CHAPTER III
MATHEMATICAL MODELING

3.1 Model Structure of the Process

3.1.1 Gravitational Flow Tank

The structure of a gravitational flow tank is composed of tank and
pipe line with water fed in and drained out of the tank. (Process Modeling,
Simulation, and Control for Chemical Engineers, William L. Luyben)
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Figure 3.1 Gravitational flow tank.

Gravitational flow tank data are shown in Table 3.1



Table 3.1 Gravitational flow tank data

Pipe: | Tank: Unit
ID= 3 12 ft
Area= 7.06 | 113 ft’
Length= 3000 |- ft
Height= ‘- 7 ft .
Steady-state values: -
F= 35.1 ft’/s(15,700 gpm)
h= 4721t
= 4.97 ft/s
Parameters:

Reynolds number= | 1,380,000

Friction factor= 0.0123

KF= 2.81*107 Ibd(ft/s)? ft

For the gravitational flow tank, it is without a reaction in the system.
For the level control, a differential equation for the gravitational flow tank model is

composed of force balance and total continuity equations, which are:

L3 for force balance (.1)
d L PA, :

dh g K2
A, o E.=E, for total continuity (3.2)
where

H is the height of liquid level in tank (ft).
Ar is the area of tank =113 ft’.

Fin is the liquid flow rate in (ft*/s).

Fou 1s the liquid flow rate out (ft’!s).

v is the velocity at outlet line (ft/s).

t is the time (second).

g is the gravitational acceleration = 32.2 fi/s’.



p is the density of liquid = 62.47 Ib/cu.ft.
L is the length of pipe (ft).
g is the conversion factor = 32.2 1by,*ft/(Ibg*s?).

The new values of H and v at the (n+1)™ step are calculated from the

explicit Euler algorithm with a step size of DELTA. The equations are shown in
equation 3.3 and 3.4:

(H),., = (H), + DELTA(dH), (3.3)

(V)au = (V), + DELTA(dv), (G4

where

DELTA is the 1 second.

n is the time index.

3.1.2 Plug-flow Reactor and Continuous Stirred Tank Reactor (CSTR)

A model of the plug-flow reactor and CSTR is shown in Figure 3.2.
Chemical A is the reactant of the reaction.
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Figure 3.2 Plug-flow reactor and CSTR.

Initial concentration of reactant A, Cag, is 20 kmol/m°>. Feed rate is 4

kmol/s. Output concentration at steady-state is 16.14 kmol/m>. Dead time is 15

seconds. The conversion, x, is 0.2 and 0.5 for plug-flow and CSTR, respectively.
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Differential equations in this system are composed of mole balances

equation of plug-flow and CSTR, which are:

... 8 -1, for plug-flow reactor (3.5)
dv
V= For —Fa for CSTR (3.6)
ac, . 2 s
e for chemical reaction 3.7
where

Fao 1s molar flow rate at initial of reactant A (kmol/s).

Fa is molar flow rate of reactant A (kmol/s).

V is volume of reactor of reactant A (m">).

ra is rate reaction of reactant A.

Ca is concentration of reactant A (kmol/m’) = Cao(1-x).

Cao is initial concentration of reactant A (kmol/m?).

The new value of C, at the (n+1)™ step are calculated from the

explicit Euler algorithm with a step size of DELTA. The equations are shown in

equation 3.8:
(©),., =(C), +DELTA(C,), (3.8)
where

DELTA is the 1 second.

n is the time index.

3.1.3 Binary Distillation Column
A dynamic model of a depropanizer column is developed in this

thesis. The column is composed of a condenser and a reboiler, counted as two stages.
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Figure 3.3 Conventional depropanizer column.

There are 30 stages for the column. The first stage is the total
condenser and reflux drum and the last stage is the reboiler. The number of trays of
the column, including reboiler and condenser, is 30. Reflux ratio, R, is 2.90. Feed
flowrate is at 0.09 kg-mol/minute. The feed is a mixture of propane and butane at
ratio 0.5:0.5 (propane:butane). The feed enters at tray no.15 with a pressure of 17
bars and a temperature of 369 K. The product specification of mole fraction is 0.9981
for propane at the top and 0.9925 for butane at the bottom. The pressure drop of the
column is assumed constant at 0.065 bars. The pressure in reflux drum is equal to 16
bars.

For a dynamic simulation, changes in mass and energy are formulated
as differential equations. There are material (equation 3.9), component (equation 3.9),

and energy (equation 3.9) balances.

dM
df” =B L"‘*' + Vn—l '_ L:.» - V.n (3'9)
dx,M '
ek 2 zi.]F * x:‘..rul Ln-rl * y:‘,u—l I/n--l . xi_n 'Ln = yi.u I/u (3 = 1 0)

dt
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dh' M,
dt

where

=h.F+h, L, +h' V.  ~h"L KBV

n+l n-1" n- n""n n

(3.11)

L is the liquid molar flow rate (kmol/30 s).
Vs the vapor molar flow rate (kmol/30 s).
F is the feed molar flow rate (kmol/30 s).
x is the molar fraction in liqﬁid. .
y is the molar fraction in vapor.

z is the molar fraction in feed.

h'is the liquid molar enthalpy (kj/kmol).
h" is the vapor molar enthalpy (kj/kmol).
hr is the feed molar enthalpy (kj/kmol).

M is the tray liquid hold up (kmol).

n is the index number of tray =1, 2, ..., 30.
iis the index number of component.

It is essential to have an accurate model or correlation for the vapor-
liquid equilibrium (VLE) and the physical properties of the component in the
distillation tower. There are many useful sources for obtaining literature data and
correlating equations to represent the system. The phase equilibriufn of some systems

is essentially ideal (Practical Distillation Control, William L. Luyben), which are:

VP =x,P’ for Raoult’s law (3.12)

X =2t for equilibrium constant (3.13)
X;

where

yi is the vapor composition (mole fraction).
Xi is the liquid composition (mole fraction).
P is the total pressure (bars).
P{is the vapor pressure (bars).
K is the equilibrium constant.
Pure componert vapor pressure is calculated by the Antoine equation,

as shown in equation 3.14:
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G,

C.4+7T 3.14)
3

In(P*) =C, +

where
C;, C;, and C; are the Antoine coefficients
Energy plays an important part in distillation. Liquid enthalpy is not a
function of pressure because liquids are incompressible. Liquid and vapor enthalpy
equations are formulated by using data from IFP-school (Institut Francais de pétrole).
It is valid in the range between 40°C and 130°C. The data of liquid and vapor
enthalpy are shown in appendix D.
Liquid flow rate calculation is done by the Francis Weir Formula
(Practical Distillation Control, William L. Luyben), which is:
L, =Cplw,H'  for Francis Weir Formula (3.15)
Where
C is the constant for unit’s conversion.
p"n is the density of liquid at n tray (1000 kg/m®).
Wien 18 the weir length (m).
How is the height of liquid above weir height (m).
The density of the liquid is an important value in the model. The
Racckett equation (Chemical properties handbook, Carl L. Yaws) is used in the
model for calculating the density of the liquid in the model:

piL =A *B_[I%J - (3.16)

A, B, n are the regression coefficients.
Tc is the critical temperature of component i (K).
The model assumes that the single flow passes the hydraulics tray.
The liquid enters the tray through the down comer of the above tray. Vapor enters the
tray from the tray below. The vapor and liquid are completely mixed on the tray.
Vapor leaves the tray, in equilibrium with the tray liquid composition, and passes to
the above tray. The liquid flows over the outlet weir into the down comer and the

tray below. The tray may contain a feed or a side stream. A dynamic model for the
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tray will contain N, differential equations of material balances, where N. is the
number of components in the system, and overall energy balance (Practical
Distillation Control, William L. Luyben). Numerical methods to solve the equations

are shown in appendix E.

3.2 Model of the Control System

3.2.1 Control System
The control system is used for controlling the process to get the output

from system on specification. This thesis focuses on the proportional-integral
derivative (PID) control system and dynamic matrix control.
3.2.1.1 PID Control

There are many types of control systems in the process. The
conventional controller is the proportional-integral-derivative (PID) controller. This
controller was used in many processes. A proportional controller gain (K¢) reduces
the rise time and the steady-state error as K¢ increases. It cannot eliminate error in
the controlled variable. An integral control (t;) eliminates the steady-state error, but
it may make the transient response become underdamped. A derivative control (tp)
increases the stability of the system, reducing the overshoot, and improving the
transient response. The signal sent to the manipulated variable is calculated from
equation 3.17. The PID control system has feedback and feed forward controls. The
block diagrams of feedback and feed forward control are shown in Figures 3.4 and
35

AY=KCc+—1—ffedt+tD—dE+bias (3.17)
% dt

where
AY is the signal sent to manipulated variable.
e is the error= (setpoint-controlled variable).
Kc is the proportional gain.
T; 1s the integral time or reset time.

Tp is the derivative time constant.
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bias is the signal of manipulated variable with out error.

t is the time.
Disturbance
+
Set point + . 3 Output
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Figure 3.4 Block diagram of PID feedback control.
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Figure 3.5 Block diagram of PID feedforward control.

3.2.1.2 Cascade Control
A cascade control structure has two controllers with the output
of the primary (or master) controller changing the setpoint of the secondary (or
slave). There are two purposes for cascade control: (1) to eliminate the effects of
some disturbances, and (2) to improve the dynamic performance of the control loop
(Process Modeling, Simulation, and Control for Chemical Engineers, William L.

Luyben).
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As shown in Figure 3.6, the primary controller is the feed back
control (level control, LC) and the secondary controller is the feed forward control
(FFC) or flow control. The block diagram of cascade control is shown in Figure 3.7.
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Figure 3.6 Gravitational flow tank with cascade control.
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Figure 3.7 Block diagram of cascade control.

3.2.1.3 Dynamic Matrix Control
Advanced controllers, called dynamic matrix control (DMC),
one of the model predictive controls, has become popular over the past two decades.
This is a time-domain method that uses a model of the process to calculate future
changes in the manipulated variable.
The DMC shown in Figure 3.8 is operated like the feedback

control in that it measures the output and calculates the manipulated variable move.
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The DMC will predict the controlled variable in the future before calculating the
manipulated variable move. The block diagram of a DMC is shown in Figure 3.9.
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Figure 3.8 Gravitational flow tank with dynamic matrix control.
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Figure 3.9 Block diagram of DMC.

The equation used to generate the DMC controller gain and
manipulated variable movement is rclated to matrix form, B (equation 3.18). This
matrix comes from the response curve of the control variable of the process model
without controller by unit step change in manipulated variable as shown in Figure
3.10.
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Figure 3.10 Unit step-response function.

Results are collected and rearranged to matrix form B.

" B(1) 0
B(2) B(1) 0

0

[BNP) B(NP-1) ... B(NP+1-NC)|.

(3.18)

Correlating to Figure 3.10, the relationship between measured

variable, x, and step change of manipulated variable, Am, at all t, is shown in

equation 3.19. The matrix, B, is used to generate the DMC controller gain by this

equation:
s ] ( B(1) 0
X, B(2) B(1)

_x NP _npxi _B(NP) B(NP s ])

where

B(NP +1-NC) |

[ Am,
Am,
Am,

_Am NC |

NPXNC NCXI1

(3.19)

NC is the number of the time interval of the manipulated variable moves in

the future.

NP is the number of the time interval of the controlled variable change that

covers 90 to 95 % of the system response.

Am is the manipulated variable move.

x is the controlled variable. -
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Equation 3.19 can be rewritten to equation 3.20:

Am =K, E' (3.20)
KDMC = (B'I'B)'l BT (3.21)
E" =(SP,-CV/) S
where

Kpwc i the mitrix form of DMC controller gain.

B is the matrix of the unit step-response function.

E'is the matrix error.

SP; is the matrix set point.

CV; is the matrix of predicted controlled variable at i" sampling period.
(measured variable)

Am is the manipulated variable.

The DMC controller will predict the control variable in the

future step time by equation 3.23:
~NP+] (3.23)
Cvir =CVopeus + Z[Biﬂ—k B IAmk =
k=0

Where

CV';is the predicted value of control variable at i"" sampling period.

CVmeas is the measure controlled variable at present time.

B is the value of controlled variable from step response matrix, B.

Am is the manipulated variable move.

NP is the number of the time interval of the controlled variable change that
covers 90 to 95 % of the system response.

Controller gain, Kpwmc, is multiplied by error to get
manipulated variable movement, Am, where the error is found from set point minus
predicted value of control variable in the future.

The performance index will include magnitudes of the Am
values. Equation 3.20 and equation 3.21 will change to equation 3.24 and equation

3.25 to improve the performance of the controller gain with tuning parameter f,
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which prevents large changes in the manipulated variable. (Process modeling,

simulation, and control for chemical engineers, William L. Luyben)

Am =K, E’ (3.24)
Kome =[B™B + 721 ' BT (3.25)
where

[fis the weighting factor .

I is the identity matrix.

The DMC algorithm has the following steps at each point in
time: 7
1. Using step response to process model without controller and collecting measured
variable to form matrix, B, in equation 3.18.
2. Using matrix, B, from step 1 to find Kpmc from equation 3.26.
3. Calculating CV"; from equation 3.23.
4. Calculating E' from equation 3.22.
5. Calculating AMV from equation 3.24.
6. Changing manipulated variable by AMV
7. At the next sampling period, measuring the controlled variable to get a new value
of control variable and repeating the step 3 to 7.
Figure 3.11 shows the dynamic response of variables for the

DMC control.
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Figure 3.11 Dynamic response of variables for DMC control.
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3.2.2 Controller Tuning
There are many controller tuning methods for PID controller. This

work has used the basic controller tuning method which is the Ziegler-Nichols
method. The steps of the tuning method are shownbelow. For DMC, a tuning method
uses three parameters; NP, NC, and f.
3.2.2.1 Ziegler-Nichols: Closed Loop
This method was found by J. G. Ziegler and N. B. Nichols in
1942. They give reasonable first guesses of settings. Steps of tuning the PID control
by Ziegler-Nichols are shown below.
Step 1 - Set controller to process with low gain, no reset, 1, or
derivative, tp.
Step 2 - Gradually increase gain until oscillation occurs.
Step 3 - Record the gain at oscillation, called ultimate gain
(Kcu), and time period, called ultimate period (Pu).

——

Figure 3.12 Oscillation with a constant amplitude.

The gain (Kc), reset (1;), and derivative (tp) are calculated

using criteria in Table 3.2.
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Table 3.2 Tuning parameters for Ziegler Nichols tuning method: closed loop
(Process Dynamics, Modeling, and Control, William L. Luyben)

Gain (K¢) | Reset (1)) | Derivative (tp)
P Keu/2 = #
PI Kcu/2.2 Pu/1.2 -
PID ; Keu/1.7 Pu/2 Pu/8

3.2.2.2 Tuning of Dynamic Matrix Control
The tuning parameters of this control system are NC, NP, and

f. The definitions of NC, NP, and f are shown below:
- NC is the number of the time interval of the manipulated

variable moves in the future. NC is typically set at 50 % of

NP.
- NP is the number of the time interval of the controlled

variable change that covers 90 to 95 % of the system
response.
- fis weighting factor preventing large changes in manipulated

variable.
Effect of f on control is that when f is small, it will cause high

oscillation in the controlled variable. When f is large, the controlled variable will

reach the set point slower. In this thesis, f is adjusted manually.
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