การสังเคราะห์แผ่นฟิล์มชนิคใหม่ไทเทเนียมไดออกไซด์/ไกโตแซน และการประยุกต์ใช้ ในกระบวนการโฟโตกะตะไลติกสำหรับการกำจัดโครเมียม

นางสาวปียะพร คำเกษ

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาการจัดการสิ่งแวดล้อม (สหสาขาวิชา) บัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2549 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

492196

2/
N
_

Accepted by the Graduate School, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

- T_____Dean of the Graduate School (Assistant Professor M.R. Kalaya Tingsabadh, Ph.D.)

THESIS COMMITTEE

..... Chairman

(Manaskorn Rachakornkij, Ph.D.)

Kovangrat Thesis Advisor

(Assistant Professor Puangrat Kajitvichyanukul, Ph.D)

Moaull Member

(Assitant Professor Jarurat Voranisarakul)

Che Tojep Member

(Chantra Tongcumpou, Ph.D.)

ปียะพร คำเกษ: การสังเคราะห์แผ่นฟิล์มชนิดใหม่ไทเทเนียมใดออกไซด์/ไคโตแซน และการประยุกต์ใช้ในกระบวนการโฟโตคะตะไลติกสำหรับการกำจัดโครเมียม. (PREPARATION OF NOVEL CATALYST, TITANIUMDIOXIDE/ CHITOSAN FILM AND APPLICATION AS MEDIA IN PHOTOCATALYTIC PROCESS FOR CHROMIUM(VI) REMOVAL) อ.ที่ปรึกษา:ผศ.คร.พวงรัตน์ ขจิตวิชยานุกูล, 134 หน้า.

ในงานวิจัยนี้ ได้ทำการศึกษาเกี่ยวกับการสังเคราะห์แผ่นฟิล์มไทเทเนียมไดออกไซด์/ไก-โตแซน โดยการเตรียมแผ่นฟิล์มจากผงไทเทเนียมไดออกไซด์ร่วมกับไคโตแซนที่ได้จากเปลือก ปู โดยละลายในกรดอะซิติกที่มีความเข้มข้น 20% งานวิจัยฉบับนี้ รายงานเกี่ยวกับการเตรียม แผ่นฟิล์มไทเทเนียมไดออกไซด์/ไคโตแซน ในตัวแปรที่ต่างกัน นั่นคือ ปริมาณไคโตแซน และ ปริมาณไทเทเนียมที่ต่างกัน นอกจากนี้ได้ศึกษาถึงผลกระทบของปริมาณไคโตแซน และปริมาณ ไทเทเนียมไดออกไซด์ที่ต่างกันต่อคุณลักษณะของแผ่นฟิล์ม, กระบวนการการดูดติดผิว และ กระบวนการโฟโตคะตะไลติก เพื่อการกำจัดโครเมียมในน้ำเสียสังเคราะห์ ซึ่งวัตถุผสมระหว่าง ไทเทเนียมไดออกไซด์/ไคโตแซนสามารถเพิ่มประสิทธิภาพของกระบวนการโฟโตคะตะไลติก

ได้ ผลการทคลองการดูดติดผิวของโครเมียมบนแผ่นฟิล์มไทเทเนียมไดออกไซด์/ไกโตแซน สามารถอธิบายได้ด้วยไอโซเทอมการดูดติดผิวแบบแลงเมียร์ สำหรับการกำจัดน้ำเสียสังเคราะห์ โคร- เมียมด้วยกระบวนการโฟโตคะตะไลติกแผ่นฟิล์มไทเทเนียมไดออกไซด์/ไคโตแซน ที่ เตรียมด้วยปริมาณไกโตแซนที่มากที่สุด (2.5% ไกโตแซน, 0.4% ไทเทเนียม) และมีก่าคงที่ใน การเกิดปฏิกิริยาคือ 0.0255 นาที ซึ่งมีก่าสูงกว่าก่าคงที่ในการเกิดปฏิกิริยาของผงไทเทเนียมได-ออกไซด์เพียงอย่างเดียว ส่วนแผ่นฟิล์มไทเทเนียมไดออกไซด์/ไคโตแซน ที่เตรียมด้วยปริมาณ ใทเทเนียม ที่มากที่สุด (1.5% ไกโตแซน, 0.8% ไทเทเนียม) มีก่าคงที่ในการเกิดปฏิกิริยา 0.0358 นาที ซึ่งสูงกว่า ก่าคงที่ในการเกิดปฏิกิริยาของผงไทเทเนียมไดออกไซด์ แผ่นฟิล์ม ไทเทเนียมไดออกไซด์/ไคโตแซนที่ได้จากงานนี้สามารถใช้เป็นแกตตาลิสที่สำคัญ ในการกำจัด โลหะหนักอื่นๆ ด้วยกระบวนการโฟโตคะตะไลติกได้ต่อไป

สาขาวิชา การจัดการสิ่งแวคล้อม	ลายมือชื่อนิสิต	Piya	porn	comket
ปีการศึกษา <u>2549</u>	ลายมือชื่ออาจา	รย์ที่ปรึกษา	Kpuo	ngiat

iv

4889463520: MAJOR ENVIRONMENTAL MANAGEMENT

KEY WORD: TITANIUMDIOXIDE / FILM / PHOTOCATALYTIC PROCESS PIYAPORN KUMKET: PREPARATION OF NOVEL CATALYST, TITANIUMDIOXIDE/ CHITOSAN FILM AND APPLICATION AS MEDIA IN PHOTOCATALYTIC PROCESS FOR CHROMIUM(VI) REMOVAL. THESIS ADVISOR : ASST. PROF. PUANGRAT KAJITVICHYANUKUL, Ph.D., 134 pp.

In this research, TiO₂/chitosan film was prepared by using TiO₂ (Degussa P-25) and chitosan flake from crab shells dissolved in 20% acitic acid solution. From this study the preparation of TiO2/chitosan film in different composition of the chitosan and Ti contents were investigated to produce a composite TiO₂/chitosan film. In this work, effects of chitosan and Ti content on TiO2/chitosan film properties, adsorption and photocatalytic activity for chromium (IV) removal were investigated. The adsorption and photocatalytic activity of the composite material were tested by the reduction of chromium (VI) in aqueous solution. With the chelating ability of chitosan, the enhancing of photocatalysis using this synthesis composite material was observed. Results obtained from adsorption activity shown that the adsorption isotherm pattern of TiO₂/chitosan film for chromium(IV) removal was followed the Langmuir adsorption isotherm model. For photocatalytic activity, using TiO₂/chitosan film with the highest chitosan content (2.5% chitosan, 0.4% Ti) can provide the highest efficiency in removing of 100 mg/L chromium(VI). The appearance rate constant (0.0255 min⁻¹) of TiO₂/chitosan film was higher than that obtained from pure TiO₂(0% chitosan, 0.4% Ti) (0.0003 min⁻¹). While TiO₂/chitosan film with the highest Ti content (0.8% Ti, 1.5% chitosan), provided higher appearance rate constant(0.0358 min⁻¹) than that obtained from pure TiO₂ powder. From this work the synthesized composite material, TiO₂/Chitosan film can be a potential catalyst for heavy metal removal in further photocatalytic process.

Field of study Environmental Management Student's signature Piyapovn kumket Academic year 2006 Advisor's signature Mpiang vat

V

ACKNOWLEDGEMENTS

I would like to give my appreciation to my thesis advisor, Asst. Prof Dr. Puangrat Kajitvichyanukul for inspiration including comment and suggestion not only thesis guidance but also enlighten with my thesis. Moreover, I would like to give all appreciation to my all committee, Dr. Manaskorn Rachakornkij, Asst. Prof. Jarurat Voranisarakul, Dr. Chantra Tongcumpou and Dr. Tawan Limpiyakorn for their excellent creativity discuss and comment for my thesis.

I am really appreciated to all staffs and students in the International Postgraduate Program in Environmental Management (Hazardous Waste Management). Special thank to laboratories at the Environmental Engineering department in King Mongkut's University of Technology Thonburi for instruments support. I would like to give my appreciation to Nation Science and Technology Development Agency for research fund support. Moreover, I owe a special depth of gratitude to Mr.Niran Sappawinyoo from Material Technology, School of Energy and Material, King Mongkut's University of Technology Thonburi for his help and suggestion about chitin - chitosan information.

Most of all, I dedicated my thesis to my lovely parent and brother whom wholehearted understanding, encouragement and devote themselves for helping my thesis. Finally, I am really appreciated to Mr Songkiet Aunyaratroungroj for his help, wholehearted understanding and entertainment without them it will not be possible for me to complete my work.

vi

CONTENTS

ABSTRACT IN THAI	iv
ABSTRACT IN ENGLIGH	v
ACKNOWLEDGEMENTS	vi
CONTENTS	vii
LIST OF TABLES	xi
LIST OF FIGURES	xvii
CHAPTER I NTRODUCTION	1
1.1 Motivations	1
1.2 Objectives	2
1.3 Hypotheses	3
1.4 Scopes of the study	3
1.5 Benefits of this work	4
CHAPTER II BLACKGROUNDS AND LITERATURE REVIEW	5
2.1 Chromium	5
2.2 Photocatalytic reaction	7
2.2.1 Adsorption process	7
2.2.2 Irradiation process	8
2.3 Titanium dioxide (TiO ₂)	11
2.4 Applications of Titanium dioxide (TiO2) for chromium(VI) removal	12
2.5 Chitin and chitosan	14
2.5.1 Chemical and physical properties of chitosan	16
2.5.1.1 Common Organic Reaction	16
2.5.1.2 Heavy Metal Complexes	17
2.5.1.3 Enzymatic Reactions	18
2.5.1.4 Solubility	18
2.5.1.5 Viscosity	19
2.6 Equilibrium adsorption isotherms	19
2.6.1 The Langmuir adsorption isotherm	19

viii

Page

2.6.2 The Freundlich adsorption isotherm	20
2.7 Applications of chitosan for chromium(VI) removal	20
CHAPTER III METHODOLOGY	22
3.1 Materials	22
3.1.1 Chemicals	22
3.1.2 Reactor	22
3.2 Methodologies	22
3.2.1 Synthesis of TiO ₂ /chitosan and chitosan films	23
3.2.1.1 Investigation of effect of chitosan quantity on	
TiO ₂ /chitosan and chitosan films preparation	24
3.2.1.2 Investigation of effect of titanium quantity on	
TiO ₂ /chitosan and chitosans films preparation	24
3.2.2 Characterization of synthesized TiO2 /chitosan and chitosan	
films	25
3.2.2.1 Surface morphology of TiO ₂ /chitosan and chitosan	
films	25
3.2.2.2 Crystal structure of TiO2/chitosan and chitosan	
films	25
3.2.2.3 Weight of TiO ₂ /chitosan and chitosan films	25
3.2.2.4 Thickness of TiO ₂ /chitosan and chitosan films	26
3.2.3 Treating of chromium(IV) using synthesized TiO ₂ /chitosan and	1000
chitosan films	26
3.2.3.1 Investigation of effect of TiO ₂ /chitosan and chitosan	
film in different chitosan quantities for chromium(VI)	
removal by adsorption and photocatalytic processes.	26
	20

,

	Page
3.2.3.2 Investigation of effect of TiO2/chitosan and chitosan	
films in different titanium quantities for	
chromium(VI) removal by adsorption and	
photocatalytic processes	30
3.2.4 Determination of mechanical properties of film after irradiation	
process	32
CHAPTER IV RESULTS AND DISCUSSIONS	34
4.1 Role of chitosan content on TiO ₂ /chitosan and chitosan films	
preparation	34
4.1.1 Results of film weight, thickness and characteristic in variation	
of chitosan contents	35
4.1.2 Crystal structures of TiO ₂ /chitosan and chitosan films	39
4.1.3 Surface morphology of TiO2/chitosan and chitosan films	
analyzed by SEM	42
4.1.4 Treating of chromium(IV) using synthesized TiO ₂ / chitosan	
and chitosan films	43
4.1.4.1 Determination of adsorption isotherm of TiO ₂ /	
chitosan films in different chitosan contents	46
4.1.4.2 Determination of kinetic values in photocatalytic	
reaction of chromium(VI) using TiO ₂ / chitosan films	
in variation of chitosan contents	54
4.2 Role of Ti content on TiO ₂ /chitosan film preparation	63
4.2.1 Results of film weight, thickness and characteristic in variation	
of Ti contents	68
4.2.2 Crystal structures of TiO ₂ /chitosan and chitosan films	71
4.2.3 Surface morphology of TiO2/chitosan and chitosan films	
analyzed by SEM	73
4.2.4 Treating of chromium (IV) using synthesized TiO ₂ /chitosan	
and chitosan films	74

ix

5				
Ρ	2	σ	P	
κ.	u	-	<u></u>	

4.2.4.1 Determination of adsorption isotherm of 'TiO2/	
chitosan films in different Ti contents	76
4.2.4.2 Determination of kinetic values in photocatalytic	
reaction of chromium(VI) using TiO ₂ / chitosan films	
in variation of Ti contents	85
4.3 The effect of photocatalytic process on mechanical properties of film	94
CHAPTER V CONCLUSIONS	97
5.1 Conclusions	97
5.1.1 Role of chitosan content on TiO2/chitosan and chitosan film	
properties, adsorption and photocatalytic activities for	
chromium(IV)removal	97
5.1.2 Role of Ti content on TiO2/chitosan and chitosan film	5.5
properties, adsorption and photocatalytic activities for	
chromium(IV) removal	98
5.2 Recommendation	100
	100
REFERENCES	101
APPENDICES	101
APPENDIX A	100
APPENDIX B	
BIOGRAPHY	109
	134

x

LIST OF TABLES

Table		Page
1001001		1 460
2.1	Properties of Chromium in the wastewater	6
2.2	Properties of rutile and anatase	11
3.1	Experimental condition to study effect of TiO ₂ /chitosan and	
	chitosan film in different chitosan quantity for chromium(VI)	
	removal by adsorption process	27
3.2	Experimental conditions to study effect of TiO2/chitosan and	
	chitosan films in different chitosan quantities for chromium(VI)	
	removal by photocatalytic process	29
3.3	Experimental conditions to study effect of TiO2/chitosan and	
	chitosan films in different titanium quantiiest for chromium(VI)	
	removal by adsorption process	31
3.4	Experimental conditions to study effect of TiO2/chitosan and	
	chitosan films in different chitosan quantites for chromium(VI)	
	removal by photocatalytic process	32
3.5	Experimental conditions to study effect of illumination process on	
	mechanical properties of film	33
4.1	Physical and chemical properties of chitosan flake	34
4.2	Weight of film that prepared from 1, 1.5, 2 and 2.5% chitosan with	
	0.4% Ti (TiO ₂ /chitosan film) and without Ti content (chitosan	
	film)	37
4.3	Thickness of film that prepared from 1, 1.5, 2 and 2.5% chitosan	
	with 0.4% Ti (TiO ₂ /chitosan film) and without Ti content (chitosan	
	film)	37
4.4	Physical characteristics of films that prepared from 1, 1.5, 2 and	
	2.5% chitosan with 0.4% Ti (TiO ₂ /chitosan film) and without Ti	
	content (chitosan film)	38

4.5	Percentage removals of 100 mg/L chromium (VI) by using	
	synthesized films that prepared from 1, 1.5, 2 and 2.5% chitosan	
	with 0.4% Ti (TiO ₂ /chitosan film) and without Ti content	
	(chitosan film) in adsorption process and photocatalytic	
	process	45
4.6	Percentage removals of 100 mg/L chromium(VI) by using	10
	synthesized films that prepared from 1, 1.5, 2 and 2.5% chitosan	
	with 0.4% Ti (TiO ₂ /chitosan film) and without Ti content	
	(chitosan film) in adsorption process	47
4.7	R _L values and behaviors of Isotherm	49
4.8	R _L Values for Langmuir adsorption isotherm for TiO ₂ /chitosan film	47
	that prepared 1, 1.5, 2 and 2.5% chitosan with 0.4%	
	Ti	50
4.9	Q_0 and b value sfor Langmuir adsorption isotherm for TiO ₂ /chitosan	50
	film that prepared from 1,1.5,2 and 2.5% chitosan with 0.4% Ti	51
4.10	Langmuir and Freundlich adsorption isotherms for TiO2/chitosan	51
	film that prepared from 1, 1.5, 2 and 2.5% chitosan with 0.4 % Ti	53
4.11	Values of k_{obs} from pseudo-first order equation for photocatalytic	55
	process using TiO ₂ /chitosan film that prepared from 1%chitosan,	
	0.4% Ti with 20% acetic acid solution	59
4.12	Values of k_{obs} from pseudo-first order equation for photocatalytic	39
	process using TiO_2 /chitosan film that prepared from	
	1.5%chitosan,0.4% Ti with 20% acetic acid solution	59
4.13	Values of k_{obs} from pseudo-first order equation for photocatalytic	59
	process using TiO ₂ /chitosan film that prepared from	
	2%chitosan,0.4% Ti with 20% acetic acid solution	60
4.14	Values of kobs from pseudo-first order equation for photocatalytic	00
	process using TiO ₂ /chitosan film that prepared from	
	2.5%chitosan,0.4% Ti with 20% acetic acid solution	60
		00

xii

Page

4.15	Langmuir-Hinshelwood equations for photocatalytic process	
	using TiO ₂ /chitosan film in variation of chitosan content	63
4.16	Film formation in each condition	64
4.17	Weight of films that prepared from 0, 0.2, 0.4, 0.6 and 0.8 % Ti	04
	with 1.5 % chitosan	69
4.18	Thickness of films that prepared from 0, 0.2, 0.4, 0.6 and 0.8 % Ti	0,7
	with 1.5 % chitosan	69
4.19	Physical characteristics of film that prepared from 0, 0.2, 0.4, 0.6	
	and 0.8 % Ti with 1.5 % chitosan	70
4.20	Percentage removal of 100 mg/L chromium(VI) by using	
	synthesized films that prepared from 0, 0.2, 0.4, 0.6 and 0.8% Ti	
	with 1.5 % chitosan and TiO ₂ powder in adsorption process and	
	photocatalytic process	75
4.21	Percentage removals of 100 mg/L chromium(VI) by using	15
	synthesized films that prepared from 0, 0.2, 0.4, 0.6 and 0.8% Ti	
	with 1.5 % chitosan and TiO ₂ powder in adsorption process	76
4.22	R_L Values for Langmuir adsorption isotherm for TiO2/chitosan	
	films in different Ti content	81
4.23	Langmuir and Freundlich adsorption isotherms for TiO ₂ /chitosan	
	films that prepared from 0.2, 0.4, 0.6 and 0.8% Ti with 1.5 %	
	chitosan	82
4.24	Q_0 and b values for Langmuir adsorption isotherm for	02
	TiO ₂ /chitosan film that prepared from 0.2, 0.4, 0.6 and 0.8% Ti	
	with 1.5 % chitosan	82
4.25	Values of k_{obs} from pseudo-first order equation for photocatalytic	02
	process using TiO2/chitosan film that prepared from	
	1.5% chitosan, 0.2% Ti with 20% acetic acid solution	90
4.26	Values of k_{obs} from pseudo-first order equation for photocatalytic	
	process using TiO ₂ /chitosan film that prepared from 1.5%	
	chitosan, 0.4% Ti with 20% acetic acid solution	91
		<i>.</i>

xiii

4.27	Values of k_{obs} pseudo-first order equation for photocatalytic	
	process using TiO_2 /chitosan film that prepared from 1.5 %	
	chitosan, 0.6% Ti with 20% acetic acid solution	91
4.28	Values of k_{obs} from pseudo-first order equation for photocatalytic	
	process using TiO ₂ /chitosan film that prepared from 1.5%chitosan,	
	0.8% Ti with 20% acetic acid solution	92
4.29	Langmuir- Hinshelwood equations for photocatalytic process using	
	TiO ₂ /chitosan films in variation of Ti contents	94
B-1	Adsorption of chromium (VI) using TiO ₂ /chitosan film that	
	prepared from1% w/w chitosan with 0.4% w/w Ti and dissolved in	
	20% acetic acid solution	109
B-2	Adsorption of chromium (VI) using TiO ₂ /chitosan film that	
	prepared from 1.5% w/w chitosan with 0.4% w/w Ti and dissolved	
	in 20% acetic acid solution	110
B-3	Adsorption of chromium (VI) using TiO2 /chitosan film that	
	prepared from 2 % w/w chitosan with 0.4% w/w Ti and dissolved	
	in 20% acetic acid solution	111
B-4	Adsorption of chromium (VI) using TiO2 /chitosan film that	
	prepared from 2.5 % w/w chitosan with 0.4% w/w Ti and	
	dissolved in 20% acetic acid solution	112
B-5	Adsorption of chromium (VI) using TiO ₂ /chitosan film that	
	prepared from 1.5 % w/w chitosan with 0.2% w/w Ti and	
	dissolved in 20% acetic acid solution	113
B-6	Adsorption of chromium (VI) using TiO ₂ /chitosan film that	
	prepared from 1.5 % w/w chitosan with 0.6 % w/w Ti and	
	dissolved in 20% acetic acid solution	114
B-7	Adsorption of chromium (VI) using TiO2 /chitosan film that	
	prepared from 1.5 % w/w chitosan with 0.8 % w/w Ti and	
	dissolved in 20% acetic acid solution	115

xiv

B-8	Adsorption of 100 mg/L chromium (VI) using varied amount of	
	TiO ₂ powder without chitosan content	116
B-9	Adsorption of 100 mg/L chromium (VI) using chitosan film that	
	prepared from 1, 1.5, 2 and 2.5 % w/w chitosan without Ti content	117
B-10	Photocatalytic reduction of chromium (VI) using TiO2 /chitosan	
	film that prepared from1% w/w chitosan with 0.4% w/w Ti and	
	dissolved in 20% acetic acid solution	118
B-11	Photocatalytic reduction of chromium (VI) using TiO ₂ /chitosan	
	film that prepared from 1.5% w/w chitosan with 0.4% w/w Ti and	
	dissolved in 20% acetic acid solution	119
B-12	Photocatalytic reduction of chromium (VI) using TiO2 /chitosan	
	film that prepared from 2 % w/w chitosan with 0.4% w/w Ti and	
	dissolved in 20% acetic acid solution	120
B-13	Photocatalytic reduction of chromium (VI) using TiO2 /chitosan	
	film that prepared from 2.5 % w/w chitosan with 0.4% w/w Ti and	
	dissolved in 20% acetic acid solution	121
B-14	Photocatalytic reduction of chromium (VI) using TiO2 /chitosan	
	film that prepared from 1.5 % w/w chitosan with 0.2% w/w Ti and	
	dissolved in 20% acetic acid solution	122
B-15	Photocatalytic reduction of chromium (VI) using TiO ₂ /chitosan	
	film that prepared from 1.5 % w/w chitosan with 0.6 % w/w Ti and	
	dissolved in 20% acetic acid solution	123
B-16	Photocatalytic reduction of chromium (VI) using TiO ₂ /chitosan	
	film that prepared from 1.5 % w/w chitosan with 0.8 % w/w Ti and	
	dissolved in 20% acetic acid solution	124
B-17	Photocatalytic reduction of 100 mg/L chromium (VI) using varied	
	amount of TiO ₂ powder without chitosan content	125
B-18	Values of k_{obs} from zero and pseudo-first order equation for	
	photocatalytic process using TiO_2 /chitosan film that prepared from	
	1.%chitosan,0.4% Ti with 20% acetic acid solution	126

xv

B-19	Values of k_{obs} from zero and pseudo-first order equation for	
	photocatalytic process using TiO2 /chitosan film that prepared from	
	1.5% chitosan,0.4% Ti with 20% acetic acid solution	126
B-20	Values of k_{obs} from zero and pseudo-first order equation for	
	photocatalytic process using TiO2 /chitosan film that prepared from	
	2%chitosan,0.4% Ti with 20% acetic acid solution	127
B-21	Values of k_{obs} from zero and pseudo-first order equation for	
	photocatalytic process using TiO2/chitosan film that prepared from	
	2.5% chitosan, 0.2% Ti with 20% acetic acid solution	127
B-22	Values of k_{obs} from zero and pseudo-first order equation for	
	photocatalytic process using TiO2 /chitosan film that prepared from	
	1.5% chitosan, 0.2% Ti with 20% acetic acid solution	128
B-23	Values of k_{obs} from zero and pseudo-first order equation for	
	photocatalytic process using TiO2/chitosan film that prepared from	
	1.5 % chitosan, 0.6% Ti with 20% acetic acid solution	128
B-24	Values of k_{obs} from zero and pseudo-first order equation for	
	photocatalytic process using TiO2/chitosan film that prepared from	
	1.5%chitosan, 0.8% Ti with 20% acetic acid solution	129
B-25	Values of k_{obs} from zero and pseudo-first order equation for	
	photocatalytic process using TiO ₂ powder	129
B-26	Mechanical properties of TiO2/chitosan film (0.8%Ti, 1.5%	
	chitosan) after UV illumination in distilled water	130
B-27	Mechanical properties of TiO2/chitosan film (0.8%Ti, 1.5%	
	chitosan) after UV illumination in 100 mg/Lchromium(VI)	131
B-28	Mechanical properties of chitosan film (0%Ti, 1.5% chitosan)	
	after UV illumination in distilled water	132
B-29	Mechanical properties of chitosan film (0%Ti, 1.5% chitosan)	
	after UV illumination in 100 mg/L chromium(VI) solution	133

xvi

LIST OF FIGURES

Figure

2.1	Scattered chromium in the carried pH solution	6
2.2	Reaction when irradiated catalysts	8
2.3	Band gap for each catalyst	9
2.4	(a) The TiO ₂ /solution interface under UV-illumination	
	(b) Reaction on the TiO ₂ surface under UV-illumination	10
2.5	Convention primitive cells of rutile and anataste black and white	
	spheres represent titanium and oxygen atom	11
2.6	Chemical structure of cellulose, chitin and chitosan	15
3.1	Reactor set-up used in this study	23
3.2	Preparation procedure of chitosan and TiO ₂ /chitosan films	24
3.3	Schematic diagram for adsorption process	28
3.4	Schematic diagram for photocatalytic process	29
4.1	${\rm TiO}_2$ powder (Degussa P-25) and chitosan flake that used in this	
	research	36
4.2	TiO ₂ /chitosan and chitosan films	36
4.3	X-ray diffraction pattern of a) TiO2 powder, b) Chitosan film	
	(1%chitosan,0%Ti), c) TiO ₂ /chitosan film (1%chitosan, 0.4%Ti)	
	d) Chitosan film (2.5 %chitosan,0%Ti) and e) TiO_2 /chitosan film	
	(2.5%chitosan,0.4%Ti)	40
4.4	X-ray diffraction pattern of the comparison between TiO_2	
	powder(A) and TiO ₂ /chitosan film(B) and chitosan film(C)	42
4.5	Scanning electron micrographs of a) TiO_2 powder, b) Chitosan	
	film and c) TiO ₂ /chitosan film	43
4.6	Removal of 100 mg/L chromium (IV) concentration using	
	synthesized films that prepared from 1,1.5, 2 and 2.5% chitosan	
	with 0.4% Ti (TiO ₂ /chitosan film) and without Ti content(chitosan	
	film) in adsorption and photocatalytic processed	44
	min) in adsorption and photocatarytic processed	44

xviii

Page

Figure

4.7	Adsorption of chromium(VI) on TiO2 /chitosan film that prepared	
	from a) 1% chitosan, 0.4% Ti, b) 1.5% chitosan, 0.4% Ti, c) 2%	
	chitosan, 0.4% Ti and d) 2.5% chitosan, 0.4% Ti in different	
	initial concentrations of chromium(VI)	49
4.8	Langmuir adsorption isotherm plot for adsorption of chromium	
	(VI) on TiO ₂ /chitosan film that prepared from a) 1% chitosan,	
	0.4% Ti, b) 1.5% chitosan, 0.4% Ti, c) 2% chitosan, 0.4% Ti and	
	d) 2.5% chitosan, 0.4% Ti	50
4.9	Plotting of relation between Q_0 and chitosan contents	52
4.10	Plotting of relation between b and chitosan contents	52
4.11	Freundlich adsorption isotherm plot for adsorption of chromium	
	(VI) on TiO ₂ /chitosan film that prepared from a) 1% chitosan,	
	0.4% Ti, b) 1.5% chitosan, 0.4% Ti, c) 2% chitosan, 0.4% Ti and	
	d) 2.5% chitosan, 0.4% Ti	54
4.12	Residual fraction of 100 mg/L chromium (VI) in different chitosan	
	contents on TiO ₂ /chitosan film	56
4.13	Residual fraction of chromium (VI) in different initial concentrations	
	for TiO ₂ /chitosan film that prepared from a) 1% chitosan, 0.4% Ti,	
	b) 1.5% chitosan, 0.4% Ti, c) 2% chitosan, 0.4% Ti and d) 2.5%	
	chitosan, 0.4% Ti	57
4.14	Relation between $-ln(C/C_0)$ and time in different of chromium (VI)	
	initial concentrations for TiO2/chitosan film that prepared from a)	
	1% chitosan, 0.4% Ti, b) 1.5% chitosan, 0.4% Ti, c) 2% chitosan,	
	0.4% Ti and d) 2.5% chitosan, 0.4% Ti	58
4.15	Comparison of apparent reaction rate constant (k_{obs}) for 100 mg/L	
	chromium(VI) removal by using different chitosan contents	61
4.16	Determination of adsorption equilibrium constants and degradation	
	rate constants chromium(VI) by using TiO2/chitosan film that	
	prepared from a) 1% chitosan, 0.4% Ti, b) 1.5% chitosan, 0.4% Ti,	
	c) 2% chitosan, 0.4% Ti and d) 2.5% chitosan, 0.4% Ti	62

Figure

xix

4.17	Photographs of TiO ₂ /chitosan film that prepared from 2.5% chitosan	
	with variation of Ti contents	65
4.18	Photographs of TiO ₂ /chitosan film that prepared from 2.0% chitosan	
	with variation of Ti contents	66
4.19	Photograph of TiO ₂ /chitosan film that prepared from 1.5%	
	chitosan with variation of Ti contents	67
4.20	X-ray diffraction patterns of a) Chitosan film and b) TiO2/chitosan	
	films(1.5%chitosan,0.2%Ti) and c) TiO ₂ /chitosan films	
	(1.5%chitosan,0.8%Ti)	72
4.21	X-ray diffraction patterns of the comparison between TiO ₂	
	powder(A) and TiO ₂ /chitosan films(B) and chitosan film(C)	73
4.22	Scanning electron micrographs of a) TiO ₂ powder, b) Chitosan	
	film	74
4.23	Removal of 100 mg/L chromium(IV) concentration using	
	synthesized TiO ₂ /chitosan, chitosan film and TiO ₂ powder in	
	adsorption and photocatalytic processes	75
4.24	Photograph sof TiO ₂ /chitosan film in different conditions	77
4.25	Adsorption of chromium(VI) on TiO ₂ /chitosan film that prepared	
	from a) 1.5% chitosan, 0.2% Ti, b) 1.5% chitosan, 0.4% Ti,	
	c) 1.5% chitosan, 0.6% Ti and d) 1.5% chitosan, 0.8% Ti in	
	different initial concentrations of chromium(VI)	79
4.26	Langmuir adsorption isotherm plot for adsorption of chromium	
	(VI) on TiO2 /chitosan film that prepared from a) 1.5% chitosan,	
	0.2% Ti, b) 1.5% chitosan, 0.4% Ti, c) 1.5% chitosan, 0.6% Ti	
	and d) 1.5% chitosan, 0.8% Ti	81
4.27	Plotting of relation between Q_0 and Ti contents	83
4.28	Plotting of relation between b and Ti contents	83

Figure

4.29 Freundlich adsorption isotherm plot for adsorption of chromium(VI) on TiO2 /chitosan film that prepared from a) 1.5% chitosan, 0.2% Ti, b) 1.5% chitosan, 0.4% Ti, c) 1.5% chitosan, 0.6% Ti and d) 1.5% chitosan, 0.8% Ti 84 Residual fraction of 100 mg/L chromium (VI) in different Ti 4.30 contents on TiO₂/chitosan film..... 87 4.31 Residual fraction of chromium (VI) in different initial concentrations for TiO₂/chitosan film that prepared from a) 1.5%chitosan, 0.2% Ti, b) 1.5% chitosan, 0.4% Ti, c) 1.5% chitosan, 0.6% Ti, d)1.5% chitosan, 0.8% Ti.... 88 Relation between $-\ln(C/C_0)$ and time in different of 4.32 chromium(VI) initial concentrations for TiO2/chitosan film that prepared from a) 1.5% chitosan, 0.2% Ti, b) 1.5% chitosan, 0.4% Ti, c) 1.5% chitosan, 0.6% Ti and d)1.5% chitosan, 0.8% Ti..... 89 4.33 Comparison of photocatalytic decomposition rates using different Ti contents (A is TiO₂ powder and B is TiO₂/chitosan film) in 100 mg/L chromium (VI) solution..... 92 Determination of adsorption equilibrium constants and 4.34 degradation rate constants chromium(VI) by using TiO2/chitosan film that prepared from a) 1.5% chitosan, 0.2% Ti, b) 1.5% chitosan, 0.4% Ti, c) 1.5% chitosan, 0.6% Ti and d)1.5% chitosan, 0.8% Ti 93 4.35 Relationship between elongation at break(%) of film and UV illumination time(hr) (A is TiO2/chitosan film in 100 mg/L chromium(VI), B is TiO2/chitosan film in distilled water, C is chitosan film in 100 mg/L chromium and D is chitosan film in distilled water)..... 96

XX

Page

4.36

Relationship between tensile strength(N/mm²) of film and UV illumination time(hr) (A is TiO₂/chitosan film in 100 mg/L chromium(VI), B is TiO₂/chitosan film in distilled water, C is chitosan film in 100 mg/L chromium and D is chitosan film in distilled water)

96