CHAPTER II

METROD OF ANALYSIS

2,1 Introduction

The approach proposed here hinges on the shear lag pheno-
menon (1) and the energy approach presented by Chan, et al. (7)
modified so that moment equilibrium is better satisfied. By
assuming the shear lag effect 2nd considering the moment equilibrium
the axial forces and hence the strain energy due to axial deformation
can be determined. This cnergy is added to that due to bending and
sheering deformation in the members in the side panels. Applying
the principle of minimum total potenticl energy and the Rits
technique the lateral displacement cen be solved, Shear forces in

the spandrel beams are obtained from static consideration.

The detail of the method will now be pursued.

2.2 Assumptions

The analysis for the responses of a frame - tube structure
under lateral load (Fig. 1) is based on the following assumptions:
a) The material is homogeneous and linear elastic.

b) The points of contraflexure occur at midspans of

columns and spendrel beams,



¢) The floor slebs are assumed to be rigid in-plane, so
that the axial deformation of the connecting beams can be neglected,

d) The out-of-plane bending of the frames is neglected.

e) The external shear is resisted by the side panels only.

f) Shearing deformation in the columns is neglected.

2¢3 Formulation of the Method

2.3.1 Determination of Column Axial Forces Assuming Axial

Deformation Distribution

In the proposed method we assume the distribution of axial
deformation in the columms to approximately account for the shear
lag effects. Extending the work of Chan, et. 2l. (7) and Moffat,
et, al, (8) the following axial displacements in the columns are
assumed;
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where x,y,z are the Cartesian coordinates shown in Fig, 2;
i,j denote the positions of the spendrel beams and columns along
x and y axes respectively; oot Yoy “ej are the axial displacements

of the corner, iEE and jEE columns respectively;
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C,D are; respectively, lengths of normal and side panels; and m, 5

Mgy Moy are the coefficients in the axial deformation function,

The coefficients m, o, and g depend primarily on the
height~to-width ratio of the structure, the stiffness factor and
the aspect ratio. The stiffness factor is defined as the ratio
of bending stiffness (12EI,/a’) of the spendrel beam to axial
stiffness (& B/h) of the column. The ratio of the length of nomel
penel to that of the side panel is referred to as the aspect ratio.
The relative bending stiffness of the girders and columns also
affects, to a less extent, the values of m, m, and ms and thus

will not be considered,

Based on the influence curves presented by Khan and Amin
(1) for the case of frame-tubes having the same column sections
at each floor level and a linearly verying stiffness ratio, these
coefficients are determined for different aspect ratios and

stiffness factors and given in the form of charts in Figs.l4-18,

In practice the corner columns are sometimes made stiffer
than the interior ones to improve the performance of the frame-
tubes In this study, we a2lso include the frame-tubes analysed
by Schwaighofer and Ast (5). Table 1 shows the variation of axial
deformation in the side panel columns from the results of
Schweighofer and Ast (5) together with the average values of m)
For the normal panels we will adopt the values of m, and g from

Figse 14 - 18.



With the distribution of axial displacements assumed, we can

proceed to determine the axial forces as follows.

From the stress-strain rciationship and the assumed distribu-
tion of axial deformation we can express the axial forces in the

columns in terms of those in the corner ones, thus
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in which P, F .,P . are the axial forces in the corner,iiﬁ
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areas of the corner, iEB and jiﬁ columns, respectively , and
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The forces Pci and ch acting at the points of contraflexures
in the columns are shown gualitatively in Fig. 2. From symmetry and
the moment equilibrium considerations about the horizontal axis

lying in the plane of symmetry of the side penels and passing through

the inflection points we obtain;
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where N,M are the number of columns in normal and side panel,
respectively; H is the total height of the structure; PO is the
lateral load intensity (per column) at the base of frame-tube; Py
is the difference of lateral load intensities (per column) at the
top and the base of frame-tube; and M1, N1 andoC are numbers
determined as follows:
for even or odd numbers of columms in side panels,

Ml = % and the summation is j = 1 to integer
for even number of columms in normal panels,

M= 3

o = 0

for odd numbers of columns in normal panels

Nl = !"-"2—1-

oC = 1 (x(y,)) 3 g& ()
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Substituting the stress-strain relation ___dzc - KEE‘.
cc
into Bq. (6) leads to
_z 2
o,  BDEs 3Py + 58 Py (-2)
dz M1 A N1l DA
oA B4l S f£(y.)y; i+ > f(x) 3 el + 24C
cc - 33 - i’ 21—
j=1 Ac 1=2 Acc

} ﬁﬁl (B + § Py + 3 Py) (B-2)2 (72)



! ; M b Y58 W oy ;
i dteamdlid) e ,-"":;
T THNTNIN Y

10
Ml N1
where &' =A B |4 4, f(yJ)yJ_J 1_2f(xi) E 2a (7v)
Aee
Bee
and B is the modulus of elasticity
Integrating Bq. (7a), yields
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For a frame - tube which is fixed at the base,
%e(0) = 0 (9)

In view of Eqy(9), the constant C, in Eq.(8) is found to be

zero, thua
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The lateral displacement due to axial deformation only
can be approximately determined by considering the kinematics of

a typical unit shown in Fig. 4.

cj be the vertical displacements of the

hinges immediately to the left and right of the joint under

Let uc(j—l) and u

consideration, respectively. Due to these displacements the unit

will undergo an angle of rotation, e, given by.
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where 8(1) and a/are the width of bay (j-1) and j respectively.

The lateral displacement ﬁﬁkj due to axial deformation is

therefore
A“ = htan e 5 . (12)
"1
From Bq. (1), ginh k Vi * %(41)
2
D/ 2
u . = z 133
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Substituting Eqs. (13a) and (13b) into Eq. (11) and the

result in Eq. (12) yields

AAj = kg ( %—h- ) u,(2) (1ka)
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The lateral displacement due to axial deformati on, &, .,
depends, to a considerable extent, on the agsumed displacement
field Y In this study the same displacement shape is assumed
throughout the height of the structure. Consequently ucc(z) will
be overestimated at the upper stories since in a tall building the
axial forces in the exterior columns may change sign at high
levels. To account for the approximations involved, & correction

factor,p is applied to Bq. (14a), thus

A“. 'Pkc:l ( %1_:_) u, (2) (14a)

2.,3.2 Lateral Displacement due to Bending and Shearing

Deformations

The strain energy,AUsj, due to bending and shear deformations

in each typical unit of the side panels shown in Fig. 3, is given by
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Carrying out the integration leads to,

v (rm-db)3 Q.
A Ua;i % bJ (25)
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and VJ. are the shear forces at points of contraflexure in the

column of the typical unit; Q(j-l)' Qj are the shear forces at points
of contraflexure in the (j~1)2 and 72 spandrel beams of the
typical unit, respectively; c(j-l)’ c.i are clear lengths of the
(j-l)-'b-E and # gpendrel beams, respectively; h is the story height;
db is the depth of spandrel beam; ch, Ib(j—l)' ij are the second
moment of area of the column, (3—-1)-— and F2 spandrel beams,
respectively; Ab(j-l)’ abj are the effective cross-sectional area of

the (;j—l)E and j— f spandrel beams, respectivelyj G is the shear

modulus,
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From stetics we can express the shear forces in the spandrel

beams in terms of the column sheaxr forces Vj ag followsa:

2h V,
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Substituting Eqs.(16a) and (16b) into Eq. (15a) yields,

after simplifying:
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This strain energy is equal to the work done by the column

shear foreces, i.e.

14V, :
Ausj -\ ']}(Asj) : (18)
07 LV, ; (19)
therefore Asj = X ( J)
. B8]
where 4383'13 the lateral displacement due to shearing action.
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2.3.3 Total Potential Energy and Approximate Solution by

Ritz Method

The total lateral displacement of each floor, A , is the
sum of the lateral displacement due to shearing action of the

lateral forces and axial deformation in the columns, i.e0

H o= élsj-+£%lj

In view of BEq. (14a), Bq. (19) and Eq_s (10) we obtain
2
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Substituting Bg. (21) into Eq. (172) results in
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By approximating the term Auaj as d Us,]'_
h dz

a/\ we obtain:
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Summing the contribution from all units at the same level
and integrating over the height of the structure yields the total

strain energy, Us’ thus

M H
U, =% ZQJKBj aA nl(n-l)P(H%-Hz +§{)

J=1 o

- fl? k. (N—l)PH (H23 - H2® 4 _Szz)
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The potentiel cnergy of the external load,UL is given by
H

U, = -(N~1) J P(z) o (2) dz (25)
0

At equilibrium, the principle of minimum total potential

energy demands that

{ « Uy £ minimum (26)

in which ‘Tr = total potential energy.

In this study an approximate solution of this problem is
obtained by means of 'z Ritz method with the lateral displacemeut

agsumed to be

A(z) = 22" 4+ B2 (27)
The result is, for Kaj and kcj independent of z,
A =3 _(%-1)_ / p.EBPOH2 pe Bleptsimy _ e, e}
N B A
B = !N—l! (POH + %_PHH + f} K:P0H3+ 2 E K:PBHB\ (281))
K 3
s 5D # 15D 8 )

where

| M
*
K,=2 3 K endE =2 32-1 K Kej (28¢)
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For the special case of a uniform lateral load, we have

A = 3 (1) PK:POHE _®, } - (29a)
L Sp § ©
B = (N-1) (poz?_ + 3322033 ) ' (29m)
£ 5D §

and for a trisngular lateral load,

A= (o) r'".*p Kp e _ 5Py (302)
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2.3.4 Shear Forces in Spandrel Beams and Columns

To calculate the shear forces in spandrel beams we first
determine the shear force at the inflection point of the external
spandrel beam from the difference of axial forces in normal panel .
columns at the floor under congideration, The shear forces in the
inner spandrel beams and columns can then be calculated from the

law of statics, thus: (refer to Pig. 3.)
. = . - ! i€ -
Q5 = Q4 * Poylzy) - Py () (31)
1 -
MEESUREE. S SRR FRILERN .
where z1,£2 are the height from the base to the point of

contraflexure of the lower and upper columns, respectively.
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