
อัลกอริทึมตรวจสอบการชนของวัตถุทีม่ีการเปลี่ยนแปลงรูปรางโดยใชวิธีทางอนุภาค

นางสาว นิดา แสงแหงธรรม

วิทยานิพนธนี้เปนสวนหนึง่ของการศึกษาตามหลกัสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต

สาขาวิชาวิศวกรรมคอมพิวเตอร ภาควิชาวิศวกรรมคอมพิวเตอร

คณะวิศวกรรมศาสตร จุฬาลงกรณมหาวิทยาลัย

ปการศึกษา 2548

ISBN 974-53-2966-5

ลิขสิทธิ์ของจฬุาลงกรณมหาวทิยาลยั

COLLISION DETECTION ALGORITHM FOR DEFORMABLE OBJECTS

USING PARTICLE-BASED METHOD

 Miss Nida Saenghaengtham

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Engineering Program in Computer Engineering

Department of Computer Engineering

Faculty of Engineering

Chulalongkorn University

Academic Year 2005

ISBN 974-53-2966-5

 vi

ACKNOWLEDGMENTS

 It is a great pleasure to acknowledge my thesis advisor, Pizzanu

Kanongchaiyos, Ph.D., for his intellectual advices and invariable assistances

throughout this research. I would also like to express my grateful thanks to my thesis

committee, Associate Professor Prabhas Chongstitwatana, Ph.D, Athasit Surarerks,

Ph.D., Supatana Auethavekiat, Ph.D. for their beneficial guidance and suggestions.

I also want to extend my thanks to all 20th floor members especially my

associates in computer graphic lab (CG Lab) for their generous helps, encouragements

and truly relationships which make my life through the course filled with amusements

and happiness.

Finally, I deeply wish to thank my parents for their love, understanding and

invaluable supports throughout my graduate study.

TABLE OF CONTENTS

 Page

ABSTRACT (THAI) ...iv

ABSTRACT (ENGLISH) ... v

ACKNOWLEDGMENTS ...vi

LIST OF FIGURES ...ix

LIST OF TABLES..xii

CHAPTER 1 INTRODUCTION ...1

1.1 Background and Problem Statement ..1

1.2 Objectives ...3

1.3 Scopes of Study ..3

1.4 Research Procedure ..3

1.5 Expected Benefits ...3

1.6 Thesis Structure ..4

1.7 Publications ..4

CHAPTER 2 THEORETICAL BACKGROUND AND RELATED WORKS5

2.1 Theory...5

2.1.1 Collision Detection ...5

2.1.2 Particle-based Method ..7

2.1.3 Vector Quantization ..10

2.2 Related works ...14

2.2.1 Sphere ...14

2.2.2 Axis-Aligned Bounding Boxes ...15

2.2.3 Oriented Bounding Boxes...17

2.2.4 Particle-based Collision Detection ..19

CHAPTER 3 PROPOSED ALGORITHM ...22

3.1 The Number of Particles...23

3.2 Surface Partitioning ..25

3.3 Interaction Forces ...31

 viii

3.4 Movement of Particles..33

3.5 Collision Distance...36

3.6 Repartition Checking..36

CHAPTER 4 ALGORITHM ANALYSIS...42

4.1 Correctness ...42

4.1.1 Case 1: two convex objects which have the same size43

4.1.2 Case 2: several convex objects which have the same size......................44

4.1.3 Case 3: several convex objects which have non-equivalent size............48

4.1.4 Case 4: two concave objects ...52

4.1.5 Case 5: several concave objects..53

4.1.6 Case 6: both convex and concave objects...53

4.2 Complexity analysis ...54

4.2.1 Surface partitioning...54

4.2.2 Collision detection ..54

4.2.3 Repartition checking ...55

CHAPTER 5 DISCUSSION CONCLUSION AND FUTURE WORK......................57

5.1 Discussion...57

5.1.1 Problem of the complex topology...57

5.1.2 Problem of partitioning symmetry object centered at the origin58

5.1.3 Problem of the improper effective radius of attraction (effR).................59

5.1.4 Problem of the improper collision distance value (μ)61

5.1.5 Problem of the improper acceptable area (A*)63

5.1.6 Problem of object deformation ...63

5.1.7 Complexity discussion ..65

5.2 Conclusion ..66

5.3 Future Work..66

REFERENCES ..67

BIOGRAPHY ..69

 Page

LIST OF FIGURES

Figure Page

1-1 A car crashes a wall with and without collision detection………………...1

1-2 Cloth simulation…………………………………………………………….…2

2-1 Intersection of triangles………………………………………………………..5

2-2 Intersection of planes………………………………………………………......6

2-3 Sphere - plane collision………………………………………………………..6

2-4 Smoke simulation using particle-based method……………………………..8

2-5 Acceleration and velocity of particles on 2-dimentional plain……………..9

2-6 1-Dimension Vector quantization …………………………………….……..10

2-7 2-Dimension Vector Quantization …………………………….……………..10

2-8 The LBG procedure ……………………………………………………….....13

2-9 Error from using sphere collision detection………………………………..14

2-10 Sphere dividing method for determination of the objects………………........15

2-11 The AABB box arrangement………………………………………………..15

2-12 New box creations when the object rotate…………………………………..16

2-13 A linear stick and its AABB box in various directions……………….….....16

2-14 The OBB box arrangement………………………………………………….17

2-15 Hierarchical methods for OBBs………………………………………...……18

2-16 Collision detection using Particle-based method……………………….……19

2-17 Particle distribution…………………………….……………………….……20

2-18 Collision detection between two models using particle-based method……....20

2-19 Time to perform a collision query…………………………………………....20

2-20 Improper particle dispersion at the initialization………………...……….21

3-1 A new algorithm developed for the collision detection…………………...…22

 x

Figure Page

3-2 Kissing number………………………………………………………………23

3-3 Circular shadow on the imaginary sphere……………………………...…….24

3-4 Approximated spheres for objects……………………………………..…….24

3-5 Vertex classification...25

3-6 Vector quantization..26

3-7 Improper partitioning of LBG with a concave object......................................27

3-8 Two close adjacent vertices having different normal vectors..........................27

3-9 Flow chart shows the partitioning..31

3-10 Attractive forces acts on particle..32

3-11 Particle position and its neighboring coordinate..34

3-12 Undetected collision when particles can move only one vertex each time…..34

3-13 Flow chart shows the movement of particles..35

3-14 Four directions used to find size of the area...37

3-15 Tracking along +X axis..38

3-16 The distance estimation along +X axis..39

3-17 Flow chart shows the repartition checking procedures....................................40

4-1 Two equivalent spheres touching at point C...43

4-2 Three touching spheres……………..44

4-3 Six sets of particles……………………...45

4-4 Three touching spheres after all movement of particles..................................47

4-5 Three touching spheres………………...48

4-6 Six sets of particles……………………...48

4-7 Updated figure of three touching non-equivalent spheres…............................49

4-8 Three touching spheres after all movement of particles.................................51

4-9 Two touching concave objects………...52

 xi

4-10 Each concave is considered as a combination of three convex parts...............52

5-1 Particles are unnecessarily generated due to a special case of topology..........57

5-2 An object which has complex topology...58

5-3 (a) a cube centered at the origin, (b) a cube centered away from the origin...59

5-4 Undetected collision due to a very small value of effR59

5-5 Two touching sphere objects...60

5-6 A collision on object edge………………….………....................................62

5-7 An incorrectly report of collision due to a high value of collision distance....63

5-8 Deformation case that cause the particle deficiency to detect the collision....64

5-9 Undetected collision due to a very long edge...64

Figure Page

 xii

LIST OF TABLES

Table Page

2-1 Advantages and disadvantages of each collision detection algorithm……...18

3-1 Comparison between original particle-based and the proposed algorithm…41

4-1 Six possible cases……………...……………..……………………………..43

CHAPTER 1

INTRODUCTION

1.1 Background and Problem Statement

 The collision detection is one of the most important tasks in the animation

systems which have more than one moving object. Also, it is one of the most

interesting problems in computer graphic field [1] since it is applicable to several

areas, for example, the robotics, computer games, computational biology, computer

simulation, and virtual reality, etc.

 The main purpose of the collision detection is to report whether there exist a

high possibility for collision and then shows the collision response which is very

crucial for preparation procedure in the simulation. The importance of the collision

detection is shown in Figure 1-1. It is obvious that, without collision detection

process, the system will never know that there is a collision occurs and let the car pass

through the wall. Therefore, the collision detection is required in order to check

whenever the car hits the wall, and not allows it to pass through the wall.

(a)

(b)
Figure 1-1. A car crashes a wall with and without collision detection.

 2

 There are several kinds of models in computer graphic such as Constructive

Solid Geometry (CSG), Implicit or Parametric surface, etc. Objects can be either rigid

or deformable object. The object represented by polygonal model usually deform by

updating the positions of the polygon vertices.

 Most collision detection algorithms are used with solid and rigid objects, while

collision detection for deformable objects is also important. Therefore, a number of

researches are increase significantly since it can be applied to several fields such as

computer animation, cloth simulation, and virtual reality, etc. For instance, in order to

generate cloth simulation [2] looks like real cloth, the collision detection has to be

employed between the cloth and neighboring objects, and even between the cloths. As

the cloth shape is not constant, general techniques which based on hierarchical

bounding representation cannot detect the collision efficiently. Their bounding

representations have to be updated every time surface deformation occurs which can

also be expensive in the sense of required memory to store the hierarchical structure.

This leads to a new method that involves the particle determination [3] using

interaction forces between particles as the main principal. This method, unlike the

conventional approaches, offers a significant benefit since it can estimate the

interactions forces between particles at all time and not require any complex

recalculation every time the objects deform.

Figure 1-2. Cloth simulation [2]

 3

1.2 Objectives

 The objective of this study is to present the collision detection algorithm that

1. Can effectively detect the collision of the deformable objects

2. Able to detect several objects at the same time.

3. Reduce the errors which might happen from the inappropriate selection of

the particles' initial positions.

4. Decrease the errors that might happen from the large deformation of the

objects.

1.3 Scopes of Study

 1. Can be used for both rigid and deformable objects.

 2. Be able to investigate the collision of many objects at the same time.

 3. Can only used with the objects that represented by polygonal model.

 4. Cannot use with a large deformation that tears the object apart.

1.4 Research Procedure

1. Study theories

 - The collision detection theories

 - The particle-based theories

 - The surface partitioning theories

2. Research and study the previous work along with the advantages and

disadvantages analysis.

3. Design the algorithm.

4. Do the conclusion and suggestions

1.5 Expected Benefits

1. The proposed algorithm can be efficiently for detecting the collision of

deformable objects.

2. The algorithm is able to investigate the collision of several objects at the

same time.

3. The algorithm is suitable with the applications involved with the deformable

materials such as the textile, the biological structures or the work that need

high precision, for example, Virtual Reality (VR), Surgery Simulation ,etc.

 4

1.6 Thesis Structure

 This thesis is divided into 5 chapters which are Introduction, Theoretical

background and related works, Proposed algorithm, Algorithm analysis, Conclusion

discussion and future work.

 First chapter, Introduction, provides problem statement, objectives, scope,

research procedure, benefits, research structure and publications. Chapter 2 gives a

brief description about related theories. Moreover, some previous collision detection

algorithms are also discussed in this chapter. In Chapter 3, a proposed collision

detection algorithm is presented. After that, the analysis of the proposed algorithm is

shown in Chapter 4, follow by the conclusion discussion and future works in the final

chapter.

1.7 Publications

1. Nida Saenghaengtham and Pizzanu Kanongchaiyos. 2004. Collision

Detection Algorithm for Deformable Objects using Particle. The 1st

Thailand Computer Science Conference (ThCSC 2004), December,

Kasetsart University, Bangkok, Thailand.

2. Nida Saenghaengtham and Pizzanu Kanongchaiyos. 2006. A Collision

Detection Algorithm Using Particle Sensor. 2006 IEEE International

Conference on Robotics, Automation & Mechatronics (RAM2006), June,

Bangkok, Thailand.

3. Nida Saenghaengtham and Pizzanu Kanongchaiyos. 2006. Using LBG

Quantization for Particle-based Collision Detection Algorithm. Journal of

Zhejiang University SCIENCE, June, Zhejiang, China.

CHAPTER 2

THEORETICAL BACKGROUND AND RELATED WORKS

 In order to have common understanding on basic, theoretical used in this

research are briefly explained in section 2.1. Furthermore, some of the most famous

collision detection algorithms are described in section 2.2.

2.1 Theory

This section is divided into 3 parts which are a brief theory about collision

detection, particle-based method, and vector quantization. These topics are described

below.

2.1.1 Collision Detection

 The basic idea of collision detection is to check the intersection between

objects. This can be logically performs by checking the collision of every object

elements such as point, line, and triangle.

Intersection of Triangles

 In order to test the collision of meshes, each triangle has to be checked for the

collision. Figure2-1 shows the intersection test of each triangle on object A with each

triangle on object B.

Figure 2-1. Intersection of triangles

 6

 The plane that each triangle is lying on can be created as shown in Figure 2-2.

An intersection of these two planes is checked. If both triangles lie on the same part of

line then the triangles intersect.

Figure 2-2. Intersection of planes

Sphere - Plane Collision

 A way to detect a collision in a 3D world is the sphere-plane detection

method. The sphere-plane method is relatively easy to compute since every polygons

of a complex model are not required to be checked for collision. Detecting collisions

with a sphere tends to be easier to calculate because of the symmetry of the sphere

object. The entire surface on a sphere has the same distance from the center, so it is

easy to determine whether an object has intersected with a sphere. If the distance from

the center of the sphere to an object is less than or equal to the sphere's radius, then a

collision has occurred.

Figure 2-3. Sphere - plane collision.

 7

 The main idea is not to let the sphere get too close to the plane. First, every

plane needs to have its own normal vector and D value, which are taken from the

planar equation.

Ax + By + Cz + D = 0 (2-1)

 The distance between the plane and a vertex, which is the sphere's center in

this case, is calculated by taking the dot product of the plane's normal and the sphere's

position.

 Distance = plane.normal · sphere.position (2-2)

 Depending on which side of the plane the sphere is on, the distance value can

be either positive or negative. If the distance becomes zero, then the sphere is

intersecting the plane, which is generally not a desirable effect when detecting a

collision. This can be corrected by subtracting the sphere's radius from the distance

and waiting for an object's distance to reach zero. If the sphere's velocity is high, it

might pass entirely through the plane on its next move. The way to check for this

situation is to see if the distance to the plane has either turned negative or positive. If

the sphere passed through the plane, the distance's numeric sign will change. If the

sign changes, it can then be concluded that a collision occurs.

 When checking for a collision, there are two importance factors to be

considered: the distance between sphere and a plane should not become zero, and the

numeric sign of the distance also should not change. If it does change, then the sphere

has moved through the wall. The game program will first check if a collision will

result when the object moves in the desired direction. If there is a collision, then the

program will respond appropriately, such as refusing to move in the desired direction.

2.1.2 Particle-based method

A particle-based method [8, 9] is a modeling and rendering techniques which

involve with the control of particles cluster. Each particle has a simple characteristic

and behavior. However, they can represent the characteristic of complex-structured

objects without any complicated calculation. Therefore, this particle-based method is

used for modeling of fluids and complex natural phenomena, for example, cloud, fog,

smoke, fire and explosion, etc.

 8

Figure 2-4. Smoke simulation using particle based method

The behavior of each particle is often defined by basic physics principle.

Nonetheless, there are a large number of particles which make the calculation more

complicated. Hence, the assumption is necessary in order to decrease the calculation

complexity; e.g. neglect the collision between particles, ignore the shadows of

particles that lay on other particles, etc.

Each particle has attributes which will be random at the beginning, and

changed with the calculation, for instance, position, velocity, physical appearance and

shape, color, transparency and ages, etc. The changed value can be computed using

several methods.

The age of each particle is defined which refer to the number of frames that

the particle can stay alive. When a new frame is calculated, the age of particles is then

minus by one and decreases continuously until zero, which will be deleted out of the

scene.

The particle position can be computed using the rigid dynamic equations. This

can avoid the complicated calculation and unfamiliarity of fluid dynamic equation by

calculating all forces from environments that applied to particles, for example, gravity

force, friction force, wind, etc. Also, it can be calculated from the interaction forces

between particles - e.g. spring force. When the mass and forces are known, the

velocity and acceleration of each particle can be calculated, at any time t, from the

Newton’s law below.

 9

The acceleration is

m
F

dt
xda == 2

2

 (2-3)

where F = forces applied to particles

 m = mass of particles

 x = particles’ position

 a = particles’ acceleration

F , x and a are vectors on the 3 dimensional area (x, y, z). The second order

equation above can rearranged to the first order equation by

dt
xdv = (2-4)

dt
vda = (2-5)

Figure 2-5. Acceleration and velocity of particles on 2-dimentional plain. [8]

The characteristics of particles can be found from various sources such as the

color of particles might be controlled by time, the lifetime, height, etc.

 10

2.1.3 Vector Quantization (VQ)

Vector quantization [4,5,6] is a method to classify all data into several groups.

The value of each group can be represented by its average value.

The diagram bellows is an example of 1-dimantional data division. The

numbers between -2 to 0 are determined to be in the same group and its data is

represented by -1. The representative data is showing by 2-bits number, so called “1-

dimensional, 2 bits VQ”, and having the ratio of 2 bits/dimension.

Figure 2-6. 1-Dimension Vector quantization

An example of the 2-dimentional Vector Quantization (VQ) is shown in

Figure 2-7. All data in the same region is put in the same group and is represented by

the stars in the picture. In this method, the data is showing by 4-bits number, so called

“2-dimensional, 4 bits VQ”. However, the ratio remains constant with 2

bits/dimension.

Figure 2-7. 2-Dimension Vector Quantization

From previous two examples, they show that the data is classified into several

groups and each of which is represented by the star as shown in the figure. These

areas are called “encoding region” which are data sets of the data in the same group.

The representative value, the group of encoding region, and the set of representative

values is called “code vector” “partition of the space” and “codebook”, respectively.

 11

Moreover, each input data is called “source vector” while the set all data is called

“training sequence”.

Classifying procedures begin with receiving training sequence and set the

required number of group. The outcome of this process is code book and partition of

the space.

 Training sequence

},...,,{ 21 MXXX=τ (2-6)

 Code book

},...,,{ 21 NCCCCB = (2-7)

 Partition

},...,,{ 21 NSSSP = (2-8)

When code vector nC is a representation of source vector mX , it can be

written as followed.

nm CXQ =)(if nm SX ∈ (2-9)

And then, find the error by calculating the squared-error distortion measure as

followed.

∑
=

−=
M

m
mmave XQX

Mk
D

1

2||)(||1
 (2-10)

In the case that the data has k dimension,

 22
2

2
1

2 ...|||| keeee +++= (2-11)

However, the received code vector and partition must satisfy the following 2

criteria, Nearest Neighbor Condition and Centroid Condition.

• Nearest Neighbor Condition:

},...,2,1'||||||:||{ 2
'

2 NnCXCXXS nnn =∀−≤−= (2-12)

This condition means that the data in the same nS group must be closer to the

representative data nC than others.

 12

• Centroid Condition:

∑
∑

∈

∈=
nm

nm

Sx

Sx m

n

X
C

1
 Nn ,...,2,1= (2-13)

While this condition shows that each received representative data nC has to be

the average value of all data in the same nS group and also has to be confirmed that

there is at least one data in each group in order to ensure that the denominator of the

above equation will not equal to zero.

LBG Design Algorithm (Linde-Buzo-Gray) [7]

LBG algorithm is an effective algorithm for finding codebook in data

classification process which follows two previous conditions. The algorithm begins

with receiving set of data, source vector, and then find out the initial codebook ()0(C)

using a random method or a splitting technique. After that, each code vector is

gradually updated and the squared error distortion (aveD) is checked until all code

vectors become stable. This iteration process are continued until achieve required

number of code vectors.

Code vectors are computed using the splitting technique as follow.

1. Find the first code vector from the average value among all source

vectors.

2. Define the first code vector as a reference code vector (*
1C) to create

the other two code vectors from these following equations.

*)0(
1)1(iCC ε+= (2-14)

*)0(
2)1(iCC ε−= (2-15)

The number in parenthesis shows the number of times that code vector

is adjusted.

 13

3. Classify each source vector into group of closest code vector using

the nearest neighbor condition. Then, calculate the average value to

find updated code vectors,)1(
1C and)1(

2C .

4. Repeat the procedures until

)1(
1

)(
1

−≅ ii CC and)1(
2

)(
2

−≅ ii CC

which means that all code vectors become stable

5. Define these code vectors as reference code vectors (*
2

*
1 ,CC) in

order to create other 2 code vectors for each reference code vector,

as in the 2nd procedure, follow by grouping and finding updated

code vectors, as in 3rd procedure until all code vectors become

stable. Repeat all procedures until the required number of code

vectors is achieved.

Figure 2-8. The LBG procedure

 14

2.2 Related works

A collision between a pair of objects occurred when parts of objects intersect

with each other. Basically, a collision can be detected by finding the intersection

between lines, plane, or triangle. However, when object has a very complex structure,

the determination of every intersection takes very long computational time and thus

cannot be processed in real time. Therefore, there are a lot of researches have been

proposed on the collision detection. The advantages and disadvantages of some

interesting methods are described as follow.

2.2.1 Sphere

Sphere [10, 11, 12, 13] is a collision detection algorithm which

approximates each object as a sphere and checks whether the spheres intersect each

other. The determination can be achieved by measuring the distance between the

centers of spheres. If the distance is shorter than the summation of two spheres

radiuses, it can be concluded that two spheres are intersected and hence the objects

might be collided. On the contrary, if the distance is longer than the summation of

radiuses, it can be concluded that there is no collision occurs.

This method uses a very easy, and simple, calculation, but also gives the

unreliable outcome since the sphere cannot approximate the object efficiently. There

are some gaps inside the sphere that do not contain any part of the object and thus

might cause an error in the collision detection. As shown in Figure 2-9, in this

method, two spheres can intersect each other without any collision occurs.

Figure 2-9. Error from using sphere collision detection. [13]

 15

However, the efficiency can be improved by subdividing a sphere into many

small spheres, the basic idea of hierarchy and subdivision, so that it can better

approximate the object. The detection begins by checking the intersection between

spheres. If there is no intersection, it can be concluded that there is also no collision

between the objects. On the other hand, if the intersection occurs, there will be a sub-

investigation on each sphere and this will continue until the required efficiency is met

as shown in Figure 2-10.

Figure 2-10. Sphere dividing method for determination of the objects. [13]

2.2.2 Axis-Aligned Bounding Boxes (AABBs)

Since most objects used in computer graphic have a characteristic like a box,

there is an idea to use box to approximate the object. This method is called “Axis-

Aligned Bounding Boxes” (AABBs) [13,14,15,16] The word “Axis-Aligned” shows

the alignment of box which used to approximate the object lying on the world axes.

Each side of the box must perpendicular to one coordinate axis. This method is easy

and fast and, as a result, is very popular.

Figure 2-11. The AABB box arrangement.

 16

Nonetheless, the principle of this method is that box has to align only with

the world axes and thus cannot moves along with the object when the object rotates.

Therefore, a box have to be recalculated to covers the object every time the rotation

occurs as shown in Figure 2-12 and 2-13. These figures show that size of box changes

with the object alignment. Moreover, if the object deforms, AABB box also has to be

recalculated.

Figure 2-12. New box creations when the objects rotate [13]

Figure 2-13. A linear stick and its AABB box in various directions. [13]

Although the recalculations to find a new box is not difficult and does not

slow the procedure down much, there is another problem of using this method. The

problem is the imprecision of results which is the same problem met in the sphere

method. AABB box also cannot exactly fit the object shape and there are also be

some gaps which can false the collision detection.

 17

2.2.3 Oriented Bounding Boxes (OBBs)

As object cannot exactly fit by the sphere or AABB box, there is an idea of

trying to find the new arithmetic shape that can improve the approximation of the

object by reducing empty gaps to the least. A new method which called “Oriented

Bounding Boxes” is created by using the box that can rotate along with the object.

With this method, the empty gaps can be reduced and also can increase precision of

the detection.

Figure 2-14. The OBB box arrangement [13]

This method can detect the collision more precise and also more efficient

than the spheres and the AABB method. However, the calculation is much more

complex which slows down the detection procedure especially when using with the

object that has unstable surface. Hence, this method is not suitable with the

deformable object.

Likes other methods, this technique can increase the precision and efficiency

of collision detection by creating subdividing sequence of the detection, so called

Hierarchical methods. The calculation is also more complicated in order to find the

box that fits the object best. The volume is divided into two parts along with the

longest axis (if cannot, then divided along the second longest axis). After that,

subdivided boxes are checked whether it intersect with others. If there is an

intersection, the dividing and checking procedures are repeated until the required

precision is achieved as shown in Figure 2-15.

 18

Figure 2-15. Hierarchical methods for OBBs

The advantage and disadvantage of each collision detection algorithm can be

summarized as shown in Table 2-1.

Table 2-1. Advantages and disadvantages of each collision detection algorithm

Algorithm

Advantage

Disadvantage

Sphere - Simple calculation - Very coarse detection since

 - Easy to implement sphere cannot fit the object
 - Few space needed efficiently

- No need to calculate when
object rotates

AABB - Simple calculation - Fairly coarse detection since

AABB cannot fit the object
efficiently

 - Easy to implement - Have to recalculate when
 - Few space needed rotation and deformation occurs

OBB - More accurate than Sphere - Difficult to implement
 and AABB - Have to recalculate when object
 deforms

 - Few space needed
- Inappropriate for deformable
object

Bounding - Very high accuracy - Difficult to implement
hierarchical - Take very long computational

time
- Requires much memory to store
hierarchical structure

- Inappropriate for deformable
object

 19

2.2.4 Particle-based Collision Detection

Most algorithms can be used only with the solid objects that have a constant

surface, for instance, Hierarchical methods which have to recalculate every time the

surface deformation occurs. This leads to an alternative algorithm that involves the

particle determination used the interaction forces between particles as the main

principal. This method, unlike the conventional approaches, offers a significant

benefits since it can calculate the interactions forces between particles every time

deformation occurs without any recalculation.

 The collision detection, with this particle-based method [3], used the

attractive interactions between particles that spread over objects surface as the main

principle. Particles will be randomly spread over the surface and then charged with

same-charged ions, for the particles on the same objects, and different-charged ions,

for the particles in distinct objects. The force, occurs on each particle, is then

calculated from

1. The attractive force between different charge particles, in order to pull

particles on different objects into each other when the distinct objects move closer.

2. The repulsive force between same charged particles, in order to equally

spread particles all over the surface and prevent particles aggregation in either side of

the object.

Figure 2-16. Collision detection using Particle-based method

Particle position, at any time t, can be calculated by the summation of

attractive and repulsive forces. The collision can be detected by measuring distance

between particles. When particles come closer than a tolerable value, it can be

 20

concluded that there is high possibility that the collision occurs. Therefore, a collision

is then investigated precisely between those parts of objects.

Figure 2-17. Particle distribution

 Figure 2-17 shows two polygonal models of the letter "T" defined by 1380

polygons and the distribution of 3 particles on each model which can define a

sufficiently correct collision point.

Figure 2-18. Collision detection between two models using particle-based method.

 Figure 2-18 shows collision detection between two polygonal models of letters

"W", defined by 11920 polygons, with 5 particles on each model. The average time

needed to perform a collision detection query was 12.67 ms., and the maximum time

was 47 ms.; average time during the "warming" steps was 12.06 ms., maximum time

was 47 ms. also.

 21

Figure 2-19. Time to perform a collision detection query

However, when there are more than 2 objects in the system, this technique

might not sufficient enough since a situation where particles receive high attractive

forces and then disperse together in either side of the object. As a result, the other

sides will lack of particles to detect collision and if there is another object crashes on

this side, there will not have enough attractive forces to pull the particles back and

hence cannot detect collision.

 Moreover, as the number of particles is initially fixed, this method might

have less efficiency when the object has large deformation such that surface areas

increase dramatically and cause the insufficiency of particles to detect the collision all

over the objects.

Besides, random placement of particles onto object surface might leads to

the improper of the particle dispersion and thus decreases the collision detection

efficiency. For example, as shown in Figure 2-20, three particles are randomly

disperse at the right hand side of the V-shape object and cannot move to the other side

to detect a collision when there is another object crashing on the left hand side.

Figure 2-20. Improper particle dispersion at the initialization

CHAPTER 3

PROPOSED ALGORITHM

In this research, an algorithm to improve the efficiency of particle-based

collision detection is presented. In order to eliminate the inappropriate dispersion

problem of the particles, object surface is divided into several small areas, each of

which will be filled with a particle. These particles can move only inside their area

regions and cannot move across to any other areas. With this technique, it can ensure

that particles always cover all over the object. Therefore, this can eliminate the

problem of insufficient particles when there is more than one object crashing on the

other sides at the same time.

After that, the attractive forces are equipped between particles on different

objects. Consequently, when objects come closer to each other, particles on each

object will also move along the surface into each other. The distance between two

particles can be observed. If the distance is shorter than a tolerable value, it can then

be concluded that there is a high possibility for a collision. The collision is then

determined precisely between the specific region.

Figure 3-1. A new algorithm developed for the collision detection

This method provides each particle to detect collision in each separated

region, prevent the agglomeration of particles in either side of the surface which leads

to the insufficient of particles to detect the collision when other objects come from

other directions. Moreover, it can also cut off the attractive forces between particles

on the same object which prevent the same problem in the conventional method.

 23

3.1 The number of particles

In order to ensure that there are enough particles to detect several collisions

at the same time, a suitable number of particles has to be set equal to the

approximated number of objects that can touch the surface. The basis of Kissing

number [18] is then applied to find this approximated value.

Kissing number or Newton number is the number of equivalent spheres

which can touch an equivalent sphere without any intersections. First proof was

produced in the 1993 by Conway and Sloane that the kissing number in three

dimensions was 12, as shown in Figure 3-2.

Figure 3-2. Kissing number.

It can be concluded that each sphere object can be collided by the same size

spheres with no more than 12 objects at the same time. Therefore, when there are only

equivalent sphere objects in the scene, 12 can be used as the number of particle for

each object.

However, when there are several sizes of spheres, this assumption might not

be longer sufficient. This principle is then applied by using the maximum number of

smallest sphere in the scene that can touch the object as the required number of

particles. This value can be estimated as follow:

Let X is the considered sphere object and Y is the smallest in the scene. The

whole arrangement is deposited into an imaginary sphere, as shown in Figure 3-3. A

lamp is then imagine at the centre of object X which cast shadows of surrounding

spheres onto inside of the imaginary sphere. Each circular shadow has an area of B

and cannot overlap. The number of sphere objects that have the same size as Y which

can touch the sphere object X can then be estimated as A/B when A is the surface area

of the imaginary sphere. Therefore, the number of particles needed for X is not more

than A/B.

 24

Figure 3-3. Circular shadow on the imaginary sphere.

This technique can also be used with the object that has other shapes apart of

sphere. However, a modification is required before this technique is applied. Each

object is approximated as a collection of spheres by analyzing model geometry which

can be classified into 2 cases which are

Convex object - In geometry, convex is an object which has no interior angle

greater than 180°. In this algorithm, each convex object is approximated as a sphere

as shown in Figure 3-4 a.

Concave object - In geometry, concave is an object which has interior angle

greater than 180°. In this algorithm, each convex object is approximated as a

collection of spheres as shown in Figure 3-4 b.

 After that, the suitable number of particles can be achieved for each part of

the object.

Figure 3-4. Approximated spheres for a. convex object, and b. concave object

 25

However, several numbers of particles are not necessary when there are only

two convex objects in the system. As there cannot be more than one collision between

a pair of convex objects at the same time, each object therefore requires only a

particle to detect the collision. As a result, it can be concluded that when the process

consist of two convex, only a particle is needed for each object.

3.2 Surface Partitioning

The procedure of this process is to partitioning surface area into several

regions. A particle is then put in each region to detect a collision in each separated

area. A partitioning method is firstly chosen in order to achieve great partition.

Most surface partitioning algorithms are based on the idea of classifying

surface element into groups as shown in Figure 3-5. Several classification techniques

have been proposed, for example, a technique proposed by J. Shen and D. Yoon [19].

The concept of this technique is to performing a breadth-first search to propagate over

the surface. First, vertex’s adjacency information is created which provides a list of

neighbor vertices for each vertex. An arbitrary surface element is randomly selected

as an initial vertex for the first group. Each neighboring element is then gradually put

into the group using the breadth-first search until reaching a specified condition. The

following vertex that cannot put in the group is subsequently set as an initial vertex

for the next partition. The breadth-first search is repeated over unprocessed regions

until all surface elements are covered by a partition.

Figure 3-5. Vertex classification

 26

However, this technique has to consider each factor separately which can be

complicated and inefficient. For this reason, the proposed algorithm employs an

alternative method in order to achieve effective partitioning process.

 LBG quantization is a grouping technique which classifies vector data into

several groups. The value of each group can be represented by its average value called

code vector as shown in Figure 3-6. As the input data can be unlimited dimension

vector, this technique can therefore efficiently partition object surface by concurrently

considering several factors such as vertex position, normal vector, and color, etc. Each

determinant is arranged into each vector dimension which, in this algorithm, there are

2 factors to consider as will be described later.

Figure 3-6. Vector quantization

According to the advantage of the LBG quantization, the proposed

algorithm applies this technique to partitioning object surface by classifying vertices

into groups. Each group is then assigned with a particle moving only between vertices

in the same group. This seems like object surface is divided into several area.

However, this technique can cause a problem when using with a concave

object. Some vertices might be classified into the same group even though there is no

path for the particle to move between these vertices. An example of this case is the

surface partitioning of a fork-shape object as shown in Figure 3-7. The vertices in the

circle as shown are set in the same partition since their position and normal vector are

close to each other. This can cause an error when there is another object crashing on

the position as the arrow shown in the figure.

 27

Figure 3-7. Improper partitioning of LBG with a concave object

Fortunately, each object is already divided into several convex parts as

described in the previous section. Therefore, a classification process using LBG

quantization is performed to each separated part of the object that was created as

described in Section 3.1. The number of partitions for each part can be simply found.

Since a particle is assigned to control in each region, the number of partitions for each

part is therefore being the same number as the required number of particles in the

corresponding part which is already calculated.

 As mentioned above, this algorithm considers 2 factors for classifying a

surface. Since some closed adjacent vertices should not be included to the same

partition due to their different planes as shown in Figure 3-8, the partitioning should

not be depended only on their positions, but should also on their normal vectors.

Therefore, each input vector for the classifying process is a 6-dimensional vector

composed of vertex coordinate and its normal vector.

Figure 3-8. Two close adjacent vertices having different normal vectors

 28

Classification Procedure Using LBG Quantization

According to the LBG quantization theory as described in Chapter 2, the

classification process can be performed by finding average value among all input

vector. The average value can split data into 2 groups which each group can be split

continuously until the required number of groups is achieveed. This process can be

described technically as follow.

1. Collect each vertex of the objects as a 6-dimensional vector form

 Source Vector:),,,,,(654321 vvvvvvVm =

Where 321 ,, vvv represent vertex position, in 3-dimensions, on the (x, y, z)

axes, while 654 ,, vvv represent its normal vectors.

The set of all source vectors is;

Training Sequence:),...,,()(21 MVVV=τ

2. Fixed ε > 0 to be a small value.

3. Find out the first initial code vector by fixing the number of the required

code vectors N = 1. Then calculate the average value of all source vector

and get;

 ∑
=

=
M

m
mV

M
C

1

*
1

1 (3-1)

After that, calculate the squared error distortion value at point C1
*;

∑
=

−=
M

m
mave CV

M
D

1

2*
1

* ||||
6

1 (3-2)

4. Classify source vector into several groups using the reference code

vector, Ci
*, as a divider and find the initial code vector of each group.

Repeat the procedures for all code vectors used as dividers,

For Ni ,...,2,1=
*)0()1(ii CC ε+= (3-3)

*)0()1(iiN CC ε−=+ (3-4)

For example, according to point *
1C , source vector can be classified into two

parts – and able to compute a code vector for each part as follows
*
1

)0(
1)1(CC ε+= (3-5)

 29

*
1

)0(
2)1(CC ε−= (3-6)

5. Double the N value by using

 N = 2 N

6. The iteration process to find the appropriate code vector

6.1 Classify the source vectors into the groups and compute a code vector

for each group as shown in 4th step. Source vector will be grouped by the

Nearest Neighbor Condition Principle. To find the nearest vector

elements, Euclidian distance is used as a measurement function.

Let iteration index i = 0

For m = 1, 2, …, M Find the lowest value of

 ∑
=

−=
6

1

2)()(),(
j

mjnjm
i

n VCVCd For n = 1, 2, …, N (3-7)

If)(
*
i

nC is a code vector that create the lowest value, then put it into the group.
)(

*)(i
nm CVQ = (3-8)

6.2 When grouping is finished, find a new code vector that get from the

average in each group.

 For all value Nn ,...,2,1=

∑

∑

=

=+ =
)(

)(

)(

)()1(

1
i

nm

i
nm

CVQ

CVQ
m

i
n

V
C (3-9)

6.3 Set 1+= ii

6.4 Calculate

∑
=

−=
M

m
mm

i
ave VQV

Mk
D

1

2)(||)(||1 (3-10)

6.5 Check the code vector whether it already stable by considering

ε≤
−
−

−

)1(

)()1(

i
ave

i
ave

i
ave

D
DD

 (3-11)

 30

If process still not meets the condition, it means that different between
)(i

nC and)1(−i
nC are too much and thus this cycle has to be repeated until

all code vectors is stable.

7. When code vectors are already stable, take it as reference (*
iC) for

splitting procedures in the next cycles.

Let i
aveave DD =*

For n = 1, 2, …, N Set)(* i
nn CC =

8. Repeat the 6th and 7th cycles until reaching the required number of code

vectors.

9. Classify source vector (mV) into each group as described in step 6.1.

Finally, the N groups of 6-dimentional vectors are achieved.

Each 6-dimensional vector is then converted back to a vertex element by

extracting the first 3 elements of the vector. Lastly, N groups of vertices, N

areas, can be achieved.

10. Put a particle onto a vertex in each group.

 31

Figure 3-9. Flow chart shows the partitioning

3.3 Interaction forces

As mentioned, the main idea of this algorithm is to imply each particle as a

sensor to determine the collision by checking the distance between particles. A

collision is concluded to be occurs when the distance between a pair of particle is less

than a tolerable value. It is obvious that when object come closer to one another, their

corresponding particles also have to be pulled into each other in order to decrease the

distance between this pair of particles. Therefore, attractive force is created between

particles on different objects to achieve this purpose. The attractive force corresponds

to the distance between particles as represented in the following equations. The force

increases when particles move closer to each other, decreases when particles move

farther and finally becomes zero when the distance between particles is longer than an

 32

effective radius of attraction. In this research, the effective radius of attraction is

preliminary calculated as the longest distance between initial positions of particles.

0),(=ji ppf When effRr ≥ (3-12)

 = 2

1
r

 When effRr < (3-13)

When),(ji ppf = Attractive force between particle i and j

 r = Distance between particles

 effR = Effective radius of attraction

When consider the forces acting on particle i, there are attractive forces from

other particles on the different objects as shown in Figure 3-10. Hence, the total force

which acts on particle i, is the vector summation of attractive forces on particle i

emanating from all other particles which can be represented in Equation 3-14.

 (3-14)

Figure 3-10. Attractive forces acts on particle

() ∑ =
i

N

j j i p p p f F ,

 33

3.4 Movement of particles

In the simplest case, particles are limited to be located only at vertices within

its specific area. Particles are assigned to move along the vertices to the neighboring

vertex which receives maximum force (maxV). This can ensure that each particle

always tend to move to a collision point.

As a particle’s movement can be computed by considering position of other

particles, moving a particle can cause effects to all others. Therefore, in order to

update particle position, the movement has to be computed for all particles at the

same time. In this algorithm, the movement of particles is computed frame-by-frame

by finding a destination vertex for each particle. However, a particle can not be

moved until all particle destinations are found. In the other word, the movement for

each particle can be computed by assuming that other particles have no movement.

After all destination vertices are found, all particles are moved to its corresponding

destination.

In order to choose a particle destination, we have to know the particle

position (Pi) and its neighboring coordinates (jiQ ,) as shown in Figure 3-11. The

forces acting on these vertices are calculated as described in the previous section.

These forces are then compared to each other to find the vertex which receives the

maximum force (maxV). This vertex cannot suddenly set as a destination vertex (idV ,)

since it might stays outside the boundary. Therefore, this vertex has to be checked

whether it belong to the same area as its original position as shown in Equation 3-15.

If the vertex is not outside the boundary, it is therefore set as the particle’s destination

as described in the Equation 3-16.

)()(max PQVQ = (3-15)

 max, VV id = (3-16)

This can be concluded that a particle will have no movement when the maxV

received is outside the area or when it is the same vertex as its original position (Pi)

which can be expressed as follow.

No movement []][|)()(max,max VVPQVQ idi =≠= (3-17)

 34

Figure 3-11. Particle position and its neighboring coordinates

However, when objects move very fast to each other, limiting particle to move

only one vertex each time might not sufficient enough to catch up with the collision.

A collision might not be detected since particles can not move to a collision point in

time as shown in Figure 3-12. As a result, this algorithm allows particles to move

continuously along the vertices until their positions become stable. The procedure of

this process can be described in the chart shown in Figure 3-13.

Figure 3-12. Undetected collision when particles can move only one vertex each time

 35

Figure 3-13. Flow chart shows the movement of particles

According to the flow chart shown in Figure 3-13, the movement of all N

particles can be described as follow. Each particle has to be considered to find its

destination vertex. First, a particle position (iP) is set as the first destination vertex

(idV ,). From this position, its neighboring vertices (jiQ ,) can be found. The force

acting on these vertices, including at the particle position, are then compared to each

other. The vertex which receive maximum force (maxV) is checked whether it belong

to the same area as the particle position. If it is still inside the boundary, this vertex is

then set as a new destination vertex (idV ,). However, if it is outside the boundary, the

destination vertex is not updated and therefore still is the same vertex as the particle

position (iP). This procedure is repeated until the destination vertices for all N

 36

particles are found. After that, particle position can be updated by moving all N

particles to its corresponding destination. For each movement loop, the process is

checked for the stable state. When it becomes stable, collision is checked and the

frame is finally updated.

3.5 Collision Distance

 For each collision detection process, the attractive forces between particles

ipF have to be calculated until stable state is reached. Then measure the distance

between particles that have the strongest force which is a pair of the closest particles.

Finally, the distance is compared to the collision distance value (μ) which is the

average distance between object vertices as described in the following equations.

Given each vertex of the objects is a 6-dimensional vector

),,,,,(654321 vvvvvvVm =

And the set of all vertices is

),...,,(21 MVVV=τ

The collision distance value can be calculated from

() τμ ∈−= jiji VVVVavg ,| (3-18)

If the distance is shorter thanμ , which means there is high possibility that

the collision occurs, collision is then precisely checked at the corresponding area.

3.6 Repartition Checking

 As general objects used in computer graphics do not deform noticeably,

repartitioning does not have to be processed every time the object deforms. However,

when the object greatly deforms, some area might become too large so that only one

particle is not enough for detecting collisions. Hence, object surface should be

repartitioned when the deformed area is larger than an acceptable area (*A).

 The investigation of each area can be achieved by measuring the distance

along the vertices from a particle to the edge around that area. In this research, the

measuring is performed in four directions, +X, -X, +Y and –Y, as shown in Figure 3-

 37

14. A rectangular area, A , can be estimated as shown in the figure. This approximated

area is then compared to the acceptable area (*A) which, in this algorithm, is set to the

largest approximated rectangular area among of all initial areas. If the computed area

is larger than the acceptable value, the repartitioning process for the entire object is

then required.

Figure 3-14. Four directions used to find size of the area.

The distance from particle to the edge of each area, i, can be calculated as follow.

1. Receive a particle position (iP)

2. Set the particle position as the first reference point (*
iP)

ii PP =*

 Set initial distance S = 0

3. Find neighboring vertices around the reference point (*
ijP).

 *
ijP when j = 1,2,…,J

 J = number of the vertices connected to the reference vertex (*
iP)

Find vertex q , *
ijPq = , that makes the lowest angle between ijV and unit vector

along the +X axis of the particle (X+). (or X− , Y+ , Y−) When ijV is the unit

vector that has the direction away from the origin to any vertex, *
ijP .

The angle θ is calculated from

 θcos|||| BABA =• (3-19)

 38

||||

cos 1

BA
AB−=θ (3-20)

)()(cos 1 XV ijij +⋅=∴ −θ (3-21)

Figure 3-15 shows a tracking procedure along +X axis by following vertices in

the +X direction. First, neighboring vertices are found. At the vertex *
11P , the angle

between vector ijV and +X axis is minimum so that *
11P is set as vertex q.

Figure 3-15. Tracking along +X axis

4. Increase the distance by the distance between the reference vertex and the

vertex q received in the 3rd procedure.

|| *
iPqSS −+= (3-22)

5. Set vertex q as the next reference vertex.

qPi =*

6. Repeat the 3rd to the 5th procedure until the computed reference vertex out of

the considered area.

iCqQ ≠)(

7. Also check out, with the same method, for the rest directions +X, +Y and –Y.

(Change +X in the 3rd procedure to –X, +Y and –Y)

 39

8. Estimate a rectangular area compared to the acceptable area (*A). If the area is

larger, then the repartition required.

*AA >

Figure 3-16 shows a method to find the distance along +X axis by

following the position along vertex that gives minimum angle to the +X axis

until that vertex does not stay in the considering border, shown as point A in

Figure 3-16. The procedures are stop and the summation of all distances, shows

as bold lines, is then computed. A rectangular area can be estimated and

compared to the acceptable area (*A) to see whether the repartition process is

required.

Figure 3-16. The distance estimation along +X axis

 40

Figure 3-17. Flow chart shows the repartition checking procedures

 41

Comparison between the original particle-based collision detection

algorithm [3] and the proposed algorithm are summarized as shown in Table 4-1.

Table 3-1. Comparison between original particle-based and the proposed algorithm

Original particle-based [3]

Proposed algorithm

Number of particle is arbitrary set. Number of particles is reasonably
 chosen by applying the Kissing number.

Particles are randomly placed at the Particles are suitably dispersed at the
initialization. initialization.

Number of particles is fixed. Number of particles can be adjusted to
 suit the deformed object.

Particles might not disperse well in Particles always cover all over the
some cases. object.

CHAPTER 4

ALGORITHM ANALYSIS

 A collision detection algorithm has been clearly proposed as described in the

previous chapter. However, some evidences are still required in order to be convinced

that the proposed algorithm can efficiently detect the collision. This chapter therefore

provides some substantiation as shown in section 4.1. Furthermore, it also gives an

analysis of the time complexity which shows that the algorithm can be processed in

polynomial time.

4.1 Correctness

 This section provides some proofs to verify the practicality of the proposed

algorithm. The proofs show that particles are always moved to the collision points.

Hence, the collision can certainly be detected as required.

 Process can be classified into several cases depends on kind of objects and the

number of objects in the system. Here, the process is considered as six cases.

- Two convex objects which have the same size.

- Several convex objects which have the same size.

- Several convex objects which have non-equivalent size.

- Two concave objects.

- Several concave objects.

- Both convex and concave objects.

 43

Table 4-1. Six possible cases

Case

Number of objects

Kind of objects

Size

1

2

Convex

Equivalent

2

>2

Convex

Equivalent

3

>2

Convex

non-equivalent

4

2

Concave

 -

5

>2

Concave

 -

6

>2

convex, concave

 -

Note: symbol “ - ” refers to not specify (Both equivalent and non-equivalent can be considered as

the same case.)

The details of each case are summarizes in Table 4-1. Each of these six cases

is considered as follow.

4.1.1 Case 1 – two convex objects which have the same size.

This is the simplest case since there are only two objects which also have the

same size. In the proof, sphere object is used to represent a convex object as shown

below.

Proof: Given two equivalent spheres, object A and object B, touching each other at

point C as shown in Figure 4-1. On each there are a particle which suppose to be at

point a for object A, and point b for object B. A collision can be detected by moving

these particles into each other to the collision point C.

Figure 4-1. Two equivalent spheres touching at point C.

 44

 As described in section 3.4, Movement of particles, it can be concluded that

each particle tends to move to the vertex which receives maximum force. This force

can be computed by taking the force equation shown in section 3.3 which stats that

2

1
r

F =

When F is the force between particles

 r is the distance between particles

This equation implies that the force between particles (F) becomes maximum

when the distance between particles (r) is a minimum value. As a result, particles are

therefore moved to the vertices which the distance between these vertices is shortest.

This can be concluded that particles are always moved to a collision point so that a

collision between two convex objects which have the same size is absolutely detected

as claimed. #

4.1.2 Case 2 - several convex objects which have the same size.

Proof: Given three touching spheres with the equivalent size, each diameter is equal

to D . In this case, there are more than two objects in the system so that partitioning

has to be applied. As these spheres have the same size, Kissing number, 12, is used as

the number of particles.

 45

Figure 4-2. Three touching spheres.

Particles are classified into six sets as shown in Figure 4-3 which will be

considered separately.

Figure 4-3. Six sets of particles

Set 1 - Particle between plane Ⅰ and Ⅱ: 1,AP , 2,AP , 3,AP , 4,AP , 5,AP , 6,AP

Set 2 - Particle between plane Ⅱ and Ⅲ: 7,AP , 8,AP , 9,AP , 10,AP , 11,AP , 12,AP

Set 3 - Particle between plane Ⅲ and Ⅳ: 1,BP , 2,BP , 3,BP , 4,BP , 5,BP , 6,BP

Set 4 - Particle between plane Ⅳ and Ⅴ: 7,BP , 8,BP , 9,BP , 10,BP , 11,BP , 12,BP

Set 5 - Particle between plane Ⅴ and Ⅵ: 1,CP , 2,CP , 3,CP , 4,CP , 5,CP , 6,CP

Set 6 - Particle between plane Ⅵ and Ⅶ: 7,CP , 8,CP , 9,CP , 10,CP , 11,CP , 12,CP

Let the effective radius of attraction (effR) is equal to D . The movement of

each particle set can be considered as follow. Note that, as shown below, the

movement of particles does not have to be considered in the right sequence since the

movement process has to be repeated until all particles become stable.

Set 1

There are only particles between plane Ⅱ and Ⅳ, particles in set 2 and 3,

which can be in the area of effR . However, particles in set 2 are not considered since it

is on the same object as particles in set 1. As a result, the movement of particles in set

1 can be computed by considering only particles in set 3. As shown in the figure,

particles in set 3 can either be in the effR area or be out of the effR area.

 46

Consequently, each particle in set 1 can either move to the +X direction or it can have

no movement.

Set 6

There are only particles between plane Ⅳ and Ⅵ, particles in set 4 and 5,

which can be in the area of effR . However, particles in set 5 are not considered since it

is on the same object as particles in set 6. As a result, the movement of particles in set

6 can be computed by considering only particles in set 4. As shown in the figure,

particles in set 4 can either be in the effR area or be out of the effR area.

Consequently, each particle in set 6 can either move to the -X direction or it can have

no movement.

Set 2

There are only particles between planeⅠ and Ⅴ, particles in set 1, 3 and 4,

which can be in the area of effR . However, particles in set 1 are not considered since it

is on the same object as particles in set 2. As a result, the movement of particles in set

2 can be computed by considering only particles in set 3 and 4. As shown in the

figure, particles in set 3 and 4 are on the right hand side of particles in set 2.

Therefore, particles in set 2 are moved to +X direction until the end of their area.

Set 5

There are only particles between plane Ⅲ and Ⅶ, particles in set 3, 4 and 6,

which can be in the area of effR . However, particles in set 6 are not considered since it

is on the same object as particles in set 5. As a result, the movement of particles in set

5 can be computed by considering only particles in set 3 and 4. As shown in the

figure, particles in set 3 and 4 are on the left hand side of particles in set 5. Therefore,

particles in set 5 are moved to -X direction until the end of their area.

Set 3

There are only particles between planeⅠ and Ⅵ, particles in set 1, 2, 4 and 5,

which can be in the area of effR . However, particles in set 4 are not considered since it

is on the same object as particles in set 3. As a result, the movement of particles in set

3 can be computed by considering only particles in set 1, 2 and 5. As shown in the

 47

figure, there are 12 particles which pull particles in set 3 to the –X direction, while

there are only 6 particles which pull this set of particles to the +X direction. In

addition, it is closer to Set 2 than Set 5 so that Set 2 can take more effects on this set

of particles. Therefore, particles in set 3 are moved to -X direction until the end of

their area.

Set 4

There are only particles between plane Ⅱ and Ⅶ, particles in set 2, 3, 5 and 6,

which can be in the area of effR . However, particles in set 3 are not considered since it

is on the same object as particles in set 4. As a result, the movement of particles in set

4 can be computed by considering only particles in set 2, 5 and 6. As shown in the

figure, there are 12 particles which pull particles in set 3 to the +X direction, while

there are only 6 particles which pull this set of particles to the -X direction. In

addition, it is closer to Set 5 than Set 2 so that Set 5 can take more effects on this set

of particles. Therefore, particles in set 4 are moved to +X direction until the end of

their area.

Figure 4-4. Three touching spheres after all movement of particles.

 48

Finally, particle position can be updated as shown in Figure 4-4. Particles are

moved to collision points so that the collision at point 1C and 2C can be detected.

Therefore, it can be concluded that collision between several convex objects which

have the same size can be detected as claimed. #

4.1.3 Case 3 - several convex objects which have non-equivalent size.

Proof: Given three touching spheres which its diameter equal to D ,
2
D and D

respectively.

Figure 4-5. Three touching spheres.

Suppose that partitioning was applied and particles are suitably dispersed

according to the algorithm shown in section 3.1 and 3.2. Particles are classified into

six sets as shown in Figure 4-6 which will be considered separately.

Figure 4-6. Six sets of particles

Let the effective radius of attraction (effR) equal to
2
D . The movement of each

particle set can be considered as follow.

Set 1

 49

There are only particles in set 2 which can be in the area of effR . However,

these particles are on the same object as particles in set 1 so that this will not takes

any effect on particles in set 1. As a result, particles in this set therefore have no

movement.

Set 6

There are only particles in set 5 which can be in the area of effR . However,

these particles are on the same object as particles in set 6 so that this will not takes

any effect on particles in set 6. As a result, particles in this set therefore have no

movement.

Set 2

There are only particles in set 1, 3 and 4 which can be in the area of effR .

However, particles in set 1 are not considered since it is on the same object as

particles in set 2. As a result, the movement of particles in set 2 can be computed by

considering only particles in set 3 and 4. As shown in the figure, both particles in set 3

and 4 are on the right hand side of particles in set 2. Therefore, particles in set 2 are

moved to +X direction until the end of their area.

Set 5

There are only particles in set 3, 4 and 6 which can be in the area of effR .

However, particles in set 6 are not considered since it is on the same object as

particles in set 5. As a result, the movement of particles in set 5 can be computed by

considering only particles in set 3 and 4. As shown in the figure, both particles in set 3

and 4 are on the left hand side of particles in set 5. Therefore, particles in set 5 are

moved to -X direction until the end of their area.

At this state, particle position can be shown in Figure 4-7.

 50

Figure 4-7. Updated figure of three touching non-equivalent spheres.

Set 3

There are only particles in set 2, 4 and 5 which can be in the area of effR .

However, particles in set 4 are not considered since it is on the same object as

particles in set 3. As a result, the movement of particles in set 3 can be computed by

considering only particles in set 2 and 5.

According to the force equation shown in section 3.3, the force acting on each

particle can be considered as two directions, force which pull particle to +X direction

and –X direction.

 ()∑=+ 2

1

xy
F x and ()∑=− 2

1

xz
F x (4-1)

when x is coordinate of particle in set 3, y is coordinate of particle in set 5, and

z is coordinate of particle in set 2.

()∑

=
+ =

6

1
2

,,

1
j

jCiB

X
PP

F

() () () () () ()26,,

2

5,,

2

4,,

2

3,,

2

2,,

2

1,,

111111

CiBCiBCiBCiBCiBCiB PPPPPPPPPPPP
+++++= (4-2)

()∑

=
− =

12

7
2

,,

1
k

kAiB

X
PP

F

() () () () () ()212,,

2

11,,

2

10,,

2

9,,

2

8,,

2

7,,

111111

AiBAiBAiBAiBAiBAiB PPPPPPPPPPPP
+++++= (4-3)

As shown in the figure, particles in set 3 are closer to set 2 than set 5 so that

particles in set 2 can take more effects as described below.

 51

As 1,,7,, CiBAiB PPPP < , 2,,8,, CiBAiB PPPP < , 3,,9,, CiBAiB PPPP < , 4,,10,, CiBAiB PPPP < ,

5,,11,, CiBAiB PPPP < and 6,,12,, CiBAiB PPPP < , all terms of Equation 4-3 is therefore

greater than in Equation 4-2 so that

XX FF +− >

Therefore, particles in set 3 tend to move to –X direction. These particles are

moved away from other particles on the right hand side. As a result, particles in set 3

are moved continuously to -X direction until the end of their area without passing any

stable position.

Set 4

There are only particles in set 2, 3 and 5 which can be in the area of effR .

However, particles in set 3 are not considered since it is on the same object as

particles in set 4. As a result, the movement of particles in set 4 can be computed by

considering only particles in set 2 and 5. As shown in the figure, particles in set 4 are

closer to set 5 than set 2 so that particles in set 5 can take more effects according to

the proof shown for set 3. Therefore, particles in set 4 tend to move to –X direction.

These particles are moved away from other particles on the left hand side. As a result,

particles in set 4 are moved continuously to +X direction until the end of their area

without passing any stable position.

Figure 4-8. Three touching spheres after all movement of particles.

After all movement of particles is computed, particle position is finally

updated as shown in Figure 4-8. Particles are moved to collision points so that the

collisions at point 1C and 2C can be detected. Therefore, it can be concluded that

 52

collisions between several convex objects which have non-equivalent sizes can be

detected as claimed. #

4.1.4 Case 4 - two concave objects.

This case can be easily discussed since each concave object can be

approximated as a group of convex objects. In the proof, U-shape object is used to

represent a concave object as shown below.

Proof: Given two touching concave objects, object A and object B, as shown in Figure

4-9.

Figure 4-9. Two touching concave objects.

As described in section 3.1 and 3.2, each concave object has to be considered

as a combination of convex objects. For the given case, each concave object is divided

into 3 convex objects as shown in figure 4-10.

 53

Figure 4-10. Each concave is considered as a combination of three convex parts.

This seems like there are 6 convex objects in the system. The algorithm is

processed by checking a collision between each pair of convex object. This can be

performed as discussed in case 3. Therefore, it can be concluded that collision

between two concave objects can be detected as claimed. #

4.1.5 Case 5 - several concave objects.

Proof: As described in case 4, each concave object is considered as a combination of

convex parts. A collision is then checked between each pair of convex objects which

can be performed as discussed in Section 4.1.3. Therefore, it can be concluded that

collision between several concave objects can be detected as claimed. #

4.1.6 Case 6 - both convex and concave objects.

Proof: As described in case 4, the concave object is considered as a combination of

convex parts. A collision is then checked between each pair of convex objects which

can be performed as discussed in Section 4.1.3. Therefore, it can be concluded that

collision between convex and concave objects can be detected as claimed. #

 All the proofs above show that, on each collided object, there certainly be at

least a particle which is attracted to a collision point. Consequently, there always be a

pair of particles at the vertices which closest to the collision point. This can ensure

that the proposed algorithm will not miss any collision and therefore can efficiently

detect the collision.

 54

4.2 Complexity analysis

Complexity of the proposed algorithm corresponds to the computational time

of 3 processes which are the partitioning process, the collision detection process and

the repartition checking process. First, let M be the number of vertices, and N be the

number of particles or the number of partitions. The algorithm can be analyzed as

follow.

4.2.1 Surface partitioning

 The number of required particles for each object can be estimated by checking

every vertex for critical points, so that the computation takes time)(MO where M is

number of vertices.

 The surface partitioning can be performed by applying LBG vector

quantization. Each iteration process is computed by considering M vertices which

take time ()O M . Given the iteration steps equal to k, so that the whole iteration

process has the complexity of ()O kM . Consequently, for N partitions, the complexity

is ()O kMN . However, in the worst case, the number of particles (N) can become

equal to the number of vertices. Therefore, the complexity for the worst case

is 2()kMΘ . Assume that the iteration step (k) is a constant value, so that the

computational time is therefore equal to 2()O M .

 However, the partitioning process does not have to be computed every time

object deforms as it is the preprocessing procedure. Therefore, the computational time

for this process can be ignored and the complexity of the proposed algorithm can be

estimated from other two following processes.

4.2.2 Collision detection

 This process consists of a movement process and a collision checking process.

The computational time for each process can be described as follow.

 In the movement process, each particle can continuously move along vertices

until its destination vertex is outside the boundary. The number of steps which each

particle can move is approximated by considering the area of each partition. Assume

that vertices are equally distributed so that the number of vertices in each partition

 55

is M
N

. Hence, the movement of each particle can be computed with a complexity of

⎟
⎠
⎞

⎜
⎝
⎛

N
MO . This process is performed for N particles so that the complexity of overall

movement process is ()O M .

 For the collision checking, the distance between each pair of particles is

determined on the verge of collision. This can be performed with a complexity

of 2()O N .

 Generally, the number of required particles (N) is much less than the number

of vertices (M) as show in the equation.

N M<< (5-1)

 However, it can becomes the worst case when the object has very complex

geometry which its number of particles (N) is nearly to the number of vertices (M).

Therefore, in the worst case, the collision is checked with 2()MΘ .

4.2.3 Repartition checking

 The area of each partition is investigated in order to determine whether a

repartition should be performed. The area can be computed by searching along the

vertices to the edge around. Approximately, the number of vertices in each partition is

M
N

 so that the computational time for estimating each area is ⎟
⎠
⎞

⎜
⎝
⎛

N
MO . Therefore,

N area can be estimated with a complexity of ()O M .

 As mention above, the complexity of the proposed algorithm can be computed

by considering the partitioning and the detection process. The summation time for

overall process can be analyzed as shown below.

 T = collision detection + repartition checking

 = (movement of particle + collision checking) + repartition checking

 Tworst =
2(() ()) ()O M O M O M+ +

 = 2()O M

 56

 In this algorithm, the process becomes worst case when using complex object

which has the number of particle nearly to the number of vertices. However, most

objects used in computer graphic is not as much complex as mention. The number of

particles is typically much less than the number of vertices. Therefore, it should be

concluded that the complexity of this algorithm is 2()O N when N is the number of

particles.

CHAPTER 5

DISCUSSION CONCLUSION AND FUTURE WORK

 The algorithm still needs improvement in some points. The discussion of this

research, conclusion, and future work are summarized in the sections that follow.

5.1 Discussion

This section provides a discussion of the proposed algorithm. Several related

points will be thoroughly discussed which can be analyzed as follow.

5.1.1 Problem of the complex topology

 As described in section 3.1, the number of particles can be computed depends

on size of the smallest part in the scene. If the smallest part is very small compared to

others as shown in Figure 5-1, the computed number of particles might be exceeded

which can slow down the process. The figure shows some particles are unnecessarily

to detect a collision.

Figure 5-1. Particles are unnecessarily generated due to a special case of topology.

Moreover, when an object has very complex topology such as an object which

has several branches shown in Figure 5-2, the object is therefore approximated into

several parts. Hence, a great number of particles are added to this process which can

cost too much computational time. It can be concluded that the proposed algorithm

might have less efficiency when using with an object having complex topology.

 58

Figure 5-2. An object which has complex topology.

5.1.2 Problem of partitioning symmetry object centered at the origin

LBG quantization is a classification technique which has not been proposed to

be applied with a surface partitioning. As the vertex classification due to this

technique does not consider the connectivity between vertices, the computed partition

might not suitably represent object surface. However, in the proposed algorithm, this

problem can be eliminated by dividing each concave part into several convex parts so

that proper partitions are consequently achieved.

Besides, LBG quantization can not partition a symmetry object centered at the

origin as shown in Figure 5-3 a. According to the LBG theory described in Section

2.1.3, an average of all 8 vertices in the figure is (0,0,0). This average value has to be

adjusted in order to split vertex data into 2 groups. Two code vectors for two groups

can be found;)0,0,0)(1(ε+ and)0,0,0)(1(ε− , which both are (0,0,0) so that any data

can not be split. Therefore, in order to efficiently perform a surface partitioning

process, the input symmetry object’s center should not be placed at the origin. As

shown in Figure 5-3 b, the same cube which its center stays away from the origin. The

average can be found which can split input vertices into two groups as required.

 59

Figure 5-3. (a) a cube centered at the origin, (b) a cube centered away from the origin.

5.1.3 Problem of the improper effective radius of attraction (effR)

According to the interaction force equation shown in Section 3.3, the existence

of force depends on the effective radius of attraction (effR). If it is set to a small value,

the force might take effect lately. However, this does not affect the process much

since particles can move continuously. A collision still can be efficiently detected

even when the effR is set to a small value. Nevertheless, an error can be occurred if

effR value is too small. When an object comes too close and cause a collision, the

force are still not calculated due to a very small value of effR so that a collision can

not be detected. As shown in Figure 5-4, a distance between particle A and B is longer

than a specified effR so that forces can not be calculated and particles can not move to

detect the collision.

Figure 5-4. Undetected collision due to a very small value of effR .

 60

 In order to eliminate this problem, the effective radius of attraction (effR) is set

not smaller than the collision distance value (μ).

Proof: Given two touching sphere objects, object A and object B, as shown in Figure

5-5.

Figure 5-5. Two touching sphere objects.

 Suppose the particle of object A is at point a and the particle of object B is at

point b. Let the distance between these particles (r) is shorter than a collision

distance value (μ) which can be expressed as follow.

Given: r μ ε= + (5-1)

When ε is a small positive value: 0ε > (5-2)

 According to a regulation in the proposed algorithm, a collision can be

detected only if the distance between a pair of particle (r) is shorter than a collision

distance value (μ) as shown in the following equation.

 Collision is detected when: r μ< (5-3)

 In the given case, r can be replaced by μ ε+ according to Equation 5-1

μ ε μ+ <

0ε < (5-4)

 The contrast between Equation 5-2 and 5-4 shows that particles at point a and

b can not detect the collision since r is longer thanμ .

In order to correctly report the collision, particles have to be moved closer to

the collision point, c, which can reduce the r value to be smaller thanμ . However, the

 61

movement can be occurred only if r is shorter than the effective radius of attraction

(effR) as show in this equation.

Movement is occurred when: effr R< (5-5)

For this case, r can be replaced by εμ + as shown in Equation 5-1 which

implies,

effR<+ εμ

μ>∴ effR (5-6)

This can be concluded that the effective radius of attraction (effR) should be

set not smaller than the collision distance value (μ). #

However, using too long effR is also not a good answer. Forces have to be

computed even when objects are very far away from each other which can

unnecessarily cost much computational time.

5.1.4 Problem of the improper collision distance value (μ)

When there is a collision between objects, particles on its corresponding object

do not have to be collided since particles can not stay on edges. Therefore, a collision

distance value (μ) is set in order to determine a distance between particles on the

verge of collision. If it is too small, a collision might not be detected.

The collision distance (μ) should not be set smaller than half of the average

edge length (d). The proof can be discussed as follow.

 62

Proof: Given two touching objects, object A and object B, as shown in Figure 5-6.

Figure 5-6. A collision on object edge.

Suppose a vertex of object A is collided to the edge of object B at point a.

Particle of object A is at point a, and particle of object B is at point b which is the

vertex closest to collision point a.

Assume that every edge has the same length which equal to d . The distance

between these particles (r) is therefore not more than half of the edge length.

2
dr ≤ (5-7)

As mention before, a collision can be detected when the distance between

particles (r) is shorter than a collision distance value (μ).

Collision is detected when: μ<r

As shown in Equation 5-7, r can be replaced by
2
d which gives

2
d

>μ (5-8)

Therefore, a collision can be detected when setting the collision distance (μ)

not smaller than half of the edge length. #

 63

However, if it is set to a very high value, the process might incorrectly report a

collision. As shown in Figure 5-7, a collision is reported even though there is no

collision.

Figure 5-7. An incorrectly report of collision due to a high value of collision distance.

 5.1.5 Problem of the improper acceptable area (A*)

 In the repartition checking process, the acceptable area is set in order to

determine whether a repartition is required. A decision on repartitioning is directly

depended on the value of acceptable area. If the acceptable area is set to a very high

value, a repartition might not occur even when some areas become too large.

Consequently, a particle is not enough to cope with the extensive area. However, if

the acceptable area is very small, the process might perform a repartition almost every

time the deformation occurred. This can cost a very high computational time which is

not desired for the process.

 5.1.6 Problem of object deformation

 A repartition is determined by considering object deformation. If the

deformation affects the correctness of detection, then a repartitioning process should

be applied in order to be sure that object is always suitably partitioned. The proposed

algorithm considers only on the area of deformed partition. A repartition is required

when there is at least one area larger than a specified value which only one particle is

not enough to detect many collisions at the same time. However, this algorithm might

have less efficiency when there is an object part changes its topology into concave as

shown in Figure 5-8. If there are more than one object collide that part at the same

time, a collision can not be detected due to the insufficient of particle.

 64

Figure 5-8. Deformation case that causes the particle deficiency to detect the collision.

Moreover, a collision might not be detected when the object deforms until few

edge become longer than a collision distance value (μ). As shown in Figure 5-9,

particle A can not move to detect a collision since it can not stay on the extensive

edge.

Figure 5-9. Undetected collision due to a very long edge.

In addition, deformation by changing the number of vertices is also not

considered in this algorithm. Increasing number of vertices can cause some area to

lack of particles. As the increased vertices have not been classified into any partition,

particles therefore can not move to these vertices. Hence, detection might fail when

there is a collision at one of these increased vertices. Also, decreasing number of

vertices can cause a problem. If there is a particle positions on the removed vertex,

this particle will also be eliminated. Therefore, there is no longer being any particle to

detect collision in this corresponding area.

 65

5.1.7 Complexity discussion

As described in Section 4.2, the complexity to perform a detection process in

this algorithm is O(N2) when N is the number of particles, while the complexity of a

brute force collection detection is O(M2) when M is the number of vertices. The

required number of particles rather depends on the number of vertices as shown in the

following equation.

MN γ= (5-9)

When γ is a relation variable can vary from 0 to 1 depends on size and

topology of the object. It is obvious that, the efficiency of this algorithm is reverse to

the value ofγ . In the case which γ is nearly 0, the required number of particles in this

algorithm is therefore much lower than the number of vertices. Also, this can cost

much lower computational time. However, this γ value can be nearly to 1 if its

topology is extremely complex as described in Section 5.1.1. A great number of

particles are added into the process which can cause very high computational time.

Therefore, it can be concluded that the proposed algorithm might not appropriate for

very complex structure.

 66

5.2 Conclusion

 This research presents a collision detection algorithm for deformable objects

using particles as collision checkers. The proposed algorithm provides a particle

separately to each corresponding area by applying LBG quantization to partition

object surface. Attractive force is assigned between particles on different object in

order to pull them into each other when there tend to be a collision. A distance

between each pair of particle is investigated and compared with a tolerable value on

the verge of collision. After the deformation of objects, the acceptance area is

monitored so that the proper number of particles can be altered by completing the

repartitioning process.

 The algorithm analysis gave in the previous chapter shows that this particle-

based collision detection algorithm can efficiently detect a collision with the

complexity of O(N2) , when N is the number of particle.

5.3 Future Work

The proposed collision detection algorithm is just a preliminary step and still

need development especially in the repartition checking process. The repartition

checking of this algorithm is merely based on the size of deformed area while other

factors can also affect the appropriated partition as described in Section 5.1.6. In order

to handle topological deformation, the considering of topological transformation

should be applied. Also, the number of vertices and edge length should be

investigated so that an appropriate partition can be achieved at all time.

Moreover, applying the splitting method to find initial code vector for the

partitioning process can cause the number of partitions restricted to 2n value, where n

is a counting number. Therefore, the partitioning process can be developed by trying

another method to initiates code vector which can gives more adaptive number of

partitions.

 67

REFERENCES

[1] M. C. Lin and S. Gottschalk; Collision detection between geometric models: a

survey, Proceedings of IMAConference, Mathematics of Surfaces VIII,

1998.

[2] M. Teschner, S. Kimmerle, B. Heidelberger, G. Zachmann, L. Raghupathi, A.

Fuhrmann, M.-P. Cani, F. Faure, N. Magnenat-Thalmann, W. Strasser, P.

Volino; Collision Detection for Deformable Objects, EUROGRAPHICS

2004.

[3] M. Senin , N. Kojekine , V. Savchenko and I. Hagiwara; Particle-based

Collision Detection, EUROGRAPHICS 2003. Short Presentations.

[4] A. Gersho and R. M. Gray, Vector Quantization and Signal Compression.

Boston, MA: Kluwer, 1991.

[5] H. Abut, R.M. Gray and G. Rebolledo, "Vector Quantization of Speech and

Speech-Like Waveforms," IEEE Transactions on Acoustics, Speech and

Signal Processing, Vol. ASSP-30, pp. 423-435, June 1982.

[6] M. Qasem; Vector Quantization [www.geocities.com/mohamedqasem]

[7] Y. Linde, A. Buzo, and R. M. Gray, “Analgorithm for vector quantizer design”,

IEEE Trans. Communications., vol. 28, pp. 84-95, Jan. 1980.

[8] A. Martin; Particle System

[9] R. Parent, Computer Animation: Algorithms and Techniques, Morgan

Kaufmann, 2001.

[10] P. Hubbard; Approximating polyhedra with spheres for time-critical collision

detection, ACM Transactions on Graphics (TOG), 15(3):179–210, 1996.

[11] I. Palmer and R. Grimsdale; Collision detection for animation using sphere-

trees, Computer Graphics Forum, 14(2):105–116, 1995.

[12] S. Quinlan; Efficient distance computation between non–convex objects,

Proceedings of IEEE International Conference on Robotics and Automation

’94), 3324–3329, 1994.

 68

[13] N. Bobic; Advanced Collision Detection Techniques by, 2000

[www.gamasutra.com]

[14] J. D. Cohen, M. C. Lin, D. Manocha, and M. Ponamgi; I-COLLIDE: an

interactive and exact collision detection system for large-scale environments,

Proceedings of the Symposium on Interactive 3D Graphics, 189– 196, 1995.

[15] M. Held, J. T. Klosowski, and J. S. B. Mitchell; Evaluation of collision

detection methods for virtual reality fly-troughs, Proceedings Seventh

Canadian Conference on Computational Geometry, 205–210, 1995.

[16] J. Lander; When Two Hearts Collide: Axis-Aligned Bounding Boxes

,2000 [www.gamasutra.com]

[17] S. Gottschalk, M. C. Lin, and D. Manocha; OOBTree: A hierarchical structure

for rapid interference detection, ACM Computer Graphics (Proc. of

SIGGRAPH’96), 171–180, 1996.

[18] J. H. Conway and N. J. A. Sloane; The Kissing Number Problem" and "Bounds

on Kissing Numbers." §1.2 and Ch. 13 in Sphere Packings, Lattices, and

Groups, 2nd ed. New York: Springer-Verlag, pp. 21-24 and 337-339, 1993.

[19] J. Shen and D. Yoon: A New Scheme for Efficient and Direct Shape

Optimization of Complex Structures represented by polygonal meshes,

International Journal for Numerical Methods in Engineering, Vol 58, No. 4.

pp. 2201-2223, 2003.

 69

BIOGRAPHY

Name-Last Name: Miss Nida Saenghaengtham

Birth: June 21, 1982, Bangkok, Thailand.

Education: B. Eng., Chemical engineering, Chulalongkorn University (2003)

Publications:

1. Nida Saenghaengtham and Pizzanu Kanongchaiyos. 2004. Collision

Detection Algorithm for Deformable Objects using Particle. The 1st

Thailand Computer Science Conference (ThCSC 2004), December,

Kasetsart University, Bangkok, Thailand.

2. Nida Saenghaengtham and Pizzanu Kanongchaiyos. 2006. A Collision

Detection Algorithm Using Particle Sensor. 2006 IEEE International

Conference on Robotics, Automation & Mechatronics (RAM2006), June,

Bangkok, Thailand.

3. Nida Saenghaengtham and Pizzanu Kanongchaiyos. 2006. Using LBG

Quantization for Particle-based Collision Detection Algorithm. Journal of

Zhejiang University SCIENCE, June, Zhejiang, China.

	COVER (THAI)
	COVER (ENGLISH)
	ACCEPTED
	ABSTRACT (THAI)
	ABSTRACT (ENGLISH)
	ACKNOWLEDGMENTS
	CONTENT
	CHAPTER 1 INTRODUCTION
	1.1 Background and Problem Statement
	1.2 Objectives
	1.3 Scopes of Study
	1.4 Research Procedure
	1.5 Expected Benefits
	1.6 Thesis Structure
	1.7 Publications

	CHAPTER 2 THEORETICAL BACKGROUND AND RELATED WORKS
	2.1 Theory
	2.2 Related works

	CHAPTER 3 PROPOSED ALGORITHM
	3.1 The number of particles
	3.2 Surface Partitioning
	3.3 Interaction forces
	3.4 Movement of particles
	3.5 Collision Distance
	3.6 Repartition Checking

	CHAPTER 4 ALGORITHM ANALYSIS
	4.1 Correctness
	4.2 Complexity analysis

	CHAPTER 5 DISCUSSION CONCLUSION AND FUTURE WORK
	5.1 Discussion
	5.2 Conclusion
	5.3 Future Work

	REFERENCES
	VITA

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

