CHAPTER IV

)

THE POISSON INTEGRAL OF A MEASURE

The aim of this chapter is to represent a temperature on a half-space in the form of the Poisson integral of a measure. In the sequel we shall construct a sequence of bounded measure which converges to a bounded measure in a w^* - topology.

A sequence $\{f'j\}$ of bounded measures is said to converge to a measure f' in w^{*}- topology if for all $f \in C_0(R^n)$, the class of all real valued continuous functions (in R^n) vanishing at infinity, then

> $\lim_{j \to \infty} \int f d\mu_j = \int f d\mu.$ Denote supp(f) = {x / f(x) \neq 0}.

By $C(|\mathbb{R}^n)$ we denote the class of all real-valued functions (in (\mathbb{R}^n) , and furnish it with the topology of convergence uniform on compact subsets of (\mathbb{R}^n) . This topology \langle may be defined by the seminorms

$$\mathcal{O}_{K}(f) = \sup \left\{ |f(y)| / f \in C(R^{n}), y \in K \right\},$$

K ranging over any preassigned base for the compact subset of (\mathbb{R}^n) . Moreover, f_n is said to converge to f if and only if there exists a compact subset K such that

 $supp(f_n) \subseteq K$

 $f_n \longrightarrow f$ uniformly in K.

A real linear functional β on C(μ Rⁿ) is said to be bounded if for each compact set K, there exists $m_K > 0$ such that

$$\begin{split} \left| \left(\mathfrak{E} \mathbf{f} \right| \leq \mathbf{m}_{K} \bigotimes_{K}^{\circ} (\mathbf{f}) \quad (\mathbf{f} \in \mathbb{C}(|\mathbf{R}^{n}|) \text{ with } \operatorname{supp}(\mathbf{f}) \subseteq \mathbf{K}). \\ & \quad \text{For each } \mathbf{f} \in \mathbb{C}_{0}(|\mathbf{R}^{n}|), \text{ we define } \|\|\mathbf{f}\|_{\infty} \text{ by} \\ & \quad \|\|\mathbf{f}\|\|_{\infty} = \sup \Big\{ |\mathbf{f}(\mathbf{y})| / |\mathbf{y} \in |\mathbf{R}^{n} \Big\}. \\ & \quad \text{We notice that } \|\|\mathbf{f}\|\|_{\infty} \text{ is finite, since } \mathbf{f} \in \mathbb{C}_{0}(|\mathbf{R}^{n}|). \end{split}$$

A set P C X is said to be convex if

 $tx + (1 - t)y \in P$ (x, y $\in P$, $0 \le t \le 1$).

A neighborhood of a point $x \in X$ is an open set that contains x.

A collection \mathfrak{B} of neighborhood of a point $x \in X$ is a local base at x if every neighborhood of x contains a member of \mathfrak{B} . In the vector space context, the term local base will always mean a local base at 0.

A topological vector space is locally convex if there is a local base ${\mathfrak B}$ whose members are convex.

Note that $C(R^n)$ with the family of seminorms \mathcal{O}_K on $C(R^n)$ is a locally convex topological vector space (see Edwards, R.E., Functional Analysis, [3], (1.10.1, p. 78).

and

Theorem 4.1.1. (Hahn-Banach Theorem). If \bigwedge is a bounded linear functional on a subspace M of a locally convex space X, then there exists a bounded linear functional $(\mathcal{C}$ on X, such that

>

$$\beta = \Lambda$$
 on M.

(See Rudin. W., Functional Analysis, [5], McGraw-Hill Book Company).

Theorem 4.1.2. (Riesz Repressentation Theorem). If $(\beta$ be a bounded linear functional on C($|R^n\rangle$). Then there exists a uniquely determined real Radon measure μ on $|R^n$ having a compact support and such that

$$(3f = \int_{\mathbb{R}^n} fd/\lambda \quad (f \in C(\mathbb{R}^n)).$$

(See Edwards, R.E., Functional Analysis, [3], Theorem 4.10.1, p 203).

Before proving Theorem 4.1.5., we first notice that $C_0(\mathbb{R}^n)$ is separable (see Bourbaki, [2], Chapter X, § 3.3, Corollary of Theorem 1). Thus there exists a countable set

$$E = \left\{ f_i \in C_o(R^n) / i = 1, 2, \dots \right\}, \text{ say,}$$

is dense in $C_0(\mathbb{R}^n)$. Later on, we need two lemmas (Lemma 4.1.3. and Lemma 4.1.4.).

Lemma 4.1.3. Let $\{\mathcal{M}_i\}$ be a sequence of Radon measures defined on the Borel subsets of \mathbb{R}^n with $\mathcal{M}_i(\mathbb{R}^n) < \mathbb{K}$, for all i, and for some positive number k. Then there is a Radon measure \mathcal{M} defined on the Borel subsets of \mathbb{R}^n with

3

 $\begin{array}{l} \mu(|\mathbb{R}^n) \leq k,\\ \text{and a subsequence } \left\{ \mu_{i_j} \right\} \text{ which converges to } \mu \text{ in the}\\ w^*- \text{ topology.} \end{array}$

Proof: Since $C_0(R^n)$ is separable, there exists $E = \{f_1, f_2, \dots\}$ a countable dense subset of $C_0(R^n)$. The sequence of real numbers

 $\int_{1}^{f_{1}} f_{1} \mathcal{M}_{i}$ is bounded by $k \| f_{1} \|_{\infty}$. There is a subsequence $\{ \mathcal{M}_{i_{1}} \}$ of $\{ \mathcal{M}_{i} \}$ such that

$$\lim_{i \to \infty} \int f_1 d \mu_i = \text{exists}$$

Now consider the sequence of real number

$$\int f_2 d\mu_{i_1}$$

which is bounded by $k \| f_2 \|_{\infty}$. There is a subsequence $\{ \mathcal{M}_{i_2} \}$ of $\{ \mathcal{M}_{i_1} \}$ such that $\lim_{i \to \infty} \int f_2 d \mathcal{M}_{i_2}$ exists.

Continue this precess, we get a subsequence $\{\mu_{i_j}\}$ of

$$\{ \mathcal{M}_{i}_{(j-1)} \}, j \ge 2,$$

$$\lim_{i \to \infty} \int_{j}^{j} f_{j} d \mathcal{M}_{i}_{j} \quad \text{exists for } j \ge 2.$$

Now consider any $f \in C_{\mathfrak{g}}(\mathbb{R}^n)$ and any $\mathfrak{E} > 0$. Let $f_m \in \mathbb{E}$ be such that

$$\|f - f_{m_0}\| < \frac{\varepsilon}{2k}.$$

Then

)

$$\begin{split} \left| \int f d\mu_{i_{i}} - \int f d\mu_{j_{j}} \right| &< \left| \int (f - f_{m_{o}}) d\mu_{i_{i}} \right| + \\ &+ \left| \int f_{m_{o}} d\mu_{i_{i}} - \int f_{m_{o}} d\mu_{j_{j}} \right| \\ &+ \left| \int f_{m_{o}} d\mu_{j_{j}} - \int f d\mu_{j_{j}} \right| \\ &+ \left| \int f_{m_{o}} d\mu_{j_{j}} - \int f d\mu_{j_{j}} \right| \\ &< \varepsilon + \left| \int f_{m_{o}} d\mu_{i_{i}} - \int f d\mu_{j_{j}} \right|. \end{split}$$

Since $f_{m_0} \in E$, the sequence of absolute values on the right approaches zero as i, $j \rightarrow \infty$ and

$$\lim_{i,j\to\infty} \left| \int f d\mu_{i_i} - \int f d\mu_{j_j} \right| < \varepsilon$$

This shows that the sequence

is a Cauchy sequence and that

 $\Lambda f = \lim_{i \to \infty} \int_{0}^{\infty} f d\mu_{i} \quad \text{exists for each } f \in C_{0}(\mathbb{R}^{n}).$

To check that Λ is bounded on $C_o(\mathbb{R}^n)$.

>

For any K compact subset of \mathbb{R}^n , for any $f \in C_0(\mathbb{R}^n)$ such that supp $(f) \subseteq K$,

$$\begin{split} & \int_{\mathbb{R}^n} f d\mu_{\mathbf{i}_{\mathbf{i}}} \leq \int_{\mathbb{R}^n} |f| d\mu_{\mathbf{i}_{\mathbf{i}}} \\ & \leq k O_{\mathbf{K}}(f), \end{split}$$

therefore Λ is bounded linear functional on $C_0(\mathbb{R}^n)$.

By Theorem 4.1.1., there exists a bounded linear functional G defined on C((\mathbb{R}^n) such that

$$\Im f = \Lambda f$$
 for all $f \in C_0(\mathbb{R}^n)$.

Apply Theorem 4.1.2. to (3, we have that there exists a uniquely determined real Radon measure <math>M on $(\mathbb{R}^n$ having a compact support and such that

$$(\Im f = \int_{\mathbb{R}^{n}} f d\mu \quad \text{for all } f \in \mathbb{C}(\mathbb{R}^{n}).$$
Thus
$$\bigwedge f = \int_{\mathbb{R}^{n}} f d\mu \quad \text{for all } f \in \mathbb{C}_{0}(\mathbb{R}^{n}).$$

$$\int f d\mu = \lim_{i \to \infty} \int_{0}^{\beta} f d\mu_{i} \quad \text{for all } f \in \mathbb{C}_{0}(\mathbb{R}^{n})$$

and this is just the definition of w - convergence.

Next, we shall show that a necessary and sufficient for a temperature u to be positive on the strip $H_{(0,c)}$ is that ρ

$$u(x,t) = \int_{\mathbb{R}^n} K(y-x,t) d \mu(y),$$

4.8

where μ is a Radon measure. Note that the proof of the sufficiency is given in Theorem 2.1.7.

)

Lemma 4.1.4.
$$\lim_{|y|\to\infty} \frac{K(y-x,t)}{K(y,t_0)} = 0, \quad 0 < t < t_0.$$

Proof: This lemma follows immediately for the following identities :

$$\frac{k(y_{i}-x_{i},t)}{k(y_{i},t_{o})} = \sqrt{\frac{t_{o}}{t}} \frac{\exp(-(y_{i}-x_{i})^{2}/4t)}{\exp(-y_{i}^{2}/4t_{o})}$$

$$= \sqrt{\frac{t_{o}}{t}} \exp\left\{\frac{(t-t_{o})}{4tt_{o}}\left[y_{i}+\frac{x_{i}t_{o}}{t-t_{o}}\right]^{2}-\frac{x_{i}^{2}}{2t}-\frac{x_{i}^{2}t_{o}}{4t(t-t_{o})}\right\}$$

$$= c \exp\left\{\frac{(t-t_{o})}{4tt_{o}}\left[y_{i}+\frac{x_{i}t_{o}}{t-t_{o}}\right]^{2}\right\}, \ c = \sqrt{\frac{t_{o}}{t}} \exp\left\{-\frac{x_{i}^{2}}{2t}-\frac{x_{i}^{2}t_{o}}{4t(t-t_{o})}\right\}.$$

Theorem 4.1.5. If $u(x,t) \in \mathcal{H}$ and $u(x,t) \ge 0$, on the strip $H_{(0,c)}$, then

$$u(x,t) = \int_{\mathbb{R}^n} K(y-x,t) d\mu$$

where μ is a Radon measure on $\ensuremath{/} \mathbb{R}^n$.

Proof: For a fixed $t_0 > 0$, we set

$$d_{\delta}(E) = \int_{E} K(y,t_{o})u(y,\delta)dy,$$

where $0 \leq \leq \leq c$ is such that $t_0 \leq c - \leq$ and E is a measurable set of μ^n .

By Theorem 3.1.4., we get

$$0 \leq d_{\xi}(E) \leq u(0, t_0 + \delta) < \infty$$
, for all δ .

and for all measurable sets E.

Therefore $\mathcal{A}_{\mathcal{S}}$ is a Radon measure. By Lemma 4.1.3., there is a Radon measure \mathcal{A} such that $\{\mathcal{A}_{\mathcal{S}}\}$ converges to \mathcal{A} in w^{*}- topology as $\mathcal{S} \rightarrow 0$, i.e.,

 $\lim_{\delta \to 0} \int f d d_{\delta} = \int f d d, \quad \text{for all } f \in C_{0}(\mathbb{R}^{n}),$

and

$$\begin{aligned} & \langle (E) \leq u(0,t_0+\delta). \\ & \text{Since } u(x_0,\delta) = \lim_{(x,t) \to (x_0,0^+)} \int_{\mathbb{R}^n} K(y-x,t)u(y,\delta) \, dy \end{aligned}$$

$$= \lim_{(x,t)\to(x_0,0^+)} \int_{\mathbb{R}^n} \frac{K(y-x,t)d}{K(y,t_0)} \alpha'_{\xi}(y),$$

$$\int_{\mathbb{R}^n} \kappa(y-x,t)u(y,\delta) dy \leq u(x,t+\delta), \text{ for } 0 < t < c-\delta,$$

and $(x,t+\delta) \xrightarrow{\lim} (x_0,\delta)$ $u(x,t+\delta) = u(x_0,\delta)$, we have that

$$(x,t+\underline{\leq}) \xrightarrow{\lim} (x_0,\underline{\leq}) \begin{cases} u(x,t+\underline{\leq}) - \int_{\mathbb{R}^n} K(y-x,t)u(y,\underline{\leq}) dy = 0. \\ \mathbb{R}^n \end{cases}$$

Since (4.1) $u(x,t+\underline{\leq}) - \int_{\mathbb{R}^n} K(y-x,t)u(y,\underline{\leq}) dy = 0.$

belongs to \mathcal{H} in the strip $H(0, c-\delta)$,

$$u(x_0, \delta) - \int_{\mathbb{R}^n}^{\infty} K(y-x_0, t)u(y, \delta) dy = 0.$$

50

Hence, apply the Theorem 3.1.6. to the function (4.1),

we get

r

$$u(x,t+\delta) - \int_{\mathbb{R}^n} K(y-x,t)u(y,\delta) dy = 0$$

in the strip $H_{(0,c-S)}$.

Therefore
$$u(x,t) = \lim_{\substack{\delta \to 0 \\ \delta \to 0}} u(x,t+\delta)$$

$$= \lim_{\substack{\delta \to 0 \\ \gamma \in \mathbb{N}}} \int_{\mathbb{R}^n}^{K(y-x,t)u(y, \delta)dy}$$

$$= \lim_{\substack{\delta \to 0 \\ \gamma \in \mathbb{N}}} \int_{\mathbb{R}^n}^{K(y-x,t)d} \frac{\chi(y)}{\chi(y,t_0)} dx$$

Since $\frac{K(y-x,t)}{K(y,t_0)} \in C_0(R^n)$ (by Lemma 4.1.4.), we have,

$$\mathcal{M}(\mathbf{E}) = \int_{\mathbf{E}} \frac{1}{\mathbf{K}(\mathbf{y}, \mathbf{t}_{o})} d\mathbf{d}(\mathbf{y}),$$

where E is a measurable subset of $|\mathbb{R}^n$. We can see that $\mathcal{M}(E) \ge 0$ for all E measurable set, and $\mathcal{M}(E)$ is finite whenever E is compact. Hence \mathcal{M} is a Radon measure, and ρ

$$u(x,t) = \int_{\mathbb{R}^n} K(y-x,t) d\mathcal{M}(y).$$