เมทริกซ์ริงนัยทั่วไปซึ่งมีสมบัติส่วนร่วมของควอซี –ไอเดียล

นายรณสรรพ์ ชินรัมย์

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของภาคการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาคณิตศาสตร์ ภาควิชาคณิตศาสตร์ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2543 ISBN 974-13-0484-6 ลิขสิทธิ์ของ จุฬาลงกรณ์มหาวิทยาลัย

GENERALIZED MATRIX RINGS ${\mbox{HAVING THE INTERSECTION PROPERTY OF QUASI-IDEALS}$

Mr. Ronnason Chinram

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Science in Mathematics

Department of Mathematics

Faculty of Science

Chulalongkorn University

Academic Year 2000

ISBN 974-13-0484-6

Thesis Title	: Generalized Matrix Rings Having the Intersection Property of		
	Quasi-ideals		
Ву	: Mr. Ronnason Chinram		
Field of Study	: Mathematics		
Thesis Advisor	: Associate Professor Yupaporn Kemprasit, Ph.D.		
Accepted	by the Faculty of Science, Chulalongkorn University in Partial		
Fulfillment of the	Requirements of Master's Degree		
	Dean of Faculty of Science		
	(Associate Professor Wanchai Phothiphichitr, Ph.D.)		
THESIS COMMI	TTEE		
	(Assistant Professor Patanee Udomkavanich, Ph.D.)		
	Thesis Advisor		
	(Associate Professor Yupaporn Kemprasit, Ph.D.)		
	Member		
	(Dr. Sajee Pianskool, Ph.D.)		

รณสรรพ์ ชินรัมย์ : เมทริกซ์ริงนัยทั่วไปซึ่งมีสมบัติส่วนร่วมของควอซี-ใอเดียล (GENERALIZED MATRIX RINGS HAVING THE INTERSECTION PROPERTY OF QUASI-IDEALS) อ. ที่ปรึกษา : รศ.ดร. ยุพาภรณ์ เข็มประสิทธิ์, 36 หน้า. ISBN 974-13-0484-6

ให้ R เป็นริง สำหรับ A, B ซึ่งเป็นเซตย่อยไม่ว่างของ R ให้ AB แทนเซตของผลบวกอันตะทั้งหมดที่อยู่ใน รูปแบบ $\sum a_i b_i$ โดยที่ $a_i \in A$ และ $b_i \in B$ จะเรียกริงย่อย Q ของ R ว่า A = A = A ของ A = A = A และ A = A = A = A = A เป็นที่รู้กันว่า ส่วนร่วมของไอเดียลซ้ายและไอเดียลขวาของ A = A = A = A เป็นควอซี-ไอเดียล แต่ควอซี-ไอเดียลของ A = A = A = A เป็นส่วนร่วมของควอซี-ไอเดียล ถ้าทุกควอซี-ไอเดียลของ A = A = A = A เป็นส่วนร่วมของ ไอเดียลซ้ายและไอเดียลของ A = A = A = A เป็นส่วนร่วมของ ไอเดียลซ้ายและไอเดียลของวาของ A = A = A = A

ต่อจากนี้ไป ให้ R เป็นริงการหาร และ m และ n เป็นจำนวนเต็มบวก ให้ $M_{m,n}(R)$ แทนเซตของเมทริกซ์ ขนาค $m \ge n$ บน R ทั้งหมด สำหรับ $P \in M_{n,m}(R)$ ให้ $(M_{m,n}(R),+,P)$ เป็นริง $M_{m,n}(R)$ ภายใต้การบวกปกติ และการ คูณ * ซึ่งนิยามโดย A*B=APB สำหรับทุก $A,B\in M_{m,n}(R)$ ให้ $M_{n,n}(R)=M_{n}(R)$ และ $SU_{n}(R)$ แทนเซตของ เมทริกซ์สามเหลี่ยมบนโดยแท้ใน $M_{n}(R)$ ทั้งหมด สำหรับ P ที่เป็นเมทริกซ์สามเหลี่ยมบนขนาค $n \ge n$ บน R นิยาม $(SU_{n}(R),+,P)$ ในทำนองเดียวกัน

ผลสำคัญของการวิจัยมีดังนี้

ทฤษฎีบท 1 สำหรับ $P \in M_{n,m}(R)$ ริง $(M_{m,n}(R), +, P)$ มีสมบัติส่วนร่วมของควอซี-ใอเดียล ก็ต่อเมื่อ ไม่ P = 0 ก็ ค่าลำคับชั้น(P) =ค่าน้อยสุด $\{m, n\}$

บทแทรก 2 สำหรับ $P \in M_{_{\! m}}(R)$ ริง $(M_{_{\! m}}(R),+,P)$ มีสมบัติส่วนร่วมของควอซี-ไอเดียล ก็ต่อเมื่อ ไม่ P=0 ก็ P เป็นเมทริกซ์ที่หาตัวผกผันได้

ทฤษฎีบท 3 สำหรับ P ที่เป็นเมทริกซ์สามเหลี่ยมบนขนาด $n \ge n$ บน R ริง $(SU_n(R), +, P)$ มีสมบัติส่วนร่วมของ ควอซี-ไอเดียล ก็ต่อเมื่อ หนึ่งในข้อความต่อไปนี้เป็นจริง

- (i) n < 3
- (ii) n=4 uas $P_{22}=0$ หรือ $P_{33}=0$
- (iii) $n > 4, P_{ij} = 0$ สำหรับทุก $i, j \in \{3, 4, ..., n-2\}$ และ
 - (a) $P_{2j} = 0$ สำหรับทุก $j \in \{2, 3, ..., n-2\}$ หรือ
 - (b) $P_{i,n-1} = 0$ สำหรับทุก $i \in \{3,4,\ldots,n-1\}$

ภาควิชา คณิตศาสตร ์
สาขาวิชา คณิตศาสตร ์
ปีการศึกษา <i>วร</i> /3

ลายมือชื่อนิสิต	
ลายมือชื่ออาจารย์ที่ปรึกษา	
ลายเบื้อพื่ออาจารย์ที่ปรึกษาร่าน -	

KEYWORD: GENERALIZED MATRIX RINGS / THE INTERSETION PROPERTY OF OUASI-IDEALS

RONNASON CHINRAM : GENERALIZED MATRIX RINGS HAVING THE INTERESCTION PROPERTY OF QUASI-IDEALS. THESIS ADVISOR : ASSO. PROF. YUPAPORN KEMPRASIT, Ph.D. 36 pp. ISBN 974-13-0484-6

Let R be a ring. For nonempty subsets $A, B \subseteq R$, let AB denote the set of all finite sums of the form $\sum a_i b_i$ where $a_i \in A$ and $b_i \in B$. A subring Q of R is called a *quasi-ideal* of R if $RQ \cap QR \subseteq Q$. It is known that the intersection of a left ideal and a right ideal of R is a quasi-ideal but a quasi-ideal of R need not be obtained in this way. The ring R is said to have the intersection property of quasi-ideals if every quasi-ideal of R is the intersection of a left ideal and a right ideal of R.

In the remainder, let R be a division ring and m and n positive integers. We denote by $M_{m,n}(R)$ the set of all $m \times n$ matrices over R. For $P \in M_{n,m}(R)$, let $(M_{m,n}(R), +, P)$ be the ring $M_{m,n}(R)$ under usual addition and the multiplication * defined by A * B = APB for all $A, B \in M_{m,n}(R)$. Let $M_{n,n}(R) = M_n(R)$ and we denote by $SU_n(R)$ the set of all strictly upper triangular matrices in $M_n(R)$. For an upper triangular $n \times n$ matrix P over R, let $(SU_n(R), +, P)$ be defined similarly.

The main results of this research are as follows:

Theorem 1. For $P \in M_{n,m}(R)$, the ring $(M_{m,n}(R), +, P)$ has the intersection property of quasi-ideals if and only if either P = 0 or rank $P = \min\{m, n\}$.

Corollary 2. For $P \in M_n(R)$, the ring $(M_n(R), +, P)$ has the intersection property of quasi-ideals if and only if either P = 0 or P is invertible.

Theorem 3. For an upper triangular $n \times n$ matrix P over R, the ring $(SU_n(R), +, P)$ has the intersection property of quasi-ideals if and only if one of the following statements holds.

- (i) $n \leq 3$.
- (ii) n = 4 and $P_{22} = 0$ or $P_{33} = 0$.
- (iii) $n > 4, P_{ii} = 0$ for all $i, j \in \{3, 4, ..., n-2\}$ and
 - (a) $P_{2i} = 0$ for all $j \in \{2, 3, ..., n-2\}$ or
 - (b) $P_{i,n-1} = 0$ for all $i \in \{3, 4, ..., n-1\}$.

Department Mathematics	Student's signature
Field of study Mathematics	Advisor's signature
Academic year 2000	Co-advisor's signature -

ACKNOWLEDGEMENT

I am greatly indebted to Assoc. Prof. Dr. Yupaporn Kemprasit, my thesis advisor, for her untired offering me some thoughtful and helpful advice in preparing and writing my thesis. I would like to thank Assist. Prof. Dr. Patanee Udomkavanich and Dr. Sajee Pianskool, my thesis committee, for their suggestions to my thesis. I would like to thank all of the lecturers for their previous valuable lectures while studying.

In particular, I would like to express my gratitude to my family and friends for their encouragement throughout my graduate study.

CONTENTS

	Page
ABSTRACT IN THAI	iv
ABSTRACT IN ENGLISH	V
ACKNOWLEDGEMENT	vi
CHAPTER	
I. INTRODUCTION	1
II. GENERALIZED FULL MATRIX RINGS	10
III. GENERALIZED RINGS OF STRICTLY UPPER TRIANGULAR	
MATRICES	17
REFERENCES	35
VITA	36

CHAPTER I

INTRODUCTION

Let \mathbb{N} , \mathbb{Z} and \mathbb{R} denote respectively the set of all positive integers, the set of all integers and the set of all real numbers. For a ring R and $n \in \mathbb{N}$, let

 $M_n(R)$ = the full $n \times n$ matrix ring over R,

 $U_n(R)$ = the ring of all upper triangular $n \times n$ matrices over R and

 $SU_n(R)$ = the ring of all strictly upper triangular $n \times n$ matrices over R.

For $A \in M_n(R)$ and $i, j \in \{1, 2, ..., n\}$, let A_{ij} denote the entry of A in $i^{\underline{th}}$ row and $j^{\underline{th}}$ column.

A ring R is said to be a (Von Neumann) regular ring if for every $a \in R$, a = axa for some $x \in R$. It is known that $M_n(R)$ is a regular ring if and only if R is a regular ring ([2], page 114-115). In particular, if R is a division ring, $M_n(R)$ is a regular ring.

For nonempty subsets A, B of a ring R, let $\mathbb{Z}A$ and AB denote respectively the set of all finite sums of the form $\sum k_i a_i$ where $k_i \in \mathbb{Z}$ and $a_i \in A$ and the set of all finite sums of the form $\sum a_i b_i$ where $a_i \in A$ and $b_i \in B$. A subring Q of a ring R is called a *quasi-ideal* of R if $RQ \cap QR \subseteq Q$. Then every left ideal and every right ideal of R is a quasi-ideal of R. In fact, quasi-ideals are a generalization of left ideals and right ideals. This can be seen from the following example.

Example. Let $n \in \mathbb{N}$ and n > 1. For $k, l \in \{1, 2, ..., n\}$, let $Q(k, l) \subseteq M_n(\mathbb{R})$ consisting of all matrices of the form

$$k^{\underline{th}} \text{ column}$$

$$\downarrow$$

$$\begin{bmatrix}
0 & \dots & 0 & 0 & 0 & \dots & 0 \\
\dots & \dots & \dots & \dots & \dots \\
0 & \dots & 0 & 0 & 0 & \dots & 0 \\
0 & \dots & 0 & x & 0 & \dots & 0 \\
0 & \dots & 0 & 0 & 0 & \dots & 0 \\
\dots & \dots & \dots & \dots & \dots \\
0 & \dots & 0 & 0 & 0 & \dots & 0
\end{bmatrix}$$

Then for $k, l \in \{1, 2, ..., n\}$, Q(k, l) is a quasi-ideal of $M_n(\mathbb{R})$ but neither a left ideal nor a right ideal of $M_n(\mathbb{R})$.

The notion of quasi-ideal for rings was first introduced by O. Steinfled in [5]. It is known that the intersection of any set of quasi-ideals of R is a quasi-ideal of R ([6], page 10). For a nonempty subset X of R, the quasi-ideal of R generated by X, $(X)_q$ is defined to be the intersection of all quasi-ideals of R containing X. H. J. Weinert [7] has given the following fact.

Theorem 1.1 ([7]). For a nonempty subset X of a ring R,

$$(X)_q = \mathbb{Z}X + (RX \cap XR).$$

It is clearly seen that the intersection of a left ideal and a right ideal of R is a quasi-ideal of R. Also, this can be seen in [6], page 7. However, a quasi-ideal of R need not be obtained in this way. For examples, one can see in [6], page 8, [4] and [3]. Some examples can be seen from this research. It is observed that the examples we have seen are not obvious ones. We say that a quasi-ideal Q of a ring R has the intersection property if Q is the intersection of a left ideal and a right

ideal of R and R is said to have the intersection property of quasi-ideals if every quasi-ideal of R has the intersection property. It is clearly seen that the following statements hold for any ring R. Every left ideal and every right ideal of R is a quasi-ideal of R having the intersection property. If R is commutative, every quasi-ideal of R is an ideal, so R has the intersection property of quasi-ideals. Moreover, the following two propositions are known.

Proposition 1.2 ([6], page 9). If a ring R has a one-sided identity, then R has the intersection property of quasi-ideals.

Proposition 1.3 ([6], page 73). If R is a regular ring, then R has the intersection property of quasi-ideals.

Hence if R is a ring with identity, by Proposition 1.2, for every $n \in \mathbb{N}$, $M_n(R)$ has the intersection property of quasi-ideals. As was mentioned, if R is a regular ring, then so is $M_n(R)$ for every $n \in \mathbb{N}$, and hence by Proposition 1.3, $M_n(R)$ has the intersection property of quasi-ideals. Observe that $SU_n(R)$ is a zero ring if $n \leq 2$ and if n > 2 and |R| > 1, $SU_n(R)$ has no one-sided identity and it is not regular.

Let Q be a quasi-ideal of a ring R. Then $RQ \cap QR \subseteq Q$. If $RQ \subseteq QR$, then $RQ = RQ \cap QR \subseteq Q$, so Q is a left ideal of R. Similarly, $QR \subseteq RQ$ implies that Q is a right ideal of R. Then the next proposition is obtained. It will be often referred in Chapter III.

Proposition 1.4. If every quasi-ideal Q of a ring R has the property that $RQ \subseteq QR$ or $QR \subseteq RQ$, then R has the intersection property of quasi-ideals.

In fact, characterizations of quasi-ideals having the intersection property were given by H.J. Weinert [7] as follows:

Theorem 1.5 ([7]). For a quasi-ideal Q of R, the following statements are equivalent:

- 1. Q has the intersection property.
- $2. (RQ+Q) \cap (QR+Q) = Q.$
- 3. $RQ \cap (QR + Q) \subseteq Q$.
- 4. $QR \cap (RQ + Q) \subseteq Q$.

In [4], Z. Moucheng, C. Yuqun and L. Yonghau have given a result that strengthen Theorem 1.5 as follows:

Theorem 1.6 ([4]). Let X be a nonempty subset of a ring R and $Q = (X)_q$. Then the following statements are equivalent:

- 1. Q has the intersection property.
- 2. $(\mathbb{Z}X + XR) \cap (\mathbb{Z}X + RX) = Q$.
- 3. $RX \cap (\mathbb{Z}X + XR) \subseteq Q$.
- 4. $XR \cap (\mathbb{Z}X + RX) \subseteq Q$.

At this point, by using Theorem 1.1 and Theorem 1.6, we give an example of a quasi-ideal of $SU_4(\mathbb{R})$ which does not have the intersection property.

Example. Let $A, B \in SU_4(\mathbb{R})$ be defined by

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

and set

$$Q = (\{A, B\})_q$$

in $SU_4(\mathbb{R})$. By Theorem 1.1,

(*)

$$Q = \mathbb{Z}(\{A, B\}) + SU_4(\mathbb{R})(\{A, B\}) \cap (\{A, B\})SU_4(\mathbb{R}).$$

Since for $C \in SU_4(\mathbb{R})$,

it follows that

$$Q = \left\{ egin{bmatrix} 0 & k & m & x \ 0 & 0 & 0 & m \ 0 & 0 & 0 & k \ 0 & 0 & 0 & 0 \end{pmatrix} \mid k, m \in \mathbb{Z} ext{ and } x \in \mathbb{R}
ight\}.$$

Therefore
$$\begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \notin Q. \text{ From (*), we have}$$

$$\begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} A = B + A \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\in SU_4(\mathbb{R})(\{A, B\}) \cap (\mathbb{Z}(\{A, B\}) + (\{A, B\})SU_4(\mathbb{R})).$$

Therefore by that 1. \Leftrightarrow 3. of Theorem 1.6, we have that Q does not have the intersection property.

In [4], Z. Moucheng, C. Yuqun and L. Yonghau used Theorem 1.1 and Theorem 1.6 to characterize rings having the intersection property of quasi-ideals as follows:

Theorem 1.7 ([4]). A ring R has the intersection property of quasi-ideals if and only if for any finite nonempty subset X of R,

$$RX \cap (\mathbb{Z}X + XR) \subseteq \mathbb{Z}X + (RX \cap XR).$$

Using Theorem 1.7 as a main tool, Y. Kemprasit and P. Juntarakhajorn [3] have characterized when $SU_n(R)$ has the intersection property of quasi-ideals if R is a field as follows:

Theorem 1.8 ([3]). If R is a field, then $SU_n(R)$ has the intersection property of quasi-ideals if and only if $n \leq 3$.

However, the given proof shows that the commutativity of the multiplication of R is not required. Then we have

Theorem 1.9. If R is a division ring, then $SU_n(R)$ has the intersection property of quasi-ideals if and only if $n \leq 3$.

It can be observed from the proof given for Theorem 1.8 that if $n \leq 3$, then every quasi-ideal of $SU_n(R)$ is a left ideal or a right ideal.

In the remainder of this research, let $m, n \in \mathbb{N}$ and R a division ring. As was mentioned previously, $M_n(R)$ has the intersection property of quasi-ideals. To generalize this fact, the following ring is considered. Let $M_{m,n}(R)$ denote the set of all $m \times n$ matrices over R. For $P \in M_{n,m}(R)$, let $(M_{m,n}(R), +, P)$ denote the ring $M_{m,n}(R)$ under usual addition and the multiplication * defined by

$$A*B=APB$$

for all $A, B \in M_{m,n}(R)$. Then $M_{n,n}(R) = M_n(R)$ and $(M_n(R), +, I_n) \cong M_n(R)$ where I_n is the identity $n \times n$ matrix over R. The first main result of this research is given in Chapter II. It characterizes when $(M_{m,n}(R), +, P)$ has the intersection property of quasi-ideals. It will be proved that

$$(M_{m,n}(R), +, P)$$
 has the intersection property
of quasi-ideals if and only if either $P = 0$ or (1.1)
rank $P = \min\{m, n\}$.

To prove (1.1), a generalization of rings of all linear transformations on a vector space is provided and some basic knowledge of vector spaces and linear transformations are considered as follows:

Let V and W be vector spaces over R. The notation $L_R(V,W)$ denotes the set of all linear transformations $\alpha: V \to W$. For $\theta \in L_R(W,V)$, we denote by $(L_R(V,W),+,\theta)$ the ring $L_R(V,W)$ under usual addition and the multiplication * defined by $\alpha*\beta=\alpha\theta\beta$ for all $\alpha,\beta\in L_R(V,W)$ where functions in this research are written on the right.

Assume that $\dim_R V = m$, $\dim_R W = n$, $B = \{v_1, v_2, \dots, v_m\}$ is an ordered

basis of V and $B' = \{w_1, w_2, \dots, w_n\}$ is an ordered basis of W. For $\alpha \in L_R(V, W)$, let $[\alpha]_{B,B'}$ denote the $m \times n$ matrices (r_{ij}) where

$$v_{1}\alpha = r_{11}w_{1} + r_{12}w_{2} + \dots + r_{1n}w_{n}$$

$$v_{2}\alpha = r_{21}w_{1} + r_{22}w_{2} + \dots + r_{2n}w_{n}$$

$$\vdots$$

$$v_{m}\alpha = r_{m1}w_{1} + r_{m2}w_{2} + \dots + r_{mn}w_{n}$$

and the matrix $[\alpha]_{B,B'}$ is called the matrix of α relative to the ordered bases B and B' ([1], page 329). Then

$$(L_R(V,W),+,\theta) \cong (M_{m,n}(R),+,[\theta]_{B',B}) \text{ by } \alpha \mapsto [\alpha]_{B,B'}$$

$$(1.2)$$

([1], page 329-330). Moreover, for every $\alpha \in L_R(V, W)$,

$$\operatorname{rank} \alpha = \operatorname{rank} \left[\alpha\right]_{B,B'} \tag{1.3}$$

([1], page 337 and 339).

In Chapter III, Theorem 1.9 is generalized. Since $SU_n(R)$ is an ideal of $U_n(R)$ ([1], page 335), $APB \in SU_n(R)$ for all $A, B \in SU_n(R)$ and $P \in U_n(R)$. For $P \in U_n(R)$, define $(SU_n(R), +, P)$ to be the ring $SU_n(R)$ under usual addition and the multiplication * defined by

$$A * B = APB$$

for all $A, B \in SU_n(R)$. Then $(SU_n(R), +, I_n) = SU_n(R)$. We characterize when $(SU_n(R), +, P)$ has the intersection property of quasi-ideals. It will be proved in Chapter III that

 $(SU_n(R), +, P)$ has the intersection property of quasiideals if and only if one of the following statements holds:

- (i) $n \leqslant 3$.
- (ii) n = 4 and $P_{22} = 0$ or $P_{33} = 0$.

(iii)
$$n > 4$$
, $P_{ij} = 0$ for all $i, j \in \{3, 4, \dots, n-2\}$ and (1.4)
(a) $P_{2j} = 0$ for all $j \in \{2, 3, \dots, n-2\}$ or
(b) $P_{i,n-1} = 0$ for all $i \in \{3, 4, \dots, n-1\}$.

Then Theorem 1.9 becomes a corollary of (1.4).

CHAPTER II

GENERALIZED FULL MATRIX RINGS

In this chapter, we prove that $(M_{m,n}(R), +, P)$ has the intersection property of quasi-ideals if and only if either P = 0 or rank $P = \min\{m, n\}$. In particular, for $P \in M_n(R)$, $(M_n(R), +, P)$ has the intersection property of quasi-ideals if and only if either P = 0 or P is invertible.

The following proposition is a general fact which will be referred.

Proposition 2.1. Let $\alpha \in L_R(V, W)$.

- (i) If α is a monomorphism, then there exists $\beta \in L_R(W, V)$ such that $\alpha\beta = 1_V$ where 1_V is the identity map on V.
 - (ii) If α is an epimorphism, then there exists $\beta \in L_R(W,V)$ such that $\beta \alpha = 1_W$.
- *Proof.* (i) Let B be a basis of V. Since α is a monomorphism, we have $B\alpha$ is a basis of $\operatorname{Im} \alpha$ and $u\alpha \neq u'\alpha$ for all distinct $u, u' \in B$. Let B' be a basis of W containing $B\alpha$. Let $\beta \in L_R(W,V)$ be defined by

$$v\beta = \begin{cases} u & \text{if } v = u\alpha \text{ for some } u \in B, \\ 0 & \text{if } v \in B' \setminus B\alpha. \end{cases}$$

Then $u\alpha\beta = u$ for all $u \in B$ and hence $\alpha\beta = 1_V$.

(ii) Let B be a basis of W. Since $\text{Im } \alpha = W$, for each $v \in B$, there exists $v' \in V$ such that $v'\alpha = v$. Define $\beta \in L_R(W, V)$ by

$$v\beta = v'$$
 for all $v \in B$.

Then $v\beta\alpha = v$ for all $v \in B$, so $\beta\alpha = 1_W$.

We first introduce two lemmas. The second lemma is a main tool to obtain our main result of this chapter. However, the first lemma gives a more general result and the second one becomes a special case.

Lemma 2.2. For $\theta \in L_R(W, V)$, the ring $(L_R(V, W), +, \theta)$ has the intersection property of quasi-ideals if and only if

- (i) $\theta = 0$,
- (ii) θ is a monomorphism or
- (iii) θ is an epimorphism.

Proof. If $\theta = 0$, then $(L_R(V, W), +, \theta)$ is a zero ring, so it has the intersection property of quasi-ideals.

Assume that θ is a monomorphism. By Proposition 2.1(i), $\theta\theta' = 1_W$ for some $\theta' \in L_R(V, W)$. It follows that $\alpha\theta\theta' = \alpha$ for all $\alpha \in L_R(V, W)$. This implies that θ' is a right identity of the ring $(L_R(V, W), +, \theta)$. We deduce from Proposition 1.2 that $(L_R(V, W), +, \theta)$ has the intersection property of quasi-ideals.

Next, assume that θ is an epimorphism. By Proposition 2.1(ii), there is $\theta' \in L_R(V, W)$ such that $\theta'\theta = 1_V$. Then $\theta'\theta\alpha = \alpha$ for all $\alpha \in L_R(V, W)$, so θ' is a left identity of the ring $(L_R(V, W), +, \theta)$. Hence by Proposition 1.2, $(L_R(V, W), +, \theta)$ has the intersection property of quasi-ideals.

For the converse, assume that $\theta \neq 0$, θ is not a monomorphism and θ is not an epimorphism. It follows that

$$\{0\} \neq \ \operatorname{Ker} \theta \subsetneq W \text{ and } \{0\} \neq \ \operatorname{Im} \theta \subsetneq V.$$

Let $u \in \operatorname{Ker} \theta \setminus \{0\}$, $w \in W \setminus \operatorname{Ker} \theta$ and $z \in V \setminus \operatorname{Im} \theta$. Then $w\theta \in \operatorname{Im} \theta \setminus \{0\}$. Let B_1 be a basis of $\operatorname{Im} \theta$ containing $w\theta$. Since $z \in V \setminus \operatorname{Im} \theta$, $B_1 \cup \{z\}$ is linearly independent

over R. Let B be a basis of V containing $B_1 \cup \{z\}$. Let $\alpha, \beta, \gamma \in L_R(V, W)$ be defined by

$$v\alpha = \begin{cases} u & \text{if } v = w\theta, \\ w & \text{if } v = z, \\ 0 & \text{if } v \in B \setminus \{w\theta, z\}, \end{cases}$$

$$v\beta = \begin{cases} w & \text{if } v = w\theta, \\ 0 & \text{if } v \in B \setminus \{w\theta\} \end{cases}$$

and

$$v\gamma = \begin{cases} -w & \text{if } v = w\theta, \\ 0 & \text{if } v \in B \setminus \{w\theta\}. \end{cases}$$

From what we define α, β and γ , we have

$$v\alpha\theta = 0 \text{ for all } v \in \text{ Im } \theta,$$
 (2.2.1)

$$(w\theta)(\alpha + \alpha\theta\gamma) = (w\theta)\alpha + (w\theta)\alpha\theta\gamma = u,$$

$$(w\theta)\beta\theta\alpha = (w\theta)\alpha = u,$$

$$z(\alpha + \alpha\theta\gamma) = z\alpha + z\alpha\theta\gamma$$

$$= w + (w\theta)\gamma$$

$$= w - w = 0,$$

$$z(\beta\theta\alpha) = 0$$

and

$$v(\alpha + \alpha\theta\gamma) = 0 = v\beta\theta\alpha$$
 for all $v \in B \setminus \{w\theta, z\}$.

Consequently, we have

$$\beta\theta\alpha = \alpha + \alpha\theta\gamma \in L_R(V, W)\theta\alpha \cap (\mathbb{Z}\alpha + \alpha\theta L_R(V, W)). \tag{2.2.2}$$

Suppose that $\beta\theta\alpha \in \mathbb{Z}\alpha + (L_R(V,W)\theta\alpha \cap \alpha\theta L_R(V,W))$. Then there exist $k \in \mathbb{Z}$ and $\lambda, \eta \in L_R(V,W)$ such that

$$\beta\theta\alpha = k\alpha + \lambda\theta\alpha = k\alpha + \alpha\theta\eta.$$

Then

$$u = (w\theta)\beta\theta\alpha = (w\theta)(k\alpha + \alpha\theta\eta) = ku = (k1_R)u$$

where 1_R is the identity of R. This implies that $k1_R = 1_R$ since $u \neq 0$. Therefore $k\alpha = \alpha$ and so

$$\beta\theta\alpha = \alpha + \lambda\theta\alpha.$$

Hence

$$0 = z(\beta\theta\alpha) = z(\alpha + \lambda\theta\alpha) = w + (z\lambda\theta)\alpha$$

and so $(z\lambda\theta)\alpha = -w$. It then follows from this equality and (2.2.1) that

$$-(w\theta) = (z\lambda\theta)\alpha\theta = 0$$

which is a contradiction since $w\theta \neq 0$. This shows that

$$\beta\theta\alpha \notin \mathbb{Z}\alpha + (L_R(V, W)\theta\alpha \cap \alpha\theta L_R(V, W)). \tag{2.2.3}$$

The statements (2.2.2), (2.2.3) and Theorem 1.7 yield the result that the ring $(L_R(V, W), +, \theta)$ does not have the intersection property of quasi-ideals.

Hence the lemma is completely proved.
$$\Box$$

Lemma 2.3. Assume that $dim_R V = m$, $dim_R W = n$ and $\theta \in L_R(W, V)$. Then the ring $(L_R(V, W), +, \theta)$ has the intersection property of quasi-ideals if and only if either $\theta = 0$ or $rank \theta = min\{m, n\}$.

Proof. Assume that $(L_R(V,W),+,\theta)$ has the intersection property of quasi-ideals. By Lemma 2.2, $\theta=0, \theta$ is a monomorphism or θ is an epimorphism. If $\theta:W\longrightarrow V$ is a monomorphism, then $W\cong \operatorname{Im} \theta$, so

$$m \geqslant \operatorname{rank} \theta = \dim_R \operatorname{Im} \theta = \dim_R W = n.$$

If $\theta: W \longrightarrow V$ is an epimorphism, then

$$m = \operatorname{rank} \theta = \dim_R V \leqslant \dim_R W = n.$$

This proves that if $\theta \neq 0$, then rank $\theta = n \leq m$ or rank $\theta = m \leq n$. Therefore either $\theta = 0$ or rank $\theta = \min\{m, n\}$.

For the converse, assume that $\theta = 0$ or rank $\theta = \min\{m, n\}$. Then $\theta = 0$, rank $\theta = n$ or rank $\theta = m$.

Case 1: rank $\theta = n$. Then $\dim_R \operatorname{Im} \theta = n$. But

 $n = \dim_R W = \dim_R \operatorname{Im} \theta + \dim_R \operatorname{Ker} \theta = n + \dim_R \operatorname{Ker} \theta,$

so $\operatorname{Ker} \theta = \{0\}$ which implies that θ is a monomorphism.

Case 2: rank $\theta = m$. Then $\dim_R \operatorname{Im} \theta = m$. But $\operatorname{Im} \theta$ is a subspace of V and $\dim_R V = m$, so we have that $\operatorname{Im} \theta = V$. Therefore θ is an epimorphism.

This proves that $\theta = 0$, θ is a monomorphism or θ is an epimorphism. By Lemma 2.2, $(L_R(V, W), +, \theta)$ has the intersection property of quasi-ideals.

Hence the lemma is proved. \Box

If $\dim_R V = \dim_R W = k < \infty$ and $\theta \in L_R(W, V)$, it is known that θ is an epimorphism if and only if θ is an isomorphism and hence rank $\theta = k$ if and only if θ is an isomorphism.

The following corollary is an immediate consequence of the above fact and Lemma 2.3.

Corollary 2.4. Assume that $dim_R V = dim_R W < \infty$ and $\theta \in L_R(W, V)$. Then the ring $(L_R(V, W), +, \theta)$ has the intersection property of quasi-ideals if and only if either $\theta = 0$ or θ is an isomorphism.

Theorem 2.5. For $P \in M_{n,m}(R)$, the ring $(M_{m,n}(R), +, P)$ has the intersection property of quasi-ideals if and only if either P = 0 or rank $P = \min\{m, n\}$.

Proof. Let V and W be finite dimensional vector spaces over R such that $\dim_R V = m$ and $\dim_R W = n$. Let B and B' be respectively ordered bases of V and W. By (1.2), there exists $\theta \in L_R(W, V)$ such that $[\theta]_{B',B} = P$. Therefore by (1.2)

$$(L_R(V, W), +, \theta) \cong (M_{m,n}(R), +, P) \text{ by } \alpha \mapsto [\alpha]_{B,B'}.$$
 (2.5.1)

Also, by (1.3), we have

$$\operatorname{rank} \theta = \operatorname{rank} [\theta]_{B',B} = \operatorname{rank} P. \tag{2.5.2}$$

Assume that $(M_{m,n}(R), +, P)$ has the intersection property of quasi-ideals. By $(2.5.1), (L_R(V, W), +, \theta)$ has the intersection property of quasi-ideals. By Lemma $2.3, \theta = 0$, rank $\theta = n$ or rank $\theta = m$. It then follows from (2.5.2) that P = 0, rank P = n or rank P = m. Hence either P = 0 or rank $P = \min\{m, n\}$.

Conversely, assume that P = 0 or rank $P = \min\{m, n\}$. Then P = 0, rank P = n or rank P = m. From (2.5.2), we have $\theta = 0$, rank $\theta = n$ or rank $\theta = m$. Thus $\theta = 0$ or rank $\theta = \min\{m, n\}$. It then follows from Lemma 2.3 that $(L_R(V, W), +, \theta)$ has the intersection property of quasi-ideals. Therefore by (2.5.1), $(M_{m,n}(R), +, P)$ has the intersection property of quasi-ideals.

Hence the theorem is proved, as required.
$$\Box$$

It is known that for $P \in M_n(R)$, P is invertible if and only if rank P = n. Hence by Theorem 2.5, we have

Corollary 2.6. For $P \in M_n(R)$, the ring $(M_n(R), +, P)$ has the intersection property of quasi-ideals if and only if either P = 0 or P is invertible.

CHAPTER III

GENERALIZED RINGS OF

STRICTLY UPPER TRIANGULAR MATRICES

The purpose of this chapter is to give necessary and sufficient conditions for n and the entries of P in order that the ring $(SU_n(R), +, P)$ has the intersection property of quasi-ideals where $P \in U_n(R)$.

Our aim is to prove the following.

Theorem 3.1. The ring $(SU_n(R), +, P)$ has the intersection property of quasiideals if and only if one of the following statements holds.

- (i) $n \leq 3$.
- (ii) n = 4 and $P_{22} = 0$ or $P_{33} = 0$.
- (iii) n > 4, $P_{ij} = 0$ for all $i, j \in \{3, 4, ..., n 2\}$ and

(a)
$$P_{2j} = 0$$
 for all $j \in \{2, 3, \dots, n-2\}$ or

(b)
$$P_{i,n-1} = 0$$
 for all $i \in \{3, 4, \dots, n-1\}$.

To be more clearly seen, (i), (ii) and (iii) can be illustrated as follows:

(i)
$$n = 1$$
 and $P = [P_{11}], n = 2$ and $P = \begin{bmatrix} P_{11} & P_{12} \\ 0 & P_{22} \end{bmatrix}$,

$$n = 3$$
 and $P = \begin{bmatrix} P_{11} & P_{12} & P_{13} \\ 0 & P_{22} & P_{23} \\ 0 & 0 & P_{33} \end{bmatrix}$.

(ii)
$$n = 4$$
 and $P = \begin{bmatrix} P_{11} & P_{12} & P_{13} & P_{14} \\ 0 & 0 & P_{23} & P_{24} \\ 0 & 0 & P_{33} & P_{34} \\ 0 & 0 & 0 & P_{44} \end{bmatrix}$ or $\begin{bmatrix} P_{11} & P_{12} & P_{13} & P_{14} \\ 0 & P_{22} & P_{23} & P_{24} \\ 0 & 0 & 0 & P_{34} \\ 0 & 0 & 0 & P_{44} \end{bmatrix}$.

(iii) $n > 4$ and $P = \begin{bmatrix} P_{11} & P_{12} & \dots & P_{1,n-2} & P_{1,n-1} & P_{1n} \\ 0 & 0 & \dots & 0 & P_{2,n-1} & P_{2n} \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 0 & P_{n-1,n-1} & P_{n-1,n} \\ 0 & 0 & \dots & 0 & P_{nn} \end{bmatrix}$

or $P = \begin{bmatrix} P_{11} & P_{12} & P_{13} & \dots & P_{1,n-1} & P_{1n} \\ 0 & P_{22} & P_{23} & \dots & P_{2,n-1} & P_{2n} \\ 0 & 0 & 0 & \dots & 0 & P_{3n} \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 0 & P_{n-1,n} \\ 0 & 0 & 0 & \dots & 0 & P_{nn} \end{bmatrix}$

If P is the identity $n \times n$ matrix over R, P can satisfy neither (ii) nor (iii) of Theorem 3.1. Hence Theorem 1.9 becomes a corollary of this main theorem.

Corollary 3.2. The ring $SU_n(R)$ has the intersection property of quasi-ideals if and only if $n \leq 3$.

To prove the theorem, the following three lemmas are provided.

Lemma 3.3. Assume that $n \ge 3$. If

(1)
$$P_{ij} = 0$$
 for all $i \ge 2$ and $j \le n-2$ or

(2)
$$P_{ij} = 0$$
 for all $i \geqslant 3$ and $j \leqslant n - 1$,

then $(SU_n(R), +, P)$ has the intersection property of quasi-ideals.

Proof. For $A, B \in SU_n(R)$,

for
$$i = n$$
 or $j = 1$, $(APB)_{ij} = 0$ and
for $i < n$ and $j > 1$, $(APB)_{ij} = \sum_{k=1}^{j-1} \sum_{l=i+1}^{n} (A_{il}P_{lk}B_{kj})$. (3.3.1)

Let Q be a quasi-ideal of $(SU_n(R), +, P)$.

First, assume that (1) holds. From (3.3.1) and (1), we have that for $A, B \in SU_n(R)$,

Case 1.1: $B_{n-1,n} = 0$ for all $B \in Q$ or $P_{l,n-1} = 0$ for all $l \ge 2$. By (3.3.2), we have $SU_n(R)PQ = \{0\} \subseteq QPSU_n(R)$.

Case 1.2: $B_{n-1,n} \neq 0$ for some $B \in Q$ and $P_{l,n-1} \neq 0$ for some $l \geqslant 2$. Then $l \leqslant n-1$. Let

$$m = \max\{i \in \{2, 3, \dots, n-1\} | P_{i,n-1} \neq 0\}.$$

Since R is a division ring, by (3.3.2), we have

$$SU_n(R)PQ = \left\{ \begin{bmatrix} 0 & 0 & \dots & 0 & x_1 \\ 0 & 0 & \dots & 0 & x_2 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 0 & x_{m-1} \\ 0 & 0 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 0 & 0 \end{bmatrix} \middle| x_1, x_2, \dots, x_{m-1} \in R \right\}$$

$$= SU_n(R)PSU_n(R),$$

and so $QPSU_n(R) \subseteq SU_n(R)PQ$.

Next, assume that (2) holds. We have from (3.3.1) and (2) that

$$(APB)_{ij} = \begin{cases} 0 & \text{if } i > 1 \text{ or } j = 1, \\ A_{12}(\sum_{k=1}^{j-1} P_{2k} B_{kj}) & \text{if } i = 1 \text{ and } j > 1. \end{cases}$$
 (3.3.3)

Case 2.1: $A_{12} = 0$ for all $A \in Q$ or P_{2k} for all $k \le n-1$. By (3.3.3), $QPSU_n(R) = \{0\} \subseteq SU_n(R)PQ$.

Case 2.2: $A_{12} \neq 0$ for some $A \in Q$ and $P_{2k} \neq 0$ for some $k \leq n-1$. Then $k \geq 2$. Let

$$m = \min\{j \in \{2, 3, \dots, n-1\} | P_{2j} \neq 0\}.$$

From (3.3.3) and since R is a division ring, we get

$$QPSU_n(R) = \left\{ \begin{bmatrix} 0 & \dots & 0 & x_{m+1} & x_{m+2} & \dots & x_n \\ 0 & \dots & 0 & 0 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & 0 & 0 & \dots & 0 \end{bmatrix} \middle| x_{m+1}, x_{m+2}, \dots, x_n \in R \right\}$$

$$= SU_n(R)PSU_n(R).$$

Hence $SU_n(R)PQ \subseteq QPSU_n(R)$.

By Proposition 1.4, Q has the intersection property. Therefore the lemma holds.

From the given proof of Lemma 3.3, we remark here that under the assumption of Lemma 3.3, every quasi-ideal of $(SU_n(R), +, P)$ is a left ideal or a right ideal.

Lemma 3.4. Assume that $n \ge 4$. If $(SU_n(R), +, P)$ has the intersection property of quasi-ideals, then $P_{2j} = 0$ for all $j \in \{2, 3, ..., n-2\}$ or $P_{i,n-1} = 0$ for all $i \in \{3, 4, ..., n-1\}$.

Proof. Assume that $P_{2t} \neq 0$ and $P_{s,n-1} \neq 0$ for some $t \in \{2,3,\ldots,n-2\}$ and some $s \in \{3,4,\ldots,n-1\}$. Let $A,B \in SU_n(R)$ be defined by

$$A = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 & 1 \\ 0 & 0 & 0 & \dots & 0 & 0 \end{bmatrix} \text{ and } B = \begin{bmatrix} 0 & \dots & 0 & 1 & 0 \\ 0 & \dots & 0 & 0 & 1 \\ 0 & \dots & 0 & 0 & 0 \\ \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & 0 & 0 \end{bmatrix}.$$

Then for $C \in SU_n(R)$,

$$CPA = C \begin{bmatrix} P_{11} & P_{12} & \dots & P_{1n} \\ 0 & P_{22} & \dots & P_{2n} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & P_{nn} \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & \dots & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & C_{12} & C_{13} & \dots & C_{1n} \\ 0 & 0 & C_{23} & \dots & C_{2n} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & C_{n-1,n} \\ 0 & 0 & 0 & \dots & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & P_{11} & 0 & \dots & 0 & P_{1,n-1} \\ 0 & 0 & 0 & \dots & 0 & P_{2,n-1} \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 0 & 0 & \dots & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & \dots & 0 & \sum_{k=2}^{n-1} C_{1k} P_{k,n-1} \\ 0 & \dots & 0 & \sum_{k=3}^{n-1} C_{2k} P_{k,n-1} \\ \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & C_{n-2,n-1} P_{n-1,n-1} \\ 0 & \dots & 0 & 0 \end{bmatrix}, \qquad (3.4.1)$$

$$APC = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 0 & 0 \\ 0 & 0 & 0 & \dots & 0 & 1 \\ 0 & 0 & 0 & \dots & 0 & 0 \end{bmatrix} \begin{bmatrix} P_{11} & P_{12} & \dots & P_{1n} \\ 0 & P_{22} & \dots & P_{2n} \\ \dots & \dots & \dots \\ 0 & 0 & \dots & P_{nn} \end{bmatrix} C$$

(3.4.2)

$$=\begin{bmatrix} 0 & P_{22} & P_{23} & \dots & P_{2n} \\ 0 & 0 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & \dots & P_{nn} \\ 0 & 0 & 0 & \dots & 0 \end{bmatrix} \begin{bmatrix} 0 & C_{12} & C_{13} & \dots & C_{1n} \\ 0 & 0 & C_{23} & \dots & C_{2n} \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & C_{n-1,n} \\ 0 & 0 & 0 & \dots & 0 \end{bmatrix}$$

$$=\begin{bmatrix} 0 & 0 & P_{22}C_{23} & \sum_{k=2}^{3} P_{2k}C_{k4} & \dots & \sum_{k=2}^{n-1} P_{2k}C_{kn} \\ 0 & 0 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 0 \end{bmatrix},$$

$$CPB = C \begin{bmatrix} P_{11} & P_{12} & \dots & P_{1n} \\ 0 & P_{22} & \dots & P_{2n} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & P_{nn} \end{bmatrix} \begin{bmatrix} 0 & \dots & 0 & 1 & 0 \\ 0 & \dots & 0 & 0 & 1 \\ 0 & \dots & 0 & 0 & 0 \\ \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & C_{12} & C_{13} & \dots & C_{1n} \\ 0 & 0 & C_{23} & \dots & C_{2n} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & C_{n-1,n} \\ 0 & 0 & 0 & \dots & 0 \end{bmatrix} \begin{bmatrix} 0 & \dots & 0 & P_{11} & P_{12} \\ 0 & \dots & 0 & 0 & P_{22} \\ 0 & \dots & 0 & 0 & 0 \\ \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & \dots & 0 & C_{12}P_{22} \\ 0 & \dots & 0 & 0 \\ & & & & \\ 0 & \dots & 0 & 0 \end{bmatrix}$$

and

$$BPC = \begin{bmatrix} 0 & \dots & 0 & 1 & 0 \\ 0 & \dots & 0 & 0 & 1 \\ 0 & \dots & 0 & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} P_{11} & P_{12} & \dots & P_{1n} \\ 0 & P_{22} & \dots & P_{2n} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & P_{nn} \end{bmatrix} C$$

$$= \begin{bmatrix} 0 & \dots & 0 & P_{n-1,n-1} & P_{n-1,n} \\ 0 & \dots & 0 & 0 & P_{nn} \\ 0 & \dots & 0 & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & C_{12} & C_{13} & \dots & C_{1n} \\ 0 & 0 & C_{23} & \dots & C_{2n} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & C_{n-1,n} \\ 0 & 0 & 0 & \dots & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & \dots & 0 & P_{n-1,n-1}C_{n-1,n} \\ 0 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & 0 \end{bmatrix} .$$

Let $X = \{A, B\}$. Since $P_{s,n-1} \neq 0$ and $P_{2t} \neq 0$, from these equalities, we deduce that

$$SU_{n}(R)PX \cap XPSU_{n}(R) = \left\{ \begin{bmatrix} 0 & \dots & 0 & x \\ 0 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & 0 \end{bmatrix} \mid x \in R \right\}.$$
 (3.4.3)

Define $D, E \in M_n(R)$ by

$$D = \begin{bmatrix} 0 & \dots & 0 & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & 0 & 0 \\ 0 & \dots & 0 & -P_{2t}^{-1} & 0 \\ 0 & \dots & 0 & 0 & 0 \\ \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & 0 & 0 \end{bmatrix} \leftarrow t^{\underline{th}} \text{ row}$$

and

$$s^{\underline{th}}$$
 column

$$s^{\underline{th}} \text{ column}$$

$$\downarrow$$

$$E = \begin{bmatrix} 0 & \dots & 0 & 0 & 0 & \dots & 0 \\ 0 & \dots & 0 & P_{s,n-1}^{-1} & 0 & \dots & 0 \\ 0 & \dots & 0 & 0 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & 0 \\ 0 & \dots & 0 & 0 & 0 & \dots & 0 \end{bmatrix}.$$

Since $t \leqslant n-2 < n-1$ and $2 < 3 \leqslant s$, we have $D, E \in SU_n(R)$. From (3.4.1) and (3.4.2), we respectively obtain

$$EPA = \begin{bmatrix} 0 & \dots & 0 & 0 \\ 0 & \dots & 0 & 1 \\ 0 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & 0 \end{bmatrix}$$

and

$$APD = \begin{bmatrix} 0 & \dots & 0 & -1 & 0 \\ 0 & \dots & 0 & 0 & 0 \\ \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & 0 & 0 \end{bmatrix}$$

which imply that

$$EPA = B + APD = \begin{bmatrix} 0 & \dots & 0 & 0 \\ 0 & \dots & 0 & 1 \\ 0 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & 0 \end{bmatrix}$$

$$\in SU_n(R)PX \cap (\mathbb{Z}X + XPSU_n(R)).$$

From (3.4.3) and the definitions of A and B, the matrix

$$\begin{bmatrix} 0 & \dots & 0 & 0 \\ 0 & \dots & 0 & 1 \\ 0 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & 0 \end{bmatrix}$$

is not a member of $\mathbb{Z}X + (SU_n(R)PX \cap XPSU_n(R))$. It then follows from Theorem 1.7 that $(SU_n(R), +, P)$ does not have the intersection property of quasi-ideals.

Therefore the lemma is proved.

Lemma 3.5. Assume that n > 4. If $(SU_n(R), +, P)$ has the intersection property of quasi-ideals, then $P_{ij} = 0$ for all $i, j \in \{3, 4, ..., n-2\}$.

Proof. Assume that there exist $s, t \in \{3, 4, ..., n-2\}$ such that $P_{st} \neq 0$. Since P is upper triangular, we have $s \leq t$. Define $A, B \in SU_n(R)$ by

and

$$B = \begin{bmatrix} 0 & \dots & 0 & 1 & 0 \\ 0 & \dots & 0 & 0 & 1 \\ 0 & \dots & 0 & 0 & 0 \\ \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & 0 & 0 \end{bmatrix}.$$

Then for $C \in SU_n(R)$, we have

$$S^{th} \text{ column} \\ \downarrow \\ CPA = C \begin{bmatrix} P_{11} & P_{12} & \dots & P_{1n} \\ 0 & P_{22} & \dots & P_{2n} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & P_{nn} \end{bmatrix} \begin{bmatrix} 0 & \dots & 0 & 1 & 0 & \dots & 0 \\ 0 & \dots & 0 & 0 & 0 & \dots & 0 \\ 0 & \dots & 0 & 0 & 0 & \dots & 0 \\ 0 & \dots & 0 & 0 & 0 & \dots & 1 \\ 0 & \dots & 0 & 0 & 0 & \dots & 0 \end{bmatrix} \leftarrow t^{th} \text{ row} \\ \\ S^{th} \text{ column} \\ \\ S^{th} \text{ column} \\ \\ \\ \\ S^{th} \text{ column} \\ \\ \\ \\ S^{th} \text{ column} \\ \\ \\$$

$$\begin{bmatrix} 0 & \dots & 0 & \sum_{k=2}^{t} C_{1k} P_{kt} \\ 0 & \dots & 0 & \sum_{k=3}^{t} C_{2k} P_{kt} \\ \dots & \dots & \dots \\ 0 & \dots & 0 & C_{t-1,t} P_{tt} \\ 0 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & 0 \end{bmatrix}, \tag{3.5.1}$$

 $s^{\underline{th}}$ column

 $APC = \begin{bmatrix} 0 & \dots & 0 & 1 & 0 & \dots & 0 \\ 0 & \dots & 0 & 0 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & 0 & 0 & \dots & 0 \\ 0 & \dots & 0 & 0 & 0 & \dots & 1 \\ 0 & \dots & 0 & 0 & 0 & \dots & 0 \end{bmatrix} \begin{bmatrix} P_{11} & P_{12} & \dots & P_{1n} \\ 0 & P_{22} & \dots & P_{2n} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & P_{nn} \end{bmatrix} C$ $\begin{bmatrix} \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & 0 & 0 & \dots & 0 \end{bmatrix}$

 $s^{\underline{th}}$ column

$$=\begin{bmatrix} 0 & \dots & 0 & P_{ss} & \dots & P_{sn} \\ 0 & \dots & 0 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & \dots & 0 & 0 & \dots & P_{nn} \\ t^{\underline{th}} & 0 & \dots & 0 & 0 & \dots & 0 \\ \text{row} & \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & 0 & \dots & 0 \end{bmatrix} \begin{bmatrix} 0 & C_{12} & C_{13} & \dots & C_{1n} \\ 0 & 0 & C_{23} & \dots & C_{2n} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & C_{n-1,n} \\ 0 & 0 & 0 & \dots & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & \dots & 0 & P_{ss}C_{s,s+1} & \sum_{k=s}^{s+1} P_{sk}C_{k,s+2} & \dots & \sum_{k=s}^{n-1} P_{sk}C_{kn} \\ 0 & \dots & 0 & 0 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & 0 & 0 & \dots & 0 \end{bmatrix}, \quad (3.5.2)$$

$$CPB = C \begin{bmatrix} P_{11} & P_{12} & \dots & P_{1n} \\ 0 & P_{22} & \dots & P_{2n} \\ \dots & \dots & \dots \\ 0 & 0 & \dots & P_{nn} \end{bmatrix} \begin{bmatrix} 0 & \dots & 0 & 1 & 0 \\ 0 & \dots & 0 & 0 & 1 \\ 0 & \dots & 0 & 0 & 0 \\ \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & C_{12} & C_{13} & \dots & C_{1n} \\ 0 & 0 & C_{23} & \dots & C_{2n} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & C_{n-1,n} \\ 0 & 0 & 0 & \dots & 0 \end{bmatrix} \begin{bmatrix} 0 & \dots & 0 & P_{11} & P_{12} \\ 0 & \dots & 0 & 0 & P_{22} \\ 0 & \dots & 0 & 0 & 0 \\ \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & \dots & 0 & C_{12}P_{22} \\ 0 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & 0 \end{bmatrix}$$

and

$$BPC = \begin{bmatrix} 0 & \dots & 0 & 1 & 0 \\ 0 & \dots & 0 & 0 & 1 \\ 0 & \dots & 0 & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} P_{11} & P_{12} & \dots & P_{1n} \\ 0 & P_{22} & \dots & P_{2n} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & P_{nn} \end{bmatrix} C$$

$$= \begin{bmatrix} 0 & \dots & 0 & P_{n-1,n-1} & P_{n-1,n} \\ 0 & \dots & 0 & 0 & P_{nn} \\ 0 & \dots & 0 & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & C_{12} & C_{13} & \dots & C_{1n} \\ 0 & 0 & C_{23} & \dots & C_{2n} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & C_{n-1,n} \\ 0 & \dots & 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & \dots & 0 & P_{n-1,n-1}C_{n-1,n} \\ 0 & \dots & 0 & 0 & 0 \\ \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & 0 & 0 \end{bmatrix}.$$

Let $X = \{A, B\}$. Since $P_{st} \neq 0$, these equalities yield

$$SU_{n}(R)PX \cap XPSU_{n}(R) = \left\{ \begin{bmatrix} 0 & \dots & 0 & x \\ 0 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & 0 \end{bmatrix} \mid x \in R \right\}.$$
 (3.5.3)

Define $D, E \in M_n(R)$ by

$$D = \begin{bmatrix} 0 & \dots & 0 & 0 & 0 \\ \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & 0 & 0 \\ 0 & \dots & 0 & -P_{st}^{-1} & 0 \\ 0 & \dots & 0 & 0 & 0 \\ \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & 0 & 0 \end{bmatrix} \leftarrow t^{\underline{th}} \text{ row}$$

$$s^{\underline{th}} \text{ column}$$

$$E = \begin{bmatrix} 0 & \dots & 0 & 0 & 0 & \dots & 0 \\ 0 & \dots & 0 & P_{st}^{-1} & 0 & \dots & 0 \\ 0 & \dots & 0 & 0 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & 0 & 0 & \dots & 0 \end{bmatrix}.$$

and

$$E = \begin{bmatrix} 0 & \dots & 0 & 0 & 0 & \dots & 0 \\ 0 & \dots & 0 & P_{st}^{-1} & 0 & \dots & 0 \\ 0 & \dots & 0 & 0 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & 0 & 0 & \dots & 0 \end{bmatrix}$$

Because $t \leqslant n-2 < n-1$ and $2 < 3 \leqslant s$, we have $D, E \in SU_n(R)$. From (3.5.1) and (3.5.2), we respectively obtain

$$EPA = \begin{bmatrix} 0 & \dots & 0 & 0 \\ 0 & \dots & 0 & 1 \\ 0 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & 0 \end{bmatrix}$$

and

$$APD = \begin{bmatrix} 0 & \dots & 0 & -1 & 0 \\ 0 & \dots & 0 & 0 & 0 \\ \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & 0 & 0 \end{bmatrix}.$$

Therefore

$$EPA = B + APD = \begin{bmatrix} 0 & \dots & 0 & 0 \\ 0 & \dots & 0 & 1 \\ 0 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & 0 \end{bmatrix}$$

$$\in SU_n(R)PX \cap (\mathbb{Z}X + XPSU_n(R)).$$

From (3.4.3) and the definitions of A and B, the matrix

$$\begin{bmatrix} 0 & \dots & 0 & 0 \\ 0 & \dots & 0 & 1 \\ 0 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & 0 \end{bmatrix}$$

is not a member of $\mathbb{Z}X + (SU_n(R)PX \cap XPSU_n(R))$. It then follows from Theorem 1.7 that $(SU_n(R), +, P)$ does not have the intersection property of quasi-ideals.

Therefore the lemma is proved.

Now we are ready to prove our main result of this chapter.

Proof of Theorem 3.1.

First, assume that $(SU_n(R), +, P)$ has the intersection property of quasi-ideals and n > 3. If n = 4, by Lemma 3.4, we have $P_{22} = 0$ or $P_{33} = 0$ and hence (ii) holds. If n > 4, then (iii) holds by Lemma 3.5 and Lemma 3.4.

For the converse, assume that (i), (ii) or (iii) holds. If $n \leq 2$, $(SU_n(R), +, P)$ is clearly a zero ring, so we are done. If n = 3, then P satisfies (1) and (2) of Lemma 3.3 since P is upper triangular, so by Lemma 3.3, $(SU_3(R), +, P)$ has the intersection property of quasi-ideals. Next, assume that n = 4 and $P_{22} = 0$ or $P_{33} = 0$. This implies that (1) or (2) of Lemma 3.3 holds. Thus from Lemma 3.3, $(SU_4(R), +, P)$ has the intersection property of quasi-ideals. Finally, assume that (iii) holds. Then n > 4 and

(1) $P_{ij} = 0$ for all $i, j \in \{3, 4, \dots, n-2\}$ and $P_{2j} = 0$ for all $j \in \{2, 3, \dots, n-2\}$ or

(2)
$$P_{ij} = 0$$
 for all $i, j \in \{3, 4, ..., n-2\}$ and $P_{i,n-1} = 0$ for all $i \in \{3, 4, ..., n-1\}$.

It is clear that (1) and (2) are respectively equivalent to

(1')
$$P_{ij} = 0$$
 for all $i \ge 2$ and $j \le n-2$ and

(2')
$$P_{ij} = 0$$
 for all $i \ge 3$ and $j \le n - 1$.

Therefore we have that (1') or (2') holds. We then deduce from Lemma 3.3 that $(SU_n(R), +, P)$ has the intersection property of quasi-ideals.

Hence the theorem is completely proved.

REFERENCES

- [1] Hungerford, T. W. <u>Algebra</u>. New York-Heidelberg-Berlin: Springer-Verlag, 1984.
- [2] Kaplanski, I. <u>Fields and Rings</u>. Chicago: Chicago Lecture in Mathematics, The University of Chicago Press, 1969.
- [3] Kemprasit, Y.; and Juntarakhajorn, P. Quasi-ideals of rings of strictly upper triangular matrices over a field. <u>Italian Journal of Pure and Applied Mathematics</u> to appear in No. 13.
- [4] Moucheng, Z.; Yuqun, C.; and Yonghau, L. The intersection property of quasi-ideals in rings and semigroup rings. <u>SEA Bull. Math.</u> 20 (1996): 117-122.
- [5] Steinfeld, O. On ideal-quotients and prime ideals. <u>Acta. Math. Acad. Sci.</u>Hung. 4 (1953):289-298.
- [6] Steinfeld, O. Quasi-ideals in Rings and Semigroups. Budapest:Akadémiai Kiadó, 1978.
- [7] Weinert, H. J. On quasi-ideals in rings. Acta. Math. Hung. 43 (1984):85-99.

VITA

Name : Mr. Ronnason Chinram

Degree : Bachelor of Science (1st Class Degree Honours), 1997.

Prince of Songkla University, Songkhla, Thailand.

Position : Instructor in the Department of Mathematics, Faculty of Science, Prince of

Songkla University, Songkhla, Thailand.

Scholarship: The Development and Promotion of Science and Technology Talents Project

(DPST)