CHAPTER I

INTRODUCTION

I.1 The Polaron Problem

Several drastic assumptions are generally made in attacking
many-electron problems &f solid state theory. Practically, one-
electron problems are considered with the effects of other electrons
treated stafisticaliy. In most cases, the crystal is assumed pgrfect
without any impurities or defects and the ions are supposed to be
fixed rigidly in their lattice positions. However, in studying parti-
cular aspecté of the solid, some approximations are inapplicable, for
example, the rigid lattice assumption must be abandoned in considering
thermal properties of a crystal. As far as mathematical techniques
are available, one hopes to deal with the less idealized situations
in which most of the general approximations are still valid but some
of these have to be remedied.

Our problem is to study a‘syétem of a slow conduction electron
in an ionic crystal, commonly known as a polaron. Qualitatively,
when an electron moves through the crystal it polarizes-and thus
distorts-the lattice in its neighborhood. The polarization induces
a dipole electric field which in turn acts back on the electron. As
the electron moves, the polarization field always moves with it or,
in quantum field theory language, the electron is dressed by the cloud
of virtual phonons. Because of the strong interaction between the
electron and the large electric dipole moments associated with the

longitudinal optical modes of lattice vibration, it is unjustified to



»neglect the interaction between the electron and these lattice
vibrations. Such electron-lattice interaction affects both static
aqd dynamic properties: it lowers the energy of the electron at
rest, adds more inertia, or equivalently, effective mass to the
electron and gives rise to scatteriné of the electron by the phonons.
We shall focus our attention merely on the static properties, parti-
cularly on the effective mass of the polaron with extremely weak
and strong interaction strength.

The polaron problem has first come into theoretical interest
in 1933 when Landau proposed the idea of self-trapping electron in
a sodium chloride crystal in an attempt to explain F-centers. The
polaron concept was introduced later by Pekar in 1954. Various
methods have been developed and applied to investigate polaron-
related properties. The enthusiasm in this problem was aroused by
the following reasons: it is a simple example of non-relativistic
particle-quantum field interaction problems; it leads to the under-
standing of the validity of the less rigorous assumptions made about
the lattice vibrations in the study of metal and metallic conductivity
and especially to gain more information about polar semiconductors
and insulators.

The principal mathematical device used in this research is the

(1)

path integration technique formulated by Feynman and Hibbs It
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(2)

has been nﬁmerically proved by Schultz to be the one that gives
superibr self-energy and effective mass of the polaron for a wide
range of coupling strength as compared with other earlier polaron
theories(B-A).

Generally, a critical step in solving quantum mechanical
problems is to set up the Hamiltonian, or classically, the Lagrangian
of the systems. We thus'begin the first chapter with a brief account
for the derivation of the Frohlich Hamiltonian. All assumptions
involved throughout the process will be summarized systematically.

In the remaining sections of this chapter, we present a qualitative
survey on how the polaron self-energy and effective mass depend upon
the interaction strength, OC , in two limiting cases, i.e., for small
and large(C . The path integral formalism of quantum mechanics with
its particular illustration applied mainly in this thesis will be

introduced together with its close relation to the density matrix in

Chapter II. Chapter III is devoted to a study of Feynman's effective
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approach to the polaron ground state energy and effective mass since
it is the original work that proves the success of the path integral
method. The results will be carried out in detail, especially on

the effective mass. Various results based on differene definitions

(5-8)

of the effective mass worked out by other authors will be given
in the following chapter. In Chapter V, we extend the evaluation of
the polaron effective mass to a slightly more general state bj
considering the density matrix instead of the propagator or the
partition function of the problem. In the last chapter we compare'
our results of the polaron effective mass with those mentioned

previously. Finally, further possible'improvements of the results

will be discussed.

? 'See Reference (2) P. 528

6 J.T. Marshall, and M.S. Chawla, "Feynman Path-Integral Calculation
of the Polaron Effective Mass.', Physical Review B, 2 (1970) 4283.

7 M.A. Krivoglaz, and S.I. Pekar, "The Method of Traces for
Conduction Electrons in Semiconductors." (Part II), Bull. Acad. Sci.
USSR Phys. Ser. (English Translation) 21 (1957) 13.

8

R.W. Hellwarth, and P.W. Platzman, '"Magnetization of Slow Electrons

in a Polar Crystal.", Physical Review, 128 (1962) 1599.




I.2 C(Classical Lagrangian and Hamiltonian of the System

The Hamiltonian describing the behavior of an electron in a
lattice field was first derived by Fr6hlich(9). According to various
simplifying assumptions made during the course of his work, it was
later well known as an idealized polaron model. Since the mathematical
details of the Frohlich derivation are available in the original and
review papers concerning with this problem, we shall give here only
a short mathematically account for this, and shall, instead, concen-
trate on physical interpretations.

As an electron is filled into the conduction band of a perfect
ionic crystal, contributions to the energy of the system come from:
the kinetic energy of the electron and the potential energy of
interaction between the electron and the rigidly fixed lattice.

The latter includes Coulomb and exchange interactions with other
electrons. 1In one-electron approximation, this can be represented
by a single periodic function of the electron position ¥ :J(?).

If the lattice is distorted, there will be three additional
terms in the total energy: the lattice potential energy associated
with the deformation, the additional interaction caused by the
change in interactionV®)of the electron with its deforming
environment, and the lattice kinetic energy associated with the
rate of lattice deformation.

One may ask, at this step, which modes of lattice vibration

are likely to be interacted by the electron. lLet us review briefly
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the dynamical properties of the lattice based upon the theory of

Born and ﬁuang(lo). In ionic crystals, there are two oppositely
charged ions per unit cell giving rise to one lonéitudinal and two
transverse optical modes and one longitudinal and two transverse
acoustic modes for each wave vector K . In the acoustic modes the

two ions within eéch cell vibrate essentially in phase, the vibra-
tions from cell to cell differing in phase depending on k « In the
optical modes, the two ions within each eell vibrate essentially out

of phase, the vibrations from cell to cell still differing in phase
depending on t , however, as the main contributions to the lattice
potential energy are from the interactions within a unit cell, the
frequencies of these modes are not very sensitive to the phase relations
between cells and the frequencies o) are frequently assumed to'be inde-
pendent of Q ) Qi 2o . This. approximation may not be good for short

' wavelengths where the phase differences between cells are significant.
The important characteristic of the longitudinal optical wmodes is

that they give rise to a polarization field to be interacted with the
electron whereas this field vanishes for transverse modes. Furthermore
the long-wavelength acoustic phonons do not produce any bolarization

of the lattice. In other words, the long range interaction between

the longitudinal optical modes and the electron is much stronger than
the other short range contributions to the electron-lattice interaction

term, so it is the only one considered.
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According to the classification of energy mentioned above,
the total Hamiltonian of the electron-lattice system can be written

formally:

Brm By * Bausy f Bynt s (1.7)
Hel represents the-energy contribution when we consider the
motion of the electron in a rigidly fixed lattice, it is simply
written %?ﬁ#a s where Meee stands for the electron effective mass.
By replacing the free electron mass by its band mass, we have
implicitly taken into account the cffect of the periodic potential V(T).
To obtain the expression for the free longitudinal optical
phonons Hamiltonian Hfield, it is necessary to compute the lattice
potential energy associated with a polarization field which will occur
during the course of the lattice vibrations. The energy per unit
volume needed to produce an infinitesimal change in polarization 5}
in a crystal with electric displacement D is 3‘-&%. The polarization

f; is related to ﬁi and the electric field intensity"ﬁi in the crystél

by
i %0 R (1.2)
If the displacement 31 is slowly created, it varies directly with
the intensity E; through:
D, = €T, S (1.3)

where € is the static dielectric constant. Substitution of Ei in

(1.2) gives

SN -5 B 4 (1.4)



Thus the total lattice potential energy vper unit volume necessary to
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produce the polarization F-\ with the displacement _'AD] is
(1.8)
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decreased to zero.
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Combination of (1.5) and (1.8) gives total work U(F] required to

attain the desired final state FC*) as

U (F]

and the final polarization is
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where € = (—é;o--!e-) , the effective dielectric constant.

potential energy associated with an ionic displacement

(1.9)

(1.10)

(1.11)

Thus the

corresponding



to a polarization field T(F) made slowly for the intrinsic electrons

~ to respond is
e 3=
= F:Did’r i v
UCF) =J—24 . ——de | (1.12)
Saying that all longitudinal modes oscillate with the same
frequency @ _ implies that the kinetic energy of the polarization
- field is related to the potential energy in the same way as for a

simple harmonic oscillor of frequency L, . Thus the kinetic energy

of the free phonons is readily
— 3—‘
T(F) p: C (1.13)

We finally consider electron-lattice Hamiltonian, Hint' i.e.,

the potential emergy of a point charge —-e at position I interacts
with the polarization field f%fﬁ. The electric displacement field

at T’ produced by the charge is defined by

-/ -)

D(F5¥ = - . (1.14)

\ 22

Neglecting the electromagnetic self-cnergy of the electron, the 'Hint‘

is obtained from
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The total Lagrangian Tor the electron-lattice system is then
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Equivalently, the total Hamiltonian of the system is
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where P and G(¥) are taken to be canonically-conjugate momenta of
the canonical coordinates ¥ and FCP) respectively, and where we

have set

47T
=
QCDL

Mg (1.18)

to play the role of a mass for the normal mode oscillators.

A number of assumptions have been made during the course of
the Lagrangian derivation. Let us summarize the principal ones as
follows:

(1) Band mass approximation for the electron to take care of
the effect of the periodic potential\J(?). This claim is reasonable
providing the effect of the electron-lattice interaction is not so
strong that the electron is localized in a region the order of the
lattice spacing, and it is restricted to the case of slow electrons.

(2) Continuum approximation: the lattice is treated to be a
polarizable continuous medium. In view of the spreading of the electron
wave-packet, this approximation is valid in the less ionic crystals and
seems not too bad for more ionic crystals such as the alkali-halides.

(3) Electron-phonon interaction is limited to longitudinal
optical phonons with long wavelength.

(4) The dispersion of those modes of vibration is neglected,
assume that all modes have the same frequency w,_ .

(5) The relativistic and magnetic effects are ignored.

(6) Intrinsic electrons of the‘crystal are assumed to follow
the ionic diéplacements produced by the electron inertialessly.

(7) Harmonicity approximation: the vibration of the ions is

represented by that of a harmonic oscillator.



Lk

In conclusion, the Frohlich Hamiltonian is well justified for
(11)

describing the behavior of a so called "large pgl%sgg:
/& %

I.3 Qualitative Theories of Polarons

The purpose of this section is to give a broad physical idea
on how the self-energy and the effective mass of nolarons depend upon
the electron-lattice interaction strength by means of Frohlich's
(12)

simple theory of polarons

(I.3.1) Self-energy

Basing on Frohlich's simple theory, the size of polaron is characterized

by the radius outside which the electron appears as a static éharge

and the lattice polarization assumes its full static value. The ﬁwo

limiting cases, static and dynamic situations, are considered respectivel;
Firstly, if the elecfron velocity is much higher than that of

the ions, this will give rise to a polaron model in which the electronic

wave function is treated as a static charge distribution and becomes

localized in a lattice. At large distances the field produced by the

YL J. Apple, "Polaron.", in Solid State Physics, 21, Eds. F. Seitz,
D. Turnbull, and H. Ehrenreich, New York and London{ Academic
Press (1968) 195.
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electron is assumed Coulombic. Because of the electron's finite
extension, the potential is taken to be constant, say, within distance
L1, as shown in Fig. I. The potential energy of the system is

roughly-gf . For the system restricted to a dimension of order
1

11, from the uncertainty relation, its kinetic energy is of order
22 : ' :
_é_____ Thus the. approximate total energy of the electron in the
2m, 1%
lattice is
2 n“n*
w = -< +—5'—————T (1.19)
' el, 7_me“l.1

Minimizing the energy lg with respect to 1‘ yields the most likely
size of the polaron as

4T R E ( 4.20)

Me e"
Substituting 11 into (1.19), the energy 1;1is now expressed in terms

l /=

1

of known quantities as

. mey &
8 T2R2E*

Secondly, we have the case of slow electron or.the dynamic case
in which the lattice vibrational frequency @_ is so high that the
lattice would adjust to the electron's motion, -this leads to
consideration of dynamical problem of an electron with velocity v
interacting with a lattice of natural frequency “_. The electron
is seen to be effectively static only at distances from the electron

at which the angular distance 4, travelled by the electron in a time

1. o ’ ; A
W, is sufficiently small. This requires ‘ﬁg {1 . Hence the limiting
Ol
distance is CklvE} . On the other hand, the electron's size ch can be
L
related to its velocity by the uncertainty principle as cahu E]lfl__

MafyV
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which must not exceed d1 .

The intersection of curves d, and 9,

1.1- in

plotted as a function of 4y at ar=/RW . gives the radius
this case:

m

ef

e /V_:; ; (1.22)

Neglecting the kinetic energy, only the potential energy corresponding

to an electron distributed over a sphere of radius

-

].2 contributes
to the total energy "W, which is
U eh) = e | Mah W
RS SR
elz (A

(1.23)
2Th '
" Comparing the self energies obtained in the two models with

the phonon energy T’\wL yields the important information:

W,

i
8=

hw

.24
re-Deft ek uz\)’-, e
which leads to the desirability of introducing a dimensionless
coupling constant € as

oG easnaly e

(1.28)
SV 20w
This O

implies the strength of electron—-phonoﬁ interaction in
polaron theories.

Now it is convenient to express 'l/l-1 and 'u.z in terms of OC

2

X 5w ; A

'u_1 ~ éﬁf L , static case.
And

o :
u’vz. F3 71'—2?\ e , dynamic case.
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To determine which case is most applicable for a given crystal,

X is then evaluated, if X is large, note that \U1‘>»\U2‘ . thus

in this case the first appfoximation is better.

v(r)

electron

e cecces

-——1—-

i

J

Fig. I The Field Produced by the Electron in the Static Case
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(I.3.2) Effective mass

As a simple theory, Frohlich regards the polaron effective

*
mass, mF as defined by the equation:
r

L 2 2
mp“'l)- = ';'_m?ffv E Tiov\ ( 1'25)

N

where -Em represents the total kinetic energy of the ions. Treating
the lattice as a dielectric continuum, -r..m can be obtained conven-

tionally by

T. . ‘zmuofcéci"))zd",’r’, (1.29)

on

in which A(®) is the relative displacement of an ion pair, N, being

o
the ion pair density, and M stands for the reduced mass of an ion
pair. Now 3(?')relates to the polarization field F'(?’)by

PP =t 006399 (1.30)

*
which defines @ as an effective ionic charge. In Frdohlich's

- simply theory, F(+') takes the form:

) -
o ame LRI,
o 5 v iP | & 1." .
Substitution of the electric displacement D = - eV;.,(__‘__:_. into

| P=v
Eq. (1.31) and using Eq. (1.30) gives a(?’)as a function of ¥’ :

&) e d,(\‘ ')‘, (PLFIS L, (1.32)

PR
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Imposing the identity g—_,,
v

910
2

R\ _ 3 (R.V)R-R*
(rotar) = -3 () 2G DB,

where R = ¥-¥ and Ra=-¥= -V, on QCT;') gives explicitly.
1  ( e \2/ 3(R. V) e R* g
£ A (A 16 T2CANZ ?) ( 'S ] i
(dcr’)) = L2t ) (1.33)
A rR < li
o )

7
Evaluation of T, using Eq. (1.33) and Eq. (1.29) is then straight-

forward, the result is

T. s & M e v* (1.24)
== 3 ®
- > 4mcdrn, € 1

* ; ;
Ny, © and M are related to € and €, according to the Szigeti

relation, viz.,

*
e . (e,,o-\-z)?- At e )VNe w .._6___?".2 . (1.35)
@ T e TR M wf 0

Rewriting Eq. (1.34) as

1
TiOn = 3

(ewn. )?- & v (1,36)

3 ey

= @ 3

and substituting this into Eq. (1.28), we finally obtain

¥
Me 1 o 2 Tion 2 (€02 )", ez s ( 1.37)
W)BH_ mo‘“\)" -3 sw = %Ppwt ls
Inserting the polaron radii l, and 1, for the two cases of
approximation, Eq. (1.37) becomes, in terms of (C
4
& cX :
me, e , static case (1.33)
WMest - c, o€ , dynamic case,

where €, and C, are constants.
¥
Eq. (1.38) manifests that mpr>,meH_ ; as O tends to zero,

the polaron mass mP approaches the electron effective mass. ™
p

e’
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In the static case ﬁi% is extremely sensitive to OC . Later
we shall visualize that the static and dynamic cases in the simple
models correspond to the strond and weak coupling limits

respectively.
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