CHAPTER LIT

DESIGN OF REINFORCEMENT

3.1 Specifications

Specified	d compressi	ve st	rength of concrete	,=	240	kg/cm²
fc' Specific	l yield stro	ength	of reinforcement,	=	2,400	kg/cm ²
fy						
Modulus d	of clastici	ty of	concrete , E	20	234,000	kg/cm2
Modulus o	of elastici	ty of	nteel, E _s	= 2.	.039/10 ^{6.}	kg/cm ²
Modular n	ratio , n			= '	8.7	
c	=	0.00	0.003 3 + f _y / E _s		0.718 d	
а		0.35		=	0.61d	
Ph	, = =	0.85	f. a d	=	0.052	
Pn	iax =	0.75	Ър	=	0.039	
ď	=	Pmax	ry r!	22	0.39	

3.2 Design of Prototype

The torsional moments, bending moments and shears used in the design were analysed and shown in Table 4. Since the depth of the helical stair was 20 cm. at mid span and increased linearly along its length to be 30 cm. towards both the upper and lower support, the helical stair was designed at every 60 degrees. Example design at the upper support was shown below and followed ACI 318 - 71 Code.

3.2.1 Design for shear and torsion

Torsional moment at the upper support , $M_t = 8573.54$ kg-m.

$$v_{tu} = \frac{3M_{t}}{\emptyset \le X^{2}Y}$$

$$= \frac{3/8573.54/100}{0.85/30/30/80}$$

Wertical shear at the upper support, $Q_s = 9345.87$ kgs.

$$v_u = V_0$$
 bd
$$= 9345.87$$

$$0.85 \pm 80 \pm 27.5$$

$$= 5 \text{ kg/cm}^2$$

Horizontal shear at the upper support $Q_r = 986.29$ kgs.

$$v = V / \text{kbd}$$

$$= 986.29 / 0.85730777.5$$

$$= 0.5 kg/cm^{2}$$

since shear stress caused by the horizontal force in the radial direction is low. Therefore the horizontal shear $\mathbb{Q}_{\mathbf{r}}$ is neglected in the design and the section is designed for vertical shear and torsion only.

norminal permissible torsion stress carried by concrete

$$v_{tc} = \frac{0.636\sqrt{f_{c}^{1}}}{\sqrt{1 + (1.2 \text{ yu} \text{ v}_{tu})^{2}}}$$

$$= \frac{0.636\sqrt{240}}{\sqrt{1 + (1.245)^{2}}}$$

$$= 9.8 \text{ kg/cm}^{2}$$

Maximum torsional stress for each section

$$= 3.18 \sqrt{\frac{f_c^2}{1 + (1.2 \text{ vu})^2}}$$

$$= 3.18 \sqrt{240}$$

$$= 3.18 \sqrt{240}$$

$$= 49.2 \text{ kg/cm}^2$$

$$= 49.2 \text{ kg/cm}^2$$

$$\approx 49.2 \text{ kg/cm}^2$$

Assuming 2.5 cm. from the face of concrete to the center of stirrup steel

$$X_{1} = 30 - 5 = 25 \qquad \text{cm.}$$

$$Y_{1} = 80 - 5 = 75 \qquad \text{cm.}$$

$$X_{2} = 0.66 + 0.33(75/25)$$

$$= 1.65 \qquad 1.5$$

$$A_{3} = (^{7}\text{tu} - ^{7}\text{tc}) \times \times^{2}\text{Y}$$

$$3 \times (^{7}\text{t})^{7}\text{y}$$

$$= (^{7}\text{tu} - ^{7}\text{tc}) \times \times^{2}\text{Y}$$

$$3 \times (^{7}\text{t})^{7}\text{y}$$

$$= (^{7}\text{tu} - ^{7}\text{tc}) \times \times^{2}\text{Y}$$

$$3 \times (^{7}\text{t})^{7}\text{y}$$

$$= (^{7}\text{tu} - ^{7}\text{tc}) \times \times^{2}\text{Y}$$

$$3 \times (^{7}\text{t})^{7}\text{y}$$

$$= (^{7}\text{tu} - ^{7}\text{tc}) \times \times^{2}\text{Y}$$

$$3 \times (^{7}\text{tu})^{7}\text{y}$$

$$= (^{7}\text{tu} - ^{7}\text{tc}) \times \times^{2}\text{Y}$$

$$= (^{7}\text{tu} - ^{7}\text{tu}) \times \times^{2}\text{Y}$$

$$= (^{7$$

$$\frac{3.52 \text{ b}_{W}^{S}}{f_{y}} = \frac{3.52/30/14}{2400}$$

$$= 0.615 \qquad \text{cm}^{2}$$

$$= 2/1.61 \qquad \text{cm}^{2}$$

$$= 5.22 \qquad \text{cm}^{2} > 0.615$$

$$= \left[\frac{28.1 \times S}{f_{y}} \left(\frac{\text{vtu}}{\text{vtu}} + \text{vu}} \right) - \frac{1}{2400} \right]$$

$$= \left[\frac{28.1/30/14}{2400} \left(\frac{4.2}{4.2 + 5} \right) - 3.22 \right]$$

$$= \frac{25.1/30/14}{14} \qquad \text{cm}^{2}$$

$$= \frac{25.45}{14} \qquad \text{cm}^{2}$$

Longitudinal reinforcement to resist torsion

$$\Lambda_1 = 23$$
 cm²

Norminal permissible shear stress carried by concrete

$$v_{c} = \frac{0.53 \sqrt{f_{c}^{1}}}{\sqrt{1 + (\frac{v_{tu}}{1.2v_{u}})^{2}}}$$

$$= \frac{0.53 \sqrt{240}}{\sqrt{1 + (\frac{42}{1.2 \times 5})^{2}}}$$

$$= \frac{1.16}{\sqrt{1.2 \times 5}} \text{ kg/cm.}^{2}$$

$$A_{v} = \frac{(v_{u} - v_{c}) \text{ bS}}{f_{v}}$$

$$= \frac{(5 - 1.16) \times 80 \times s}{2400}$$

$$= 0.128 \text{ S}$$

CIA.

use spacing of stirrup
$$S = 1^{l_{+}}$$
 cm.
$$A_{v} = 0.128 \neq 1^{l_{+}} = 1.8 \text{ cm}^{2}$$

$$A_{v} + 2A_{t} = 1.8 + 3.22 \text{ cm}^{2}$$

$$= 5.02 \text{ cm}^{2}$$

3.2.2 Design for flexure and axial loads

Longitudinal force at the upper support , Qt

Since the direct stress caused by axial load is low. Therefore the axial load, Q_{t} is neglected in the design and the section is designed for the vertical and lateral moment only.

Vertical moment at the upper support, Mr

Ultimate moment of the section, M

$$= \emptyset \left[bd^{2} f_{c}^{*} q(1 - 0.59q) \right]$$

$$b = 80$$

$$d = 30 - 2.5 = 27.5$$

capacity reduction for flexure, $\beta = 0.9$

$$M_{\rm u} = 0.9 \left[80 \cancel{27.5}^2 \cancel{240} \cancel{.389} (1 - 0.59) \right]$$

$$= 39.200 \qquad \text{kg-m.}$$

Longitudinal reinforcement to resist vertical moment

$$A_{s} = \underbrace{M}_{y} (d - a/2).$$

=
$$3379 \cdot 11/100$$

 $0.9/21/00/27.5(1-0.305)$
= 8.2 cm² (top)

Lateral moment at the upper support , M

kg-m.

Ultimate moment of the section

$$M_{u} = \emptyset \left[bd^{2}f_{c}^{1} q(1 - 0.59q) \right]$$

$$= 0.9 \left[30/77.5^{2}/240/0.39(1 - 0.59 + 0.39) \right]$$

$$= 117,000 kg-m.$$

. Longitudinal reinforcement to resist lateral moment

$$A_s = 3257.88 / 100$$
 $0.9 / 2400 / 77.5(1-0.305)$
 $= 2.8$
cm²

3.3 Design of Model

In this work, a half scale reinforced concrete model was constructed for testing. From dimensional analysis, the model was scaled down in proportion so that

$$L_{m} = \frac{L_{p}}{2}$$

$$A_{m} = \frac{A_{p}}{4}$$

$$V_{m} = \frac{V_{p}}{4}$$

where L_m , L_p = Linear scale of the model and prototype respectively

 A_{m} , A_{p} = Area of steel in the model and prototype respectively

 $M_{\rm m}$, $M_{\rm p}$ = Load of the model and prototype respectively. The cross section and reinforcement of the model in table 10 were scaled down from the prototype by using the above equations.

Table: 9: Tabulated Values of reinforcement of the prototype

Angle	Sect: on	Area of	reinforce	Stirrups	Spacing	
(degrees)	(cm.Xcm.)	Torsion	Radial moment	Lateral moment	(cm ²)	(cm.)
0	30 x 80	23.0	8.16	2.8	5.02	14
60	28.3 X 80	18.3	1.64	3.2	4.15	14
120	26.7 X 80	20.5	1.03	3.2	3.67	14
180	25 X 80	22.8	7.8	0.5	4.5	14
240	23.3 X 80	19.8	6.7	0.9	2.2	8
300	21.7 X 80	12.2	10.7	0.1	1.41	10
360	20 X 80	0	12.9	0	0	10
420	21.7 X 80	12.2	10•7	0.1**	1.41	10
480	23•3 X 80	19.8	6.7	0.9**	2.2	8
540	25 X 80	22.8	7.8	0.5**	4.5	14
600	26.7 X 80	20.5	1.03*	3.2**	3.67	14
660	28.3 X 80	18.3	1.64	3.2**	4.15	14
720	30 X 80	23.0	8.16	2.8**	5.02	14

Remark: * longitudinal reinforcement at the bottom face

** longitudinal reinforcement at the internal line radius

Table 10: Tabulated values of reinforcement of the model

Angle	Section	Area of reinforcement (cm2)			Stirrups	Spacing
(degrees)	(cm.Xcm.)	Torsion	Radial moment	lateral moment	(cm ²)	(cm.)
0	15 X 40	5.75	2.01	0.7	1.26	7
60	14:55 X 40	4.56	0.41	0.8	1.04	7
120	13.35 X 40	5.13	0.26	0.8	0.92	7
180	12.25 X 40	5.70	1.95	0.13	1.13	7
240	11.65 X 40	4.95	1.68	0.2	0.55	- <i>L</i> _i
300	10.85 X 40	3.05	2.68	0.03	0.35	- 5
360	10 X 40	0	3.23	0	0	5
420	10.85 X 40	3.05	2.68	0.03**	0.•35	5
480	11.65 X 40	4.95	1.68	0.23**	0.55	L _t
540	12.25 X 40	5.70	1.95	0.13**	1.13	7
600	13.35 X 40	5.13	0.26	0.8**	0.92	7
660	14.15 X 40	4.56	0.41	0.8	1.04	7
720	15 X 40	5.75	2.04	0.7**	1.26	7

Remark: * longitudinal reinforcement at the bottom face

** longitudinal reinforcement at the internal line radius

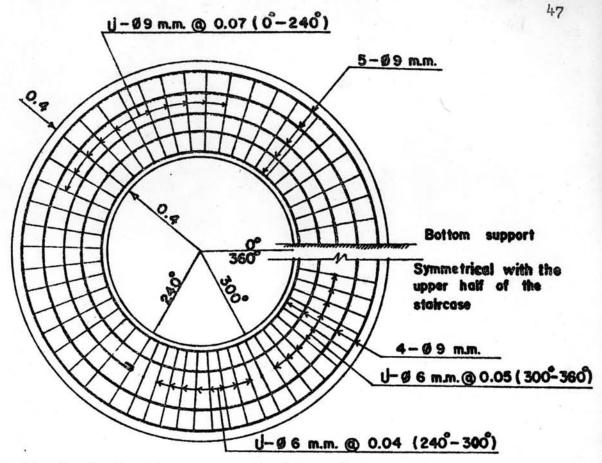


Fig 10: Detail of reinforcement at the bottom face for lower half of the staircase

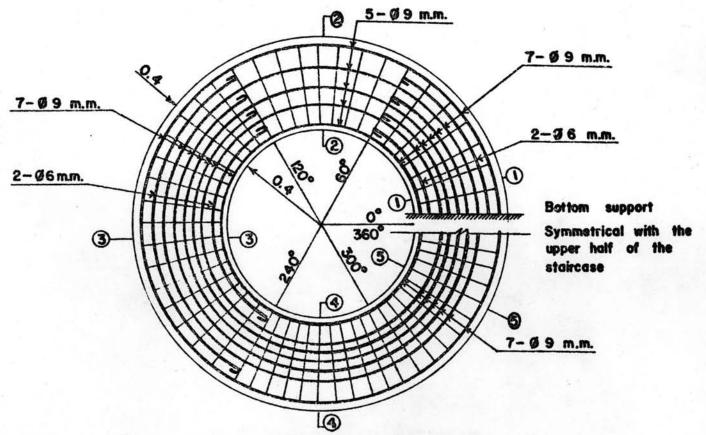
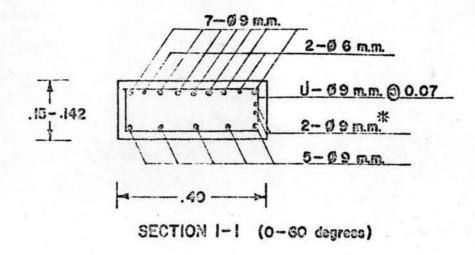
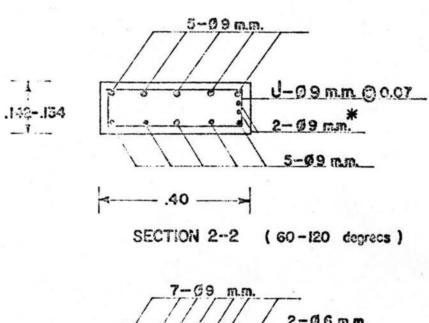




Fig II: Deticl of reinforcement at the top face for lower half of the stair case

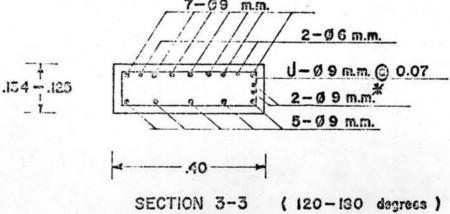
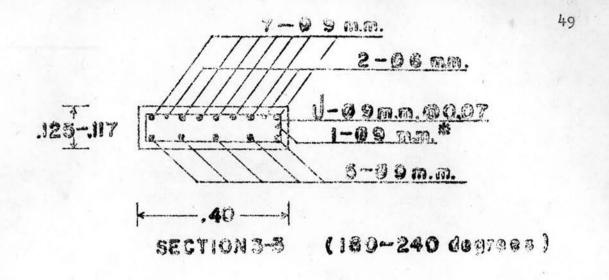
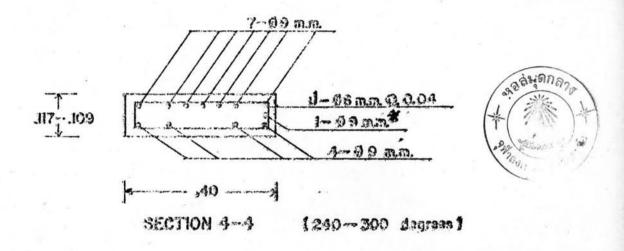




Fig 12: Section showing reinforcement

* Reinforced at outer circle for lower half and at inner circle for upper half of the staircase

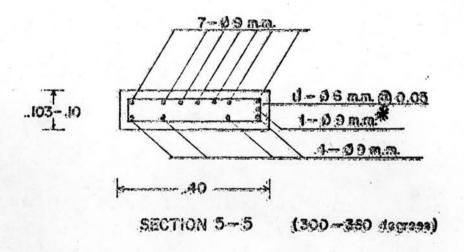


Fig 13: Section showing reinforcement

* Reinforced at outer circle for lower half and at inner circle for upper half of the staircase