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ABSTRACT

4773006063: Petroleum Technology Program
Kitisak Junlobol: A Mixed Integer Linear Programming (MILP)
Model for Designing/Retrofitting Heat Exchanger Network of Crude
Fractionation Unit.
Thesis Advisors: Asst. Prof. Kitipat Siemanond, and
Prof. Miguel Bagajewicz 225 pp. ISBN 974-9937-44-9

Keywords: Heat Exchanger Network/ Mixed Integer Linear Programming/
Crude Fractionation

Today, an increasing trend of crude oil price is one of many causes of high
production cost because oil is a major energy source used in industry. An effective
design of heat exchanger network (HEN) is one of the solutions that can reduce
production cost because the heat exchanger network can recover the energy. A crude
fractionation unit consumes high energy about 30-40% of a refinery. In this thesis, a
strategy to design efficient HENs of the refinery is proposed as the Mixed Integer
Linear Programming (MILP) formulation based on the special transhipment structure
concept. This methodology can generate networks where utility cost, heat exchanger
areas and selection of matches are optimized simultaneously. And it can design the
appropriate flow rate of pump-around. In addition, the simplicity in model
assumption, non-isothermal mixing, comes with handling constraints such as stream
splitting and allowed/forbidden matches which bring the model structure more
convenient to use. This research gives the efficient HENs to a fractionation unit of
light, intermediate and heavy crudes by saviig the energy cost, capital cost and area

cost about 123.91% from the existing network.
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= { (iy) | more than one heat exchanger unit is permitted between hot
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= {j | J is a cold stream present in zone z }

= {jIjisacdldstreampresentintcmperatureintervaln in zone z }

= { j | j is a heating utility present in zone z } (CU < C*)
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= { i| i is a hot stream present in temperature interval m in zone z }

= { i | i is a heating utility present in zone z } (HU*cH?®)

= { m | m is a temperature interval in zone z }

= { m | m is a temperature interval belonging to zone z, in which hot
stream i is presented }

= { m | m is the starting temperature interval for hot stream i }

= { m | m is the final temperature interval for hot stream 7 }
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Upper temperature of interval m
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Area addition for the k-th existing heat exchanger between hot stream
i and cold stream j in zone z

Flowrate of pumparound stream

Determines the beginning of a_heat exchanger at interval m of zone z

for hot stream 7 with cold stream j. Defined as binary when (ij) €B

and as continuous when (ij) ¢ B
Determines the beginning of a heat exchanger at interval » of zone z

for cold stream j with hot stream i. Defined as binary when (i,j) €B
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Auxiliary continuous variable utilized to compute the cold side heat

load of each heat exchanger when several exchangers exist between

hot stream 7 and cold stream j in zone z

Auxiliary continuous variable utilized to compute the area of

individual heat exchangers between hot stream 7 with cold stream j in

zone z when (ij)eB .
Pumparound load

Number of he.at exchangers between hot stream i and cold stream j in
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heat exchanger of zone z has is serving the match between hot stream
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