ELECTROSPUN CHITOSAN/TETRAHYDROCURCUMIN FIBER MATS FOR BIOMEDICAL APPLICATION

Maylada Rungroj

A Thesis Submitted in Partial Fulfilment of the Requirements
for the Degree of Master of Science

The Petroleum and Petrochemical College, Chulalongkorn University
in Academic Partnership with

The University of Michigan, The University of Oklahoma,
Case Western Reserve University and Institut Français du Pétrole
2007

Thesis Title:

Electrospun Chitosan/Tetrahydrocurcumin Fiber Mats for

Biomedical Application

By:

Maylada Rungroj

Program:

Polymer Science

Thesis Advisor:

Assoc. Prof. Pitt Supaphol

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

Nantay Januard College Director (Assoc. Prof. Nantaya Yanumet)

Thesis Committee:

(Assoc. Prof. Pitt Supaphol)

(Prof. Apichart Suksumrarn)

Proeit Pavas 1.

(Assoc. Prof. Prasit Pavasant)

ABSTRACT

4872020063 Polymer Science Program

Maylada Rungroj: Electrospun Chitosan/Tetrahydrocurcumin Fiber

Mats for Biomedical Application.

Thesis Advisor: Assoc. Prof. Pitt Supaphol 67 pp.

Keywords: Chitosan/ Tetrahydrocurcumin/ Drug delivery/ Electrospinning

Chitosan/Tetrahydrocurcumin (THC) fiber mats Electrospun were successfully prepared by electrospinning. Chitosan was used for the local delivery of a drug. THC was selected as the model drug that exhibits many of the same physiological and pharmacological activities as curcumin. 20wt.% THC (compared with the weight of chitosan) and 6.9wt.% chitosan in 70:30(v/v) trifluoroacetic acid (TFA):dichloromethane (DCM) were used as the optimum solution for fabricating nanofibers. After spinning, they were crosslinked with GTA vapor (for 1 h) and neutralized to prevent the dissolution and fusion of the fibers. SEM images of the post-neutralized and crosslinked fiber mats were observed where the fibers were not fused after neutralization and crosslinking treatment and the average fiber diameter was in the range of 290-310 nm. The accumulative release of THC increased continuously with immersion time and leveled off at a long immersion time (for the total immersion method). The post neutralized and crosslinked electrospun chitosan/THC fiber mats exhibited much greater release of the model drug when compared to the post neutralized and crosslinked chitosan/THC films. All of the electrospun chitosan/THC fiber mats were not toxic, and did not release cytotoxic substances in the culture medium towards mouse fibroblasts (L929).

บทคัดย่อ

เมลดา รุ่งโรจน์: การประยุกศ์ใช้เส้นใยใคโตซาน/เตะตระไฮโครเคอร์คิวมินที่ได้จาก การปั่นเส้นใชค้วยไฟฟ้าสถิตสำหรับการแพทย์ (Electrospun Chitosan/Tetrahydrocurcumin Fiber Mats for Biomedical Application) อ. ที่ปรึกษา: รศ. คร. พิชญ์ สุภผล 67 หน้า

งานวิจัยนี้เป็นการศึกษาความเป็นไปได้ในการนำแผ่นเส้นใยไกโตซานระดับนาโนเมตร ที่มีเตะตระไฮโครเคอร์คิวมิน (Tetrahydrocurcumin) เป็นสารออกฤทธิ์ในการรักษาแผลมาใช้ เป็นวัสคุขนส่งยา (Drug delivery carrier) ซึ่งเครียมจากการปั่นเส้นใยค้วยไฟฟ้าสถิต โคยผู้วิจัย มุ่งเน้นถึงความเป็นธรรมชาติของทั้งพอถิเมอร์ และ ยาที่ใช้ออกฤทธิ์ โดยในขั้นแรกจะทำการศึกษา อิทธิพลของตัวแปรต่างๆที่มีอิทธิพลต่อสัณฐานวิทยาและขนาคของเส้นใยใกโตซาน/เตะตระ ไฮโครเกอร์คิวมินเพื่อหาสภาวะที่เหมาะสมสำหรับการเตรียมเส้นใยที่มีความสม่ำเสมอ จาก การศึกษาพบว่าเส้นใยไคโตซาน/เตะตระไฮโครเคอร์คิวมิน สามารถเตรียมได้จากการใช้ไคโตซาน ความเข้มข้น 6.9% และ เตะตระไฮโครเกอร์คิวมิน 20% (เทียบกับน้ำหนักพอลิเมอร์) ละลายใน สารละลายผสมระหว่างไตรฟลูออโรอะซิติกซิก (Trifluoroacetic acid) และไคคลอโรมีเทน (Dichloromethane) ในอัตราส่วน 70:30 ซึ่งเส้นใยที่เตรียมได้นั้นมีขนาดอยู่ในช่วง 300±10 นา โนเมตร เส้นใยไคโตซาน/เตะตระไฮโครเคอร์คิวมินสามารถคงรูปได้โคยใช้ไอของกถูตารอลคื ไฮด์ (Glutaraldehyde vapor) และ ใช้กลไกของปฏิกิริยาการสะเทิน จากนั้นเส้นใยไคโตซาน/ เตะตระไฮโครเคอร์คิวมินจะถูกประเมินความเป็นไปได้ในการใช้เป็นวัสคุขนส่งขาซึ่งมีพอถิเมอร์ เป็นระบบควบคุมการปลดปล่อยยาโดยการทดสอบการบวมตัวของเส้นใย (Degree swelling), การทคสอบการหายไปของน้ำหนักเส้นใย (Weight loss behavior) นอกจากนี้ยังมี การศึกษาความสามารถในการปลดปล่อยยาจากตัวเส้นใยเปรียบเทียบกับฟิล์ม โดยใช้วิธีจุ่มแช่และ การแพร่ผ่านหนังหมู ซึ่งผลการทคสอบพบว่าปริมาณยาที่ถูกปลคปล่อยออกมาจากเส้นใยมีปริมาณ มากกว่าเมื่อเทียบกับฟิล์มและเมื่อนำเส้นใชมาทคสอบความเข้ากันได้ทางชีวภาพ (Biocompatibility)โดยใช้เซลล์ไฟโบบลาสต์เป็นเซลล์ทดสอบพบว่าเส้นใยไดโตซาน/เตะตระ ไฮโครเกอร์คิวมินไม่มีการปลคปล่อยสารพิษที่เป็นอันตรายต่อเซลล์ทคสอบ

ACKNOWLEDGEMENTS

The author greatly appreciates the efforts of her research advisors, Assoc. Prof. Pitt Supaphol, who originated her thesis, gave valuable suggestions and sincere assistances and proof – reading of thesis writing throughout this research. She would like to express her sincere gratitude to Prof. Apichart Suksumrarn for guidance, helpful suggestions, supplying raw materials and for being a thesis committee member. Her thanks are also extended to all of the staffs of the Petroleum and Petrochemical College for providing the use of research facilities.

This thesis work is partially funded by The Petroleum and Petrochemical College, Postgraduate Education Research Programs in Petroleum and Petrochemical Technology (PPT Consortium) and The Thailand Research Fund (TRF).

The author also would like to give special thanks to Mr. Artphop Neamnark, who helped and suggested partial experimental part for indirect cytotoxicity evaluation and her entire friends for their helps, suggestions and encouragement.

Ultimately, the author is deeply indebted to her family for their love, understanding, suggestions and encouragement.

TABLE OF CONTENTS

			PAGI		
	Title	Page	i		
	Abstr	ract (in English)	iii		
	Abstract (in Thai)				
	Acknowledgements				
	Table of Contents				
	List	List of Tables			
	List of Figures Abbreviations				
	List	of Symbols	xiii		
CH	IAPTE	R			
	I	INTRODUCTION	1		
	П	LITERATURE REVIEW	3		
	III	EXPERIMENTAL	15		
		3.1 Materials	15		
		3.2 Equipment	15		
		3.2.1 High Voltage Power Supply	15		
		3.2.2 Scanning Electron Microscope (SEM)	16		
		3.2.3 Sputtering Device	16		
		3.2.4 Fourier Transform Infrared Spectroscopy (FTIR)	16		
		3.2.5 UV- Spectrophotometer (Perkin Elmer, Lambda 10)	17		
		3.3 Methodology	17		
		3.3.1 Electrospinning Setup	17		
		3.3.2 Preparation of Electrospining Solution			
		and Film Solution	18		

CHAPTER		PAGE
	3.3.3 Selection of the Optimum Condition of Electrospinin	g
	Solution	18
	3.3.4 Crosslinking Treatment of the Electrospun	
	Chitosan/THC Fiber Mats	18
	3.3.5 Neutralization Treatment of the Post-Crosslinked	
	Electrospun Chitosan/THC Fiber Mats	18
	3.3.6 Characterization of Electrospun Chitosan/THC	
	Fiber Mats	19
	3.3.7 Release of Model Drug from Electrospun	
	Chitosan/THC Fiber Mats	20
	3.3.8 Cytotoxicity Evaluation	21
IV	RESULTS AND DISCUSSION	23
	4.1 Preparation of the Electrospun Chitosan/THC Fiber Mats	23
	4.1.1 Effect of Polymer and THC on Morphological	
	Appearance of The As-spun Fibers	24
	4.1.2 Effect of Crosslinking and Neutralization on	
	Morphological Appearance of The As-spun Fibers	27
	4.2 Physical Characterization of the Electrospun	
	Chitosan/THC Fiber Mats	30
	4.2.1 The Degree of Swelling of the Post-neutralzed and	
	Crosslinked Electrospun Chitosan/THC Fiber Mats	
	and Chitosan/THC Films	30
	4.2.2 The Weight Loss of the Post-neutralzed and	
	Crosslinked Electrospun Chitosan/THC Fibers	
	and Chitosan/THC Films	31
	4.3 Release of Model Drug from the Post-neutralized	
	and Crosslinked Electrospun Chitosan/THC Fiber Mats	33
	4.4 Release Kinetic of Model Drug from the Post-neutralized	
	and Crosslinked Electrospun Chitosan/THC Fiber Mats	

CHAPTER			PAGE
	and Chito	san/THC films	37
	4.5 Indirect C	Cytotoxicity Evaluation	38
	4.6 FTIR Ana	alysis	39
v	CONCLUSIO	ONS AND RECOMMENDATIONS	42
	REFERENC	ES	43
	APPENDICE	ES .	46
	Appendix A	Average Fiber Diameter of the Electrospun	
		Chitosan/THC Fibers, and Average Bump	
		Size of the Chitosan Films	47
	Appendix B	Weight Loss, and Degree of Swelling	52
	Appendix C	The THC Concentration for Determining Stand	lard
	Curve, Standard Curve, and Accumulative Release		eased
		of THC from Both the Electrospun Chitosan/T	HC
		Fiber Mats and Chitosan/THC Films Base On	Total
		Immersion and Transdermal Diffusion Through	h Pig
4		Skin Method.	55
	Appendix D	Indirect cytotoxicity	64
	CURRICUL	UM VITAE	66

LIST OF TABLES

TABI	LE	PAGI
4.1	The actual amount of THC present in the fiber samples	
	(reported as the percentage of the initial content of drug	
	loaded in the spinning and casting solution)	35
4.2	Analyses of the release kinetics of model drug from drug-	
	loaded as-spun chitosan mats and as-cast chitosan films	
	based on the Fickian diffusion type of release mechanism.	
	The experimental results were based on the transdermal	
	diffusion through a pig skin method	37

LIST OF FIGURES

FIGU	FIGURE	
2.1	Schematic of the electrospinning setup	4
2.2	Schematic of potential applications of electrospun fibers	6
2.3	Schematic of the incorporation of functional groups into a	
	polymer nanofiber mesh	7
2.4	Structures of cellulose, chitin and chitosan	8
2.5	The structure of deacetylated chitosan	. 9
2.6	Chemical structures of curcumin and its major metabolite,	
	tetrahydrocurcumin (THC)	13
3.1	Chemical structure of tetrahydrocurcumin (THC)	15
3.2	Scanning electron microscope	16
3.3	Fourier Transform Infrared (FTIR) Spectroscope	17
3.4	UV- spectrophotometer	17
4.1	Morphological images of the electrospun chitosan / THC	
	fiber mats at various condition of electrospinning solution	24
4.2	The SEM images a) the electrospun chitosan/THC fiber	
	mats b) the crosslinked electrospun chitosan/THC fiber mats	
	c) the post-neutralized and crosslinked electrospun	
	chitosan/THC fiber mats with magnification, 2000x and	27
	5000x, respectively)	
4.3	Selected SEM images of the crosslinked electrospun	
	chitosan/THC fiber mats after neutralization with 5M	
	NaCO ₃ (a) and 5M NaOH (b) aqueous solution for 3 h at	
	ambient condition	29
4.4	Selected SEM of as-cast chitosan films from (a) neat 4%.	
	w/v chitosan solution in 70:30 v/v TFA: DCM and from the	
	chitosan solution that contained (b) 5 wt.%	30

FIGURE PAGE 4.5 Degree of swelling in acetate buffer as a function of submersion time for the electrospun chitosan/THC fiber mats (after crosslinking and neutralization with saturated Na₂CO₃ aqueous solution for 30 min) and solution-cast chitosan films (after crosslinking and neutralization with 5M 31 NaOH aqueous solution for 3 h) Weight loss in acetate buffer as a function of submersion 4.6 time for the electrospun chitosan/THC fiber mats (after crosslinking and neutralization with saturated Na₂CO₃ aqueous solution for 30 min) and solution-cast chitosan films (after crosslinking and neutralization with 5M NaOH 32 aqueous solution for 3 h) A selected SEM image of the electrospun chitosan/THC 4.7 fiber mats after submersion in acetate aqueous solution for 9 32 weeks The accumulative amount of THC released from the drug 36 4.8 samples base on the total immersion method The accumulative amount of THC released from the drug 4.9 samples base on the transdermal through pig skin method 36 The relative absorbance illustrating the viability of the cells 4.10 that were cultured with the extraction medium at 1 day and 7 days from various types of specimens as well as that of the 39 control FTIR spectra of all of electrspun chitosan/THC fiber mats 40 4.11

ABBREVIATIONS

TFA Trifluoroacetic acid

DCM Dichloromethane

CS Chitosan

THC Tetrahydroocurcumin

FTIR Fourier Transform Infrared

MTT 3-(4,5-dimethylthiazol-2,5-diphenyltetrazoliumbromide

SEM Scanning Electron Microscope

LIST OF SYMBOLS

wt.% % by weight

w/v Weight per volume

v/v Volume/volume

μ Micro