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ABSTRACT

4691001063  Petrochemical Technology Program
Mr. Teeradet Supap: A Comprehensive Study of the Degradation of
Aqueous Monoethanolamine Solution during CO, Capture from
Power Plant Flue Gases: Analytical Techniques, Degradation
Kinetics, and Degradation Prevent Techniques.
Thesis Advisors: Associate Prof. Chintana Saiwan, Prof. Paitoon
Tontiwachwuthikul, and Prof. Raphael Idem 157 pp.

Keywords: GC-MS/ HPLC-RID/ CE-DAD/ Monoethanolamine/ 02/ SOo/ COy/
Degradation/ Kinetics/ Mechanism/ Inhibitor

This study involved the evaluation of the factors that affect the degradation
of aqueous monoethanolamine solution during CO, capture from power plant flue
gas streams. Specific achievements involved the development of analytical
techniques for analysis of MEA and its oxidative degradation products, the
elucidation of the roles played by SO,, O, MEA and CO, in MEA degradation, the
formulation and development of mechanism based 0,-SO; induced MEA
degradation kinetics, and the investigation of deg{adation prevention techniques
based on both the use of degradation inhibitors and suitable operating procedures for
amine based CO; capture. GC-MS with different column arrangements, HPLC-RID
with nucleosil column/KH,P0O4 mobile phase, CE-DAD using phosphate and borate
electrolytes were all capable of analyzing MEA and its degradation products in
MEA-O, systems with/without CO,. A total of four kinetic models for MEA-O,-
S0,-CO, degradation system were developed. It was only the combined mechanism
based model that best characterized the MEA degradation system in terms of
acceptable accuracy, no limitations in predicting MEA degradation rate, and the
capability in providing the degradation mechanistic details. Some of the degradation
inhibitor chemical such as UR-A were found to minimize the degradation of MEA in

the presence of O, and SO, when used at their optimum concentrations.
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reaction order with respect to MEA in Eq.(5.3), (5.4), (5.41),

and (5.56)
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reaction order of MEA in Eq.(5.41)

reaction order with respect to O, in Eq.(5.3), (5.4), (5.41), and
(5.56)

reaction order with respect to SO, in Eq.(5.3), (5.4), (5.41),
and (5.56)

reaction order with respect to CO, in Eq.(5.3), (5.4), (5.41),
and (5.56)

reaction order of CO; in Eq.(5.41)
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Preexponential constant in Eq.(5.41)

Preexponential constant in Eq. (5.41)
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rate constant in Eq.(5.41) and (5.56)
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