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Appendix A

Particular Solutions for ¢7*, ¢3' and ¢3'

In this research, the electric potential equations for the host medium

region (¢T*, ¢5* and ¢7'), Egs. (3.34), (3.59) and (3.89), are in the form as
V24(r,0) = Y f;(r) cos(j6). (A-1)
i

Consider (A-1) by using the cylindrical coordinates in two dimensions, r and 0,

we obtain

(242)1 52 oty = > 5 eos(i), (A-2)

Let the particular solution of ¢(r,#) be the summation of
041, 6) = Ry(r) cos(j6). (A-3)
By substituting (A-3) into (A-2), we obtain

[EE(TM) - i-—sz(r)] cos(j8) = f;(r)cos(56),

rdr dr e
d / dR; ;
RN e d 56). (A1)

From considering the electric potential equations, Eqs. (3.34), (3.59) and (3.89),

we find that f;(r) is in the form as
fi(r) = Cyr¥, (A-5)

where Cj is the constant coefficient of r* and k is the power of .

Substituting (A-5) into (A-4), we obtain

d?R;(r) 5 1dR;(r)

dr? T dr

2

J
e ;‘ERJ(T) = Cj?’k. (A"ﬁ)
We let the solution of R;(r) be

R;(r) = a;r**, (A7)
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where «a is the constant coefficient which have to be solved.

Substituting (A-7) into (A-6), we obtain

C;
T2kt D)+ (k+2) - 4%

&y

(A-8)

Since the constant Cj, k, and j are known, then a; can be obtained. The partic-
ular solution of (A-1) can be solved by substituting (A-7) and (A-8) into (A-3).

From «; in (A-8), we see that the problem of solving the particular solu-
tion occurs when

(k+2)(k+1)+(k+2)—j*=0, (A-9)

or

k+2=%j (A-10)

We cannot use (A-7) and (A-8) to solve the particular solution when the relation
between k and j is in the form of (A-10). Next, we will solve this problem by
considering (A-4) again.

From d(Inr) = 2dr, (A-4) can be rewritten as

d’R;(r)
d(Inr)?

—32R;(r)y =72 f5(r) =1*(C;r™). (A-11)

We let z = Inr and r = e®. So (A-11) becomes

d’R);

5~ 1Ry =Gy, (A-12)
which the trial solution is
Gi i
R = +—Lge*I®, =
; % ze (A-13)

Substituting z = Inr, we obtain
a3 G g
R;(r) = :I:—er Inr. (A-14)

Next, we will apply these formulae to solve the particular solution for the electric

potential in the host medium region, ¢7;(r,0), ¢5,(r, ) and ¢3,(r,0).
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The particular solution for the first-order electric potential
We first to calculate the particular solution for the first order electric

potential in the host medium region from Eq. (3.34) which is

V24 (r,8) = [(szr's — 4b%r~") cos 6 — 4br 3 cos 39] E}, (A-15)

1
Em
where &, is in unit of fp,.

For convenient, we rewrite (A-15) as

V(0 = —— [+ fa+ o] B, (A-16)
where
fi = 8’r°cosd, (A-17)
fo = —4b*r"cosd, (A-18)
f3/ = =4br~3 cos 36. (A-19)

From (A-3), (A-7) and (A-8), the particular solution of ¢7*(r, @) is in the form

¢1p(r, 0) = —Ei [0:‘11"_3 cos@ + asr > cos § + azr~ cos 39] ES. (A-20)

From (A-8), the coefficients ay, as and a3 can be calculated as follows:

| 8b°

M= (5+2)(b5+1)+(-5+2) - 12
= B (A-21)
N —4p?

N = T+ +(—7+2) - 12
= -é b?, (A-22)
N —4b

B R o
= 2 (A-23)

Substituting (A-21)-(A-23) into (A-20), we obtain the particular solution of ¢7(r, #)
as

1 1
1p(r:0) = o [(bzr':" ~3 b*r %) cos 6 + % br~! cos 39] E3. (A-24)

m
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The particular solution for the second-order electric potential
We consider the second-order electric potential equation for the host

medium region from Eq. (3.59) which is

2am _L 16561 B 20b2 . 12b2b1 24bb2 68b3 g 24b2b2 - 76&4
56b5 461 8b 48bb2 32b3 2452}}2
35m’””)cose+ (_ﬁJremr"’ R I
apt 2 6b  24b, 1202
i + smr“) cos 36 + (— oy e Dl emr5) cos 59]5‘;;',
(A-25)

where &,, is in unit of f,.
The computation of ¢3}(r,8) is far more tedious because there are many terms in
the right hand side of (A-25), but similar to that of ¢7,(r,6). We omit the details

of calculation and give the result of ¢5'(r, 0) as

Gop(r,0) = [(651"'3 4 ber > + b7 + bgr~?) cos

1
Em
+ (bor~! + bior = 4 by + byar™?) cos 30

+ (biar ™' + bmr':;) cos 58] Eg,

where
5b2
bs = 2bb, — —
5 1 2Em!
b*b, 176°
o= =2 i 8
6 2 bb'z 6Em‘
b2b, 19b*
by = -2 -,
2 12¢,,
5
By b ’
30e,,
by b
. Y.
9 9 Em,
2 3
b = 3b52+gi,
3b%h, 114
bll =

5  30g,’
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b5
bi? - 365,,.,_‘
b
by = —,
13 4c,,
by = P2, 3
= 2 T,

The particular solution for the third-order electric potential
We consider the third-order electric potential equation for the host medium

region from Eq. (3.89) which is

1
V2gi(r,0) = = [(91‘*”“5 +gor~ "4+ gar™? + gar ™1 + g5t 13 + ger %) cos @
m

+ (grr 2 + gsr > + gor " + gior 2 + gur " + gror 4

1) cos 30 + (guar ™ + g157™° + gier ™" + qurr™?

+ guar
+ glgT'_n + glg'r"la + 920?”“15) cos 58 + (9217'_3 = o 9227’“5

+ gosr ") cos 76‘} E], (A-26)

where &,,, is in unit of f3,, and

8b* 200
g1 = 8b%+16bc, + = — —,
- S
3 2
gs = —].be% + 2461&?2 = 12!')2C1 + 24bcy — 1_2“ + 52: b
+60662 i 64bbs 1S 60bs  12b%by  4byy
4 3
gs = —A48bbyby + 144b2 — 24b%c, + 1(;21; oL (P 24:252
m Em m
~ 526%b; | L4dbbs 1206, | 6dbbiy _ 12by,
Em Em Em Em Eug |
5 4 3 2
o 1 —144bb§ B 832b e 1126%h, B 192b°by 5 112b%bg + 256bb7
3e2. 3em Em Em Em
_200b3 B 40b%by 5 120bby;  24bys
Em Em Em Em ’
14665  56b%b 1922 400bb, 606%b 192bb
% = — _l_Ez_ Eb7+58_ F11+ &-12'

_2157 N 292b%bg  84b%by,

2
iy Em Em



gz

gs

g9

gio

gn

g12

g13

914

15

916

a7

g18

g19

920

g21

922

923

Edi Em
126b, _ 12b5 | 24bby _ 24bbis
Ein Em Em En
200°  32b%b 24bb
48byby + 48bcy + —— + —— + ——
g2 £ Em
_ 24bs & 8b%by  32b10  24b%big
Em Tt Em &
4 3 1 2
—48bby by — 24b262 + 40bcs + 128 — 965 0y + 68 s
3e2, 3e. Eni
_4b265 = 64bbg a 40b; ! 88bbyy  80by;  40b%byy
Em E Em Exn Em T
5 4 3 2
_60b%c; — 7026 - 4b*b, o 276b°b, = 12b°bg L 120bb,
_6053 726%by0 A 144bby; — 144b15
Em Em Er &n
1046°  76b%,  24b%b;  192bbs  136b%b;;,  216bbyy
+ - + - + s
3e2, € Em Em Em Em
_46!)"r B 40b%bg  216b%b;5
92, Em e’
_1269 i 48b13,
& Em
4% 12bb 24b 56bb 32b
~2e, + =~ — b9+ 13 , 3%
106 406 40b%b 80bb
s 0 13 1
€m Em Em Em

4 12062 2

3 2
—36bb§ 1L AGIBIC! ﬁ;i A 64b°by | 4b%byq

gn Em Em

96bb 84b
+ 11 _ 12

Em Em
126%,  120%1,  168bbi
Em - Em i Em !
2462y,
-—
24by3
e,
146>  64bbys  40by4
- E?n - Em ; Em ?
—60c3 — 5_f _48bb,  4b’bi3  40bbia
Em Em Em Em
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From (A-26), the terms ggr—>cos36 and gjer " cos50 have k + 2 = —j. Then
the particular solution of these parts have to be solved by using (A-14). The
computation of 425’3”;,(1', 6) is far more tedious because there are many terms in the
right hand side of (A-26), but similar to that of ¢7,(r, ) and ¢5,(r,6). We omit
the details of calculation and give the results of ¢5,(r, 6) as

Pap(r,0) = —EL [(515?“3 + bigr™® + bygr ™" + bygr ™ + byor ™

m

+baor %) cos 0 + (bglf_l + boor 3 InT + bogr % 4 bogr™"

+b25'1"—9 + bga?"_“ + bz'ﬂ‘_la) cos 30 + (bgg?‘_l + bzg?‘_s
+b3o'a"_5 Inr + b31?'_7 + b32?"_9 & 533?"_11 + 5341‘_'13) cos 560

+(basr ™" + bagr 3 + by ) cos 79] E, (A-27)

= _ ¥ ! N ¥ | ]

where b5 = g 01, bie =35 92, biz = 35 93, b1s = g5 94, b1 = 135 95, bao = 168 96>
| S | L/A A\ a0 |

bar = —5 97, b2 = —5 98, b2z = g 99, b2 = 735 G0, b2s = 75 911, bas = 133 12,

| P | o-“Gr =2 5 d1 gl u

byr = 160 913: bag = —35 914; bag = —75 915, bzo = —15 916, b31 = 33 Gi7, b3y =

315 918, bz = % 919, bza = ﬁ 920, b3s = —% 921, bag = —% 922 and byr = "513 gas3.



Appendix B

Proof of the Equivalence of Nonlinear
Coefficient Definitions

We let the composite volume be V' and a uniform external electric field
(Eq) is applied by fixing the electric potential on the composite surface (¢g) at
—Ej - x for x on S. We will first show that the space average electric field inside
the medium is equals Ey.

We write the space average of the ith cartesian component of E as follows:

B = 7 [ B (B-1)
Vv
1 3
— [T = 1 ) B-2
> [v Vi d (B-2)
1
4 f V - (8:0) dz. (B-3)
Vi
By using the divergence theorem, we obtain
(E)) = _L f. #; - hps dr. (B-4)
Vs
By the divergence theorem and ¢s = —(Eq - X)g, we have

1
vﬁij,(EgX) dS:L' = %fs(Eg-x)sig-ﬁdzx,
L
= = fg:ﬁ‘- -pg d*x. (B-5)
The right hand side of (B-4) and (B-5) are the same, therefore
(B = lf V - i(Bo %) &,
Vi
1
= ¥ /V Ey; d*z,
EU‘I'! (B‘ﬁ)

and (E) = E.
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In these equations, #; is a unit vector in the ith direction, 7 is a unit normal to
the composite boundary surface (S) and Ey; is the ith component of Eq.

One definition of effective coefficients is to relate the electrostatic energy
of the composite to that of the homogeneous medium with effective coefficients

by the equation
W= f D -E d®z = V[e. B} + xeEg + 1eEy + 0. Eg + peEg’]. (B-7)
v

To relate this form to other definition, Eq. (4.2), we write W as

w = [ D-.Ed%s, (B-8)
\'4
= — | D:-Véds, (B-9)
v
_ _/ [V (Dg) -4 - D] &’z (B-10)

For V-D =0, we get

s
I

- / V - (D¢) d*z, (B-11)
v

—fﬁ -Dé¢g d*z. (B-12)
8§

Il

By using the divergence theorem and replacing ¢s by —(Ey - x)g, we get

W = fﬁ—D(Eg-x)gfx,
S

= /V—D(Eg-x)d?’z,
1%

_ L[V.D(Eo.x)+p.v(sﬁ-x)] &z, (B-13)

For V - D = 0 which is our case, that has no free charge, and D - V(E, - x) =
37 D,'a%(Eu -x) = D - Ey, we obtain

W = /Ddaa:-Eo, (B-14)
|4

V(D) - Eo. (B-15)
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Equating (B-7) and (B-15), we obtain the coefficients of Eg
(D) = €.Eo + XeEo’Eo + 1eEo*Eg + 6. Ee°Eqg + pe Eo°E, (B-16)

which is the other equivalent defining equation, Eq. (4.2), for effective coefficients.



Appendix C

Proof of [,,eV¢y- Vdd’z =0

Consider

/ eVo - Vo, d°x - / Do - V¢, d’z, (C-1)
| v

- [[v-6uD0) ~ 4V -Do)] 'z (©2)
For V - Dg = 0, we get

fv Voo Vopd’z = = /V V - (¢nDy) d°z, (C-3)
S fs $asDos - d’z. (C-4)

Since ¢ps = —Ep-x for x on S and ¢,s =0 forn =1, 2, 3,..., then the right
hand side of (C-4) is zero for n # 0, and

/ Vo - Vo, d’z =0. (C-5)
v
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