I°, 1‘2’ € f :

a
(ii). We show that :T;f 1° € i, then C~I° is a finite disjoint union
of intervals in . To see this, let I ={x €C : (ic(tl),...,x(tn))fE?
vhere E° is a rectangle in Rn} be any interval in j& Since the
collection of rectangles in R is a semi-algebra of sets, R~E° is
a finite disjoint union of rectangles, say R~EC = Ei Kvss o UE;: where
E](Z 's are disjoint rectangles. Let I,E ={x €C: (x(tl)',...,x(tn))é EE},
k =1,...,m. Since Ei's are disjoint, it follows from Lemma 2.10 (ii)

o .
that I, 's are disjoint. By using induction to Lemma 2.10 (i), we have
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m . = m m
° ={x € C.(x(t.),....x(t)) € ° 1. But = r2,
1<L=J1 x "1 & ' glEk} :Eélek

m
therefore (Y f==(x60:(ﬂt)vum&))éﬂmf}= c~I°.
k=1 k 1 n

e
It follows from (i) and (ii) that jﬁ is a semi-algebra

of sets.
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