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A triple (K,+,-) is called a semifield if (1) (K,-)is an abelian group with
zero 0, (2)(K,+) is a commutative semigroup with identity 0, and (3) for all
x,y,zeK, x(y+z)=xy+xz . A nonempty subset C#{0} is a convex subgroup ofK if

(1) for all x,yeC,y#0 implies ieC, and (2) for all x,yeC, o, K, with a+B=1,
y

ox+Py eC . A strictly finite subconvex series in K is a chain of subsemifields of K,
K=K,>K>..>K
Let C and C'be two strictly finite subconvex series inK . C'is a refinement of C if
every term of C appears inC’. Moreover, if C=C’, then C'is a proper refinement of
C . A strictly finite subconvex series inK , K=K,>K,>..>K, >{1}, is a composition
series if it has no proper refinement. A vector space over a semifield K is an abelian
additive group M with identity 0, for which there is a function (k,m)+—>km from KxM
into M such that for all kj,k, eK and my,m,eM , (1) (kk,)m =k (k,m,), (2)
ky(my+my)=kym;+kym, , (3) (ky+ky)m;=kymy+k,m; and (4) 1;,m;=m,. Let B
be a subset of a vector space M overK and <B> is the subgroup of M generated
by KB={kb | keK and beB}. We call that B spans M if <B>=M . A set B is
said to be a linearly independent set if it satisfies one of the following conditions: (1)
B=¢, or (2) |B|=1 and B#{0}, or (3) |B|>] and bg<B\{b}> for all heB . A set
B is said to be a basis of a vector space M over K if B is a linearly independent set
which spans M and we say that M is finite-dimensional if M has a finite basis.

The main results of this research are follows:
Theorem Let K be a semifield which has a composition series. Then any two
composition series are equivalent.
Theorem Let 4 and B be finite subsets of a vector space M over a semifield K
which satisfies the property(*), i.e., for all a,feK there exists a yeK such that
o+y=p or B+y=c.. If they are bases of M , then |4|=|B|.

Zassenhaus Lemma, Schreier’s Theorem and standard theorems in vector
spaces over a field can be extended in vector spaces over a semifield which satisfies
the property (*) .

such that K, ,is a convex subgroup of K, and K, =K, for /#;.
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CHAPTER 1

INTRODUCTION

In [5] Pornthip Sinutoke studied and generalized theorems from field theory to
semifields. Also, in [2] Chaiwat Namnak generalized some fundamental theorems
of partially ordered semigroups, partially orderings, partially ordered fields and
partially ordered ratio semirings to positive ordered 0-semifields.

In this research we are interested in only semifields which are not fields. We
study convex subgroups of semifields and obtain similar theorems in group theory.
Moreover, we consider vector spaces over a semifield and obtain some theorems that
similar to theorems in vector spaces over a field.

In Chapter II, we introduce some notations and definitions that will be used
throughout this thesis.

In Chapter III, we study convex subgroups of a semifield and strictly finite
subconvex series in a semifield.

In Chapter 1V, we study vector spaces over a semifield which satisfies some

property and linear transformations of vector spaces over a semifield.



CHAPTER I1

PRELIMINARIES

In this chapter, we give some notation, definitions and examples. In this thesis,

the following notation we will use:

Z is the set of all integers.

7 is the set of all positive integers.

Q is the set of all rational numbers.

QT is the set of all positive rational numbers.
Q7 = Q" u{o}.

R* is the set of all positive real numbers.

R; =R+ U {0}.

Definition 2.1. A nonempty set K is said to be a semifield if there are two binary

operators, + (addition) and - (multiplication) on K such that
(1) (K,+) is a commutative semigroup with identity 0,
(2) (K \{0},+) is-an-abelian group and k0 =0- k=0 for all k € K, and
(3) z(y+2) =axy+axz forall z,y;z € K.

We always denote the identity of the group (K \{0},- ) by 1.

Definition 2.2. Let K be a semifield. A nonempty subset L of K is said to be a

subsemifield of K if
(1) 0 € L and L # {0},

(2) for all z,y € L , with y # 0, implies zy~! € L, and



(3) forall z,y € L, x +y € L.

Remark 2.3. The intersection of a family of subsemifields of a semifield is a

subsemifield.

Example 2.4. (1) (QF,+,- ), (RE, +,: ) are semifields.

(2) If we define a binary operation * on Q4 by zxy = max{x,y} for all z,y € Q.
Then (Qg, *,- ) is a semifield but not a subsemifield of all fields.

(3) If we define two binary operations on ZU{e} by 10y = z+y, 10 = eOx = ¢,
e@e=cand z @y = max{z,y}, xde=edr=xandcPe =¢ forall z,y € Z.
Then (Z U {e},®,®) is a semifield but not a subsemifield of all fields.

(4) (QT x QT U{(0,0)},+,+ ) is a semifield.

In the remain of this thesis, we consider a semifield which is not a field. By [5],

we have for every nonzero element in a semifield has no additive inverse.

Definition 2.5. Let K be a semifield. Then K is additively cancellative if and only

if 4+ z=y+ z implies that z =y forall z,y,z € K.

Remark 2.6. Let K be a semifield such that 1 + 2 =1 + y implies x = y for all

xz,y € K. Then K is additively cancellative.

Definition 2.7. Let K and L be semifields. A function f: K — L is a

homomorphism of K into L if
(1) f(z) =0if and only if x = 0,
(2) for all z,y € K, f(z +y) = f(z)+ f(y), and

(3) forall 2,y € K, f(xy) = f(z)f(y).

The multiplicative kernel of f is the set { x € K | f(z) = 1}, denoted by kerf.



Note that if f : K — L is a homomorphism of semifields, then ker f is a subgroup

of (K \{0},-).

Definition 2.8. A homomorphism f : K — L of semifields K and L is called a
monomorphism if f is injective, an epimorphism if f is surjective and an
isomorphism if f is bijective. Moreover, semifields K and L are isomorphic, denoted

by K = L, if there exists an isomorphism of A onto L.

Definition 2.9. Let K be a semifield and C € K. Then C is said to be a convex

subset of K if for all x,y € C'and a, f € K such that a + =1, ax + fy € C.

Proposition 2.10. If '] and C5 are convex subsets of a semifield K, then C + Cs,

C1NCy and C1Cy = {¢q¢6 | ¢1 € Cyand ¢ € Oy} are convex subsets of K.

Proof. Obviously, C, + Cy and C} N Cy are convex subsets of K.

Let z,y € C1C5. Then x = a,b; and y = asby for some ay,a, € C; and
b1,by € Cy. Let a, 8 € K be such that a + 6 = 1.
If a1 = 0, then Bay = aay + Bas € Cy, so ax + By = Pagzby € C1C,.
If ay = 0, then aa; = aa, + fas € C4, so ax + fy = aa b, € C1Cs.

Assume that a; # 0 and as # 0. Since C} is a convex subset of K, we have
aay + Bay € Cr: Since Cy is a convex subset of K, —oeibi o Bazbz o ¢ Hepee

’ aai+Pas aa1+Pasz

az+ By = aarby + Bagby = (aay + Bag)(2ub_  Lub y c ¢ 0, DTherefore €10,

aa1+PBaz | aai+Paz

is a convex subset of K. O



CHAPTER III

CONVEX SUBGROUPS

OF A SEMIFIELD

In this chapter, we study convex subgroups of a semifield, strictly finite

subconvex series and composition series in a semifield.

Definition 3.1. Let K be a semifield. A nonempty subset C' #{0} of K is a

convex subgroup of K if
(1) for all z,y € C, y # 0 implies % € C, and
(2) for all z,y € C,a, € K witha+ =1, ax + py € C.
We write C' <t K or K > C' for saying that C' is a convex subgroup of K.

Example 3.2. Let K be a semifield.
(1) {1}, K \{0} and K are convex subgroups of K.

(2) Let S be a multiplicative subsemigroup of K \{0}. Then

O = {(Z CLZCL’Z)(Z bjyj)il | m,n € Z+, Cb,;,bj < K, l’i,yj Y S and Z a; = Z bj
i=1 j=1 ' J=1

=1
=1 forall ie{l,...,m}andje€{l,...,n}} is a convex subgroup of K.

Proof. (2) Let ( zn: a;z;) ( En: biyi)fl, ( i ¢z ( i djwj)'l € C. Then
i=1 i=1 j=1 =1

( 2"; aixz‘) ( z:: biyi)_l [( zm; Cjzj) ( Aml djwj)_l} B
— ( i i a;djzw;) ( Zj: i bicjyiz)

eC.



Let a,b € K be such that a +b = 1. Then

a [( i a;z;) ( i biyi)il} + b[( i ¢j%) ( i djwj)_l}

= [ ) (i) + 03 ) ()| (30 D )

=1 J=1 j=1 i=1 j=1

n m n

= [Z Z aaidjxiwj + Z Z bbicjyizj} ( Z Z bz‘djyiwj)*l

i=1 j=1 i=1 j=1 i=1 j=1

e C.

Hence C'is a convex subgroup of K. O

Remark 3.3. Let K be a semifield. Then the following statements hold.
If C7 and Cy are convex subgroups of K, then C;Cy = {cice | ¢4 € Cy and ¢ € Cy}

and C7 N Cy are convex subgroups of A'.

Proof. Let x,y € C1C5 be such that y # 0. Then x = cico and y = ¢¢; where
c1,¢1 € C1 and ¢9, ¢ € Cy \{0}. Since Cy and C; are convex subgroups of K, we
have % € (] and g—z € .C5.-So % — % — %g—z € C,C5. By Proposition 2.10, C1C5
is a convex subgroup of K.

Clearly, 1 € C; N Cy, so C1 N Cy # {0}. Let u,v € C; N Cy be such that v # 0.
Since € and 5 are convex subgroups of Kt €€} (1Cy. By Proposition 2.10, we

have C7 N Cy is a convex subgroup of K. O

Definition 3.4. Let K be a semifield and C' a convex subgroup of K and let K/C
is the set { zC | x € K }. Define two operations + and - on K/C as follow:
forall z,y € K, 2C+yC = (r+y)C and zC-yC = zyC.

To show that + and - are well-defined. Since (x 4+ y)C = {(x +y)c | c€ C}
= {zc+yc | c € C}, we have (z + y)C C xC + yC. Let ¢;,c2 € C be such that

xep+ycy € xC+yC. If x =0 or y = 0, then we have 2C +yC = (z+y)C. Assume



that = # 0 and y # 0. Then zc; +yeo = (v + y) (75 + 255)- Since 7 + H- =1,

i+ 22 € C. Hence 2C 4+ yC C (z +y)C. Therefore 2C +yC = (z + y)C.
Clearly, xyC C xCyC. Let ¢1,co € C be such that xciycs € zCyC. Then

xc1yce = xycicy € xyC. Thus xCyC C zyC'. Hence xC'yC' = zyC'. Therefore

+ and - are well-defined.

We have K/C'is a semifield and K /C'is called the quotient semifield of K by C.

Theorem 3.5. Let K be a semifield and C' € K~\{0}. Then C'is a convex subgroup

of K if and only if C' =kerf for some homomorphism f with domain K.

Proof. Assume that C' is a convex subgroup of K. Define f : K — K/C by
f(x) =2C for allz € K. Then f is a homomorphism of K into K/C and C' = kerf.

Conversely, let z,y € C' and o, f € K be such that o + 3 = 1. Since C' = kerf,
we obtain that f(z) = f(y) = L Thus f(ax + By) = f(a)f(x) + f(B)f(y) =
fla)+ f(B) = f(a+pB) = f(1) = L. This implies that £, az+ By € C. Therefore

C is a convex subgroup of K. m

Theorem 3.6. ([2]) Let K and L be semifields. If f : K — L an epimorphism,

then K/kerf = L.

Lemma 3.7. ([2]) Let H be a subsemifield of a semifield K and C' a convex
subgroup of K. Then HC = {hc | h-€ H and ¢ € C} is a subsemifield of K and

H N C'is a convex subgroup of H.

Theorem 3.8. ([2]) Let H be a subsemifield of a semifield K" and C' a convex

subgroup of K. Then H/(HNC) = (HC)/C.

Lemma 3.9. ([2]) Let N and H be convex subgroups of a semifield K and H C N.

Then N/H is a convex subgroup of K/H.



Theorem 3.10. ([2]) Let N and H be convex subgroups of a semifield K and

H C N. Then (K/H)/(N/H) = K/N.

Lemma 3.11. ([2]) Let M and N be semifields and L a convex subgroup of N. If

f: M — N is an epimorphism, then f~!(L) is a convex subgroup of M.

Theorem 3.12. ([2]) Let M and N be semifields and L a convex subgroup of N.

If f: M — N is an epimorphism, then M/f (L) = N/L.

Lemma 3.13. Let M and L be subsemifields of a semifield K. If N is a convex
subgroup of M and H is a convex subgroup of L, then (NN L)(HNM) is a convex

subgroup of M N L.

Proof. By Remark 2.3, M N L is a subsemifield of K. By Lemma 3.7, NN L =
(MAN)NL=MNLNNad HNM = (LNH) NM = (MNL)NH are
convex subgroups of M N L. By Remark 3.3, (NN L)(H N M) is a convex subgroup

of M NL. [l

Theorem 3.14. Let A and B be subsemifields of a semifield K, A* C A\ {0} a

convex subgroup of A and B* C B~ {0} a convex subgroup of B. Then
(1) A*(AnN B*) is a convex subgroup of A*(ANB),
(2) B*(A*N B) is a convex subgroup of B*(ANB), and
(3) (A*(AN BY) (A" (AN BY) "= (B(A " B))/(B*(4*A B)).

Proof. First, we show that A*(A N B*) is a convex subgroup of A*(A N B). Since
B* is a convex subgroup of B, we have B* is a convex subgroup of A N B, by
Lemma 3.7 AN B* = (AN B) N B* is a convex subgroup of AN B. Since A* is a
convex subgroup of A, A* is a convex subgroup of AN B, by Remark 3.3 we have

A*(AN B*) is a convex subgroup of AN B. Hence A*(AN B*) is a convex subgroup

8



of A*(AN B). Similarly, we have B*(A* N B) is a convex subgroup of B*(AN B).

Next, we show that (A*(ANB))/(A*(ANB*)) = (B*(ANDB))/(B*(A*N B)).
By Lemma 3.13, (A* N B)(A N B*) is a convex subgroup of AN B. To show that
(A*(ANB))/(A*(ANB*) = (ANB)/((A*NB)(AN B*)), let
D= (ANB)/((A*NB)(AN B*)) and define f : A*(ANB) — D by

flac) =c((A*NB)(ANB*)) foralla€ A* and c€ AN B.
Let ay,as € A* and ¢1,¢9 € (AN B) be such that aje; = ases.
If ¢ = 0, then we are done. Assume that ¢; # 0. Then Z—; = é(alcl)é =
l(aacr) =2 e A*N(ANB)= A"NB C (A" N B)(AN B*), so
2 € (A"NB)(AN B"). Hence ¢i((A* N B)(AN B")) = «((4" N B)(AN B)).
Therefore f is well-defined. Clearly, f is an epimorphism.

Next, we show that kerf = A*(A N B*). Let © € kerf. Then z € A*(AN B)
and f(z) = (A* N B)(AN B*). Thus x = ab for some a € A* and b € AN B, so
b((A*NB)(ANB*)) = (A*NB)(ANB*). Hence b € (A*NB)(ANB*). Thus b = b1by
for some b; € A* N B and by € AN B*. So we have = ab = a(b1by) = (aby)by
€ A*(AN B*). Hence kerf C A*(AN B*). Let y € A*(AN B*). Then y = y19»
for some y € A* and 4o € AN B*. Since AN B* C (A*N B)(AN B*), it follows that
Yo € (A* N B)(AN B*). Then yo((A* N B)(AN B*)) = (A*N B)(AN B*). Since
ANB* C ANB, wehave ys-€ ANB. Hence f(y) ="f(y1y2) = y2((A* N B)(AN BY))
= (A*".B)(AN.B*). Soy€kerf. Thus A*(ANB*) C kerf. Therefore, we have
kerf = A*(AN B*). By Theorem 3.6, (A* (AN B))/(A*(AN B*)) = D. Similarly,
we have (B*(ANB))/(B*(A*NB)) = D. Hence

(A*(ANB))/(A*(AN B*) = (B*(ANB))/(B*(A*N B)). O
Definition 3.15. Let K be a semifield. A strictly finite subconver series in K is a
chain of subsemifields of K, i.e., K = Ko> K> --> K, such that K;,; is a convex

subgroup of K; for all 0 <i <mn and K; # K; foralll# jandl,je€{0,1,...,n}.

9



The factors of the series are the quotient semifields K;/K;, 1. Moreover, the

length of the series is the number of nonidentity factors.

Definition 3.16. Let C : K = Ko> K >--->K,and C' : K = K, K>+ > K,
be two strictly finite subconvex series in a semifield K. Then C' is said to be a
refinement of C'if every term of C' appears in C'. Moreover, if C' # C', then C” is

a proper refinement of C.

Definition 3.17. A strictly finite subconvex series in a semifield K such that
K:K=Ky>K > ->K,={1}is called a composition series if it has no proper
refinement.

Two strictly finite subconvex series €' and C” in a semifield K are equivalent if
there is a 1-1 correspondence between the nontrivial factors of C' and the nontrivial

factors of € such that corresponding factors are isomorphic semifields.

Remark 3.18. If C' is a composition series of a semifield K, then any refinements

of C' are equivalent to C'.

Theorem 3.19. Any two strictly finite subconvex series in a semifield have

refinements that are all equivalent.

Proof. Let K be a semifield, K= Ko> Ky > -o- > K, > K,;i1 = {1} and

K = Lob> Ly > Ly D> Ly = {1} be two strietly finite subconvex series in K. For
0<i<m,wehave K; = K; 1(K; N Lo) > Ki11(K; N Ly) > -+ - > K1 (K; N Ly,) >
Kii(K; N Lypg1) = Kijq. Let Ky = Kigqa()GN L) forall 0 < i < n and
0 < j < m. Then we obtain a refinement M : K = Ko > K1) > Kgg) > - >
Komy> Ki> Kapy> - D> Kamy > Koo > Ky > Ky > > Ky > {1}
Similarly, let L jy = Ljp1(L; N K;) for all 0 <7 < nand 0 < j < m. Then we

haVGNIK:L()DL(LQ)DL(Q,Q)l>"'[>L(n70)|>L1>L(1’1)>‘"|>L(n’1)|>L2|>"'[>
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Ly > L1y > -+ - > L) > {1}. By Theorem 3.14, for 0 < i <nand 0 < j <m,

K/ Kijry) = Kipt (KN L) [ K (KN Lj + 1)
= Lja (L N KG) /L (L 0 Kiga)

= L j)/Lii+1,)

This implies that K(;j) = Ky if and only if L ;) = Lgg;). Let M; and
N be strictly finite subconvex series in K. Assume further that M; and N; are
obtained from M and N, respectively, by dropping every term which is equal to its

predecessor. Then M; and N, are equivalent. O]

Theorem 3.20. Let K be a semifield which has a composition series. Then any

two composition series are equivalent.

Proof. Let C and C" be two composition series in K. By Theorem 3.19, C' and C"
have refinements, say C; and C}, respectively, and C; = . By Remark 3.18, C;

is equivalent to C' and € is equivalent to C". Hence C' and C" are equivalent. [
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CHAPTER IV

VECTOR SPACES OVER A SEMIFIELD

AND LINEAR TRANSFORMATIONS

In this chapter, we divide the chapter into two parts. First part, we consider
semifields satisfying some property and study vector spaces over a semifield. In
the second part, we are interested in linear transformations of vector spaces over a

semifield.

4.1 Vector Spaces over a Semifield

Definition 4.1.1. Let K be a semifield. A wvector space M over K is an abelian
additive group with identity 0, for which there is a function (k,m) — km from

K x M into M such that for all k1, ks € K and my, ms € M,
(1) (kika)my = ky(Kyma),
(2) ki(ma +my) = kymia kyma,
(3) (k1 + k2)my = kymy + komy, and
(4) 1xgmy =m;y.

Remark 4.1.2. If M is a vector space over a semifield K, then clearly the following

statements hold:
(1) Om =0 for all m € M.

(2) kK0 =0 forall k € K.



(3) —(km) = k(—m) for all k € K and m € M.

Definition 4.1.3. Let M be a vector space over a semifield K. A subspace of M is
a subset of M which is, itself, a vector space over K with the operations of addition

and scalar multiplication of M.

Example 4.1.4. (1) Q" is a vector space over QF for all n € N.
(2) R™ is a vector space over R for all n € N.
(3) Q x Q is a vector space over Qg .

(4) Q x R is a vector space over Q.

Theorem 4.1.5. Let N be a nonempty subset of a vector space M over a

semifield K. Then the following statements are equivalent.
(1) N is a subspace of M.
(2) If ny,ny € N and k € K, then nq + ng, kny € N.
(3) If ny,ne € N and ki, ks € K, then king + kong € N.
(4) If ny,ne € N and k € K, then kn; +ny € N.

Theorem 4.1.6. The intersection of any collection of subspaces of a vector space M

over a semifield K is also a subspace of M.

Definition 4.1.7. Let M be a vector space over a semifield K. An element m € M

is a linear combination of my,mo,...,m, € M if m = aym;+-- -+ a,m, for some

n
ag,...,a, € K. We denote aymy + -+ - + a,m, by > aym; and we simply write

i=1
> .

Ue{ml,.-.,mn}
Next, we simply denote a linear combination of finite elements in a set B,

a1by + - -+ + ayb, where ay,...,a, € K, by,...,b, € B, by > apb.
beB

13



Definition 4.1.8. Let M be a vector space over a semifield K and S a subset
of M. Moreover, let { N; | i@ € I } be the family of all subspaces of M which

contain S. Then () NV, is the subspace of M generated by S and (S) is the subgroup
icl

of M generated by KS ={ks|ke€ Kandse€ S }.

If (S) = M, then we say that S spans M.

For s1,...,8, € S, let (s1,...,8,) denote <{sl, e sn}> and we simply call it
the subspace of M generated by si,..., s,.

We denote the number of elements of S by |S].

Definition 4.1.9. A subset S of M is linearly independent if it satisfies one of the

following conditions:

1) §=0,

(2) [5]=1and S # {0},

(3) |S| > 1and s ¢ (S\{s}) forall s € S.
Moreover, S is said to be a linearly dependent set if S is not linearly independent.
Remark 4.1.10. If S is a subset of M and 0 € S, then S is linearly dependent.

Definition 4.1.11. Let S be a subset of a vector space M over a semifield. Then
S is a basis of M if S is a linearly independent set which spans M. If M = {0},

then we have () is a basis of M.

Next, we consider a semifield K which satisfies the following property :

() : forall «a,0 € K thereexistsa v € K suchthat a=p+v or f=a+7.

Remark 4.1.12. Let M be a vector space over a semifield K which is not a field

and satisfies the property (x). Then the following statements hold:

14



(1) For all v, f € K and u € M there exists a v € K such that au — fu = ~yu or

au — fu = —yu.

(2) If B is a subset of M which spans M, then, for all m € M, m = ) auepb
beB

where oy, € K and g,b € {b, —b} for all n € B.
(3) for all a, 5 € K and u € M there exists a 4y € K such that yeu = agju+ asyu

where eu, g;u € {u, —u} for all i € {1,2}. Moreover, if a # [ and u # 0, then

7 #0.

(4) If B is a basis of M # {0}, then every element m of M can be written
uniquely as m = > apepb, that is, if m = > apepd = > Byépd, then oy, = G,
beB beEB beB

and b = &b for all b € B.
Proof. (1) Let o, p € K and u € M. Since K satisfies the property (x), we obtain
that « = f+~vor § = a+ 7 for some vy € K. If a = + ~, then au — fu =
(B47)u— Pu = yu. Otherwise, f = a+~. Then au — fu = au— (a+v)u = —yu.
(2) Let m € M. Since B spans M, we have m = > o,b+ > By(—b) where

beB beB

ay, B € K for all b € B. Then m = ) (ab — 5pb). By (1), for all b € B there
exists 7, € K such that apb — Gpb = %bbeoji apb — Byb = —b, so apb — Byb = b or
Y (—b). Hence m = > yepb where g,b € {b, —b} for all b € B.

(3) Let a, 8 € KbZid u e M.
If eyu = u = eyu, then acyu + Peyu = au + fu = (a + 3)u, choose v = o + 3.
If equ = v and e9u = —u, then done by (1).
If e = —u and e9u = u, then also done by (1).
If eju = —u = equ, then agiu + fequ = a(—u) + B(—u) = (a + [)(—u), choose
v=a+ 0.

Hence there exists a v € K such that yeu = aeju + feou where eu € {u, —u}.

15



Next, assume that a # 3 and u # 0. Suppose that v = 0.

Case 1 Let equ = u = egu. Then 0 = au + fu = (a + [B)u, so a + [ = 0, this is
contradiction.

Case 2 Let equ = v and eou = —u. Then 0 = au + B(—u). Since K satisfies the
property (x), there exists a n € K such that « = f+nor f=a+n.

Case 2.1 Assume that o = §+n, then 0= fu + nu + G(—u) = nu, so n =0,
this implies that o = (3, contradiction.

Case 2.2 Assume that § =a+n. Then 0 = au+ a(—u) + n(—u) = n(—u), so
n = 0. This implies that e = 3, contradiction.

Case 3 Let eyu = —u and eyu = w. Similar Case 2.
Case 4 Let eju = —u = gou. Then 0 = a(—u) + f(—u) = (a + B)(—u). This
implies that o 4+ 8 = 0, contradiction.

(4) Let m € M and Y apepb=m = > (pépb where oy, 3, € K, epb € {b, —b}
and &b € {b,—b} for alleBe B. To showbiﬁat for all b € B, ap = B and g,b = &b
if ap # 0. First, suppose that there exists by € B such that o, # (,- Then
> aperh — D Brépb= 0. So > apepb + > ﬁbsgb = () where E;,b = —&b. By (3),

beB beB beB beB
we have Y &b = 0 where 1, € K and &,b, € {b, —b}. Since vy, # [p,, we have

beB
Tbg 7£ 0.

If &,,b0 = by, then we have by = —( N/ J]Tbebb) € (B\{bo}), a contradiction.
0

bEB
bZbo
If £,,b0 = —bo, then by = > &b € (B\{bo}), a contradiction.
beB 0
bZbo

Hence oy = [, for all b € B. Next, suppose that there exist a b, € B such that

€, br 7 €p,,br. Without loss of generality, assume that €, by, = b, and &, b, = —b.
Then Z Ozbébb—l-Oébkbk = Z ﬁbgbkbk_ﬁbkbk; SO (Oébk—i—ﬁbk)bk = Z ﬁbébb— Z absbb.
beB beB beB beB
bZby, b£by, bZby, bZby,

Thus by, = >, ﬁ?ﬁ b — > —2—gb € (B \{bx}), a contradiction. Hence

bep Tk pei “br o0
bZby bZby,
epb=&b forall b e B. ]
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Example 4.1.13. (1) Qf and R are semifields satisfying the property ().

(2) (Qf,*,- ) and (ZU {e},®,®) in Example 2.4 are semifields satisfying the
property ().

(3) (@ x Q1)U {(0,0)} is a semifield but not satisfies the property (x), since

(1,2) # (2,1) + (0,y) and (2,1) # (1,2) 4 (z,y) for all 2,y € Q.
From now on, we let K*) denote a semifield K which satisfies the property (x).

Theorem 4.1.14. Let M be a vector space over a semifield K. If A is a finite
basis of M, then B is a linearly dependent set for all subsets B of M such that

|B| > |Al.

Proof. Let A = {ay,...,a,}. Since |B| > |A|, we let by, ..., by, byy1 be elements

of B which are all distinct. Since |B| > |A|, there exists b;, € B such that b;, ¢ A.

Since A spans M, we have b;, = > agerar where o, € K™ and eray, € {ag, —ax}
k=1

for all k € {1,...,n}. If ax =0 for all k, then b;, =0, so B is linearly dependent.

Assume that a; # 0 for some j € {1,...,n}.

s = Q. o L1y a0 Qg ol Gl L On
If eja; = a;, then a; = ajl)z1 oy @1 o %=1 @it o
€ ((AU{bi}) \{a;}).

4 = —a. = =1y a T N Qitl o ceo L G
If e;a; = —a;, then a; = OLJ_bl1 Bl e i 7 8 M sl 7S B e ol

€ (AU {b;}) \{a;}). Hence we have

ag € ((A0{bi}) \{a;}) (4.1)

Case 1 For all b; € B\{b,}, b; € A, ie., |B] = |A| + 1. By (4.1) implies that
M = (A) = ((AU{b;,}) \{a;}). But a; € B and we have a; € (B \{a;}), so B is
linearly dependent.

Case 2 There exists b, € B \{b;, } such that b, ¢ A. Since A spans M, we have

n

bi, = > Breray, where B € K® and epar € {ag, —ax} for all k € {1,... ,n}. If
k=1
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Br = 0 for all k, then b;, =0, so B is linearly dependent.

Assume that §, # 0 for some r € {1,...,n}. By (4.1), a; = ) vsesas + yeb;,
s=1
s

where 7,7, € K™ and ,a, € {a,, —a,}, eb;, € {b;,, —b;,} foralls € {1,... . n}\{j}.

Since A is linearly independent, v # 0.

Case 2.1 Let r = j. Then

bz2 = ﬁlglal + iy ﬁrgrar R~ ﬁnenan

= Bie1a1 ++ +0jE; Z’VSESCLS +veb;, | + -+ Buenan
3
= nEats +nab;
=

where 7,, n € K%, &,a, € {a,, —as}, and &b;, € {b;,, —b;, } for all
ie{l,...,n}\ {j}. Since 8, # 0 and v # 0, we have n # 0.
If n, = 0 for all s # j, then b;, = neb;, € (B \{b;,}), so B is linearly dependent.
Now, we assume that there exists [ # r such that n; # 0.

If ga; = ap, then

1 s
a = —b;, Z ! 5o € ((AU{bi,, bi,}) \{a;, ai}).

m
S¢{J l}
If £ia; = —ay, then
1 Sy
al Ti ’I’] ( b 6611 + Z n—gsa/s E <(A U {b’h?biQ}) \{a’j7al}>-
I
8¢{J l}

Hence a; € ((AU {b;,,bi,}) \{aj, ai}).
Case 2.2 Let r # j. Without loss of generality, we assume that » < j. Then

bi, = Bicrar + -+ - + Brgpa, + - -+ ﬁjaj( Z VsEsls + 761%1) -+ BnEnty. Since K

ssﬁj
satisfies the property (x), we have b, = mé&ia1+---+n.&pa, +- - - +n0j_16_1a5_1 +

nj+1§j+1aj+1 +ee +nn§nan +77§b11 where ni € K(* 5j77 €sQs € {a57 as} and

18



gb;, € {bi,, by, } for all s # j. So by, = > nssas + néb;,. If ng = 0 for all s # j,
s=1
s#]
then 1 # 0 and b;, = neb;, € (B \{bi,}), so B is linearly dependent. Assume that
there exists v # r such that n, # 0.

If ¢,a, = a,, then

1 . Ns = 2

a, = —by, — | Y Z&a, | = by € (AU {b;,b,}) \{aj, an}).
' TR "

If £,a, = —a,, then
= L PlLr 15 e ((AU{b; b
av = o=(=bu) | Do |+ -5 € (AULDi, b)) \ay, ).
v s=1.1Y o
SFET

Hence a, € ((AU{b;,,bi,}) \{a;, a,})-

By Case 2.1 and Case 2.2, we obtain ay € (AU {b;,,b;,}) \{a;, ax}) for some k # j.
Apply this method Case 2 to other element of B.

If |[B\A| = m < n, there exists an clement  of AN B such that x € (A) =
((AUu{by,.... b, D \{aj.....a;,.2}) = (B\{z}), so B is linearly dependent.

If |B\A| > n, then we obtain
aj € <(A U {bu}) \{aj1}>7

aj, € <(AU {bi1>bi2}> \{ajlvaj2}>v Ja 7é J2s

aj3 € <<A U {bilv bi27 b23}> \{aju Aja s CL]'3}>, J1,J2 and j3 are distinct,

aj, € (AU{b;, ..., bi, ) \{ajp, ... a5.}) = (biy, ..., bi), Jis-- -, Jn are distinct.

This implies that M = (b;,,...,b;,). Since b;,,, € B and b;,,, € (B \{bi,,.}), we

have B is linearly dependent. O]

Theorem 4.1.15. Let A and B be finite subsets of a vector space M over a semifield

K®)_ If they are bases of M, then |A| = |B].
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Proof. This follows from Theorem 4.1.14. O]

Theorem 4.1.16. Let B = {by,...,b,} be a maximal linearly independent subset

of a vector space M over a semifield K*). Then B is a basis of M.

Proof. Since B is linearly independent, b; ¢ (B \{b;}) for alli € {1,...,n}.
Suppose that (B) C M. Then there exists an m € M \(B). Claim that BU{m}

is a linearly independent set. Suppose not. Then there exists a b € (B U {m}\{b}).

If b = m, then m € (B), this contradicts that m € M \(B). Assume that b = b; for

some j € {1,...,n}. Sinee b; € (B U {m} \{b;}), we have b; = > ae;b; + aem

i=1
i#]
where o, € K¥) g;b; € {bs, =b;} and em € {m, —m}. Since m € M\(B), we have

a# 0. If em = m, then m = —i zn: ;gib; + ébj € (B) which is a contradiction.
=
Otherwise, if em = —m, then m = + Z”: aje;b; — +b; € (B) which is, again,
=
contradiction. Hence B U {m} is a linearly independent set. But |BU {m}| > |B,
this contradicts the maximality of B. Hence B spans M. Therefore, B is a basis

of M. O

Remark 4.1.17. Let M be a vector space over a semifield K*) and B a linearly

independent subset of M. If m € M\(B), then BU{m} is also linearly independent.

Definition 4.1.18. Let M # {0} be a vector space over a semifield K *). Then M
is said to be finite-dimensional if M has a finite basis.

The dimension of M, denoted dim M, is the number of elements in a basis of M.

Example 4.1.19. (1) {1} is a basis of Q over Q. Then dimQ = 1.
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(2) Let €1, ...,e, € Q" be defined by

61:(1,0,...,0,0)

62:<O,1,...,0,0)

=0 A L0 ).

Then {ey,...,e,} is a basis of the vector spaces Q" over the field Q. In fact, by
the definition of a vector space over a semifield, we also have that {e;,...,e,} is a
basis of the vector space Q" over the semifield @, hence dim Q™ = n. Also, this

fact is true if we replace Q by R and Qg by R .

Theorem 4.1.20. Let M be a vector space over a semifield K*) and S a linearly
independent nonempty subset of M. Then there exists a subset B of M such that

S C B and B is a basis of M.

Proof. Let J = {C € M | C is linearly independent and S C C'}. Then S € J.
Recall that C is a partial order on J. Let € be a nonempty chainin Jand D = |J C.
Since S C C for all €' € €, we obtain that S C D. We claim that D is lirclzzrly
independent. Suppose not. Then D # () and let z € (D \{x}) where x € D. Thus
r = Y aue.a where ag € K and g,a € {a,—a} for all a € D\ {x}. Since
¢ is (;el(?}\i{;fn, there exists a Gy € € such that ,a € Cy for all a € D \{z}. Thus
x € (Cy\{z}), so Cy is linearly dependent. This is a contradiction. Hence D is
linearly independent. Thus D € J, so D is an upper bound of € in J. By Zorn’s
Lemma, J has a maximal element, say N. Then N is linearly independent and
SCN.

Next, we show that N spans M. Suppose that (N) C M. Then there exists

u € M\(N). By Remark 4.1.17, we have N U {u} is linearly independent. But
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N C NU{u} which contradicts the maximality of N. Hence N spans M. Therefore

N is a basis of M and S C N. m
Corollary 4.1.21. Every vector space M over a semifield K*) has a basis.

Proof. It M = {0}, then 0 is a basis of M.
Assume that M # {0}. By Theorem 4.1.20, let S be a singleton set of nonzero

element in M. O

Theorem 4.1.22. Let M be a finite-dimensional vector space over a semifield K *).

If N is a proper subspace of M. then N is finite-dimensional and dim N < dim M.

Proof. Let B be a basis of N. By Theorem 4.1.20, there exists a subset C' of M
such that B C C' and C'is a hasis of M. Since M is finite-dimensional, C' is finite,
so B is finite. If |B| = |C|, then C' = B and M = (C) = (B) = N which is a

contradiction. O

Theorem 4.1.23. Let M be a vector space over a semifield K*) and S a subset of
M such that S spans M. Then there exists a subset B of S such that B is a basis

of M.

Proof. Let 3 ={A | A C S and A is linearly independent}.. Then ) € J. Let C
be a partially order on J. Let € be a nonempty chain in J and C' = U‘A. Since
A C S for all A € €, we have C C S. We claim that C'is linearly i?liieependent.
Suppose not. Then C' # () and let z € (C\{z}) where z € C. Thenz = > auc.a
where o, € K™ and ¢,a € {a,—a} for all @ € C'\ {z}. Since € is a Zligi\z}there
exists an Ay € € such that z,a € A for all @ € C'\{z}. Thus z € (Ay \{z})
which implies that Ay is linearly dependent. This is a contradiction. Hence C' is

linearly independent. So C' is an upper bound of € in J. By Zorn’s Lemma, J has

a maximal element, say N. Thus N C S and N is linearly independent.
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Next, suppose that (N) C M. If N = S, then (N) = (S) = M, this is a
contradiction, so N € S. If § C (N), then M = (S) C ((N)) = (N) which is
a contradiction, so (N) C S. Thus there is a w € S such that u € S\ (N). By
Remark 4.1.17, we have N U {u} is linearly independent and N U {u} C S. But
N C NU{u} which contradicts the maximality of N. Hence N spans M. Therefore

N is a basis of M. O]

Theorem 4.1.24. Let M be a finite-dimensional vector space over a semifield K,

dim M = n, and S a subset of M. Then
(1) S is linearly independent implies that |S| < n,
(2) |S| < n implies that (S) # M, and
(3) |S| =n and S spans M implies that S is a basis of M.

Proof. The results (1) and (2) follow from Theorem 4.1.14 and Theorem 4.1.23,
respectively.

(3) Let S = {s1,...,8,} and S spans M. Suppose that S is linearly dependent.
Then s; € (S \{s;}) for some ¢ € {1,...,n}. This implies that S \{s;} spans M.
But [S\{s;}| <n, by (2),'we have (S \{s;}) # M which is a contradiction. Hence

S is linearly independent. Thus S is a basis of M. O

Definition 4.1.25. Let M; and M; be subspaces of a vector space over a semifield.
Then M + M is defined to be the set of all elements of the form m; + my where

mi € Ml and mo € MQ, i.e.,
M1+M2:{m1+m2 | my € My andeEMQ}.

Lemma 4.1.26. Let M; and M, be subspaces of a vector space M over a

semifield K. Then M; + M, is also a subspace of M.
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Theorem 4.1.27. Let M be a vector space over a semifield K*) and My, M,
subspaces of M. Then M; + M, is the smallest subspace of M containing both M;
and Ms, that is My + My = (M; U M,). Moreover, if By spans M; and Bs spans

Ms, then By U By spans My + Mo.

Proof. First, we prove that M; U M, spans M; + M. Since 0 € M,, we have
My C My + M. Similarly, My € M; + My sinece 0 € M;. Clearly, M; + M, is a
subspace of M containing K (M U M), so (M U M) C My + M.

Let m € M; + My. Then m = my + msy for some my; € M; and my € Ms.
Since my,my € (My U M,y) and (M; U My) is a subspace of M, we obtain that
m =my +mg € (M; UM,). Hence M; + My C (My U Ms). Therefore M; U My
spans M; + M,. Clearly, M; + Ms is the smallest subspace containing M; and M.

For the next part, we have M; = (By) € (B1UBsy) and My = (By) C (B; U By).
Then M; UM, C (BiUBs) C (MyUMs). So (M;UM,) C ((B1 U Bs)) = (BiUBs).
Hence (M; U Ms) = (By U Bs). Therefore My + M, = (B; U By), this implies that

By U By spans My + M. ]

Theorem 4.1.28. Let M be a finite-dimensional vector space over a semifield K.

If M7 and M, are two subspace of M, then

Proof. Let B be a basis of My N Ms. By Theorem 4.1.20, there exists a subset B
of M; such that B C B; and B is a basis of M; and there exists a subset By of M,
such that B C By and Bs is a basis of M,. By Theorem 4.1.27, we have B; U By
spans M + M,. We claim that B; U By is linearly independent.

First, we consider M; N My = {0}. Then B = () and B; N By C M; N My = {0},
so BiNBy = (). Suppose that B;UB; is linearly dependent. Then there exists a

b € By U By such that b € (B; U By \{b}).
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Casel Letb€ By. Thenb= Y. a,e,2+ Y. B,6,y where a,, 3, € K,
z€B1\(b} yE€B;
e, € {x,—x} and e,y € {y, —y} for all z € By \{b} and y € B,. If 3, = 0 for all
y € By, then b € (B; \{b}), this implies that B is linearly dependent which is a
contradiction. Hence 3,, # 0 for some y, € B, and we have
— (Z ﬁyeyy> = Z e, — b.
yEBs z€B1\{b}
The left-handed side is an element of My while the right-handed side is an element
of M;. Thus the both sides belong to M; N My = {0}. This implies that 3,, = 0
which leads to a contradiction. Hence B; U B is linearly independent.
Case 2 Let b € By. The proof is similar to the Case 1. We have B; U B, is also
linearly independent. Hence By U By is a basis of M; + My and dim(M; + Ms) =
|By U By| = |Bi| + | Bs| = | By N Ba| = dim M, + dim M, = dim(M, N Ms,).

Next, we assume that My N My # {0}. If By = B or By = B, then we are done.
Assume that B C By and B C B,. Suppose that By U By is linearly dependent.
Then there exists a b € By U By such that b € (B U By \ {b}).

Let B={by,...;b.}, By ={b1,...,b,,c1,...,¢cs} and
By ={by,...,by,dy,. . di}. Then By U By ={by,...,b,c1,...,Cs,dy, ..., di}.
Since b € By U By, we obtain that b€ B or b € By\B or b € By \ B.

Case 1 Let b € B. 'Then there exists j € {1, ..., 7} such that b = b;. Since

b € (B By \{b}); werhave

r S t
bj = Z CJtiEibi + Z ﬁkEka + Z%gldl (42)
i=1 k=1 =1
i)
where oy, B, 71 € K™, ;b € {bi, —b;}, excr € {c, —cx} and g,d; € {d;, —d;}. Thus

t r S
— (Z 'Ylgldl) = Z Oé,‘é‘ibi - bj + Zﬁkgkck'
1=1 = k=1

i=1
i#]
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The left-handed side is an element of Ms and the right-handed side is an element

of Mj. So each side belongs to M; N My = (B). Hence

t T
— (Z ’Ylgldl) = Z umambm (43)
=1 m=1

i aeib; — by + i Orercr = i VnEnbn (4.4)
= k=1 n=1

=
where Uy, v, € K™, £,.bp € {by, —bm} and £,b, € {b,, —b,} for all m,n.
If y=0forall or B, =0forall k, by (4.2) we have b; € (B; \{b;}) or
bj € (B2 \{b;}) which is a contradiction. Hence there exist I, € {1,...,t} and
ko € {1,...,s} such that by, # 0 and v, # 0. By (4.3) and (4.4) we have
di, € (B2\{d,,}) and ¢, € (B1 \{cx, }) which is, again, a contradiction. Hence
By U By is linearly independent.
Case 2 Let b€ By \B. Then b = ¢; for some i € {1,...,s}. Since

b € (By U By \{b}), we have

T s t
C; = Z Oéjﬁjbj -+ Zﬁkgkck == Z '7l5ldl (45)
j=1 k=1 1=1
ki
where aj, B, € KW, e;b; € {b;, —b;}, erck € {ck, —cx} and gd; € {d;, —d;}.
t T s
Thus —( Z ’Ylgldl) — Z Oéjc":‘jbj + Z ﬁk&Tka —.C;.
=1 j=1 %;1
The left-handed side is an element of M, and the right-handed side is an element

of My, s0 each side belongs to M; N M, = (B). Hence

t r
— (Z ’}/léTldl) = Z ’U,méTmbm (46)
=1 m=1

Z a;ejb; + Z BrerCr — ¢; = Z UnEnbn, (4.7)
j=1 n=1

k=1
ki
where Uy, v, € K®, €,,b,, € {by, —bp} and €,b, € {b,,, —b,,}.

If v, = 0 for all I, from (4.5) we obtain ¢; € (By \{¢;}) which is a contradiction.
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Hence v, # 0 for some Iy € {1,...,t}. By (4.6) implies that d;, € (By \{d,})
and by (4.7) we have ¢; € (B \{¢;}) which is also a contradiction. Hence B; U B
is linearly independent.

Case 3 Let b € By \ B. The proof is similar to Case 2. We have By U By is linearly
independent. Thus By U By is a basis of M; + M, and dim(M; + Ms) = |B; U By| =

r+s+t=(r+s)+ (r+t)—r=dimd+ dim M, — dim(M; N M,). O

Definition 4.1.29. Let M be a vector space over a semifield K and M,..., M,

subspaces of M. We say that M is the direct sum of M, ..., M, if
(1) M=M, +---+ M, and
(2) M;n (Y M;) ={0} forallie {1,... n}
J#i

Moreover, we write M = My & -+ - @ M,,, the direct sum of My, ..., M,.

Theorem 4.1.30. Let M be a finite-dimensional vector space over a
semifield K*) and M, a subspace of M. Then there exists a subspace M, such that

M = M, © M.

Proof. Let B be a basis of M;. By Theorem 4.1.20, there exists a subset B’ of M
such that B C'B' and B’ is a basis of M. Tiet My = (B"\'B). If M; = {0}, then
My = (B') and, clearly, My N My = {0}, so M = M; @& M,. Assume that M; # {0}.
Let B = {by,...,byyand B" = {by,... . by, b1, -, bm}. Then Ms'= (byy1,...,b,).
Let x € My N Ms. Then i ;gib =1 = 4 i Bjejb; where oy, 3; € K®,

eibi € {b;, —b;} and €,b; gl{bj, —b;} for ajl_lniHE {1,...,n}and j € {n+1,...,m}.
If x # 0, then there exists ig € {1,...,n} such that oy, # 0, thus we have

bi, € (B"\{bs}) which leads to a contradiction. Hence 2 = 0 so that M;NM, = {0}.

Therefore M is the direct sum of M; and M,. O
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Lemma 4.1.31. Let M be a vector space over a semifield. Then the following

statements are equivalent.
() M=M,&---d M,.

(2) 21) M =M, +---+ M, and
(2.2) for my € My, ..., my, € M,, my +--++m, =0 implies that

my=20,...,m, =0.

(3) For all m € M there exist unique m; € M, ..., m, € M, such that

m=mi+ -+ my.

Lemma 4.1.32. For a sum of several subspace of a finite-dimensional vector space
over a semifield K™, to be direct it is necessary and sufficient that

dim(M; + -+ + M,,) = dim M; + - - + dim M,,.

Lemma 4.1.33. Let A and B be linearly independent subsets of a vector space
over a semifield K®) and AN B = (). Then AU B is linearly independent if and

only if (A) N (B) = {01.

Proof. Let x € (A) N (B) \{0}. Then ZAozaeaa =x =) Bpepb where
Qay By € K®| gqa € {a, —a} and &,b Eae{b, —b}. Since :cbif(), there exist an ag € A
and a by € B such that o, # 0 and B, # 0. This implies that ay € (AU B \{ao}),
so AU B is linearly dependent.

Conversely, assume that (A) N (B) = {0}. Suppose that AU B is linearly

dependent. Then there exists an = € AU B such that z € (AU B \{z}). So

r= Y auc.u where a, € K and e,u € {u, —u}. Without loss of generality,
u€AUB\{z}
assume that € A. Then x = > a,e,v+ Y. ape,,w. Thus
veA\{z} weB
T — Z ey = Z apeuw € (A) N (B) = {0}.
veA\{x} weB
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Sox — >, aug, =0. Hencex = > a,e, € (A\{2z}) which is a contradiction.
veA\(z} veA\(z}
Therefore AU B is linearly independent. [l

Remark 4.1.34. Let M be a vector space over a semifield and C4, ..., (), subsets

of M. Then (C1 U---UC,) = (Cy) +---+ (Cp).

Theorem 4.1.35. Let M be a vector space over a semifield K*) and M;,..., M,
subspaces of M. For each i € {1,... n}, let B; be a basis of M;. Then M =

My&---® M, if and only if (1) B, B; = ¢ for i # j and (2) |J B; is a basis of M.

i=1
Proof. Assume that M = M; & --- & M,,.

(1) Letd,5 € {1,...,n} besuch that ¢ # j. Then M;NM; C M;N( Y M;)= {0}.
ki
Since B; N B; € M; N M; = {0}, we obtain that B; N B; = ().

(2) By Remark 4.1.34, <U B,-> =(By)+: -+ (B,) =M +---+ M,=M,
i=1

so |J B; spans M. To show that |J B; is linearly independent. We prove by
i=1 1=1

induction. Assume that By U --- U B, is linearly independent for £ < n. We

k
claim that By U -+ U By is linearly independent. Since <U Bi> N (Bgi1) =
i=1

ket 1
(My+ -+ 4+ Mg) N Mgy = {0} and by Lemma 4.1.33, we have |J B; is linearly

=1

independent. Hence (J B is linearly independent. Therefore | ) B; is a basis of M.
i=1 i=1

Conversely, we show that M = M; & - - & M,. Clearly, M = <U Bi> =
i=1

n

(B1) 4o ot (Bu) =My -+ My Let k € {1,+.sn}. Since ByU( |J B;) = U B;
2 .

i— i=1
ik
is linearly independent and by Lemma 4.1.33, we have (By) N < U Bi> = {0}, so
ik
Mkﬂ<ZMn>:{O}.Hen0e M=M&- oM, 0
i=1

i£k
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Theorem 4.1.36. Let M be a vector space over a semifield K and M; # {0} a
subspace of M for alli € {1,....,n}. U M =M & ---® M, and BC [J M; is a

=1

basis of M, then B N M; is a basis of M; for all i € {1,...,n}.

Proof. Clearly, M = (B) = <Bﬂ (Q1Ml)> = < O(BOM1)> = (BAM) + -+

i=1
(BN M,). Obviously, (BN M;) € M; for alli € {1,...,n}. Leti € {1,...,n} and
m € M;. Then m = my + -+ + m, for some my € (BN M),...,m, € (BN M,).
So m—m;=my+ -+ My + Mg + -+ m,, € M;N <ZM]) = {0}. This
i=1
J#i
implies that m = m; € (BN M;), so M; € (BN M;). Hence M; = (BN M,).
Obviously, B N M; is linearly independent. Hence B N M; is a basis of M; for all

ie{l,...,n}. O

Definition 4.1.37. Let M be a vector space over a semifield K and N a subspace
of M. For m € M, let m + N be the set {m +n | n € N} and we call m + N as a

coset of N.

Lemma 4.1.38. Let M be a vector space over a semifield and N a subspace of M.

Then
(1) for all my,my € M, m; + N = my + N if and only if m; — my € N, in
particular, for m € M, m + N = N if and only if m € M,

(2) for all mq,mg € M, (m1+ N)N(ma+ N)=0o0r m; + N =mq+ N, and

(3) for all my,ms € M, (my'+ N)+(my+ N)=(my +my) + N.

Definition 4.1.39. Let M be a vector space over a semifield K and N a subspace

of M. For a € K and m € M, let a(m + N) = am + N.

To show that the above operation is well-defined, let mi,ms € M be such
that m; + N = mo + N and o« € K. By Lemma 4.1.38, m; — my € N. Then

amy — (ams) = amy + a(—msg) = a(my —my) € N, so am; + N = amy + N.
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Definition 4.1.40. Let M be a vector space over a semifield K and N a subspace
of M. Let M/N ={m+ N | m € M}. Then M/N is a vector space over K with

respect to the operations: for all m;,my € M and o € K,
(m1+ N)+ (mg+ N)=(m;+my)+ N and a(m; + N)=am;+ N.

We have 0 + N is the zero element of M/N and —(m + N) = —m + N for all

m € M. We call M/N as the quotient space of M by N.

Theorem 4.1.41. Let M be a finite-dimensional vector space over a semifield K *)
and N a subspace of M. Then M /N is finite-dimensional and dim M/N =

dim M — dim N.

Proof. Let B be a basis of N. By Theorem 4.1.20, there exists a subset B" of M
such that B C B" and B’ is a basis of M. Since M is finite-dimensional, B’ is finite.
If N =M, then M/N ={m+ N |me M} ={N} = (), sodimM/N =0 =
dim M — dim N.

Next, assume that-N-C M. We show that {u+N_| v € B\ B} is a basis

of M/N. Let m € M. Since B spans M, we have m = Y a,e,u for some
ueB’
o, € K and e u € {u, —u}. Then m + N = < > auauu> + N =
ueB’

< > e vty awsww) +N. Since B spans N, we obtain that » a,e,w € N.
veB/\B weB weB

By Lemma 4.1.38, we have Y aue,w+ N=N.So m+N= 5>, waev+ N
weB veB'\B

= Y g, (v+N)e {v+ N |veB\B}) where e,(v+N) € {v+N,—v+N}.
veB'\B

Hence {v + N | v € B'\ B} spans M/N. We claim that {v + N | v € B'\B} is a

linearly independent set. Suppose not. Then there exists a vy € B'\ B such that

v+ Ne{v+N|veB\B}\{vo+N}). Thus vg+N= 3 Bue,(v+N)

veB'\B
VF£V0
= ( > ﬁvevv) + N where 3, € K g,(v+N) € {v+N,—v+ N} and
veB'\B
v#£v0
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g,v € {v, —v} for all v € B'\B. By Lemma 4.1.38, vy — ( > ﬁvgvfu) € N = (B),

UGBI\B
v#£vg
SO vy — < > @@ﬂ}) = > yepb where v, € K™ and g,b € {b, —b}. Thus
veB\B beB
v#£vo
vy = ( > ﬁvevv> + 3" yepbe (B \{vo}), this implies B’ is linearly dependent
veB'\B beB
v#£vg

which is a contradiction. Hence {v + N | v € B'\ B} is linearly independent. Thus
{v+ N |ve B \B}is abasis of M/N and we have u; + N # uy + N if u; # us in

B'\B. Hence dim M/N = |[{v+N |v e B\B}| =|B'|-|B| =dimM—dimN. O

4.2 Linear Transformations

Definition 4.2.1. Let M and N be vector spaces over a semifield K and T a
mapping from M into N. Then T is said to be a linear transformation if for all

my,me € M and o, f € K, T(ami + fma) = aT'(m1) + 5T (m2).

Example 4.2.2. Let n and m be positive integers, with m < n and let M = R",
N = R™ be vector spaces over R}. Then we have the mapping 7' : M — N defined

by T(x1,...,2,) = (21, ..., 2,) forall (z;,... 2,) € R" is alinear transformation.

Remark 4.2.3. Let T be a linear transformation of a vector space M into a vector
space N over the same semifield. Then 7°(0) = 0~ and T(—m) = —T'(m) for all

me M.

Lemma 4.2.4. Let M and N be vector spaces over a semifield K and T": M — N.

Then the following statements are equivalent.
(1) T is a linear transformation.

(2) For all mi,my € M and a € K, T(my +my) = T(my) + T(my) and

T(amy) = aT'(my).
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(3) For all my,mg € M and a € K, T(amy + my) = aT'(my) + T (my).
Notation. For any function 7" : M — N, we denote the range of 7" by Im 7.

Lemma 4.2.5. Let M and N be vector space over a semifield K and T': M — N

a linear transformation. Then the following statements hold.
(1) T is injective if and only if 7'(m) = 0 implies that m = 0 for all m € M.

(2) If M, is a subspace of M, then T'(M;) is a subspace of N. Hence Im T is a

subspace of N.

(3) If B is a subset of M which spans M, then T'(B) spans Im 7.

(4) If M is finite-dimensional and K satisfies the property (x), then Im7T" is

finite-dimensional.

(5) If Ny is a subspace of N, then 7~ '[Ny] is a subspace of M. Hence T71[0] is a

subspace of M.

Proof. The proofs of (1), (2) and (5) are clear.
To proof (3), let y € ImT. Then y = T'(x) for some x € M. Since B spans M,

it follows that x = > apb' 4+ > Gp(—b) where ay; 8, € K. Then

y=T(zx) = T( 3 ash + Zﬁb(—b)) =Y T~ S BTh) € (T(B)).

Hence T'(B) spans Im T
(4) As a result of (3), T(B) spans Im 7. By Theorem 4.1.23, there exists a
subset B’ of T'(B) such that B’ is a basis of Im7T". Since T'(B) is finite, B’ is finite.

Hence Im T is finite-dimensional. O

Theorem 4.2.6. Let M and N be vector spaces over a semifield K and let

B = {by,...,b,} be a basis of M where b; # b; for i # j. If {c1,...,¢,} is a
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subset of N, then there exists a unique linear transformation 7" : M — N such that

T(b;) =c¢; forallie{l,...,n}.

Proof. Since B is a basis of M, by Remark 4.1.12, every m € M can be written
uniquely as m = i aieib; where a; € K™ and ¢;b; € {b;, —b;} for all i. Define
T:M — N by -
T (17— z": OLEC; for all m € M.
i=1

Clearly, T'(b;) = c; foralli € {1,...,n}. Let T" : M — N be a linear transformation
such that 77(b;) = ¢; forall i € {1,...,n}. Then T( Z:Oéﬁz‘bi) = iaieiT(bi) =
Zn:lOéi&;Ci = f:laiaiT'(bi) =T ( iaisibi). Thus 7' = T'. Hence T is the unique

linear transformation from M into N such that T'(b;) = ¢; foralli € {1,...,n}. O

Definition 4.2.7. Let M; and M be vector spaces over the same semifield and T’
a linear transformation of M, into M,. The kernel of T', denote by Ker T, is the

set {m € M; | T(m) = 0}.

Remark 4.2.8. Let M, N and L be vector spaces over a semifield K*). Then the

following statements hold.

(1) If Ty : M — N and Tp: M = L are linear transformations, then

Ty 0Ty : M — L is also a linear transformation.

(2) If. T is a 1-1 linear transformation of M onto N, then 7' is a linear

transformation of N onto M.

(3) Ty : M — N and Ty : N — L are 1-1 and onto linear transformations, then

To0Ty : M — L is also a 1-1 and onto linear transformation.

(4) If T'is a 1-1 linear transformation of M onto N and B is a basis of M, then

T(B) is a basis of N.
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Proof. The proofs of (1), (2) and (3) are obvious.
(4) Clearly, T'(B) spans N. Next, we show T'(B) is linearly independent.
If B =10, then T(B) = () is linearly independent. Assume that B # ().
Suppose that T'(B) is linearly dependent. Then there exists a by € B such that

T(bo) = > eI (b) where oy, € K& and €,T(b) € {T(b), =T (b)}. Thus

beB\{bo}
T(bo - > ozbabb> = 0. Since T is 1-1, we have by — >  auepb =0, s0
beB\{bo} beB\{bo}
bo = . apepb € (B\{by}) which is a contradiction. Hence T'(B) is linearly
beB\{bo}
independent. Therefore T'(B) is a basis of N. O

Theorem 4.2.9. Let M and L be vector spaces over a semifield K®) and
T : M — L a linear transformation. If B is a basis of the kernel of T and B’

is a basis of M such that B C B’ then
(1) for all by, by € B'\ B, by # by implies that T'(b;) # T(by) and
(2) T(B'\B) is a basis of Im T,

Proof. By Lemma 4.2.5, T(B") spans Im 7. Since T'(b) = 0 for all b € B, we obtain
that T(B' \ B) spans Im T'. Next, we prove that T(B' \ B) is linearly independent.
Suppose not. Then there exists a by € B'\B such that T'(by) € (T(B"\B)\{T'(by)})-

Thus T'(by) ==Y @,e.T (w) where ay, € K™ and e, T(u)€ {T(u),—T(u)}. So

ueB/\B
u#bg
T(by) = T( P auéuu>, we have T(bo — > Ozueuu> = 0.~Hence
ueB \B ueB'\B
uz#bo u#bg
bo— > aueuu = Y. Bueww where B, € K and e,w € {w, —w}. So we have
ueB'\B weB

uz#bo
bo € (B"\ {by}) which is a contradiction. Thus T'(B"\ B) is linearly independent,

so T(B' \B) is a basis of Im T O

Theorem 4.2.10. Let M and L be vector spaces over a semifield K*) and

T : M — L a linear transformation. If M is finite-dimensional, then

35



dim(ImT") + dim(Ker T') = dim M.

Proof. Let B be a basis of KerT. By Theorem 4.1.20, there exists a subset B’ of M
such that B’ is a basis of M and B C B'. By Theorem 4.2.9, T(B' \ B) is a basis
of ImT and dim(Im7) + dim(Ker T') = |T(B'\B)| + |B| = |B'\B| +|B| = |B'| =

dim M. O

Definition 4.2.11. Let M and N be vector spaces over a semifield K™ and let
L(M,N)={T: M — N | is alinear transformation}. Then L(M, N) is a vector
space over K ) with the operations defined as follows, for T,U € L(M,N), m € M

and o € K™,
(T+U)m) =T(m)+U(m) and (aT)(m)=aT(m).

Remark 4.2.12. Let My, M, and M; be vector spaces over a semifield K. For

ae KW Ty, Ty € L(My, My) and Uy, Uy € L(My, Ms),

Ul OT1 € L(Ml,Mg),
Ulo(T1+T2) = U10T1+U10T2,
(Ul +U2) OTl = U10T1 +U20T1, and

a(Uyo Ty) = (aUy) o T| = Uy o (1),

Theorem 4.2.13. Let M and N be finite-dimensional vector spaces over a

semifield K*), dim M = m and dim N = n. Then dim L(M, N) = nm.

Proof. Let B = {uy,...,uy} and B" = {by,...,b,} be bases of M and N,
respectively. By Theorem 4.2.6, for i € {1,...,n} and 57 € {1,...,m},

bi, itk =y,
there exists a T;; € L(M, N) such that T};(uy) =

0, ifk+#j
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1, ifk =,
So T;j(uy) = 6;xb; where d;, =

0, ifk#j.
We show that C' = {Tij | i € {1,...,n} and j € {1,...,m}} is a basis

of L(M, N). Since T'(u;) € N = (B') for j € {1,...,m}, we have
T(uj) = > ayjeib;  where oy € K® and gijb; € {b;j, —b;} for all j € {1,...,m}.
i=1

Thus for j € {1,...,m},

T E Qi€

e Al k=1
7 E E Qg5 L ik \Uj
1=k
n o m
- E E Q€451 ik )
(i

Hence T'= Y > aikei;Tik € (C). Therefore, C' spans L(M, N).
i=1 k=1

Next, we show that C' is linearly independent. Suppose not. Then there exist

ke {l,...,n} and I € {1,...,m} such that T}y = > > Bije;;Ti;(u,) where

i=1j=1

ﬁz] e K® 61] j € {EJ, T’z]} and Oy = 0. But

bi7 lf] =T,
Ej(ur) i

0, ifj#r.
So we have by = Tj(w) = Z Z iigi Tij(w) | = X Bugab;. | Since By =0, we
== i=1
have b, = Zﬁu&zbﬁ( \{bi}).

=1
i#k
independent. Therefore C'is a basis of L(M, N) and dim L(M,N) = |C| = nm. O

This is a contradiction. Hence C' is linearly

Theorem 4.2.14. Let M and L be finite-dimensional vector spaces over a
semifield K™ and T : M — L a linear transformation. If dim M = dim L, then T'

is 1-1 if and only if T" is onto.
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Proof. By Theorem 4.2.10, dim(Ker T') + dim(Im 7") = dim L. Assume that 7" is
1-1. By Lemma 4.2.5, Ker T' = {0}, so dim(KerT") = 0. Then dim L = dim(Im 7).
By Theorem 4.1.22, L = Im7T'. Hence T is onto.

Conversely, assume that 7" is onto. Then L = Im 7T, so dim(KerT") = 0. Thus

Ker T = {0}. Hence T is 1-1. O

Definition 4.2.15. Let M and N be vector spaces over the same semifield. We
say that M is isomorphic to N, denoted by M = N, if there exists a 1-1 linear

transformation from M onto N.

Theorem 4.2.16. Let M be a finite-dimensional vector space over K® and

dim M = m, then M = K™.

Proof. Let B = {by,...,bn} be a basis of M. Then, for x € M, we have

r =" oue;b; where a; € K& and g;b; € {b;, —b;}. Define T : M — K™ by

=1
T(r) = T(Z@i&bi) = (o, 9,...,0p) forallxe M.
i=1

Since Remark 4.1.12, T" is a well-defined. Clearly, 1" is and onto linear

transformation. O

Corollary 4.2.17. Let M and L be finite-dimensional vector spaces over a

semifield K. Then dim M = dim L if and only if M = L.

Now, we consider a semifield K which satisfies the property () and there exists

a field F such that K is a subsemifield of F.

Definition 4.2.18. Let K be a semifield which satisfies the property (%) and Fj
a field containing a subsemifield K. A linear transformation from a vector space
M over K into F is called a linear functional. Moreover, let M* = L(M, Fk) and

M** = (M*)*. Then M* is the dual space of M and M** the double dual of M.
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Remark 4.2.19. If M is a finite-dimensional vector space over a semifield K,

then dim M = dim M* = dim M**.

Theorem 4.2.20. Let M be a finite-dimensional vector space over a
semifield K™, dim M =n, and B = {by,...,b,} a basis of M. For each
ie{l,...,n}, let f; € M* be such that

1, 4f go=1,

fi(b;) =
0 it

Then the following statements hold.

(1) {f1,..., fu} is a basis of M* which is called the dual basis of B.
(2) Forall f e M, f=73 f(bi)fi.
i=1

(3) Forallm e M, m = i film)b;.

1=1

Proof. (1) This follows from the proof of Theorem 4.2.13.
(2) Let f € Mt Then (3= G} b} = S B = F(5)) for an
j€e{l,...,n}. Hence [ = ilf(bz)fz
(3) Let m € M. Then m = ﬁ:lajejbj where a; € K® and ;b; € {b;, —b;}.
=

Thus

n

=YY e filb)bi

i=1 j=1
= Z Oéiﬁibi
i=1
=m.
Hence m = > fi(m)b;. O
i=1
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Theorem 4.2.21. Let M be a vector space over a semifield K. For m € M, if

f(m) =0 for all f € M*, then m = 0.

Proof. Let m € M \{0}. Then {m} is linearly independent. By Theorem 4.1.20,
there exists a subset B of M such that B is linearly independent and {m} C B.
By Theorem 4.2.6, there exists a unique linear transformation f : M — Fk such
that f(b) =1 for all b € B where F is a field containing a subsemifield K. Since

{m} C B, we have m € B. Thus f(m) # 0. O

Let Fi be a field containing a semifield K and A a vector space over K. For

m € M, define L,, : M* — Fi by
L.(f)=f(m) forall feM".
Then L,, € M** for all m € M and hence {L,, | m € M} is a subset of M**.
Theorem 4.2.22. Let M be a vector space over a semifield K*). Then
(1) the mapping m +— L,, is a 1-1 linear transformation of M into M** and
(2) if M is finite-dimensional, then

(2.1) the mapping m +— L, is a 1-1 linear transformation of M onto M** and

(2.2) for all L € M** there exists a unique m € M such that L = L,,.

Proof. Let ¢ denote the mapping m + L,,.

(1) Let my,my € M and o, 3 € K™, Then, for all f € M*,

Lam1+5m2 (f) = f(aml + ﬁmQ)
= af(my) + f(m2)

= (aLm, + BLm,)(f).
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Hence ¢(amy 4+ Bma) = Lamy+pms = ®Lm, + BLm, = ap(my) + Bp(ms). So ¢ is
a linear transformation. Let m € M be such that L,, = ¢(m) = 0. Then for all
f € M*, we obtain that 0 = L,,,(f) = f(m). By Theorem 4.2.21, m = 0. Hence ¢
is 1-1.

(2.1) Since M is finite-dimensional, dim M = dim M**. By (1) and
Theorem 4.2.14, ¢ is onto.

(2.2) This follows from (2.1). O

Theorem 4.2.23. Let M be a finite-dimensional vector space over a semifield K *).

Then each basis of M* is the dual basis of some basis of M.

Proof. Let dimM = n and B = {fi,..., f.} be a basis of M*. Moreover, let
{Ly,...,L,} be the dual basis of B where, for i,7 € {1,...,n},
1, ifi=j
Li(fj) =
0, ifisj.
By Theorem 4.2.22, for i € {1, ..., n} there exists an m; € M such that L, = L,,..

7

Since the mapping m; — L,,, is a 1-1 linear transformation of M onto M** and
{Lm,,--,Lm,} is a basis of M**, we have {my,...,m,} is a basis of M. By

Theorem 4.2.20, {f1,. .., f»} is the dual basis of {my,...,m,}. [

Definition 4.2.24. Let M be a vector space over-a semifield.. For S C M, let S°
be the set {f € M* | f(m) =0 for all m € S} and S° = (5°)°. Then S° is called

the annihilator of S.
Remark 4.2.25. Let M be a vector space over a semifield. Then
(1) S° is a subspace of M* for all subset S of M,

(2) {0} = M7,
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(3) M°={0},
(4) for all subsets Sy, 5, of M, S; C Sy implies that S5 C SY,
(5) for all subsets Sy, Sy of M, Sy + S5 C (51N Sy)°, and

(6) for all subsets S, S of M, Sy NS5 C (51 + S;)° and they are equal if

0eSiNSs.

Theorem 4.2.26. Let M be a finite-dimensional vector space over a semifield K *)

and N a subspace of M. Then dim N + dim N°® = dim M.

Proof. Let B be a basis of N. By Theorem 4.1.20, there exists a subset B" of M
such that B C B' and B’ is a basis of M. For b € B', let f®* € M* be such that
” =99 1'% b}
f(u) =
0, ifu#0.
By Theorem 4.2.20, {f* | b € B’} is a basis of M*. If B = B', then N° = M° = {0},
so dim M = dim N 4+ 0 = dim N + dim N°. Assume that B C B'. Let f € N°. By
Theorem 4.2.20, f = >_ f(b)f°. Since f € N°, we have f(u) = 0 for all u € B.
beB’
Thus f= Y f(b)f* € ({f*|be B \B}). Hence {f* | b € B\ B} spans N°.
beB'\B

Clearly, {f* | b € B'\B} is linearly independent. Hence {f* | b € B'\B} is a basis

of N° and dim M = |B'| = |B| + |B"\ B| = dim N+ dim N°. O

Theorem 4.2.27. Let M be a finite-dimensional vector space over a semifield K ).

Then
(1) N is a subspace of M implies that dim M = dim N°° and
(2) for any subset S of M, dim S° 4 dim S°° = dim M.

Proof. This is clear by applying Theorem 4.2.26. [
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Theorem 4.2.28. Let M be a vector space over a semifield K and N a subspace

of M. Then the following statements hold.
(1) Forallne N, L, € N*.
(2) The mapping n — L, is a 1-1 linear transformation of N into N°°.
(3) If M is finite-dimensional, then the mapping in (2) is 1-1 and onto.

Proof. (1) Let n € N and f € N°. Then f(u) =0 for all w € N, so f(n) = 0.
Hence L,(f) = f(n) =0. Therefore L, € N°.

(2) This follows from (1) and Theorem 4.2.22.

(3) Let ¥ be the mapping n + L,,. By (2), dim(Ime) = dim N = dim N°°. By

Theorem 4.1.22, Imy = N°°. Thus 7 is ento. Hence # is 1-1 and onto. ]
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