CHAPTER VI
DISCUSSION

In the previoﬁs chapter, we have attempted to find the
polaron effective mass at considerably low temperatures by
means of a density matrix method. Basing on the definition
modified from that of a free particle, we have worked out the
general expression of the effective mass for all (C and the
two limiting analytical cases of the effective mass for large
and small ¢ . In this chapter, thé consistency of these
results with those obtained by other methods will be inspected.
Finally, possible improvements of the results and suggestive

lines for future investigations will be discussed.

Y Comparison of Results

According to Chapter V, we have proceeded to evaluate*

the polaron effective mass ™M under the boundary conditions
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which is just an extension of the definition of mass for a free'.

particle.
K. (Bet) =7 (8))
Our approach renders the key quantity { v 7 as
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and the general expression of ™ for all & as
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In the meantime, we consider Feynman's method in which the
’ - e
specified paths ¥lt) = UL have been assumed and the modified
boundary conditions: Pl =0 ; Pe =G3'. have been imposed in

obtaining the key quantity - 3
\d
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Using the modified definition: % on | _
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Feynman's polaron effective mass WMe can be expressed as
’3 &
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Noting that if we neglect all other terms in (6.3) except
for_the unity and the leading term of the integral, i.e., we

examine just
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our m looks quite the same as the Mg in (6.6) apart from a

i %
multiplying factor (3) .
However it is evident from Chap. III and V that the

two limiting values of the polaron efferctive mass deduced

from (6.6) and (6.3) can be written in comparison as:
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As it is expected, for weak coupling; &0 , M ig
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(67)

(63)

slightly larger than ™t and this due to the positive resulting
F ,

first-order & contribution from the following terms of the

integral in (6.3). Since the difference is insignificant,

we

may approve that in this limit our result agrees with Feynman's.

Consequently, this implies that our result is also comparable

with Schultz's, Krivoglaz-Pekar's and Marshall-Chawla's.

Here we note that as «2°0; % Fl1t€e . &4l ,the s
factor (O_’ )4' does not have marked effect on "ﬂ*.
>

In case of large &K , the situation taking place in our
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approach becomes peculiar because now the multiplying factor (c_s_)
plays an important role in reducing the o -dependent contributions
to m . Recalling (5.60), if we keep only the first term inside

the integral sign of the approximate m* . NRZ o'y
s S 3
2 TR ey
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furthermore, if we exclude the multiplying factor (%’)‘}-, our

resulting W\* will be exactly the same as ‘m* . On the contrary,

F
when the factor is taken into account it damps m‘ rapidly by
the power of och' As a result, for large « our M‘ tends to
zero whereas ‘m'; being proportional to o(q', reaches infinite
value.
» 4 o \89 4 . 3 -
The effective damping factor (?,) in strong coupling limit

originates from the off-diagonal part of the key quantity

(recall eq. (5.36b)) or the average of arbitrary path difference.

o ohoidop cosho(Potit) o o] o
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- (6.10)
If we set Vs |K =0 ; Since- is fixed, this causes X =20 i.e.,
s =

the force that couples an electron to a second fi.ctitious particle
is then removed and a polaron reduces to a free electron.

It follows that as VY =0,
sy (32) ‘”L‘VW—;%LS)) ~ (52)
$\;~"~"_? P
2

(6.11).

and the average path travelled hy the polaron turns out to be
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YV ~50

which is classically the time interval multiplied by the average
velocity. Recalling (6.4), eq. (6.12) is equivalent to the off-
diagonal contribution of the Feynman's key quantity. Therefore,
we have shown that for large & , our result will be in agree-
ment with Feynman's and other authors' only if VY=< O, For

V0 , the electron is now joined to the second fictitious
particle by a forced harmonic oscillator to represent a polaron
system; the reduced mass M of this two-particle model system
executes vibration with frequency ¥ . Moreover if ‘.;_”L‘ | . which

corresponds. to small & , eq. (6.10) becomes

" 7
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This manifests that, in average and for any time intervals, a
polaron can cover, travel smaller distance than a free electron.
Comparing this with Feynman's result in which this quantity makes
no difference for all ) , ours seems to be more reasonable.

- But why does Feynman's approach yield polaron effective mass
consistent with those obtained by other theories such as the
perturbation theory? Why does our Yﬁ*, for large £ , appear
opposite to'W¥ ? The contradiction encourages us to interpret
the physical meaning underlying our particular result from
another view. We accomplish this through further investigation

of the definitions concerned.
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Let us try an alternative definition for our 'density
matrix'approach. Starting with the general expression of the

approximate density matrix

= Sinh w
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If we mean to be parallel to Krivoglaz and Pekar principle, we
-4 -~
assume that: for a slow electron, lV‘"—"I(-) O , at very low

temperatures, P.;oo f(_v v ,p) can be expanded in powers of

as

=i
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where pm is the density matrix for the no.n-interacting
electron-phonon system. Méking.use of the definition introduced -
by Krivoglaz and ‘Pekar, we argue that the polaron effective mass
is V)#) = ’)C’ : ‘ (6-16)

As [P“-?’]>0 and g 00 , we find that

B 20 (W-Fp,t,svmw) o (6a701)
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and
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where .
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If we retain only the first two terms in -é -expansion of A?
in (6.17c), substitution of (6.17a), (6.17b) and of the resulting

(6.17c) into (6.14) shows
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Therefore our v , within the definition (6.16), rcads
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"is identical with that of Krivoglaz-Pekar and this also indicates
that the two limiting values of ¥y» corresponding to small and
lérge oL are in excellent agreement with Feynman's results.

We are now convinced that different difinitions may lead
to different forms of results. We also notice that for a sim-
plest case of a free parficle whose density matrix is well-known
to be _mlPLpd

F(Q)L?'F/;P) = (%je aw il

the free particle’s mass appears in both the first multiplicative

function and in the other exponential function as a coefficient

RS 1?"-?’\"’.
g

of Krivoglaz~Pekar seems to be extractéd from the first function

In accordance with this case, the effective mass

while ours from the latter and Feynman's from a special form of
the latter. For clarity we analyze (6.21) in terms of its

corresponding kernel which is readilyfound to be

(o) “pd~ 3 imPL®I?
K(Fe:70) = (22, )Pe =E (6.22)

If [;”—?1 is fixed, the exponential function oscillates as a

_ function of time t . Physically, this describes the extended -
or free state of-the particle. 1In some systems whose poﬁential
energies are strong enough to entireiy bind the par@icles
.their kernels cannot be expressed in the form like eq. (6.22).
We say that no extended states are available fpr these systems.
As an example, we look at the kernel of a harmonic oscillator

m WAt

"with potential energy =
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as L >0 , the asymptotic from of the expoanential i‘unction‘
behaves in different manner from that of a free- particle.

Consequently, we cannot deduce another expression of 'mass'
—
¥7-¥42

2

corresponding to the coefficient of { in the exponent or
We say that equivalently the probability that a harmonic oscillatol
w.ill be in extended states goes to zero.

Accordingly, we can now interpret the physical arguments
underneath our resulting polaron effective mass. Referring té
our approach a general expression of the density matrix is
firstly evaluated; within the exponential function obtained,
e\

all terms except those containing are discarded,

further detailed considerations are made solely upon particular
part of the exponential function. Such a part, as we have - =
discussed, describes on]_.y the extended state of the polaron.

Keeping in mind ba two-particle model approximation of the
polaron, we can physically intepret our two limiting results
bf j: as follows :

For weak coupling, X x0 s, the polaron behéves closely
to a free electron. The major contribution to the total mass
c\omes f;‘om the extended state, therefore our definit'ion still
gives the total effective wmass comparablé with thqse obtained
by other approvaches.

For strong coupling, as < increaseS, the electron is

harmonically bound by the second fictitious particle. The
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reduced mass vibrates with extremely high frequency ¥ and this
in turn induces a polarization. The electron is trapped in a
deep potential well due to this polarization. In this-case, the
localized states contribute significantly to the total effective
mass with the magnitude strongly depending on the coupling constant
o , whereas the extended states contribute only irrelevant amount.
In other words, in this limit the electron has to move along
carrying a large distortion of the lattice; the total polaron
effective mass becomes very large. It constitutes mainly inertia
due to the localized states and negligibly one associated with
the kinetic energy of the translational motion.

It is now clear that our definition of effectivemass gives
quite reasonable result of the effective mass corresponding to
the extended states. This may be counted as an advantage of our
approach for it yields additional information about the polaron
extended states in terms of the extended effective mass apart from
the total effective mass which can also be drawn from the 'p-inde—
pendent part of our general expression of the density matrix és

we have pointed out in this section.

VI.2  Conclusions.

Our main purposes in carrying out the present research are:
to analyze in detail both the physical and the mathematical
features of the Feynman path integral theory and to apply this

powerful device to the Frohlich polaron problem, particularly
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to estimate the polaron effective mass. \ﬁ;whunﬁa

The polaron model under our consideration consists of a
slow electron dressed by a cloud of virtual phonons due to the
distortion of the lattice induced by the electric field of the
electron. This electrom-phonon interaction strength is charac-
terized by a coupling constant & . The Frdhlich's polaron
Lagrangian has been established basing on various simplifying
assumptions whose origins and physical meanings have been already
summarized in sec. I.2. In short, all approximations are well
justified provided the electron moves with a low speed so that
the effective electron cloud dimension is far larger than the
lattice spacing.

Feynman's path integral approach to the polaron problem at

O K has been motivated when the classical Lagrangian

Lz,

222 s

- 22, -y
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(6:24)
derived in sec. I.2 is transformed into the quantum-mechanical

form as

e 2 > G cos kv e . 2. 2
v A
= Z-aTle [T L =& + M5y (Q%-waq, ),
- v % z % |7 k)
since then the path integral formalism ma kes it possible to
eliminate the coordinates of the phonons QK from the problem.

At O K, the phonons are initially and finally in the ground

state; the polaron action describing the motion of the electron
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in the effect of the phonon field is explicitly

R - ~fe-s]
Q= -4 (g{)dt +Z [ldtds_e . (6.206)

z | Peer—F ) |
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The electron produces a field which acts back on itself as it
is evident from the retarded nonlocal Coulomb potential in-
volved in the second part of € . . Furthermore, the time decay-

-1-8]
ing factor € arises from the fact that the electron still

""feels'" the past-time disturbance during the relaxation period
of the lattice distortion.

To determine the ground state energy 59 , the exponential
decay of the propagator K, L'l;"t”.' V'lt')éjesp?('l‘)withg";_- (4=t se0
has to be considered. Realizing that S is not quadratic, an
approximate quadratic trial aection

v ~w(t-3) I 2 5
/(i'—'; )at ¢ (z‘:f dtds e (Pee1=resy)
(6.27)

-

o

N

with ‘two adjustable parameters < and W is introduced to
imitate the effect of actual § . The optimal choice for C
and W can be maintained by the Feynman variational principle’
for the ground state energy. Ph'ysically, Feynman's approxima-
tion is to represent the poiaron by a simple two-particle
model system in which the electron is in harmonic interaction
with a second fictitious particle. The Lagrangian of such a
model system is

do = §7* tm¥Lic -V (6.28)

Consequently, the two parameters can be physically viewed
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through the relations: M =4&& (-a),"‘) and }J§ = 4% =v-w .
w™® w

We have experienced that all complexity in attacking the

polaron problem by path integral approach emerges mainly from

an attempt to carry out the average { §> , or strictly speaking,

K (V=¥ » ;
>S which comes out to require
-]

the key quantity( e
the precise expression of the classical paths 5\({:) « The prin-
ciple of least action renders the integro-differential equation
for i(t). This equation can be transformed into the ordinary
fourth-order differential equation which is readily solved
under the boundary conditions 5(03 ;?}(3’): and by ignoring
transient terms in the subsequent consideration.

The Feynman approach obtains the upper bound to the ground
state energy as

2 ('v":.w")_' T 20(_ -;-

4 v

i
1z -t
YL &y oot ] o at (6:29)
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Mere.ly two limiting cases can be determined analytically. For
weak coupling, X% , the optimal choices for e« and ¥ which
give the minimum B are w3 , v¥ =.>+2-22(jl°£o) . For strong
coupling, ol =¢0, the appropriate values of y and o is
found to be w1 | y ~ {9_61_(4\,,\2_4).

Feynman has int‘uitive?.g extended his procédure to yield
the polaron effective mass at O K. His indirect approximate
way, though seemingly ad hoc .in the sense that it cannot prove Vv
the conservation of the momentum, happens to give the effective

mass in agreement with those deduced by other theories. The
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polaron is ascribed to move ‘with an average 'velocity' 0 .
With the boundary conditions ¥ (0)=9°, FeTY SO T , Feynman argued
that as Y2t , for small U y» the polaron propagator should

take the asymptotic form

el o,
K ~ e—ECU)'D’ e“Lg +%w~‘,u i . % 30)

i

The total energy is no longer dominated by the gr.ound state
energy, it also includes the kinetic energy part from which the
polaron effective mass \;#hpcan be drawn. It should be remarked
that as a consequence of the energy determination the effective
mass thus obtained is still the approximate expression in terms
of the parameter VvV and W , but there is not another varia-
tional principle to give an up.per limit to the total energy
for each value of U . Feynman proceeded by retaining those
values of w and ¥ which were previously found to minimize &
when C:o . Feynman got: ¢nF=1+16.o<+o.oz_go(1for small oL and

)4’-

4 :
£’ fo.8 oA
= 1B o) -
Wy = & = 200( T for large .

1T :
At finite temperatures, the electron is now surrounded

by a number of real phonons in the '\2 th mode. This conse-

quently affects the strength of the electron potential energy.
The polaron's properties are thermodynamically investigated
through the characteristic functional i.e., the partition
function or generally, the density matrix ]0(.".'"'_-:'3 P) which
specifies temperature development of the polaron. Fortunately,
this temperature development is' in close connection with the

time development of the system as it has been shown that the
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parameter $ in the density matrix is just Pz . zi(k=t) the
ko T

imaginary time interval in the propagator. Moreover, if we

generally considered the system at arbitrary temperatures T
. / /

and then on a slowly cooling process, p->R or i(tl=tH =0 |

the polaron attains ground stateg we also gain the information

of the polaron at absolute zero temperature.

At finite temperatures the polaron is described by the

action
b o
B el (d—\f ot + & dtds (h+1)e‘ P I
2 1 3
o ; 272
0 O A
- - . 1

* TR =) (6313
recalling that we have always set Wil = :p,,,wl_.—.1 . The electron=-
phonon interaction term is now modified'by'ﬁ‘a :;%—? s the

\average number of phonons. And the trial action, in this case,
£ Dbecomes
P B LA =
= -4 [ (LF Tat + & s(pelE o Re
S‘o__z(dtduzjdto\u T Ll _
0 x ( FLe) —res))s (6.32)

Within Feynman approximation,the self-energy of the

(22)
a

polaron in this general state has widely been examined nd
has turned out to yield satisfactory results. Up to now the
method has been extended to improve'the self-energy bybintro-

ducing two additional parameters to the original trial action

e -See Reference (7), (8) and (18).
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(6.27) and (6.33 . In the meantime, several authors have
attempted to evaluate the polaron effective mass at this state.
Among these authoré are Krivoglaz and Pekar, Osaka and Hellwarth

and Platzman using path-integral calculations. Besides these, other

(25) (26)

attempts are made by Fulton and Yokota using different

théories. Only a few of them have succeeded in deducing an explicit
expression describing the temperature-dependent behavior of the pola-
ron effective mass. Furthermore the resulting temperature dependent

effective mass comes out to vary in opposite directions. 1In fact,

the underlied physical argument of these results are still in doubt.

23 R. Abe, and K. Okamoto, '"An Improvement of Feynman Action
in the Theory of Polaron I.", Journal of the Physical
Society of Japan, 31 (1971) 1337.

24 ; .
M. Natenapit, "Path Integral Theory of Polarons'", Unpublished
M.Sc. Thesis, Department of Physics, Chulalongkorn University,
Bangkok, (1973).

23 T. Fulton, '"Self-Energy of the Polaron for Intermediate
Temperatures.'", Physical Review, 103 (1956) 1712.

26

T. Yokota, "Interaction in the Electron-Lattice System (T)

Correspondence Principle.', Busseiron-Kenkyu, 69 (1953)

137.
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Schultz(27)

has remarked for this failure that at finite tempera-
tures, a description of the polaron between colligions with
phonons or the concept of a polaron as an entity distinct from
the field is required to give the effective mass. In his
philosophy, this entity of the polaron itself is temperature
independent. ' .

In Chapter V, we have intended to find the polaron effective
mass at considerably low temperature by looking into a general
functidnal‘i.e., the density matrix, which includes the kinetic

diagonal contribution. Our definition of the effective mass is

closely parallel to that of Feynman, viz.,
AL
-gR=-yn IV -
-.”_V P) F({B) e t 1"3
LT e
=50
thus we expect the result to be consistent at least with Feynman's,

d'l—l/
In obtaining the approximatef?(rl’;P) with the boundary condi-
: 1
-~ =% =1
tions: $(0) =¥’ and P(\":)‘-‘-V" , we have avoided the situation

in which the complicated integro-differential equatlon had to
\IZ Bty =ves)

So
with respect to &, given by (6.32), by mak:x.ng use of the 51mple

be solved in determining the key quantlty (

model Lagrangian of the form:

?7 T.D. Schultz, Tech. Report No. 9, "Electron-Lattice
Interactions in Polar Crystals.'", Molecular Physics

Group M.I.T. Cambridge,.Mass. (1956) 189.
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o[ i L[?"(t) + MY =N (P =KL 1) T+fCerv
o ‘ (6.32)

- e Sy
The boundary conditions imposed on the variable X(tare Yor=V’
= _\” r 4
and \{(_V’7=Y . The action resulted from a(fo still involved
- - =y =y
.Y and Y which could be integrated out, given R.=z R,
L
We have noticed that from the general expression ﬁ(v'”\'ﬁ"sp),
if we have extracted the polaron effective mass according to

the definition defined by Krivoglaz and Pekar, our v% should

have taken the same form as #\KPand could also be related to

Feynman's as 5 w{‘? 1 5 6 )
mo L, e=XB

(m? .

But when the definition (6.31) has been utilized, the effective
mass obtained gives consistent result”only for weak coupling.
. Strikingly, for strong coupling, our result contradicts w:i;th
Feynr;lan's. The subsequent detailed study of the physical ideas
lying beyond each definition leads us to the interpretation that
our definition, defined as it is in (6.35), contributes the
effective mass corresponding to the extended states of the
polaron whereas others' yield the -total effective mass of the
system.

The success of Feynman method in obfa:ini ng the superior
results for the whole range of & in spite of his seemingly
ad hoc effective mass definition can be viewed quantitatively
as arising from the following reasons: since thé two-particle

- model systew or the harmonic approximation has been accepted to
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describe the polaron, he nee&s only consider the relative motion
of the electron with respect to the polaron center in translatioh.
He intuitively excludes the translational motion of the system
by choosing the center of mass of fhe two-particle model system
as the center of the polaron. Moreover, in his definition; the
average "velocity(j " can be thought of as being '"the group
velocity" associated with such A relative motion of the electron.
Incidentally, these arguments turn out to be an accurate account
of the polaron motion for both limiting cases, since for weak:
coupling, W%#>)r1, the polaron center is nearly coincident

with the electron's position; for weak coupling, M"R@ ™M , the

polaron center may be taken at rest.
1

VI.3 Recommendations

As far as the path integral technique is concerned in dealing
with the polaron problem, a guadratic approximation of the polaron
exact action is inevitable. Throughout this research, the Feynman's
appro;imation of two-particle model system, in which the electron
and the second fictitious particlé are in harmonic interaction;
has been applied to replace the polaron.model depicting the electron
and the lattice in Coulomb interaction. In fact,only a harmonic
oscillator is inadequate to take care of the deep bound stéte
allowabl; within the exact Coulomb potential. Naturally,.Feynman's
principle and the consequent result can be improved if one

approximates the action
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to the polaron in the ground state and

P N ? 4 tlt-s| wp w
N T LAV as[_€ e .ée )
So T A vt )dt . ﬁﬁcn " [ e®f_1 e*P-1 .
0
(6,38)

< (P -7 )
to the polaron at arbitrary temperatures. Such S, represents the
many coupied particle model system.

Abe and Okamoto have calculated the improiement of the upper
bound of the ground state energy and the effective mass of the
polaron using S% with W2 |  The corrésponding physical picture
is the three-coupled particle model in which the electron is joined
" to two fictitious particles, each by a harmonic force (See Fig.V).
The strength and frequéncy of the harmonic oscillation can be varied
by four parameters viz., c‘, CZ y Wy, and w, . Their extension
gives only 0.1% correction to Feymman's ground state energy and 0.4%
larger for the polaron effective mass in comparison with Feynman's.
As it is recognized that the optimal effective mass is required in
the mobility analysis, the improved trial action for the polaron is
expected to offer better understanding of the polaron mobility.
Moreover, it has recently been evident from cyclotron resonance ex-
periments in some polar crysfals and semiconductors that the polaron

effect give rise to a shift in the measured cyclotron frequency.
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Cyclotron resonance measurements on such materials do not measure
the rigid lattice conduction band mass but rather the magnetic
levels of the polaron consisting of the electron and its accompanying
lattice distortion. Therefore, one could deduce the precise
band masses which take into account the polaron effect from the
measured polaron effective masses with the aid of the theoretical
interpolation formula giving the ratio YD pélaven .

et

We are thus led to remark that for a theoretical treatment,
the future research into higher order corrections to the polaron
effective mass using 8 given by (6.34) or more generally by
(6.35) with N > 2 is a challenge.

Staying within the framework of path integrals, a few over
simplifying basic assumptions that have been made in studying the
polaron properties could be removed or at least refined to attain
a more realistic polaron picture. A so-called continuum approximation,
as we have discussed in Sec. I.2, is well justified only for the
polaron having a dimension f@r larger than the lattice spacing, but
that in most ionic crystals, this is not the case. Thus, it is
interesting to invgstigate how the int:oduction of a finite cut off
-Eo' would affect the polaron features concluded by Feynman's formexr
theory with infinite cut off ﬁ; . The only change in mathematical’
treatment of the effective mass is that the integral over EA in

LB (F )= es)
£=2 Q ¢ )

evaluation of the'key quantity £ »is now limited to

range over a sphere of radius ko instead of over all space.
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Other approximations such as the band mass approximation and the
Born and Huang theory which is responsible for the electron—phonoﬁ
interaction should also be re-examined according to the more
detailed phonon dispersion characteristics evidenced by the recent
investigations(ZS).

We heartily hope to see in the near future the complete

dissertation including a full account of the polaron effective

mass for all‘coupling strength & and at arbitrary temperature

kap

28 Kittel Charles, Introduction to Solid State Physics, 4th Ed.,

New York: John Wiley & Sons, Inc. (1971) 166-193.
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