แผนการจัดการและกระบวนการนำโลหะเงินกลับคืนโดยวิธีทางเคมีจากแผ่นฟิล์มเอ็กซเรย์ทางการแพทย์

นางสาวปัทมวรรณ คุณประเสริฐ

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรคุษฎีบัณฑิต สาขาวิชาการจัดการสิ่งแวดล้อม (สหสาขาวิชา) บัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2549 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

Thesis Title	WASTE MANAGEMENT PLAN AND CHEMICAL RECOVERY PROCESS
	FOR RADIOGRAPHIC MEDICAL FILM
Ву	Miss Pattamawan Khunprasert
Field of Study	Environmental Management
Thesis Advisor	Associate Professor Varapan Danutra, Ph.D.
Thesis Co-advisor	Associate Professor Nurak Grisdanurak, Ph.D.
Acce	epted by the Graduate School, Chulalongkorn University in Partial
Fulfillment of the Rec	quirements for the Doctoral Degree
	Dean of the Graduate School
	(Assistant Professor M.R.Kalaya Tingsabadh, Ph.D.)
THESIS COMMITTEE	
	(Manaskorn Rachakornkij, Ph.D.)
	Thesis Advisor
	(Associate Professor Varapan Danutra, Ph.D.)
	Thesis Co-advisor
	(Associate Professor Nurak Grisdanurak, Ph.D.)
	Member
	(Jullapong Thaveesri, Ph.D.)
	American American Member
	(Nanta Auamkul, MD., MPH)

ปัทมวรรณ คุณประเสริฐ : แผนการจัดการและกระบวนการนำโลหะเงินกลับคืนโดยวิธี ทางเคมีจากแผ่นฟิล์มเอ็กซเรย์ทางการแพทย์. (WASTE MANAGEMENT PLAN AND CHEMICAL RECOVERY PROCESS FOR RADIOGRAPHIC MEDICAL FILM) อ.ที่ปรึกษา: รศ.ดร. วราพรรณ ด่านอุตรา, อ.ที่ปรึกษาร่วม: รศ. ดร. นุรักษ์ กฤษดานุรักษ์, 146 หน้า.

ในประเทศไทย พบว่า ร้อยละ 98.5 ของฟิล์มเอ็กซเรย์ที่นำเข้ามาถูกนำไปใช้งานทางการแพทย์ ภายหลังจากการใช้งาน ฟิล์มเอ็กซเรย์จะถูกนำไปผ่านกระบวนการล้างฟิล์ม โดยพบว่าโลหะเงินประมาณร้อย ละ 55-65 จะคงอยู่บนแผ่นฟิล์ม ในขณะที่ส่วนที่เหลือจะละลายอยู่ในน้ำยาหยุดภาพ โดยปกติแล้วฟิล์ม เอ็กซเรย์ใช้แล้วจะถูกเก็บรักษาเพื่อใช้เป็นข้อมูลทางการแพทย์เป็นเวลาประมาณ 5 – 10 ปี ในขณะที่น้ำยา หยุดภาพ จะถูกใช้งานซ้ำอย่างน้อย 2 ครั้ง ก่อนเก็บรวบรวมเพื่อจำหน่ายให้กับผู้รับซื้อของเสียและ/หรือ ผู้รับ กำจัดของเสีย เพื่อนำไปผ่านกระบวนการรีไซเคิลโลหะเงิน ซึ่งส่วนใหญ่เป็นโรงงานแบบ In-house factory โดย ใช้วิธีการแยกโลหะเงินด้วยกระแสไฟฟ้า การชะด้วยกรด (HNO₂) หรือการเผา ซึ่งในระบบการจัดการของเสีย ในปัจจุบัน พบว่า ผู้รับซื้อของเสียหลุดรอดจากการกำกับดูแลโดยภาครัฐ ในขณะที่ผู้รับกำจัดของเสียหากมี คนงานและเครื่องจักรเป็นไปตามที่กฎหมายกำหนดจะต้องมีใบอนุญาตประกอบกิจการโรงงาน แต่อย่างไรก็ ตามพบว่า ผู้รับกำจัดของเสียส่วนใหญ่จะไม่คำนึงถึงการจัดการของเสียที่เกิดขึ้น โดยจะเห็นได้ว่ามีการทิ้งและ ปล่อยสารเคมีที่มีความเป็นพิษสูงออกสู่สิ่งแวดล้อมอย่างต่อเนื่อง ดังนั้น จึงได้มีการนำแนวคิดเทคโนโลยี สะอาดมาประยุกต์ใช้ในการแยกโลหะเงินจากแผ่นฟิล์มเอ็กซเรย์ โดยการซะด้วยกรดอ่อน เช่น กรดอะซิติก กรดออกซาลิก กรดมาโลนิก โดยทำการทดลองที่อุณหภูมิต่ำ ซึ่งพบว่า การชะด้วยสารละลายกรดออกซาลิกที่ มีความเข้มข้นร้อยละ 5 ที่อุณหภูมิ 100 องศาเซลเซียส เป็นเวลา 20 นาที มีประสิทธิภาพเกือบจะ 100% โดย ตะกอนเงินที่ได้จะอยู่ในรูปโลหะเงินที่เอื้อต่อการนำไปทำให้บริสุทธิ์ ยิ่งไปกว่านั้นได้มีการกำหนดรูปแบบ วิธีการบริหารจัดการของเสียจากกระบวนการถ่ายภาพรังสีเทคนิคขึ้น เพื่อลดความเสี่ยงจากการหกรั่วไหลของ ของเสียอันตรายที่ปนเปื้อนโลหะเงินออกสู่สิ่งแวดล้อม

สาขาวิชาการ	จัดการสิ่งแวดล้อม	ลายมือชื่อนิสิต			
ปีการศึกษา	2549	ลายมือชื่ออาจ	ารย์ที่ปรึกษา	Olma	~ '\s
		ลายมือชื่ออาจา	ารย์ที่ปรึกษาร่ว	1 Z8no J	C

4689674420 : MAJOR ENVIRONMENTAL MANAGEMENT
KEY WORD: RADIOGRAPHIC WASTE / WASTE MANAGEMENT / FACT
SHEET / SILVER REMOVAL

PATTAMAWAN KHUNPRASERT: WASTE MANAGEMENT PLAN AND CHEMICAL RECOVERY PROCESS FOR RADIOGRAPHIC MEDICAL FILM. THESIS ADVISOR: ASSOC. PROF. VARAPAN DANUTRA, Ph.D., THESIS CO-ADVISOR: ASSOC. PROF. NURAK GRISDANURAK, Ph.D. 146 pp.

In Thailand, 98.5% of the imported x-ray films are used for medical services. After the developing process, approximately 55-65% of metallic silver still remains on the developed x-ray films. The used films are practically kept at the hospitals for record-keeping purposes for 5-10 years, while the developing agents are reused at minimal twice. The discarded films and the spent (fixer) solution are normally sold to waste dealers. Wastes are delivered to in-house factories to recover silver by electrolysis, acid leaching (HNO₃), or combustion processes. The dealer for used xray waste is one of the major stakeholders who is apparently exempted from state control and regulations. Depending on its size and capacity, the processors must have a factory-operating permit. Most unlicensed processors have no concern about the handling of their wastes. Highly toxic chemicals are generally spilled and discharged into the environment. The cleaner technology concept of silver leaching from processed radiographic film was investigated using weak organic acids such as acetic, oxalic, and malonic acids. The tests were carried out under different temperature conditions. An oxalic acid solution at 5% (w/v) provided the best leaching conditions at 100°C, 20-minute retention time and at 90°C, 60 minute-retention time to achieve >97% SRE (Silver Recovery Efficiency). The reclaimed silver was in its metal form and ready for ingot transformation. Following this, a fact sheet on the waste management of radiographic film waste was developed to initiate and support the need to reduce the risks of contamination of hazardous silver into the environment.

Field of studyEnvir	onmental Managem	entStudent's signature	. km+
Academic year	2006	Advisor's signature	
		Co-advisor's signatur	e 2850 / 2

ACKNOWLEDGEMENTS

I wish to express my sincere gratitude to my thesis advisors, Associate Professor Dr. Varapan Danutra from National Research Center for Environmental and Hazardous Waste Management, Chulalongkorn University and Associate Professor Dr. Nurak Grisdanurak from Chemical Engineering Department, Engineering Faculty, Thammasart University, for their invaluable suggestions, vigorous encouragement, patience, care, and several help throughout my study.

I am especially grateful to Dr. Jullapong Thaveesri, Director of Hazardous Substances Information Center, Information and Communication Technology Bureau, Deapartment of Industrial Works for his invaluable guidance, support, encouragement and precious advice throughout this research. I would like to express my appreciation and sincere gratitude to Dr. Manaskorn Rachakornkij, chairman of the thesis committee, and Dr. Nanta Auamkul, who is committee for their encouragements and constructive suggestion.

I wish to acknowledge to National Research Center for Environmental and Hazardous Waste Management for financial support. My gratitude is also extended to Department of Industrial Works for providing me the opportunity of Ph.D. study. I would like to express my thanks to Thanyaburi Hospital (Pathumtani Province), Bang-Bo Hospital (Samutprakarn Province) and Ramathibodi Hospital (under Mahidol University) for their supply of used films.

I would like to thank my friends for their warm support. In addition, I would like to express my gratitude to Miss Ramnaree Netvichian and Miss Chantana Intim, staff of National Research Center for Environmental and Miss Wareeporn Sripenprapa staff of Hazardous Waste Management and Environmental Research Institute of Chulalongkorn University (ERIC) for laboratory technique.

Finally, I especially want to dedicate my dissertation to family members. My parents provided me this opportunity of studying Ph.D. and they have continued to give me unconditional help and encouragement.

CONTENTS

	Page
ABSTRACT (IN THAI)	iv
ABSTRACT (IN ENGLISH)	v
ACKNOWLEDGEMENTS	vi
CONTENTS	vii
LIST OF FIGURES	xi
LIST OF TABLES	xiv
LIST OF ABBREVIATIONS	xvi
CHAPTER I INTRODUCTION	1
1.1 Statement of Purposes	1
1.2 Research Objectives	3
1.2.1 Technological Part	3
1.2.2 Management Part	3
1.3 Scopes and Limitations of the Study	3
1.4 Hypotheses	4
1.5 Expected Outcomes	4
CHAPTER II LITERATURE REVIEWS OF RADIOGRAPHIC	
WASTES	6
2.1 Radiographic Film	6
2.1.1 Composition of Radiographic Film	6
2.1.2 Gelatin	8
2.2 Film Processing.	9
2.3 Radiographic Solution.	10
2.3.1 Developer Solution	11
2.3.2 Fixer Solution	12
2.4 Silver	14
2.4.1 Silver Properties.	14
2.4.2 Source and Use	14
2.4.3 Silver Toxicity	17
5 Silver Recovery Technology	19
2.5.1 Silver Recovery from Radiographic Film.	20

	Page
2.5.2 Silver Recovery from Radiographic Solution	20
2.5.2.1 Electrolysis	21
2.5.2.2 Metallic Replacement	21
2.5.2.3 Precipitation	22
2.5.2.4 Ion Exchange and Reverse Osmosis	22
CHAPTER III PROPOSED SILVER RECOVERY TECHNOLOGY	
FOR RADIOGRAPHIC FILM	24
3.1 Introduction	24
3.2 Objectives	25
3.3 Literature Reviews	26
3.3.1 The Thermal Method	26
3.3.2 The Biological Method	26
3.3.3 The Physical Method	27
3.3.4 The Chemical Method	27
3.3.4.1 Type of Chemicals	28
3.3.4.2 Film Size	28
3.3.4.3 Chemical Concentration and pH	28
3.3.4.4 Temperature and Retention Time	30
3.4 Experimental Design	31
3.4.1 Materials and Chemicals	32
3.4.1.1 Radiographic Film	32
3.4.1.2 Reagents	33
3.4.2 Analytical Instruments	33
3.4.3 Experimental Set -up	33
3.4.4 Methodology	35
3.4.4.1 Preparation of Experimental Film	35
3.4.4.2 Preparation of Acid Leaching Solution	35
3.4.4.3 Variations of Temperature and Retention Time	36
3.4.4.4 Silver Recovery Efficiency (SRE)	36
3.4.4.5 Reuse of Acid Leaching Solution	36
3.4.4.6 Morphology of Silver in Processed Film and Sludge	37
3.4.4.7 Estimation of CO ₂ Emission	20

	rage
3.5 Results and Discussions	38
3.5.1 Effect of Test Parameter	38
3.5.1.1 Effect of Film Size	38
3.5.1.2 Effect of Acid Type	40
3.5.1.3 Effect of Acid Concentration	41
3.5.1.4 Effect of Temperature	41
3.5.1.5 Effect of Retention Time	46
3.5.2 Efficiency of Reused Acid Solution	50
3.5.3 Morphology Silver Sludge and Film	50
3.5.3.1 SEM-EDX	51
3.5.3.2 XRD	51
3.5.4 Comparison of CO ₂ Emissions	56
3.5.4.1 Comparison of Technology	56
3.5.4.2 Estimation of CO ₂ Emission	57
3.6 Summary	59
CHAPTER IV RADIOGRAPHIC MEDICAL WASTE	
MANAGEMENT IN THAILAND	61
4.1 Introduction.	61
4.2 Objectives.	61
4.3 Literature reviews	62
4.4 Methodology	64
4.4.1 Collection of Data from Stakeholders	64
4.4.2 Formulation of Material Flow of Radiographic Medical Film	
at Present	64
4.4.3 Evaluation of the Deficiencies of the Present Radiographic	
Medical Waste Management System	64
4.4.4 Establishment of a Fact Sheet to Support the Development	
Radiographic Waste Management System	66
4.5 Results and Discussions	67
4.5.1 Present Situation of Radiographic Waste Management in	
Thailand	67
4.5.1.1 Production of Radiographic Medical Waste	68

	P
4.5.1.2 F&M of radiographic waste	1
4.5.2 Waste Management	7
4.5.2.1 Handling Waste between Waste Generators and Waste	
Processors	7
4.5.2.2 Laws and Regulations.	8
4.5.2.3 Problems of Radiographic Waste Management	8
4.5.2.4 Emerged Problems about Radiographic Waste	
Management in Thailand from Hospital and Health Officials	8
4.5.3 Future Prospects for Radiographic Waste Management	8
4.5.3.1 Types of Radiographic Waste	8
4.5.3.2 Lists of Management and Disposal Options for Spent	
Photographic Solution and Used Films from Waste Generators	
to Waste Processors	8
4.5.3.3 Manifest System for Radiographic Waste	9
4.5.3.4 Name Lists of Waste Dealers and Waste Processors in	
Thailand	g
4.6 Summary	9
CHAPTER V CONCLUSIONS AND RECOMMENDATIONS	ç
5.1 Conclusions	9
5.1.1 Technology aspects	ç
5.1.2 Management aspects	ç
5.2 Recommendations and Future Works	9
REFERENCES	ç
APPENDICES	1
APPENDIX A	1
APPENDIX B.	1
APPENDIX C	1
APPENDIX D	1
APPENDIX E	1
BIOGRAPHY	1

LIST OF FIGURES

Figure		Page
2-1	Cross-section of radiographic film	6
2-2	Overall developing process	10
2-3	Techniques for recovery of silver from radiographic waste	20
3-1	Distribution of silver contaminant assigned as (*)	24
3-2	Experiment Experimental set-up.equipmentflow	34
3-3	Schematic of experimental set-up.	35
3-4	Silver Recovery efficiency (% SRE) of the leaching	
	experiments at 100°C, 20 minute retention time, with 5%	
	(w/v) solutions of test acids at different film sizes	40
3-5	Silver Recovery efficiency (% SRE) of the extra	
	experimentfrom using the 6% and 7% (w/v) of oxalic acid	
	leaching of extraction process of 1x1 cm2xcm processed	
	film chips at 100°C, for about 20 minutes	42
3-6	Silver Recovery efficiency (% SRE) of 1x1 cmxcm	
	processed film chips at 10-minute retention time with 5%	
	(w/v) solutions of test acids at 60, 80, 90, 100°C	42
3-7	% SRE at 10-minute retention time using 1x1 cmxcm	
	processed film chips and 1, 3, and 5% (w/v) concentrations	
	of oxalic acid	44
3-8	% SRE at 20-minute retention time using 1x1 cmxcm	
	processed film chips and 1, 3, and 5% (w/v) concentrations	
	of oxalic acid	45
3-9	Silver Recovery efficiency (% SRE) of 1x1 cmxcm	
	processed film chips at 90°C, and the retention times of 10,	
	20, 40, 60 80, and 90 minutes	46
3-10	Silver Recovery efficiency (% SRE) of 1x1 cmxcm	
	processed film chips at 100°C by refluxing at 10, 20, 40, 60	
	80, 90, and 120 retention times	47
3-11	% SRE at 90°C using 1x1 cmxcm processed film chips and	
	1, 3, and 5% (w/v) concentrations of oxalic acid	48

Figure		Page
3-12	% SRE at 100°C using 1x1 cmxcm processed film chips and	
	1, 3, and 5% (w/v) concentrations of oxalic acid	49
3-13	Silver Recovery Efficiency (% SRE) of 5% (w/v) oxalic acid	
	versus the reuse times	50
3-14	Metallic particles in the (unleached) processed film and the	
	sludge from the chemical leaching process	52
3-15	Mass content of silver element in the sludge from a chemical	
	leaching process	53
3-16	The XRD patterns of the silver sludge from chemical	
	leaching process	54
3-17	Proposed mechanisms of the chemical leaching process by	
	oxalic acid	55
3-18	The silver recovery process of the licensed 106-type factory	57
3-19	Comparison of the existing technology and the proposed	
	process	57
4-1	Summary of the methodology	67
4-2	Material flow analysis of silver in radiographic waste.	68
4-3	Quantities of imported X-ray film from 2001 – 2005 (Thai Customs Department, 2005)	70
4-4	In-house waste processor for silver recovery	73
4-5	Silver flow of radiographic waste in production and F&M stages. The unit is tons of Ag (from 2003-2004)	74
4-6	Radiographic film consumption classified by the size of	
	hospitals in the year 2002 and 2003	75
4-7	Storage period of processed film: 0-5 years and more than 5	
	years	76
4-8	Management of used radiographic waste by sample hospitals	77
4-9	Management of spent developer by sample hospitals	77
4-10	Management of spent fixer by sample hospitals	78
4-11	Percentages of required documents	79
4-12	Relationship between the X-ray material flow and	
	stakeholders	82

Figure		Page
4-13	Presented poster of Radiographic waste management in	
	Thailand	85
4-14	Proposed radiographic waste management system	88
4-15	The use of a manifest to track hospital radiographic waste	
	flow	91
5-1	Plant design of the chemical leaching process using 5%	
	(w/v) oxalic acid at 90°C, 60-minute retention time	96
5-2	Plant design of the chemical leaching process using 5%	
	(w/v) oxalic acid at 100°C, 20-minute retention time	97

LIST OF TABLES

Table		Page
2-1	Constituents of photographic developer	11
2-2	Constituents of photographic fixer	13
2-3	Properties of silver	15
2-4	Silver compound solubility at 25°C (Ksp)	15
2-5	Breakdown of industrial consumption of silver by major	
	categories	16
2-6	Estimated release of silver to environment in the United States	
	in 1978	16
2-7	Toxic effect (threshold toxicity) of metals on a test aquatic	19
	insect	
2-8	Comparison of silver-recovery and treatment technologies	23
3-1	Literature data review on the biological method	27
3-2	Chemical leaching method for silver recovery silver	29
3-3	Summary of chemical substances and their nature	30
3-4	Advantages and disadvantages of available silver recovery	
	techniques	31
3-5	Properties of test acids	32
3-6	Experimental conditions of the leaching process	36
3-7	Silver Recovery Efficiency (SRE) of different film sizes.	39
3-8	Silver Recovery Efficiency (SRE) of different film sizes at	
	specified 100°C, 20-minute retention time, and 5% (w/v) acid	40
	concentrations	7.5
3-9	Silver recovery efficiency (% SRE) of oxalic acid leaching	
	process	43
3-10	Carbon Dioxide Emission Factors	58
3-11	Amounts of CO ₂ emissions	59
4-1	Silver recovery alternatives	63
4-2	Areas of investigation for each stakeholder	65
4-3	Stakeholders involved in the data collection phase	66
4-4	Silver content in materials	70

Table		Page
4-5	Recyclers of silver from radiographic wastes in Thailand	72
4-6	Classified sample hospitals by number of beds	75
4-7	Present measurements and problems of the radiographic waste management of the sample hospitals	80
4-8	The regulatory roles and jurisdictions of the Factory Act 1992 (B.E. 2535) and the Public Health Act 1992 (B.E. 2535)	81
4-9	Emerged problems from hospital and health officials	86
5-1	Advantages and disadvantages of the proposed technology and the available silver removal technologies	94

LIST OF ABBREVIATIONS

°C Degree

μg/l Microgram Per Liter

Ag⁺ Silver Ion

Ag⁰ Metallic Silver

AgX Silver Halide

AgX* Exposed Silver Halide

Btu British Thermal Unit

cm Centrimeters

cm³ g⁻¹ Cubic Centimeter Per Gram

F Material Flow Into and Out for Each Hospital Inside the Control

Volume

F&M Fabrication and Manufacturing

HA Hospital Accreditation

kJ Kilo Joule

K_{sp} Solubility Product Constant

kW-hr Kilo Watt x hour

mg/kg Milligram Per Kilogram

mg/l Milligram Per liter

mL Milliliter

mm Millimeter

MOI Ministry of Industry

MOPH Ministry of Public Health

NIOSH The National Institute for Occupational Safety and Health

OSHA Occupational Safety and Health Administration

ppmv Part Per Million (Volume Base)

PWG Primary Waste Generator

S The Stock of Material Retained or Depleted from the Reservoir over a

Time Period

SRE Silver Recovery Efficiency
SWG Secondary Waste Generator

TCLP Toxicity Characteristic Leaching Procedure

LIST OF ABBREVIATIONS (Cont.)

TLV-TWA Threshold Limit Value - Time Weighted Average

U.S. EPA. United State Environmental Protection Agency

w/v Weight by Volime

WD Waste Dealer

WG Waste Generator

WP Waste Processor

WR Waste Regulator