CHAPTER II
THEORY OF POWER AND RMS MEASUREMENTS
2.1 Introduction

This chapter lays the foundation necessary for the under-
;tauding of the power in AC circuits. AC power calculation by
using an analog multiplier, true RMS measurement, and RMS conver-
ter based on steepest descent method afe discussed.

(2)
2.2 Power in an AC Circuit
In Fig. 2-1 if the RMS values of the voltage drop across

the load Z and the current through the load are E and I,

respectively, then the load power P can be calculated as follows.
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Fig. 2-1 Basic circuit

For a DC circuit, the RMS values are equal to the average
values and
DC power P = E.I ﬁﬂ] (2-1)
For a single phase AC circuit

effective power P = E.I Cos ¢ [H] (2-2)



reactive power Q=E.I Sin ¢ [Var] (2-3)

apparant power Ps =E,I [VA ] (2-4)

where @ is the phase angle between the voltage and the
current,
Cos @ is the power factor,

and Sin @ is the reactive factor.

The power can be measured by two methods, one direct and
the other indirect. In direct method a conventional wattmeter or
an analog system that finds the average of the instantaneous power
is used. In indirect method we measure the general values on the
right side of equation (2-1), (2-2), (2-3) or (2-4) and then

calculate the power.

In this thesis the direct method will be used ‘and in the

following we will discuss this method only.

For the AC single phase in Fig., 2-1 the load impedance

can be expressed as

Z =R+ jiX (2-5)

where R is the resistance and X is the reactance.

With the assumption of sinusoidal voltage and current,

load voltage e = ¥2 E. Sin wt (2-6)

load current i = ¥2 I. Sin (wt-@) (2-7)



where E, I are the RMS values.

w = 29f

where f is the frequency

(2-8)

By using equations (2-6) and (2-7), we obtain

instantaneous power P = e.i

2 E.I Sin wt . Sin (wt-@)

= E.I. [Cos (wt-wt+@)-Cos (wt+wt-g) ]

E.I. [Cos $-Cos (2ut-9)]

P1+P2+P3

E.I, [Cos @-Cos @ Cos 2uwt-Sin @# Sin 2ut] (2-9)

E.I Cos @-E.I Cos @ Cos 2uwt-E.I Sin @ Sin 2uwt (2-10)

The waveforms of P1, P2, and P3 are shown in Figs. 2-2b and 2-2c¢
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= - 12R Cos 2wt
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P3 = -EI Sin @ Sin 2wt
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Fig.2-2 Instantaneous value of AC power

(d)
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Considering the relation between e and i in Fig. 2-1, we can

show that
I = E (2-11)
/R2+ x2
and
Cos ¢ = R (2-12)
YR+ X2
then P1 = E.I Cos & = I%R (2-13)

P2 =-E.I Cos @ Cos 2wt  =-IZR Cos 2wt - (2-14)

P3 =E.I Sin @ Sin 2ut  =-I%X sin 20t (2-15)

It can be seen that Pl is a constant value while P2 is in
a sinusoidal form with a frequency of twice that of the voltage
and the current, The maximum value of P2 is equal to P1. P1 and
P2 are the powers that are consumed by the load. P3 is similar

to P2 but it maximum value is equal to E.I sin @.
Composite value of P1l, P2, and P3 are shown in Fig} 2-2d.

Inan AC circuit the instantaneous ppwer varies continuously as

the voltage and the current go through a cycle of values. Usually
the cyclic variation of power has a period so short that it can be
followed only by special instruments such as oscillographs.

However, we are not interested in the instantaneous power, except

where transient phenomena-are being studied, but in its time average
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Since the average power multiplied by time measures energy
transfer over an.interval of steady state condition, we will there-
fore confine our discussion to the measurement of average power.
The smallest interval that will concern us is the period of the AC
signal, since the average power for one cycle is the same as for
any integral number of cycles under steady state condition. If
the voltage and the current are both sinusoidal, the average power
over a cycle may be easily derived. From our difinition of

average power we have

Pav = % OITe.i dt
i 21
= o7 Df Em Sin ot . Im Sin (wt-@) dot

where Em and Im are the maximum values of voltage and
current,® is the phase angle by which the current lags behind the

voltage.

Since, Sin (wt-@) = Sin wt Cos @ - Cos wt Sin P, we can write

Pav = EE%;—EE [ IZiSin wt Cos @ dwt - f Sin wt Cos wt Sin @ dmt]
21 21
Em ., Im [, wt Sin 2wt 2
. [(—-2 - )Jo . Cos @ - (Sinzwt)lo . Sin 0]

_Em.lm

2 . Cos @

With our assumption of sinusoidal voltage and current,

their RMS values are

Em - C
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and
Im

I = S
If these values are substituted in the equation above,

then

Pav = E.I Cos ¢ (2-16)

Under these conditions we could, if E, I and @ were
determined, take the indicated product as a measure of the average

power,

From Fig. 2-2 b it can be seen that the power that is
consumed by the load is the average value of P1 + P2 in one cycle
and is equal to Pl. The average power in equation (2-16) is

called effective power (or real power) .
Thus, effective power Pay = E.I Cos @ = IR [u] (2-17)

The product of E and I (E.I) is called apparent power.
The usefulness of the apparent power in calculating effective power
depends on Cos @ . Cos @ is the coefficient value which is

determined by the resistance and the reactance of the load

¢ = tan ' B (2-18)

For P3, its average value in one cycle is equal to zero.
This power 1s supplied to a reactance load. A purely reactive
load will accumulate and then return all of the power to the supply.

Since P3 cannot be consumed by the load, we call it the
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reactive power.

2.3 AC Power Calculation
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Fig. 2-3 A direct method to measure AC power

For the direct method, the AC power is found from the
product of the instantaneous AC current and voltage. This can be

done by an analog multiplier.

In Fig. 2-3, which shows a direct method of power
measurement, the output of the multiplier is in form of
instantaneous power. From equation (2-16) the effective power is
the average value of the instantaneous power. If the output of

the multiplier is applied to a low - pass active filter circuit,
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it becomes the DC voltage that corresponds to the average power.
By using a DC voltmeter (which may be of digital type) to

measure this voltage, we will obtain the value of average power.

It can be seen that a successful measurement of power,
either by a direct or indirect method, comes from the multiplier.
The six most common solid-state types of multiplier are logarithmic,
quarter square, current ratioing, variable transconductance, triangle
averaging, and feedback time division method. There are other
techniques for multiplying, but these six methods are the most
suitable for all-solid-state instrumentation. Together, they span
a wide spectrum of accuracy, speed, and cost. In the next chapter
we will discuss the feedbock time division method, which is used in

this thesis.

2.4 RMS Measurements

Except in special cases, such as insulation testing or
certain magnetic measurements, where it really is essential to
measure peak or average values, the most useful way to describe an
AC signal is by means of its RMS value. This value is the one
that a DC voltage would need in order to transfer the same energy
as the AC signal in a given period of time. The amount of energy
AE dissipated in a resistor of value R when a voltage of value V

is impressed upon it for a period of time At is given by

vZ
AE = i At (2-19)



For voltages that vary with time, we can rewrite equation

(2-19) as

VZ
dE = i dt (2-20)

The total amount of energy developed as heat in a resistor
between t = 0 to t = T is then

OIT vZ at (2-21)

=

If the effective or RMS value of a voltage V is defined as
the DC voltage that would produce the same amount of heat in a

certain time, then Vdec = Vrms and
ofTvz dt = Virms . T (2-22)

or

LT

Vrms = [% OIT v2 at) (2-23)

For a sine wave in which V = Vp Sin wt and w = 29f, the.

RMS value can be calculated as follows.

1
2 =
vims = (B /T sin® ue at)?
1
=V [§ /7G5 Cos 2ut) at)?
Tl
= Vp [l (€ t:--i- (2 Sin 2wt) | ]2
:1_. o
1 2
=V [ - %'T]
1
112
=P [5] a%ﬁummnmm“— “‘“’f X
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= 0.707 Vp (2-25)

Calculating the RMS value of a wave form that is more
complex than sine wave is usually posible but can be tedious.
For electrical signals, a mumber of circuit techniques indicates
the RMS signal level by converting the signal to a corresponding
DC voltage. These techniques include analog computing methods and
thermal approaches, which-use the heating value of a signal as a
measure of its energy content. In the next chapter discussion
will be made on the RMS converter based on steepest descent method,
which is one of analog computing method. This method is used in

this thesis for measured the RMS value of an AC voltage and current.

(6)
2.5 How to Measure AC Signal Accuracy

The only true measure of the power capability or heating
value of a waveform is its root mean sauare value, It is the only
precise description of a signal's power and therefore the only
quantity that permits a direct, accurate comparison between the

effects of DC and AC signals, regardless of waveshape.

The ability to make RMS measurements directly is becoming
increasingly important because of the growing need to quantify
nonsinusoidal waveshape accuracy. When a signal is a sine wave,
or close enough to one, its peak or average value can be measured
and it RMS value extracted from that figure by a_simple

multiplication.
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Fig. 2-4 Perfect sine wave

The average, peak and RMS values of a pure sine wave are
related constants. So one can be calculated from another.(See Table 2-1)

To derive these

4 & v 4

Avg| Peak [Pk-to-Pk| RMS

Avg 1,000 1.572| 3.141 | 1.111

]

.

Multiply Peak 0.636( 1.000| 2.000 | 0.707
these

Pk-to-Pk 0.318( 0.500| 1.000 | 0.353

I

0.899| 1.414) 2.828 { 1.000

Table 2-1 Table of multiplier constants of a pure sine wave
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But often, the waveform is a chopped or otherwise
distorted sine wave, a random, noise-like signal, or otherwise
nonsinusoidal, such as a square, pulse, or triangular waveform.
Consequently, in power measurements involving thyristors or other
chopper-type controls in telecommunication and audio wave testing,
and in digital circuit measurements, actual RMS values alone yield

useful information.

Such information can be translated into lower manufacturing
costs. For example, assume that a piece of equipment must work
properly even when the line voltage varies : 10%Z from its normal
value. In production testing of such equipment, an AC voltmeter
usually measures the output of an autotransformer that can vary
the power line voltage seen by the unit under test. But the
measurement itself suffers a degree of uncertainty from the com-
bined effects of basic meter error and waveform distortion, and
this uncertainty may reasonably be estimated at 5% half of the
allowable line voltage variation. This means that the equipment
must be designed to withstand deviations of more than 3 15% to
allow for a voltmeter reading that is 5% low when the real devia-

tion is % 10%. Such overdesign can be very expensive.

(6)

2.6 Source of Error

If the 5% uncertainty level seem high, consider how much

error in measuring distorted sine waves with an RMS-calibrated
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average-responding voltmeter adds to basic meter error (figure
2-5). When only 5% of the signal is third harmonics (n=3), the
additional error caused by harmonic distortion is already more
than 1.5%, and this analysis does not take into account the effects
of higher-order harmonics or variations in the phase angles

between the different frequency components.

Error 4r

()

n = harmonic mumber

i s
L e

50 Distortion (%)

Fig. 2-5 Distorted sine wave error
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An average-responding meters cannot accurately measure
the RMS value of a distorted sine wave. In Fig. 2-5 the error
is plotted as a function of increasing distortion for three odd-

order harmonics.

Every time power goes through an iron core transformer or
works into a nonideal inductive or capacitive load, some harmonics
are generated. The total harmonic distortion on a power line may

easily become more than 5% or 6%.

Another waveshape that can only be measured accurately by
RMS techniques is the kind of switched sine wave commonly seen in
power control circuits such as light dimmers. If the sine wave
is switched off for 20% of each cycle (a = 0.2 in Fig. 2.6), the
average-responding meter will make a 10% error in its estimate of
the RMS value, and this 10% must again be added to any other

source of measurement error.
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When an average-responding meter is used to measure the
RMS value of a sine wave that is switched off for part of it

cycle, that error made by the meter can be very high.
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