การแตกตัวของพอลิเอทิลีนชนิดความหมาแน่นสูงและพอลิโพรพิลีนบนตัวเร่งปฏิกิริยาผสม ซีโอไลต์บีตา/อะลูมิเนียมเอชเอ็มเอส

นางสาวนุริยา กาเจ

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาปิโตรเคมีและวิทยาศาสตร์พอลิเมอร์ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2550 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

*CRACKING OF HIGH DENSITY POLYETHYLENE AND POLYPROPYLENE OVER ZEOLITE BETA/AI-HMS MIXED CATALYSTS

Miss Nuriya Kache

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Science Program in Petrochemistry and Polymer Science

Faculty of Science

Chulalongkorn University

Academic Year 2007

Copyright of Chulalongkorn University

Thesis Title	CRACKING OF HIGH DENSITY POLYETHYLENE AND
1110010 11110	

POLYPROPYLENE OVER ZEOLITEBETA/AI-HMS MIXED CATALYSTS

Ву

Ms. Nuriya Kache

Field of study

Petrochemistry and Polymer Science

Thesis Advisor

Assistant Professor Soamwadee Chaianansutcharit, Ph.D.

Thesis Co-advisor Aticha Chaisuwan, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

Dean of the Faculty of Science (Professor Supot Hannongbua, Ph.D.)

THESIS COMMITTEE

(Associate Professor Sirirat Kokpol, Ph.D.)

Scamwodel Chailmathesis Advisor

(Assistant Professor Soamwadee Chaianansutcharit, Ph.D.)

Trabanyoch Member

(Associate Professor Wimonrat Trakarnpruk, Ph.D.)

External Member

(Assistant Professor Vanchat Chuenchom, Ph D.)

นุริยา กาเจ: การแตกตัวของพอลิเอทิลีนชนิคความหนาแน่นสูงและพอลิโพรพิลีนบน ตัวเร่งปฏิกิริยาผสมซีโอไลต์บีตา/อะลูมิเนียมเอชเอ็มเอส. (CRACKING OF HIGH DENSITY POLYETHYLENE AND POLYPROPYLENE OVER ZEOLITE BETA/Al-HMS MIXED CATALYSTS) อ.ที่ปรึกษา: ผศ. คร. โสมวดี ไชยอนันต์สุจริต, อาจารย์ที่ ปรึกษาร่วม: คร.อธิชา ฉายสุวรรณ 102 หน้า

ได้ทำการแตกย่อยพลาสติกพอลิโพรพิลีนและพอลิเอทิลีนชนิดความหนาแน่นสูงด้วย ตัวเร่งปฏิกิริยาผสมซี โอไลต์บีตาและอะลูมิเนียมเอ็ชเอ็มเอส ได้สังเคราะห์ซี โอไลต์บีตาซึ่งมี อัตราส่วนองค์ประกอบโคยโมลในเจลเป็น 1SiO2: 0.0083 Al2O3: 0.73 TEAOH : 19 H2O อัตราส่วนซิลิกาต่ออะลูมิเนียมเท่ากับ 60 ตกผลึกค้วยวิธีไฮโครเทอร์มัลที่อุณหภูมิ 135°C และ อะลูมิเนียมเอ็ชเอ็มเอส มีอัตราส่วนองค์ประกอบโดยโมลในเจลเป็น $1SiO_2$: 0.0125 Al_2O_3 : 0.25HDA: 8.3 EtOH: 100 H,O ตกผลึกค้วยวิธีโซลเจลที่อุณหภูมิห้อง นำอะลูมิเนียมเอ็ชเอ็มเอส มาทำ การบำบัคด้วย แอมโมเนียมคลอไรด์ที่ความเข้มข้น 1 โมลาร์ ที่อุณหภูมิเคือดเป็นเวลา 3 ชั่วโมงเพื่อ ลคปริมาณอะลูมิเนียมในออกตะฮีครัล ตรวจสอบตัวอย่างค้วยเทคนิคการเลี้ยวเบนของรังสีเอ็กซ์ กล้องจุลทรรศน์แบบส่องกราค ไอซีพี-เออีเอส อะลูมิเนียมนิวเคลียร์แมกเนติกเรโซแนนซ์ชนิค สปีนมุมเฉพาะ การดูดซับในโตรเจนและการคายแอมโมเนียโดยใช้อุณหภูมิที่ตั้งโปรแกรม ศึกษา การแตกย่อยของพอลิโพรพิลีนและพอลิเอทิลีนชนิคความหนาแน่นสูงภายใต้ภาวะที่แตกต่าง เมื่อ ใช้ตัวเร่งปฏิกิริยาผสมซีโอไลต์บีตาและอะลูมิเนียมเอ็ชเอ็มเอส ในการแตกย่อย ภาวะที่เหมาะสม สำหรับการแตกย่อยพอลิโพรพิลีนคือ 95%อะลูมิเนียมเอ็ชเอ็มเอส ในตัวเร่งปฏิกิริยาผสม 10%โดย น้ำหนักของตัวเร่งปฏิริยา ที่อุณหภูมิ 380 องศาเซลเซียส ส่วนภาวะที่เหมาะสมสำหรับการแตกย่อย พอลิเอทิลีนชนิคความหนาแน่นสูง คือ 5%อะลูมิเนียมเอ็ชเอ็มเอส ในตัวเร่งปฏิกิริยาผสม 10%โคย น้ำหนักของตัวเร่งปฏิริยา ที่อุณหภูมิ 410 องศาเซลเซียส การเพิ่มอุณหภูมิจะช่วยเร่งปฏิกิริยาให้เกิด เร็วขึ้น แต่องค์ประกอบของผลิตภัณฑ์ที่ได้ไม่แตกต่างกัน ของเหลวที่ได้จากการแตกย่อยพอลิโพรพิ ลืนและพอลิเอทิลีนชนิคความหนาแน่นสูงมีช่วงจุดเดือดเคียวกันกับแกโซลีนมาตรฐาน ตัวเร่ง ปฏิกิริยาผสมที่ใช้งานแล้วสามารถทำให้กลับคืนสภาพเดิมได้ โดยให้ค่าการเปลี่ยนพลาสติก มากกว่าร้อยละ 80 สำหรับ 1-2 ครั้ง ซึ่งเป็นค่าที่ยอมรับได้ อย่างไรก็ตามควรระวังโครงสร้างที่มีรู พรุนขนาดกลางอะลูมิเนียมเอ็ชเอ็มเอสหลังจากนำตัวเร่งปฏิกิริยาที่นำกลับมาใช้ใหม่

สาขาวิชา ปี โตรเคมีและวิทยาศาสตร์พอลิเม	มอร์ ลายมือชื่อนิสิตหรือก กานจ	
ปีการศึกษา2550	ลายมือชื่ออาจารย์ที่ปรึกษา 🎞 🌣 🔊 🗫 เปรเกา	7-

4872339523: MAJOR PETROCHEMISTRY AND POLYMER SCIENCE

KEYWORD: CRACKING / ZEOLITE BETA/ AI-HMS/ POLYPROPYLENE/ POLYETHYLENE

NURIYA KACHE: CRACKING OF HIGH DENSITY POLYETHYLENE AND

POLYPROPYLENE OVER ZEOLITE BETA/AI-HMS MIXED CATALYSTS. THESIS

ADVISOR: ASSIST. PROF. Soamwadee Chaianansutcharit, Ph.D. THESIS CO-

ADVISOR: ATICHA CHAISUWAN, Ph. D, 102 pp.

PP and HDPE cracking were investigated over zeolite beta/Al-HMS mixed catalysts. Zeolite beta with gel the mole composition of 1SiO₂: 0.0083 Al₂O₃: 0.73 TEAOH : 19 H₂O (Si/Al = 60) were synthesized by hydrothermal crystallization at 135°C whereas Al-HMS with the gel mole composition of 1SiO₂: 0.0125 Al₂O₃: 0.25 HDA: 8.3 EtOH: 100 H₂O were synthesized by sol-gel method and crystallization at room temperature. Octahedral aluminium from Al-HMS was removed by treating with 1M NH₄Cl at boiling temperature for 3 h. The catalysts were characterized by X-ray power diffraction, scanning electron microscope, ICP-AES, ²⁷Al-MAS-NMR, nitrogen adsorption and ammonia-temperature programmed desorption techniques. Catalytic cracking of PP over mixed catalysts between zeolite beta and Al-HMS were studied with various conditions. The optimal condition for PP cracking was 95%Al-HMS in the presence of mixed catalysts, 10%wt catalyst and at the reaction temperature of 380°C whereas for HDPE was 5%Al-HMS in the presence of mixed catalyst, 10%wt catalyst and at the reaction temperature of 410°C. With increasing reaction temperature, degradation rate were faster but the products distribution of gas and liquid fraction were not different. The liquid products had the same boiling point range compared to that of standard gasoline. The regeneration of catalysts was acceptable for 1-2 cycles due to a high conversion of PP and HDPE cracking over 80%. However, the structure of mesoporous Al-HMS should be aware after reusing of catalyst.

Field of study Petroo	hemistry and Polymer	Science. Student's signature. Wwy.a. Kache
Academic year	2007	Science. Student's signature. Why a Kache
		Co-Advisor's signature. A. Chaisuwa

ACKNOWLEDGEMENTS

The success of this thesis can be attributed to the extensive support and assistance from Assistant Professor Soamwadee Chaianansutcharit and Dr. Aticha Chaisuwan, my thesis advisor and thesis co-advisor. I deeply thank them for their valuable advice and guidance in this research and their kindness throughout this study.

I would like to gratitude to Associate Professor Sirirat Kokpol, Associate Professor Wimonrat Trakarnpruk and Assistant Professor Vanchat Chuenchom as the chairman and member of this thesis committee, respectively, for all of their kindness and useful advice in the research.

I would like to gratefully thank PTT Chemical Public Company Limited for supporting the standard mixtures for GC analysis. Moreover, I would like to thank Department of Chemistry and Program of Petrochemistry and Polymer Science, Faculty of Science, Chulalongkorn University for the valuable knowledge and experience. I would like to thank Thailand Japan Technology Transfer Project for supporting instruments. Furthermore, I would like to thank the members of Materials Chemistry and Catalysis Research Unit for generosity.

For all of my friends, I greatly appreciate their help and encouragement throughout the course of my research and study.

CONTENTS

		Page
ABSTRACT	IN THAI	iv
ABSTRACT	'IN ENGLISH	v
ACKNOWL	EDMENTS	vi
CONTENTS	S	vii
LIST OF TA	ABLES	xi
LIST OF FI	GURES	xii
LIST OF SC	THEMES	xviii
LIST OF AF	BBREVIATIONS	xix
CHAPTER	I INTRODUCTION	1
1.1	Background	1
CHAPTER	II THEORY AND LITERATURE REVIEWS	7
2.1	Zeolites	7
	2.1.1 Zeolite structures	7
	2.1.2 Acid sites in zeolites	10
	2.1.3 Shape selective	11
	2.1.4 Zeolite synthesis	12
2.2	Zeolite beta	13
	2.2.1 Structure and properties of zeolite beta	13
	2.2.2 Synthesis of zeolite beta	14
2.3	Mesoporous materials	15
	2.3.1 Mechanism of mesostructure formation	17
2.4	Hexagonal mesoporous silica (HMS)	21
2.5	Plastic recycling method	23
	2.5.1 Thermal cracking	24
	2.5.2 Catalytic cracking	26

CHAPTER		page
CHAPTER	III EXPERIMENTAL	29
3.1	Chemicals and gases	
3.2	Instruments, apparatus and analytical techniques	
3.3	Synthesis of catalysts	
	3.3.1 Synthesis of zeolite beta with a mole Si/Al ratio in gel of	
NC:	3.3.2 Synthesis of Al-HMS with the Si/Al mole ratio in gel of	
	3.3.2.1 Synthesis of Al-HMS with various Si/Al ratios	
	3.3.3 NH ₄ Cl treatment on Al-HMS	
	3.3.4 Sample preparation for ICP analysis	
3.4	Activity of catalysts in PP and HDPE cracking	
	3.4.1 Activity of various zeolite beta/Al-HMS mixed catalysts in	
	PP cracking	
	3.4.1.1 Effect of NH ₄ Cl treatment on Al-HMS in PP crack	
	3.4.1.2 Effect of Si/Al ratio Al-HMS catalyst	
	3.4.1.3 Effect of Al-HMS ratios in mixed zeolite beta/Al-I	
	3.4.1.4 Effect of plastic to catalyst ratio	
	3.4.1.5 Effect of temperature.	
	3.4.2 Activity of various zeolite beta/Al-HMS mixed catalysts in	
	HDPE cracking.	
	3.4.2.1 Effect of Al-HMS ratios in mixed Catalyst	
	3.4.2.2 Effect of plastic to catalyst ratio	
	3.4.2.3 Effect of temperature	
3.5	Catalyst regeneration	
СНАРТЕР	R IV RESULT AND DISCUSSION	44
	The physical properties of catalyst	
	4.1.1 XRD pattern of catalyst	
	4.1.1.1 XRD pattern of zeolite beta	
	4.1.1.2 XRD pattern of Al-HMS	

CHAPTER	page
4.1.2 SEM images of catalysts	46
4.1.2.1 SEM image of zeolite beta	a46
4.1.2.2 SEM image of Al-HMS	47
4.1.3 ²⁷ Al-MAS-NMR Spectrum	48
4.1.3.1 ²⁷ Al-MAS-NMR Spectrum	
4.1.3.2 ²⁷ Al-MAS-NMR Spectrum	
4.1.3.3 NH ₄ Cl treatment on Al-HN	
4.1.4 Nitrogen Adsorption-Desorption	
4.1.4.1 Nitrogen Adsorption-Desc	orption of zeolite beta53
4.1.4.2 Nitrogen Adsorption-Desc	orption of Al-HMS54
4.1.5 Si/Al Ratios of catalysts	55
4.1.6 NH ₃ -TPD Profiles	56
4.2 Activity of catalysts in PP cracking	57
4.2.1 Activity of Al-HMS catalysts in PP of	
4.2.1.1 Effect of NH ₄ Cl treatment or	1 Al-HMS57
4.2.1.2 Effect of Si/Al ratios	
4.2.2 Activity of zeolite beta and Al-HMS	
Cracking	59
4.2.2.1 Effect of Al-HMS ratio in m	
4.2.1.2 Effect of plastic to catalyst ra	atios63
4.2.1.3 Effect of temperature	
4.2.3 Catalyst regeneration	
4.3 Activity of catalysts in HDPE cracking	
4.3.1 Activity of zeolite beta and Al-HMS r	
HDPE cracking	
4.3.1.1 Effect of plastic to catalyst ra	
4.3.1.2 Effect of temperature	
4.3.2 Catalyst regeneration	

	Page
CHAPTER V CONCLUSION AND SUGGESTIONS	87
REFERENCES	89
APPENDICES	94
VITAE	102

LIST OF TABLES

	Pag
Table 2.1	IUPAC Classification of porous materials
Table 2.2	Various synthesis conditions of hexagonal mesoporous materials and the
	type of interaction between template and inorganic species
Table 2.3	Properties of some hexagonal mesoporous materials
Table 2.4	Example route for interaction between the surfactant and the inorganic
	soluble speies
Table 3.1	Required amount of AIP in the preparation of Al-HMS samples with
	various Si/Al ratio in gel
Table 3.2	Different concentration of NH ₄ Cl for treating Al-HMS samples37
Table 3.3	Different ratio of Al-HMS in mixed catalysts4
Table 4.1	Some properties of Al-HMS (Si/Al=40) before and after treated
	with NH ₄ Cl solution
Table 4.2	Textural properties of calcined zeolite beta and Al-HMS samples5
Table 4.3	Physicochemical properties of the catalysts56
Table 4.4	%Conversion and %yield obtained by catalytic cracking of PP
	over untreated and treated Al-HMS 4058
Table 4.5	%Conversion, %yield, and %selectivity of liquid fraction
	obtained by catalytic cracking of PP over treated Al-HMS
	catalysts with various Si/Al ratios
Table 4.6	%Conversion, %yield, and %selectivity of liquid fraction obtained by
	thermal and catalytic cracking of PP over Sample zeolite beta/Al-HMS
	mixed catalysts with various Al-HMS ratios60
Table 4.7	%Conversion, %yield, and %selectivity of liquid fraction obtained by
	catalytic cracking of PP over the 95%Al-HMS mixed catalyst with
	various plastic to catalyst ratios64
Table 4.8	%Conversion, %yield, and %selectivity of liquid fraction obtained by
	thermal and catalytic cracking of PP over 95%Al-HMS catalyst at
	various temperatures

ra	g
Table 4.9 Values of %conversion, %yield, and %selectivity of liquid fraction	
obtained by catalytic cracking of PP using the fresh and the regenerated	
95%Al-HMS mixed catalyst	l
Table 4.10 %Conversion, %yield, and %selectivity of liquid fraction	
obtained by thermal and catalytic cracking of HDPE over zeolite	
beta/Al-HMS mixed catalysts with various Al-HMS ratios74	1
Table 4.11 %Conversion, %yield, and %selectivity of liquid fraction obtained	
by catalytic cracking of HDPE over 5%Al-HMS mixed catalyst with	
various plastic to catalyst ratios	3
Table 4.12 %Conversion, %yield, and %selectivity of liquid fraction	
obtained by thermal and catalytic cracking of HDPE over	
5%Al-HMS mixed catalyst with various temperatures8	Ĺ
Table 4.13 %Conversion, %yield, and %selectivity of liquid fraction obtained	
by catalytic cracking of HDPE using the fresh and the regenerated	
5%Al-HMS mixed catalyst8	5

Table 4.9 V	alues of %conversion, %yield, and %selectivity of liquid fraction
o	btained by catalytic cracking of PP using the fresh and the regenerated
95	5%Al-HMS mixed catalyst71
Table 4.10	%Conversion, %yield, and %selectivity of liquid fraction
	obtained by thermal and catalytic cracking of HDPE over zeolite
	beta/Al-HMS mixed catalysts with various Al-HMS ratios75
Table 4.11	%Conversion, %yield, and %selectivity of liquid fraction obtained
	by catalytic cracking of HDPE over 5%Al-HMS mixed catalyst with
	various plastic to catalyst ratios
Table 4.12	%Conversion, %yield, and %selectivity of liquid fraction
	obtained by thermal and catalytic cracking of HDPE over
	5%Al-HMS mixed catalyst with various temperatures81
Table 4.13	%Conversion, %yield, and %selectivity of liquid fraction obtained
	by catalytic cracking of HDPE using the fresh and the regenerated
	5%AL-HMS mixed catalyst 84

	Page
Figure 4.4	SEM image of zeolite beta(Si/Al=60)
	SEM images of Al-HMS with various Si/Al ratios in gel of (a)- (b)
riguie 4.5	Si/Al=40, (c) - (d) Si/Al=60, and (e) -(f) Si/Al=200
Figure 4.6	²⁷ Al-MAS-NMR spectra of zeolite beta (a) as-synthesized,
riguic 4.0	(b) calcined
Figure 47	²⁷ Al-MAS-NMR spectra of as-synthesized Al-HMS with
riguie 4.7	different Si/Al ratios in gel (a) 40, (b) 60, and (c) 200
Figure 4 9	²⁷ Al-MAS-NMR spectra of calcined Al-HMS with different
rigure 4.0	Si/Al ratios in gel (A) 40, (B) 60, and (C) 200
Figure 40	²⁷ Al-MAS-NMR spectra of Al-HMS (Si/Al=40) before and after
rigure 4.9	treatment with NH ₄ Cl for 3 h in various concentrations
	(a) as-synthesized (b) calcined-untreated, (c) 1 M, (d) 2 M, and (e) 3 M
T2' 4 14	
Figure 4.10	27Al-MAS-NMR spectra of Al-HMS with Si/Al in gel of 60
	were treated with 1 M NH ₄ Cl (a) treated(b) untreated
Figure 4.1	1 ²⁷ Al-MAS-NMR spectra of Al-HMS with Si/Al in gel of 200
	were treated with 1 M NH ₄ Cl (a) treated(b) untreated53
Figure 4.12	2 (a) N ₂ adsorption-desorption isotherm (b) Pore-size
	distribution of zeolite beta (Si/Al=60)53
Figure 4.13	3 (a) N ₂ adsorption-desorption isotherms of Al-HMS with various Si/Al
	ratios in catalyst of (a) 40, (b) 60, and (c) 20054
Figure 4.1	4 BJH pore-size distribution of Sample Al-HMS with various Si/Al
	ratios in catalyst55
Figure 4.1:	5 NH ₃ -TPD profiles of (a)zeolite beta and treated with
	1 M NH ₄ Cl Al-HMS with different Si/Al ratios (b) 40, (c) 60, and
	(d) 20057
Figure 4.1	6 Accumulative volume of liquid fractions from catalytic cracking
	of PP over zeolite beta/Al-HMS mixed catalysts with various
	Al-HMS ratios61
Figure 4.1	7 Distribution of gas fraction obtained by catalytic cracking of
	PP over zeolite beta/Al-HMS mixed catalysts with various Al-HMS
	ratios

Page
Figure 4.18 Carbon number distribution of distillated oil obtained catalytic
cracking of PP over zeolite beta/Al-HMS mixed catalysts with
various Al-HMS ratios
Figure 4.19 Carbon number distribution of commercial SUPELCO standard
gasolin fraction63
Figure 4.20 Accumulative volumes of liquid fractions from catalytic cracking
of PP over the 95%Al-HMS mixed catalyst with various catalyst
to plastic ratios65
Figure 4.21 Distribution of gas fraction obtained by catalytic cracking of PP
over the 95%Al-HMS mixed catalyst with various plastic to catalyst
ratios65
Figure 4.22 Carbon number distribution of distillated oil obtained by catalytic
cracking of PP over the 95%Al-HMS mixed catalyst with various
plastic to catalyst ratios66
Figure 4.23 Accumulative volume of liquid fractions from catalytic cracking
of PP over 95%Al-HMS catalyst at various temperatures68
Figure 4.24 Distribution of gas fraction obtained by thermal and catalytic
cracking of PP over 95%Al-HMS catalyst at various temperatures68
Figure 4.25 Some possible mechanism of polypropylene cracking69
Figure 4.26 Carbon number distribution of distillated oil obtained by thermal
and catalytic cracking of PP over 95%Al-HMS at various
temperatures70
Figure 4.27 XRD patterns of (a) fresh 95%Al-HMS mixed catalyst
(b) regenerated 95%Al-HMS mixed catalyst71
Figure 4.28 Accumulative volume of liquid fraction obtained by catalytic
cracking of PP using the fresh and the regenerated 95%Al-HMS
mixed catalyst
Figure 4.29 Distribution of gas fraction obtained by thermal and catalytic
cracking of PP over fresh and the regenerated 95%Al-HMS mixed
catalyst

ra	ge
Figure 4.30 Carbon number distributions of liquid fraction obtained by catalytic	
cracking of PP using the fresh and the regenerated 95%Al-HMS73	3
Figure 4.31 Accumulative volume of liquid fractions from catalytic cracking	
of HDPE over zeolite beta/Al-HMS mixed catalysts with various	
Al-HMS ratios.	74
Figure 4.32 Distribution of gas fraction obtained by catalytic cracking of	
HDPE over zeolite beta/Al-HMS mixed catalysts with various	
Al-HMS ratios	76
Figure 4.33 Carbon number distribution of distillated oil obtained catalytic	
cracking of HDPE over zeolite beta/Al-HMS mixed catalysts	
with various Al-HMS ratios.	77
Figure 4.34 Accumulative volume of liquid fractions from catalytic cracking	
of HDPE over 5%Al-HMS mixed catalyst with various plastic to	
catalyst ratios	78
Figure 4.35 Distribution of gas fraction obtained by catalytic cracking of HDPE	
over 5%Al-HMS mixed catalyst with various plastic to catalyst ratios	79
Figure 4.36 Carbon number distribution of distillated oil obtained by catalytic	
cracking of HDPE over 5%Al-HMS mixed catalyst with various	
plastic to catalyst ratios	79
Figure 4.37 Accumulative volume of liquid fractions from catalytic cracking	
of HDPE over 5%Al-HMS mixed catalyst with various temperatures	31
Figure 4.38 Distribution of gas fraction obtained by catalytic cracking of HDPE	
over 5%Al-HMS mixed catalyst with various temperature	32
Figure 4.39 Carbon number distribution of distillated oil obtained by thermal	
and catalytic cracking of HDPE over 5%Al-HMS mixed catalyst	
with various temperatures	32
Figure 4.40 XRD patterns of (a) fresh 5%Al-HMS mixed catalyst	
(b) regenerated 5%Al-HMS mixed catalyst	33
Figure 4.41 Accumulative volume of liquid fraction obtained by catalytic cracking	
of HDPE using the fresh and the regenerated 5%Al-HMS catalyst	85

		xvii Page
Figure 4.42	Distribution of gas fraction obtained by catalytic cracking of HDPE	
	over fresh and the regenerated 5%Al-HMS catalyst	85
Figure 4.43	Carbon number distributions of liquid fraction obtained by catalytic	
	cracking of HDPE using the fresh and the regenerated	
	5%Al-HMS catalyst	86

LIST OF SCHEMES

		Page
Scheme 2.1	Representation of synthesis methods for zeolites	13
Scheme 2.2	Representation of a general mechanistic hydrocarbon degradation in	
	zeolites	27
Scheme 3.3	The column heating program for gas analysis	31
Scheme 3.4	The column heating program for liquid analysis	32
Scheme 3.5	Zeolite beta synthesis diagram	33
Scheme 3.6	Diagram of Al-HMS synthesis	36
Scheme 3.7	Catalytic cracking of PP and HDPE using zeolite beta/Al-HMS as	
	catalyst	39

LIST OF ABBREVIATIONS

BET Brunauer-Emmett-Teller method

HMS Hexagonal Mesoporous Silica

MCM-41 Mobil's Composite of Matters-41

°C degree Celsius

GC gas chromatography

g gram (s)

h hour (s)

ICP Inductively Coupled Plasma Emission

min minute

SEM Scanning Electron Microscopy

TPD Temperature-programmed desorption

XRD X-ray diffraction