CHARPTER V CONCLUSIONS Poly(p-phenylene) was chemically synthesized by means of oxidative polymerization and subsequently doped by using FeCl₃-ethanol solution in the ratio of dopant per monomer equal to 50:1. The dPPP shows no response to CO and H₂ but shows negative response to NH₃. The electrical conductivity sensitivity of 50:1 dPPP toward NH₃ increase with increasing NH₃ concentration and can be then improved by introducing ZSM-5 zeolite into dPPP matrix. The sensitivity increases with zeolite content increases up to 30%. Beyond this faction the sensitivity of the sensor decreases. The effect of cation type was then investigated, including Na⁺, K⁺, NH₄⁺ and H⁺. The sensitivity of the composite with different cation containing in zeolite were arranged; 50:1dPPP(90)/KZ23 <50:1dPPP <50:1dPPP(90)/NaZ23 <50:1dPPP(90)/NH₄Z23 <50:1dPPP(90)/HZ23. The sensitivity increase with changing cation type can be described in term of acidic properties. The 50:1dPPP(90)/HZ23 possessed highest sensitivity of -0.36 due to H⁺ has highest acidity which induces more favorable NH₃ adsorption and interaction with the conductive polymer.