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CHAPTER I 

INTRODUCTION 

 Time series mining is a branch of data mining; the data itself are temporally 
ordered. The time series data can be from various domains such as speech recognition,   
business data analysis, human medical analysis, etc. For example, Figure 1.1 portrays 
Electrocardiogram (ECG). The figure is the output signal of the electrical activity of the 
heart over a period of time. The ECG is used for measuring rate and regularity of a 
human heart. Notice that each data point is ordered chronologically.  
 There is a variety of tasks of time series mining including Clustering[8][9], etc. 
Motif Discovery [1][2][5][6][7][10][11][13] is the interest of this work. 

 

Figure 1.1: An Electrocardiogram (ECG) data. The x-axis represents the time interval. Notice 

the data has temporal ordering. The time series data are from [14].  

1.1 Background and Significance of the Problem 

 Finding repeated latent patterns in the time series or Motif Discovery is the 
fundamental tasks for the higher level tasks such as Clustering. The domain has been 
actively explored since the past decade. The problem is generally stated as follows:  

Given a time series, what are the frequently occurred patterns?  

The answer depends on the definition of the pattern or motif. There are several 
possible definitions. Some examples of these definitions are given as the following: 
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 A motif is a pair of subsequences that have the closest distance in the time 
series. [2] 

 The k-motif is groups of matched subsequences that are ranked by the number 
of elements in the group, i.e., the 1-motif is a group that contains the maximum 
number of matched subsequences. Matched subsequences are determined by 
the distance that is less than a real number R. [6] 

Even if the definitions of motif differ, they are not mutually exclusive. In general, 
the motif similarity measurement is based on its shape. Some papers focus on the 
similarity [2] while others focus on frequency [6]. Since the definitions of motifs in 
existing works assume a length to be discovered is fixed, in variable-length motifs 
aspect, this work provides a new definition of the motif which considers both similarity 
and frequency of motifs by ability to compress by its motif. In this regard, MDL 
(Minimum Description Length) is utilized [8][10][12] as a compression basis. 

In order to discover the closest pair of motifs of length m, a brute force search 
can be done with O(mN2) time complexity, where N is a length of time series. A large 
number of motif discovery algorithms have been developed along with several 
techniques in order to achieve both speed and quality of the solutions. For instance, 
Exact Motif Discovery algorithm [2] has proposed an optimization by using triangular 
inequality to prune off the search space. However, users do still suffer from selecting a 
set of parameters; an initial window size is a typical one. The existing works require a 
length of the motif as a parameter for a reason that it is configurable; this is an 
unrealistic assumption that motif length be predefined by users. The choice of this 
parameter is sensitive and untenable for users [16] because it is hard to determine the 
proper length of motif by hands—even for domain experts.  

For instance, suppose a user wants to determine the motifs in time series data in 
Figure 1.2.  Since existing motif discovery algorithms require initial length of sliding 
window, the user needs to speculate length L manually or did some trials and errors of 
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various lengths until satisfaction. In fact, the time series in Figure 1.2 has two classes of 
motifs: one of length 163 and another of length 286.  

 
Figure 1.2: A typical time series data. A user needs to speculate a length of motif manually. 
More often, it is hard to speculate the exact proper lengths of motif as the exact lengths are 
163 and 286. 

In addition, the problem becomes more subtle if one attempts to exhaustively 
search for all possible motifs in all possible lengths since the number of discovered 
motifs will be huge, not to mention overlapping motifs in various lengths.  It is also 
difficult to rank motifs because of their variability in lengths. 

1.2 Objectives 

To develop a novel motif discovery algorithm that has the following properties: 

 Parameter-freeness: The algorithm does not have to be specified any parameter. 

 Correctness: The algorithm is able to find classes of variable-length motifs. The 
motif class needs to be structurally equivalent, i.e., the subsequences are alike 
in shape.  The Arrcuracy-on-Recall (AoR) and Accuracy-on-Detection (AoD)[15] 
are used for verifying calibers.  

 Speedup: The algorithm has speedup over brute-force search. Ideally, all of the 
extraneous search spaces should be pruned off. 
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1.3 Scope 
 1. The experiments will carry on both synthetic and real data from various 
resources, e.g., UCR time series archives [3] and Physionet [14]. The proposed 
algorithm is compared to the previous work [7] in terms of efficacy using AoD 
(Accuracy-on-Detection) and  Arrcuracy-on-Recall (AoR), since [7] has addressed the 
problem in common. 
 2. The input of proposed algorithm will be only time series data. The output will 
be the desired motifs with the proper length.  All intrinsic parameters, such as the 
cardinality of discretization, must be trivial, i.e., variations setting of the intrinsic 
parameters make slight difference in terms of output. 

1.4 Benefit 
 The proposed algorithm manages to discover time series motifs in a reasonable 
time without indicating any parameters.  Users will no longer suffer from selecting a set 
of parameters to find motif in time series data 

1.5 Publication 

 Sorrachai Yingchareonthawornchai, Haemwaan Sivaraks, Sura Rodpongpun, 
and Chotirat Ann Ratanamahatana. 2012. The Proper Length Motif Discovery Algorithm. 
In Proceedings of the 16th International Computer Science and Engineering Conference 
(ICSEC’12), Pattaya, Chonburi, Thailand.  
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CHAPTER II 

LITERATURE REVIEW 

2.1 Concept and Theory 

2.1.1 Metric  

A metric on a set X is a function (called the distance function or simply distance) 

d : X × X → R  (where R is a set of real numbers). For all x, y, z in X, this function is 
required to satisfy the following conditions: 

    d(x, y)  0  (Non-negativity) 
    d(x, y) = 0    if and only if   x = y    (Identity of Indiscernible) 
    d(x, y) = d(y, x)    (Symmetry) 
    d(x, z)   d(x, y) + d(y, z)      (Triangular inequality) 

2.1.2 Distance 

 A distance is a numerical description of how far between two objects are in the 
space. In mathematics, a distance is a function that is used to measure similarity. There 
are two popular distance measurement techniques: Euclidean Distance and Dynamic 
Time Warping. 

Euclidean Distance:  
 Given two objects X = (x1, x2, x3, …, xn) and Y = (y1, y2, y3, … , yn), the Euclidean 
Distance, ED, is defined as, 





n

i

ii yxyxED
1

2)(),(  

 Dynamic Time Warping: 

 Dynamic Time Warping (DTW) is an algorithm that calculates an optimal warping 
path between two time series. The optimal path means the least global cost for warping.  
A warping path is a path through minimal distance matrix or dynamic programming.  
See Figure 2.1 for illustration. 

(2.1) 
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Figure 2.1: The minimal distance matrix which is carried out by dynamic programming. The 
warping path is denoted as spots. 

2.1.3 Information theory 

 In information theory, Shannon entropy is widely used for defining the lossless 
compression technique. It quantifies the expected value of the information. In other 
words, it represents the lower bound of expected value (or average) of number of bits 
required to perform the lossless data compression on each data point.  In this context, 
we simply call entropy. The entropy of a time series T  is defined as: 

                      
)

1
(log)( 2

ii

i
p

pTEntropy        

where  
ip  is the probability that symbols of 

iT  will occur, and  )
1

(log2

i

i
p

p  is defined 

as 0 if
ip  = 0. 

2.1.4 Anytime Algorithm 
 Anytime algorithms are the algorithm that can return a valid solution even if it is 
interrupted, and can resume to continue and update the best-so-far solution toward 
better solution until the anytime algorithm eventually terminates with the same answer 
that the batch algorithm would have done[17].  
 The most desirable properties of anytime algorithms[17] are: 

(2.2) 

1                                              n 

 Time series B 

Time series A 
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 Interruptibility: While running, the algorithm can be interrupted at any 
time and outputs a valid or partial solution. 

 Monotonicity: The quality of the result is a non-decreasing function of 
computation time. 

 Measurable quality: The quality of an approximated result can be 
measured.  

 Diminishing returns: The progress of solution quality is carried out at the 
early stage of execution. 

 Preemptability: The algorithm can suspend, and resume with minimal 
overhead. 

 Low Overhead: Total time taken by anytime algorithm is comparable to 
total time taken by batch algorithm. 

2.2 Relevant research 

The following literatures have definitions of motif in common; here are the 
definitions, unless the context otherwise defines in the subsection: 

Definition 1: Time Series: A time series T = t1,…,tm is an ordered set of m real-
valued variables.  

Definition 2: Subsequence: Given a time series T of length m, a subsequence C 
of T is a sampling of length n < m of contiguous position from T, that is, C = tp,…,tp+n-1 for 
1p   m – n + 1. 

2.2.1 Finding Motifs in Time Series [6] 

This work introduces a meaningful definition of time series motif and proposes 
an approximate motif discovery algorithm which is called Enumeration of Motifs through 
Matrix Approximation (EMMA). 

Here are the non-trivial definitions:  
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Definition 1: Match: Given a positive real number R (called range) and a time 
series T containing a subsequence C beginning at position p and a subsequence M 
beginning at q, if Distance(C, M)   R, then M is called a matching subsequence of C. 

Definition 2: K-Motifs: Given a time series T, a subsequence length n and a 
range R, the most significant motif in T (called thereafter 1-Motif) is the subsequence C1 
that has the highest count of non-trivial matches (ties are broken by choosing the motif 
whose matches have the lower variance). The Kth most significant motif in T (called 
thereafter K-Motif) is the subsequence CK that has the highest count of non-trivial 
matches, and satisfies D(CK, Ci) > 2R, for all 1  i < K . 

The paper presents a novel discrete representation that allows both 
dimensionality reduction and a definition of a lower bounding distance measure. The 
representation is carried on by using Piecewise Aggregate Approximation (PAA) as an 
intermediate step between the time series and desired representation. Then, the PAA 
representation is transformed to a discrete representation. The idea is the utilization of 
Gaussian distribution to define breakpoints to produce symbols with equiprobability. The 
distance measure of symbolic representation is defined as MINDIST function which is 
structurally the same as lower bounding approximation of the Euclidean distance using 
PAA representation except for the fact that the distance between the two PAA 
coefficients has been replaced with the function dist(). The dist() function is defined as a 
lookup table based on the area under Gaussian curve. 

The intuition behind the algorithm consists of two steps. First, it uses the discrete 
representation to create a smaller matrix, which is guaranteed to contain all the 
subsequences which are necessary candidates for a motif. Then, the speedup is 
achieved by using Shasha and Wang's Approximation Distance Map (ADM) algorithm 
[6] to prune away an enormous fraction of the search space within the small matrix. The 
experiments are based on efficiency of the algorithm compared with a brute force 
manner. 

This work utilizes the dimensionality reduction concept to find time series motif—
achieving speedup over brute force manner. However, a lot of parameters should be 
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predefined. Their Find-1-Motif-Index(T,n,R,w,a) algorithm, has four parameters: n is 
window length, R is a range for finding K-Motifs, w and a are used for dimensionality 
reduction.  The reason why it is arduous to set parameters is that the more parameters 
there are, the more choices there could be. According to simple counting techniques, 
the tuple (n,R,w,a) has scads of elements. In practice, users do suffer from selecting 
seemingly good parameters for specific tasks. They cannot even know the optimal 
parameter to get a good caliber of desired answer. Therefore, the algorithm for 
discovering motif with fewer parameters is highly demanded. 

2.2.2 Exact Discovery of Time Series Motifs [2] 

 There have been a myriad of approximate algorithms to discover motifs in the 
literature. This work proposes a tractable exact algorithm to find time series motifs. In 
addition, the exact algorithm is fast enough to be used as a subroutine in higher level 
data mining algorithms. To begin with, definitions of the terms are required: 

Definition 1: A Time Series Database (D) is an unordered set of m time series, 
possibly of different lengths. 

Definition 2: The Time Series Motif of a time series database D is an unordered 
pair of time series {Ti, Tj} in D which is the most similar among all possible pairs. More 
formally,  a,b,i,j the pair {Ti, Tj} is the motif iff dist(Ti, Tj)   dist(Ta, Tb), i   j and a  b. 

The distance measure used in this context is Euclidean distance. The algorithm 
utilizes two notions: early abandoning and triangular inequality with additional 
optimization.   

The early abandoning is a technique that reduces Euclidean distance 
calculation cost. A cumulative variable is being kept for each point. Given a best-so-far 
value, if the cumulative variable is larger than the best-so-far, the whole distance must 
then be larger than the best-so-far. Therefore, we can abandon the query. Figure 2.2  
portrays the visualization[2], assuming the best-so-far is 144. 
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Figure 2.2 : A visualization of early abandoning. When the squared sum exceeds r2
, it is 

known that the full distance exceeds r as well. r is best-so-far. 

 The triangular inequality with additional optimization is used in this work. If the 
number of subsequences are N, possible pairs are N(N-1)/2 which is O(N2). An arbitrary 
reference point is used to ease an exhaustive search. The other objects are then 
ordered by their distances to the reference point. In this manner, we can record the 
distance between adjacent pairs by subtracting them directly using reference point. This 
action gives heuristic information. In the next step, the search of the closet pairs begins 
using the arranged linear ordering of remaining objects. The process of pruning away a 
large fraction of search occurs because we begin the search by the smallest lower 
bound distance. If the best-so-far value is not updated within the offset, it is known that 
the rest cannot update the best-so-far either. Therefore, the rest are abandoned, 
resulting in a pair of motif. The additional optimization is carried on by using multiple 
reference points to strengthen tightness of the lower bound. 

 This work introduces a good celerity of method to find a pair of time series motif 
using triangular inequality. Even if this algorithm has reduced parameters to a single w, 
it is still burdensome to use since such information is unavailable to users. For complex 
and long time series data, it is extremely difficult to determine the proper length of motif 
to be discovered because intrinsic motifs are invisible to a user. If a user wants to find 
other motifs in different lengths, they themselves must choose another window size. In 
addition to the parameter issue, the algorithm focuses on finding the “smallest” distance 
of the pair of subsequences. Hence, the algorithm for finding the proper length of motifs 
without parameter is highly beneficial to users and in demand.  
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2.2.3 Parameter-Free Motif Discovery for Time Series Data [7] 

  Most of this works focus on time complexity of motif discovery in time series 
data. However, the problem of predefined parameters could be an untenable task for 
naïve users. This work proposes a novel algorithm for finding proper motifs based on 
ranking score function.  

Definition 1: Time Series Motif Mw is a pair of similar subsequences in T with a 
specified sliding window length (motif length) w, defined as Mw = ( w

LS
1
; w

LS
2
; MDist; 

NDist) where L1and L2 are the starting locations of subsequences in time series T, L1< 
L2, MDist = EU( w

LS
1
, w

LS
2
), and NDist is a normalized Euclidean distance between 

subsequences w

LS
1
 and w

LS
2
calculated by NDist = MDist/w. 

Definition 2: kth-Motif (kth-Mw), that is used in the proposed scoring function to 
discover “Best Motif”, is a motif that has the kth similar pair of subsequences in T with a 
specified fixed sliding window length (motif length) w, where kth-Motif and ith-Motif are 
not overlapped and 1   i   k.  

Definition 3: Best Motif is a pair of the longest similar subsequences ( w

iS  ; w

jS ) 
that is discovered in some locations where EUC( w

iS  ; w

jS )   R, and R is a maximum 
Euclidean distance. 

Definition 4: kth-Best Motif (kth-BM) is a motif that has the kth highest score from 
the scoring function that is based on number of similar-location motifs and similarity of 
subsequence pairs. 
 There are four steps in this literature. First, the algorithm begins by find all 
possible motifs ranged from two to half of time series size. The MK [2] algorithm is used 
as a subroutine to quickly find each motif. Second, each motif is grouped into Motif 
Groups (MG) under two conditions: they must overlap within group and a threshold for 
pruning too short motif. The next step, each group needs to find a representative. This 
can be done by finding a motif that has minimum normalized Euclidean distance in its 
group. Then, the high distance group will be pruned off by the threshold of median 
representative of all groups. Finally, remaining groups are scored by proposed scoring 
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function to find kth-Best Motif. The experiments yielded a better Accuracy-on-Detection 
(AoD) than the previous work. 
 This work provides a ranking function, in the algorithm, for variable lengths of 
motifs to address the aforementioned problems, i.e., parameter free. However, there are 
flaws in the algorithm: it is not genuinely parameter free. The selection system is 
jaundiced; it is hard to optimize and the experiments were carried out on the synthetic 
data. Here are the elaborations. Even if the algorithm claimed that it is a non-parametric 
algorithm, it contains latent parameters: the thresholds of pruning off the small and big 
fractions are indeed intrinsic parameters since the solution qualities depend on these 
thresholds. Also, there is no proof of optimality of these thresholds in the literature; no 
guarantee of the all motif will be discovered. Therefore, by performing unfair cutting the 
fraction of motif, it is highly plausible to prune off the potential candidate as well— 
leading to poor quality of discovered motifs.  Even if this work uses MK [2] as a sub 
function, the task is still laborious because they run on virtually all possible sizes  

2.2.4 Time Series Epenthesis: Clustering Time Series Streams Requires Ignoring Some 
Data [8]  

 This work gives novel definitions for time series clustering from streams. Also, 
the Minimum Description Length (MDL) framework is shown to be an efficient and 
effective method for time series clustering.  
 In this context, the entropy is used and generalized to the Description Length of 
clusters. There are three operators for clustering: creating, adding and merging. The 
criteria, which judge whether a subsequence should be joined into clusters, are carried 
out by MDL principle.  The algorithm begins with finding the best initial pair of 
subsequences to combine to create a new cluster. In the subsequent step, there are 
additional choices, i.e., create or add.  We can either add a subsequence to the existing 
cluster or create a new cluster. For the third step, there are three options: create, add, 
and merge cluster. At this stage, the algorithm terminates when, first, data are used up 
or, second, the other three options cannot make a lower description length of cluster. 



 13 
 

 Even if this work is a clustering task, some concepts are applicable to motif 
discovery such as MDL principle. MDL principle has been variously utilized for decades. 
The ranking issues can be solved by using MDL framework. 

2.2.5 Discovery of Time-Series Motif from Multi-Dimensional Data Based on MDL 
Principle [10] 

This work has basically two phases. The first phase is to reduce dimensionality 
of time series data by utilizing Principal Component Analysis (PCA) into one dimensional 
time series data. Then, the motif discovery is executed on the reduced form of time 
series by using MDL principle as a criterion. The most significant motif is based on the 
model that has the minimum description length of data. This work introduces a load of 
definition of description length to describe the time series data. The experiments are 
carried out by using motion capture datasets. This work shows that the PCA can 
eliminate irrelevant feature of the data. Also, the motif discovered from the dataset is the 
model given by MDL principle. 

This work has shown that MDL-based motif is a good alternative to find motif 
other than being frequent or close enough. However, this work contains a lot of 
parameters as they mentioned in the open problems section. Several parameters 
include a number of segments, unique SAX symbols, and the threshold of distance R. 
They also mentioned that the choice of segment of PAA representation has a big 
influence on motif discovery.  Hence, parameter-free motif discovery algorithm is a big 
demand.  
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CHAPTER III 

PROPER LENGTH TIME SERIES MOTIF DISCOVERY 

One of the most confusing terminologies in motif discovery is the definition of 
motifs per se. As described earlier, there are various definition motifs based on purpose 
of applications. Fortunately, the basis unit of definition can be bifurcated into two 
orthogonal perspectives: similarity basis and frequency basis (refer to Section 1.1 for 
details). Hence, the discussion of motif definitions is based on those definitions. 

This work has two fundamental contributions. First, this work proposes 
alternative definition of variable-length motifs that allows motif to have more than two 
occurrences (more than a pair of motif). In addition, there are myths about parameter-
freeness. This work clarifies the myths in the principle level. Some myths will be clarified 
in the experiment section. Second, apart from the proposed motif definition and 
parameter-free principle, this work introduces the proper length motif discovery 
algorithm for time series data. The algorithm mainly consists of searching for closest 
motifs [2] in a given length and ranking variable-length motifs via MDL principle [8][10]. 
In order to achieve parameter-freeness, additional methods are required.  The main 
theme is that algorithm should be executed on only-needed basis to minimize running 
time. The algorithm utilizes heuristic information from MDL scoring function for reducing 
running time in practice—giving a huge advantage as shown in the next chapter.  
 This chapter is organized as follow. First, in order to promote mutual 
understanding of keywords in this work, the definitions and notations are necessary. As 
MDL principle is a cornerstone to this algorithm, the illustration is included. The 
realization of MDL principle is carried out by using information entropy. Next, the 
intuition of the algorithm is explored. This section introduces an overview of the 
algorithm. Another important component, lower bounding of Euclidean distance, is also 
explicated in brief details. In addition, more techniques are incorporated in order to 
achieve goals— being parameter-free while maintaining speed and accuracy. Finally, 
the algorithm in details including pseudo code is presented line-by-line. 
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3.1 The parameter-free myths. 

 This section presents common pitfalls about parameter-freeness. 

 Myth I: There is no such parameter-free algorithm because every choice is a 
parameter.  

This statement has two meanings depending on a meaning of parameter-
freeness. The first meaning of parameter-freeness is a technical view such that every 
possible choice including hard-coding or threshold is literally a parameter. This meaning 
is too rigid and has no practical use. Most importantly, this meaning obfuscates users to 
misinterpret a useful meaning of parameter-freeness.  The other meaning of parameter-
freeness is more apropos: there is no non-trivial parameter in the algorithm. Non-trivial 
parameter is best illustrated with obvious useful parameter-free algorithm like Merge sort 
algorithm. Merge sort algorithm does have a trivial parameter: selecting a size of sub-
problems.  The common approach is to divide into equal sub-problems and recursively 
compute. One may questions why not divide into arbitrary non-equal size despite being 
a parameter? The answer in parameter-free aspect is that it is a trivial parameter. Even if 
it slightly affects the performance, virtually all of the choices make Merge sort 
asymptotically the same. That is, in practical point of view, Merge sort is parameter-free 
despite the fact that it is configurable. Therefore, this work follows the second meaning 
of parameter-freeness: there is no non-trivial parameter in the algorithm. 

For these two myths, the arguments are presented. However, the experimental 
evidences will be presented in Chapter IV. 

Myth II: parameter-free algorithm’s correctness is sacrificed in exchange for 
parameter-freeness. 

The output of a parameter-free algorithm is generally an excessive set. The 
challenge of to be an effective parameter-free algorithm is how to select answers 
correctly as a satisfied answers with these abundant answers. It is sometimes difficult to 



 16 
 

determine an appropriate subset as satisfied answers. However, to resolve this problem, 
this work introduces the basic notion of “minimal superset” of answers. Furthermore, the 
parameter-free version’s accuracy will not deteriorate with respect to that of non-
parameter-free version. 

Myth III: parameter-free algorithm is always not faster than non-parameter-free 
algorithm. 

In a common sense, making an algorithm parameter-free is a matter of running a 
sufficient range condition of a parameter. It is easy to believe that it exhaustively 
searches all possible instances including extraneous spaces.  However, that is not 
always the case. With an efficient design of a parameter-free algorithm, there exists a 
case that a parameter-free algorithm utilizes some benefits or heuristic information 
during run time, which is impossible to do by hand or static time. Thereby, parameter-
free algorithm can inherently outperform non-parameter-free algorithm. The correct 
counterpart is “parameter-free algorithm is not always faster than non-parameter-free 
algorithm.” 

3.2 Terms and Definitions 

Definition 1: A time series T of length n is an ordered set of real numbers of a 
sequence t1, t2, t3, … ,tn. 

    This work concerns about finding subsequences or patterns of the time series 
Definition 2: A subsequence C of length m of the time series T of length n is a 

subset of an ordered sequence t1, t2, t3, … ,tn with the consecutive position ti, ti+1, ti+2, … , 
ti+m-1.  where 1   i    n – m + 1. 

    In order to obtain subsequences, time series is extracted by sliding windows. 
Definition 3: The sliding windows of length w are all possible subsequences of 

the time series extracted by a window of length w. 
 For each sliding window, it is possible that an overlapping pair of motifs may 

occur. This kind of overlapping pair is called a trivial match. 
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Definition 4: A pair of the subsequence of length w is trivial when at least a 
single pair of positions is overlapped.  

Definition 5: Given a window length L, kth-Motif Candidate (called thereafter k

LMC ) 
is the kth closest distance of a non-trivial pair of subsequence of length L in time series 
T. 

  Before giving  a definition of motifs, the notion of MDL principle is a 
prerequisite.  Here is a basic intuition of compression techniques. The original time 
series T has a bit-level representation whose length or description length is defined as a 
function DL(T). Our algorithm works as attempting to losslessly compress the data by 
finding approximately repeated structures or motifs and encoding the differences of the 
hypothesis. It is sufficient to consider a motif as a model or hypothesis, H, to encode the 
original time series T only its neighbors with the hypothesis. After encoding with the 
hypothesis, the size of the remaining data, DL(T | H), is reduced by factoring out the 
common structure of hypothesis. The hypothesis has size in bits as DL(H). The total cost 
is DL(T|H) + DL(H). 

       At this stage, there are two observations. First, when motifs of length L, as a 
hypothesis, compress their common structures, the quality of the compression depends 
on the similarity between hypothesis and its occurrences: the more similar they are, the 
more ability they can compress. Likewise, when the time series contains a number of 
motifs sharing the same structure, the quality of compression also depends on the 
frequency of the occurrences having the same structure as the hypothesis: the more 
frequent motifs are, the more ability they can compress.  Therefore, two observations 
imply that a good motif is a model that has both similarity and frequency properties. In 
other words, the best model out of a model class is the model whose  the encoding cost 
for both data and model combined is the lowest. Figure 3.1 portrays two obvious 
different compressions between good and bad compression. The gist is that abstraction 
of a good motif can be realized by applying the MDL principle.         
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Figure 3.1 : An example of two obvious cases. A good motif class is a motif that well 

matches to its neighbors and has lots of neighbors. In contrast, a bad motif class is a motif 

that poorly matches and has few neighbors. In this abstraction, we measure goodness by 

ability to compress. 

Example:  
Given a subsequence A of length 64, the subsequence H is the most felicitous 
hypothesis H for compressing a subsequence A (Figure 3.2). Note that the entropy is 
lossless data compression. Therefore, both hypothesis H and a subsequence A-H are 
needed to be stored because the subsequence A-H requires hypothesis H to 
reconstruct to be an original subsequence, i.e., a subsequence A. Next, the description 
lengths of each subsequence are computed. The entropy of A is Entropy(A) = 4.779, 
and description length of A denoted as DL(A) = 64*4.779 = 305.861.  The entropy of A-
H is Entropy(A-H) = 2.048, and description length of A-H denoted as DL(A-H) = 
64*2.048 = 131.042. The hypothesis H is the special case because it is merely two 
connected lines. Three points are required to store two connected lines. Each point 
requires one byte. Thus, description length of H denoted as DL(H) = 3*8  = 24. Here is 
the summary.

 
 

DL(A) = 305.861 vs. 
DL(A-H) + DL(H) = 131.042 +24= 155.042 

This saves enormous amount of bits by using an appropriate hypothesis.  In fact, it is 
easy to use a representative from a pair of motif as a hypothesis in time series data. 

Good

Good

Good Compression
(Good matching and
frequent occurrences)

Bad Compression
(Poor matching)

Poor

(3.1) 
(3.2) 
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Figure 3.2: A 64-length subsequence. The top-most line represents a typical subsequence 
extracted from the time series, denoted as A. The middle line represents hypothesis H.  The 
bottom line represents A-H. 

 
As discussed in chapter 1, the definition of motifs vary – depending on usage in 

a domain of application. Previous work [2][6][13] has an assumption that length of motif 
is predefined by a user, so the definition of motifs holds the same assumption. As for 
variable length of motif discovery, parameter-free motif discovery [7] has first defines Kth 
best motifs. Kth best motifs are based on location-and-similarity supported motifs. 
However, it does not support the notion of both similarity and frequency of motif 
occurrences. As this work concerns similarity and frequency of motifs occurrences, it 
uses compression basis to define variable-length motifs. 

Definition 6:  K-Compression Motif: Given a time series T, the most significant 
motif in T (called thereafter the 1-Compression Motif) is the subsequence or hypothesis, 
having at least two occurrences, whose the encoding cost for its neighbor non-trivial 
subsequences encoded with hypothesis and the hypothesis is the lowest. The Kth most 
significant motif in T is Kth-class of subsequences having at least two occurrences that 
has the Kth-lowest encoding cost for both data and hypothesis. 
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Definition 6 implies that to be an interesting motif, a subsequence must well 
compress among its neighbors. The more similar they are, the higher compression rate 
it is. Also, the more frequently they occur, the higher compression rate it gains.   

Having described intuitions of compression techniques and time series motifs in 
this work, now it is worth exploring the quantized version of “ability to compress time 
series by motifs.” This can be realized as MDL principle. Note that MDL principle is well 
utilized in many time series tasks, Definitions 7 to 14 follow those from [8] and described 
here for readability.  

   Time series can have various offsets and amplitudes. In maintaining its shape, 
normalization is necessary as it helps maintaining meaningful results [8]. 

Definition 7. A discrete normalization function is a function to discretize the real value of 
time series into a-bit discrete values of range [1, 2a] as follows, 

1)12(*)
minmax
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(:)( 




 aT

roundTrmDiscreteNo  

 where min and max are the minimum and the maximum value of subsequence T, 
respectively. According to [8], a = 64 for the rest of this work. 

    Euclidean distance between two time series is used for similarity comparison. 

Definition 8: The distance between two subsequences is defined as the Euclidean 
distance, given by 
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. As for description length, Huffman code can be used [12]. However, 
information entropy is more simple and intuitive for describing description length. It also 
provides a good lower bound for representing bits [8]. 

Definition 9: The entropy of a time series T is defined as: 
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where ip  is the probability that a symbol in iT  will occur. 

(3.3) 

(3.4) 

(3.5) 
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    Notice that the time series is already discretized (Definition 8) before calculating the 
entropy. Next, the description length (DL) of the time series is defined as,  

Definition 10: The description length DL of time series T of length m is the total number 
bits required to represent itself, given as 

)(*:)( TEntropymTDL   
 

Definition 11: A hypothesis H is a subsequence used to encode one or more 
subsequences with the same length. 
 
Definition 12: The Conditional Description Length of time series T with a hypothesis H, 
DL( T | H ) is equal to DL(T – H) where T – H is T encoded with H, and T – H represents a 
minus vector operation. 

Definition 13: A Description Length of a Class (DLC) C  is the number of bits required 
to represent all subsequences in the group. 





CA

HADLHDLCDLC )|()(:)(  

The center of the group is hypothesis H obtained by the average of all members in the 
group.

 
 
The original time series data may be huge. Compressing the whole time series 

yields unnecessary works. Another way to measure ability to compress is to measure by 
bitsave after each operation, i.e., the value of description length of before-compression 
minus after-compression, compressing a time series with a hypothesis. 

(3.6) 

(3.7) 



 22 
 

Definition 14: A bitsave is the number of bits saved after applying an operation. It can be 
calculated from the difference of the description length, before and after, i.e.,   

)()(: newDLoldDLbitsave   
This work uses two operations: creating a motif class and adding a member to a 

motif class. They are defined as follows, 

Creating a new group  'C  from subsequence  A  and B : 
)'()()(: CDLCBDLADLbitsave   

Adding a subsequence  A  to an existing group C : 
)'()()(: CDLCCDLGADLbitsave   

    Finally, measuring an “ability to compress” is done by calculating bitsave from 
the difference of a description length in each operation. (Note that the terms MDL and 
bitsave are interchangeable)  

 
3.3 Intuitions behind algorithm 

After providing background and notation, this section introduces intuitions 
behind motif discovery algorithm. The overview of the algorithm is portrayed in Figure 
3.3.     The algorithm starts from the smallest to the largest possible of sliding windows. 
Suppose the algorithm is running at length L, a question is how to find hypotheses from 
the raw time series?  Note that definition 6 sets a constraint that a hypothesis should 
occur at least twice. The first clue is to search for the closest pair of subsequence of 
length L, which is a good candidate for constructing a hypothesis to compress the time 
series data. The second step is to compute MDL of the pair. At step 3, it is possible that 
there are more than two occurrences of the hypothesis.  The other occurrences can be 
iteratively found via the next nearest neighbor of the hypothesis, i.e., closest 
subsequence matching. Step 3 is repeated until the last neighbor cannot compress well 
enough, or new MDL is not better than the previous MDL.  At step 6, the answer is 
updated by this group. The answer-updated operation will be clarified in the next 

(3.8) 

(3.9) 

(3.10) 
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section. Finally, step 1 is repeated until  kth closest pair cannot compress anymore (cf. 
Defintion 14).   

 
 

Figure 3.3 :The general framework of the algorithm. 

3.3.1 Compression by MDL principle  

After encoding time series data with a hypothesis, the size of remaining data is 
reduced by factoring out the common structures or motifs. The compression rate is 
calculated by measuring bitsave for each operation (Definition 14).  

The method of bitsave calculation is similar to [8]. First, a group is created from 
the closest pair. After group creation, bitsave is computed by the difference of number 
of bits between before and after an operation. Next, all neighbors of the hypothesis (or a 
model) are to join group until either neighbors are used up or new bitsave is less than 
zero.  
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3.3.2 Lower bounding 

Previous section explains how to calculate bitsave for each group operation. 
Note that the method of finding the closest pair is not yet mentioned. This section will 
explain how to quickly find the closest pair by utilizing a notion called “lower bound.” 
This work follows the same techniques as [2] including techniques called early 
abandoning.  

Given a subsequence of length m, comparing all pairs using Euclidean distance 
to discover the closet pair takes O(mn(n-1)/2) comparisons, where n is length of time 
series subtracted  by m. One way to mitigate this complexity is to use triangular 
inequality of Euclidean Distance as heuristic information for pruning off extraneous 
search space. This notion is well utilized in [2] called early abandoning and lower 
bound.   Even though the worst case running time is still asymptotically the same as 
brute force method, the running time in practice is much faster [2]. 

Here is a brief description. The key approach is to randomly select a sliding 
window as a pivot. Then, calculate distance of all sliding windows, and sort the other 
sliding windows by their distance to the pivot. This linear ordering of the data has useful 
heuristic information, as shown in Figure 3.4 Notice that the result of the sorted data has 
its own “lower bound” distance between adjacent pair. Therefore, the search will begin 
by using the best-so-far to enhance the speed. To illustrate, consider this example, 

 
 

 
 

 

Figure 3.4: Linear ordering of the data. O is a pivot. 

In Figure 3.4, O is a pivot.  The other subsequences in sliding windows are 
calculated by distance which used pivot as a reference. So, the ordering are Dist(O, 1), 
Dist(O, 2), Dist(O, 3) …, Dist(O, m). Without loss of generality, positions 1 and 2 are a 
point of interest as illustrated in the example.  the lower bound distance between 

Dist(O, 1) 

Dist(O, 2) 

O 2 3 4 m … 1 
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position 1 and position 2 can be determined by using the triangular inequality property 
as follows. 

)2,1()2,()1,( DistODistODist   

The lower bound distance can be calculated in a constant time. In order to find 
the smallest distance of a pair, it starts by setting offset variable to 1, and scans from left 
to right until the end of this ordering. The offset is incremented when there exists an 
update on best-so-far variable and scan from left to right again until there is no update 
on best-so-far value in an offset. By scanning from left to right and broadening the offset, 
it is possible to have all 

2

)1( mm pairs in this search [2].   

 In short, for each offset, the best-so-far value is updated when there is a pair of 
its true distance which is less than current best-so-far. If the best-so-far value is not 
updated within all pairs in same offset, it is easy to see that the rest of the unsearched 
pairs will not be able to update the best-so-far value as their lower bound distance 
would exceed the best-so-far. Therefore, all unsearched pairs can be discarded. This 
would save enormous amount of computation time. 

However, running on all possible lengths is computationally expensive even if 
the lower bounding is utilized.  This work incorporates two additional techniques to 
tackle this difficulty: designing to be an anytime algorithm via updating answer by ability 
to compress and early termination.  

 

3.3.3 Updating answer by ability to compress (bitsave)  

The algorithm initializes a set of answer as an empty set. While running, the 
answer is updated or added by a new entry. Each answer or entry is represented as a 
tuple, <L, <positions>, bitsave>, where L, positions, bitsave are length of 
subsequences, vector of position of occurrences in time series, and ability to compress 
respectively. For example, a tuple <50, <100,500>, 80> represents a pair of 
subsequences of length 50 occurred at position 100 and 500 with the bitsave value of 
80.   

(3.11) 
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Figure 3.5 portrays the mechanism of answer update. Suppose currently there 
are two entries in the answer set, a new entry has length of 150, three elements and 
bitsave value of 365.  As in definition 6, the interesting motifs are hypotheses that have 
more ability to compress or more bitsave.  Therefore, updating method is forthright. For 
each answer in answer set that overlapped with the new entry, bitsave value is a 
criterion for replacing the new entry if its bitsave is higher. If the overlapped entry does 
not exist, the new entry will be added in the answer set.  

The overlapping of two entries is occurred when two of the following are met, 
1. The number of motifs in entry is equal. 
2.  There exists one-on-one overlapping pair of each element in the entry. 
As you can see, the answer set is being updated while running.  This meets any-

time algorithm property; as time pass the solution will evolve toward optimal solutions. 
Hence, the proposed algorithm is an anytime algorithm. 

 

Figure 3.5 : The example of updating answer set. the new entry is regarded as a classes or 
group of motifs from previous steps. First, we locate the overlapped element. If overlapping 
element does not exist, we add new entry in answer set. Otherwise,  replace the new entry 
with overlapped entry when bitsave is greater. 

Updating answer

L = 150
Positions = <199,500,1200>
bitsave = 365L = 149

Positions = <200,500,1200>
bitsave = 359

L = 80
Positions = <300,800 >
bitsave = 154

Current answer

Replace the overlapped entry
if bitsave is superior
(365 > 359)
Otherwise discard the new entry

Not overlapped

overlapped

L = 80
Positions = <300,800 >
bitsave = 154

New entry

Updated answer

L = 150
Positions = <199,500,1200>
bitsave = 365
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The following example illustrates how the update operation manages to discover proper 
length motifs. 
Example (Dataset in Figure 1.1 revisited): 

Consider Figure 3.6, the motifs are two highlighted subsequences. The motif of 
length 286 is an object of interest. Since the algorithm discover each length in an 
increasing order, roughly two pairs labeled as “too small” are discovered first. Then, 
these two pairs are inserted into the answer set as new entries because there is no entry 
yet. While running to next length, the bigger size ones of the same location are 
discovered and updated again and again. This iteration continues until the optimal one 
is reached whose compression ratio is the best, as denoted “optimal.” When the bigger 
pair labeled as “too large” comes to update, it has lower compression ratio or bitsave 
than the optimal one. This motif will never be updated with the larger length since the 
larger length one contains noises or irrelevant part as denoted in left part of the larger 
pair. This example illustrates a case when proper length motifs are discovered. This is 
also true in general case. 

 

Figure 3.6 : Update operation – example. 
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3.3.4 Early Termination  

Fixed a motif of interest, some readers may notice that, while updating toward 
proper/optimal length of motif, the larger length of that motif cannot be compressed well 
as the proper/optimal length does.  This is also happening for any other motifs of 
arbitrary lengths. When consider over all motifs in a time series data, it is possible that, 
for some larger lengths of sliding windows, all subsequences are either unable to 
compress well or cannot update any answer (since it is labeled as “Too big” as in Figure 
3.6). This condition is for halting the algorithm since running on larger lengths yields no 
new results. In short, when this condition is met, running algorithm can be terminated 
without losing any potential motifs. This action can prune off extraneous search space 
and thus save an enormous amount of time.  This notion is called “Early Termination.”    

Formally, at length L, suppose k0 is the first integer that bitsave of creating group 
of 0k

LMC   is negative.  If, for k < k0, k

LMC  cannot update or add any new entity to answer 
set,  then all of motifs have been discovered and the algorithm will halt with non-fault 
dismissals. 

The following lemma provides performance guarantee for Early Termination. 
Lemma1: Given that patterns have the identical shape, if the time series T 

contains a largest pair of pattern of length M, the algorithm will terminate at least at 
length M+1. 

Proof: The algorithm triggers Early Termination when there is no update in the 
answer set. Therefore, it is sufficient to focus only the largest pair of patterns in the 
dataset. In order to prove this lemma, it is imperative to show that the bitsave of the 
largest patterns is always higher than that of smaller sub-patterns. 
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Suppose there are pattern p1,p2  of length M, the description length of a motif 
class of p1 and p2 is )()( 21 pDLpDL  . When encoding with hypothesis HM = average of 
p1 and p2, the new description length becomes,  

)|()|()()( 21 MMMM HpDLHpDLHDLCDLC   
The bitsave is calculated as the difference of description length between before and 
after encoding with HM. 
 

 ),()()()( ,2,1,2,1 MMMMM ppDLCpDLpDLCBitsave                     
                      ))|()|()()()(( ,2|,1,2,1 MMMMMMM HpEntHpEntHEntpEntpEntM   
Similarly, for other smaller sub-patterns of length m < M, bitsave of this sub-pattern class 
of p1,m and p2,m is 

),()()()( ,2,1,2,1 mmmmm ppDLCpDLpDLCBitsave   
         ))|()|()()()(( ,2|,1,2,1 mmmmmmm HpEntHpEntHEntpEntpEntM   
Next, to show that Bitsave(CM) > Bitsave(Cm), key claim is Entropy represents the 

regularity of the data. Since the patterns have the identical shape, its sub-patterns of 
smaller length also have the identical shape. The identical shape suggests the same 
regularity level of the data. Hence, the sum of entropy of sub-patterns is equal to the 
sum of entropy of the largest patterns. That is, 
 )()()()( ,2,1,2,1 MMmm pEntpEntpEntpEnt  , and 

)|()|()()|()|()( ,2,1,2|,1 MMMMMmmmmm HpEntHpEntHEntHpEntHpEntHEnt   
Since M > m, then bitsave(CM) > bitsave(Cm). QED. 

Lemma1 suggests that even though bitsave function is not a monotonic to the 
length, it is not the case which pattern has the identical shape. 

Note that the high regularity suggests essentially identical entropy for each 
smaller length of sub-patterns.  However, when patterns have high regularity, it does not 
always mean that their shapes are identical. This means that Early Termination might be 
slightly lossy when the time series data is close to random. 

 
 

 

(3.12) 

(3.13) 

(3.14) 

(3.15) 
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3.4 Algorithm in details 

Table 3.1: MDL based Motif Discovery Algorithm. 
Input: Time series T 
Output: a collection of answers sorted by MDL 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

For L=2 to T.length/2 

{A,B}* := motifCandidateDiscovery(T,L) 

 For each k motif pair in {A,B}*  

{group,bitsave}:= createGroup(A,B) 

  if  bitsave < 0 then break 

  while hasNextNeighbor(T) 

        C := NextNeighbor(T,center,L) 

  {group,bs} := AddToGroup(group,C) 

        if bs > 0 then bitsave += bs 

        else break end if 

    end while 

    update(answer, group) // new entry 

 end for 

 if canEarlyTerminate(answer) then break       

end for 

return answer 

 
A pseudo code is given in Table 3.1. The input is time series data. The algorithm 

begins by entering a for loop (line 1). In line 2, MotifCandidateDiscovery is the process 
of finding a motif candidate  k

LMC  in a sliding window of length L. This function utilizes 
lower bounding and early abandoning techniques mentioned in previous section.   

A for loop at line 3 represents running at different initial hypotheses. This loop 
continues until bitsave of creating group is negative denoted in line 5. At line 4, A and B 
indicate the location of subsequence in the time series. The function createGroup is 
called. Then, it returns bitsave and a new group. The mechanism and calculations of 
bitsave are already given in Definitions 7-14.  

The bitsave in line 4 means number of bits saved after performing a group 
construction (create). If such create operation cannot produce any more bitsave, this 
pair is more likely to be meaningless. Then, the loop is broken, and it goes to L+1 in  the 
next iteration.  

At lines 6 – 11, the NextNeighbor takes a center of the group as a reference to 
find another neighbor C. The center of a group is calculated by the average of a motif 
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pair A and B. Then, a neighbor C is added to the group if its bitsave > 0. This loop 

continues until bs ≤ 0 or there is no next neighbor left.  
At line 12, as given in Figure 3.6, after building hypothesis and joining all 

neighbors to a group, it is considered as a new entry. The new entry either is added in 
the answer set or updates an existing answer over new bitsave value. This is an anytime 
algorithm since the update function always updates motif entities towards the solutions. 
Hence, users need not  wait until completion; rather, they can query by the status quo of 
the best model class.  

Line 14 checks for early termination. This can be easily checked the condition 
whether the answer set is modified within an entire iteration or not. If not, the algorithm 
will halt. Finally, every class of motifs has its own bitsave which was updated for each 
iteration. 
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CHAPTER IV 

Experiments and Results 

 The parameter-free myths imply that a practical parameter-free algorithm be 
correct and maintain speed. In order to prove such properties, the experiment carries 
out in three orthogonal aspects. The first perspective – and priority—is correctness. It is 
imperative that the parameter-free algorithm outputs valid results before exploring any 
other aspects. The correctness is determined by an objective function and comparison 
to related works. Next, the proposed algorithm is compared with the related work in 
terms of running time analysis. Finally, the parameter-freeness is demonstrated via real 
world datasets compared with a state-of-the-art algorithm that requires a length of motif 
as a parameter.  

4.1 Measurements and Definitions 

In order to interpret the experimental results precisely, it is more intuitive to 
quantify goal of achieving correctness. First of all, basic definitions are clarified. Let P be 
a set of planted patterns. Let D be a set of discovered patterns. Let S be a tuple of 
(P,D). In other words,

 
 

P = { planted patterns }, and D = { discovered patterns }  
S =  (P,D)  

There are several measurements used in this section. The first measurement is 
Accuracy-on-Recall (AoR)[15]. AoR is percentage of discovered patterns corresponding 
to planted patterns to total planted patterns, i.e.,  

||

||
)(

P

DP
SAoR


  

The second measurement is Accuracy-on-Detection (AoD)[15]. The AoD is 
simply an overlapping percentage between discovered motifs and the corresponding 
planted patterns.  Let d  be a discovered pattern and p be a corresponding planted 

(4.1) 
(4.2) 

(4.3) 
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pattern, where l, w are location and length of subsequence, respectively. The unit-AoD 
is an overlapping percentage measurement and defined as follows, 

),,,(

),,,(
),(

pdpd

pdpd

wwllUnionPart

wwllPartOverlaping
dpUnitAoD   

where, 

1),max(),min(),,,( 2122112121  llwlwlwwllPartOverlaping    
1),min(),max(),,,( 2122112121  llwlwlwwllUnionPart  

 Hence, AoD is an average of each UnitAOD  in a motif class, and is defined as, 

||

),(

)(
DP

dpUnitAoD

SAoD DP




  

where  
 

Finally, correctness is determined as the average AoD of pattern classes 
weighted by AoR value, i.e., given a               . 
 

 

Recalled that P = { planted patterns }, and D = { discovered patterns }  and S =  (P,D). 

There are two reasons not to include precision into correctness measurement. 
First, the accuracy is already measured via accuracy-on-detection (AoD) for each class. 
Second, sometimes an extraneous discovered pattern is a subsequence of random walk 
whose shape is essentially appealing to be another element of a motif class (cf. 
experiment on single dataset section). Hence, it is not intuitive to discredit the 
correctness when the unexpected patterns are also able to be discovered.  

4.2 Correctness Experiments 

As for correctness measurement, the datasets per se should be measureable, 
i.e., the location of motifs in each dataset should be known in advance. In this regard, 
finding planted motifs is preferable since it is easy to objectively calculate accuracy of 
discovered motifs with respect to planted motif occurrences.  The dataset creation is by 

(4.4) (4.4) 
 
 

(4.5) 
(4.6) 

(4.7) 

(4.8) 

}),(|),{( overlappedarepanddPpDddpDP 

}{S





S
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implanting motifs into a non-repeated random walk time series. The patterns to be 
planted are derived from the UCR classification/clustering archive [3].  
 The datasets are general, and not limited to a particular case. Roughly, there are 
two cases to do the experiments: single-pattern datasets, multi-pattern datasets.  

4.2.1 Single-pattern datasets 
There are 8 datasets in this section. Each dataset consists of a “single” class of motifs, 
i.e., a class of motifs has a fixed length. Datasets from spd1 to spd4 contain frequent 
occurrences (more than two). Others have only two occurrences. Table 4.1 shows the 
detail of all single-pattern datasets.  All datasets are portrayed as in Figure 4.1 - 4.2. 

Table 4.1: Single-pattern datasets. 

dataset length pattern w #patterns dataset length pattern w #patterns 
spd1 6790 50words 270 7 spd2 5760 Adiac 176 10 
spd3 6350 Beef 470 7 spd4 8220 Oliveoil 570 6 
spd5 1900 Gun 150 2 spd6 2150 Trace 275 2 
spd7 2454 OSUleaf 427 2 spd8 2740 Oliveoil 570 2 

 
Results  
 The experimental results are shown in Table 4.2. The bottom line is the proposed 
algorithm manages to discover proper length motifs planted in the single-pattern 
datasets. The discovered motifs are largely accurate measured by AoD (for all datasets 
here, AoD > 95%).  In addition, the number of planted pattern and number of 
discovered pattern are identical (for all datasets here,  AoR = 100%). 
 The ranking method is based on definition 7 (K-compression motif). The 1st rank 
means the hypothesis or a subsequence as a model can best compress the times 
series. As for multi-occurrence pattern (spd1 to spd4), the proposed algorithm ranks 
correctly the planted patterns as the 1st rank with respect to planted patterns. 
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Figure 4.1: Datasets from spd1 to spd4. These contain multi-occurrences of a pattern. 

 
Figure 4.2: Datasets from spd5 to spd8. These data contain two occurrences of a pattern.  
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The interesting point is that the discovered pattern is not always the 1st rank by 
definition 7. There is a case that a subset of pattern can be combined with other outer 
subsequences, meaning that this sub-pattern is more frequent as in spd5 and spd6 
(Figure 4.2). The first rank may lost some AoD since it is the frequent occurrence under 
sub-motifs (c.f. Figure 4.4 and Figure 4.5). Note that the proper length motifs of spd5 
and spd6 are captured under rank 2nd and 4th respectively with AoD > 95%.  

Table 4.2: Experimental Result for spd datasets. 

Dataset Pattern: # Rank AoR  AoD AoR of  
the 1st rank 

AoD of  
the 1st rank 

spd1 50words: 7 1st 100% 98.53% 100% 98.53% 
spd2 Adiac: 10 1st 100% 98.32% 100% 98.32% 
spd3 Beef: 5 1st 100% 98.94% 100% 98.94% 
spd4 Oliveoil: 6 1st 100% 98.95% 100% 98.95% 
spd5 Gun: 2 2nd 100% 98.68% 100% 86.76% 
spd6 Trace: 2 4th 100% 96.48% 100% 61.96% 
spd7 OSULeaf: 2 1st 100% 99.53% 100% 99.53% 
spd8* Oliveoil: 2 1st 100% 99.65% 100% 99.65% 

* Dataset spd8 has an interesting 2nd motif discovery. 
 

Selected proper length motif discovery results to discuss 
 The organization of this section is as follows. As the dataset from spd1 to spd4 
yields the same results, only spd1 is selected to discuss in depth. Next, the spd5 and 
spd6 dataset will be discussed as its motif is not the 1st rank. Finally, the spd8 dataset 
will be discussed since 2nd rank motif is an unplanted motif. 
 The result of spd1 dataset is shown as Figure 4.3. The first motif is 
corresponding to the planted motif of length 270 with AoD = 98.53%. The motif 
discovered for each rank is highlighted as bold-face and red color. Note that 2nd motif 
contains two juxtaposed occurrences; they will be highlighted separately in order to be 
distinguishable between them. The second and third motifs are classes which occurred 
in random walk. As MDL principle concerns only compression ratio, it sometimes 
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ignores noise, whereas Euclidean distance counts exact noises. Therefore, the 2nd and 
3rd motifs are share similarity in “shape” regardless of noises.  
 

 
Figure 4.3: The ranked motifs from spd1 dataset.  The 1st, 2nd and 3rd motif have length of 

270, 77, and 123 respectively. All discovered motifs are highlighted in boldface. 

 The result of spd5 is shown in Figure 4.4. Notice that the planted patterns are 
only two occurrences; the proposed algorithm manages to discover them as 2nd rank 
motifs with AoD = 98.68%. The more interesting point is that the 1st motif includes a 
subsequence of random walk as it can compress as a neighbor of length 130. Even if 
user may prefer 2nd motif to 1st motif, the desirable result is still on top rank.  
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Figure 4.4: The ranked motifs from spd5 dataset.  The 1st and 2nd motif have length of 130 

and 150, respectively. All discovered motifs are highlighted in boldface. 

 Next, the result of spd6 is shown in Figure 4.5, there are four interesting ranks. 
The planted patterns are discovered as 4th rank in this dataset with AoD = 96.48%.   The 
first, rank is discovered at w = 170. There are four occurrences as denoted in bold-
faced red line. There are two noisy subsequences included in the 1st motif. Theses are 
included because their “shape” are similar. Without compression criterion, it is hard to 
notice these occurences. The 2nd motif is highlighted differently for contiguous 
subsequences for differentiability. Still, the motifs discovered are on the top rank. 
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Figure 4.5 : The ranked motifs from spd6 dataset.  The planted motif is discovered as 4th 

rank at length of 279.  

Finally, the proposed algorithm manages to discover motifs in spd8 dataset correctly 
as the first rank with AoD = 99.65%. In addition, the second rank motif is discovered at 
length of 347. The closest pair of subsequences is denoted as red. The additional 
subsequence is a noisy one. Notice that this motif occurred unintentionally; in 
“shapewise,” it is visually similar to others in the same class, see Figure 4.6. 
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Figure 4.6: The ranked motifs from spd8 dataset.  The planted motif is discovered as 1th rank 

at length of 570. The more interesting motif is the 2nd motif. (Bottom) the superposition of two 

similar motifs one of which is a subsequence of random walk. 
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4.2.2 Multi-pattern datasets 

Having comprehended the proposed algorithm’s behavior from simple datasets 
in previous section, this section will experiment on more complicated datasets; the 
datasets contain patterns in more than one class, as shown in Table 4.3. In addition, this 
work will be further evaluated by comparing with Parameter-free Motif Discovery for time 
series data [7] (we thereafter call kBM – k-Best Motif) via AoR and AoD.   

There is a disparity between the proposed method and kBM. While proposed 
method is able to find a set of motifs—which is usually more than two subsequences, 
kBM can discover only a pair of motif –which in fact, some true motifs may be 
disregarded since they consider only a pair (not a set).  

      Table 4.3 : Multi-pattern datasets 

 

 
 
 
 

Datasets Length Pattern w # pattern 
 

mpd1 
 

7486 
Gun 150 5 

50Words 270 3 
Fish 463 2 

 
mpd2 

 
8842 

CBF 128 8 
Yoga 426 2 
Fish 463 2 

OliveOil 570 2 

 
mpd3 

 
7609 

FaceAll 131 9 
Adiac 176 5 

50Words 270 3 
Beef 470 2 

 
mpd4 

 
10979 

FaceAll 131 7 
Gun 150 6 

Adiac 176 8 
OSULeaf 427 2 
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Result 
The comparison of output is carried out in terms of AoR, AoD, and Correctness 

(cf. Section 4.1). Note that kBM algorithm discovers only a set of motif pair, kBM’s AoR 
measurement will use a union relevant set of same classes to give benefit to their work. 
In addition, to be fair, kBM’s AoD will use the maximum motif pair’s AoD of the motif set.  

The results are portrayed in Table 4.4.  Proposed method consistently dominates 
kBM by higher AoD (denoted in boldface). Proposed algorithm’s AoD is also relatively 
invariant to the size of pattern while kBM slightly deteriorates by an amount of AoD due 
to larger size of the pattern. This can be explained. The ranking method requires 
pruning off the larger size of pattern before performing ranking function. They also 
choose median of whole population as threshold to cut off “too large” motif. Sometimes 
potential motif is cut off at the first place.  

Table 4.4 : Comparison of four datasets in terms of AoR, AoD, and Correctness.  

 As for AoR, the proposed method discovers virtually all of planted patterns for 
each dataset. However, kBM manages to discover partial set of them. kBM’s AoR is 
uncertain when the frequency of the patterns’ occurrences is more than two. When 
number of patterns is more than two, kBM manages to discover all of them. 

Input Output 
Datasets Length Pattern Pattern 

Length 
Number 

of pattern 
AoR AoD Correctness 

Proposed 
% 

kBM 
% 

Proposed 
% 

kBM 
% 

Proposed 
% 

kBM 
% 

 
mpd1 

 
7486 

Gun 150 5 100 80 98.69 99.34  
99.03 

 
92.22 50Words 270 3 100 100 99.27 98.89 

Fish 463 2 100 100 99.14 98.29 

 
mpd2 

 
8842 

CBF 128 8 100 75 98.1 98.47  
99.16 

 

 
88.73 Yoga 426 2 100 100 99.6 96.39 

Fish 463 2 100 100 99.7 94.31 

OliveOil 570 2 100 100 99 90.35 

 
mpd3 

 
7609 

FaceAll 131 9 88.89 66.67 98.51 100  
96.19 

 
70.25 Adiac 176 5 100 60 98.33 97.74 

50Words 270 3 100 66.67 99.27 85.09 

Beef 470 2 100 100 99.58 98.95 

 
mpd4 

 
10979 

FaceAll 131 7 100 57.14 97.78 98.51  
98.74 

 
68.31 Gun 150 6 100 50 99.34 98.69 

Adiac 176 8 100 75 98.31 99.44 

OSULeaf 427 2 100 100 99.53 93.45 
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Here are details of each dataset.  In mpd1, the result of proposed method and 
kBM is comparable both in terms of AoR and AoD. In mpd2, the kBM’s correctness 
slightly decreases since the overall AoDs deteriorate, especially in Oliveoil’s pattern 
when ten percent of portion is missing.  In mpd3, kBM’s AoR is evidently lower than 
previous dataset. This is the case when the number of patterns is higher than two since 
kBM focus on finding only a pair of motif. This can be redundant since there are     
m(m - 1)/2 pairs possible when m represents number of patterns. This also happens in 
mpd4.  

4.2.3 Does parameter-freeness reduce correctness? 

The datasets are from planted patterns with random-walk data. Also, there are 
various patterns within the datasets. Note that the experimental results suggest that the 
proposed parameter-free algorithm manages to discover variable-length motifs with high 
recall rate (AoR > 88%) and accuracy (AoD > 95%). In other words, the proposed 
method manages to discover all of motifs with less than 5% missing correctness.  In 
addition, the discovered motifs are on the top rank overall possible candidate motifs, 
which has at most O(n3) subsequences. O(n3) is calculated as follows:  

Given a time series of length n, the space of all possible pairs of subsequences 
can be calculated via simple counting. For fixed length w, there are          pairs. 
Counting for w = 2 to n/2, the total number of possible pairs are,  
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 These results strongly suggest that the statement “parameter-free algorithm’s 
correctness is sacrificed in exchange for parameter-freeness” is simply a myth. 
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4.3 Speed Experiments: Scalability  

4.3.1 Running time analysis 

Given sliding windows of length m, and time series of length n   finding motifs of 
length m takes O(mn2). In addition, running from all lengths m = 2 to n/2, the complexity 
becomes, 

 

Thus, it spends O(n4) to discover all possible lengths of motifs.     Even if time 
complexity is high, the proposed algorithm applies additional techniques. Two major 
novel techniques are early termination and making to be an anytime algorithm. Time 
complexity can be asymptotically reduced by applying a technique called Early 
Termination. Consider the largest motifs in time series of length M, where M << n.  
Instead of running all possible lengths, the proposed algorithm runs only to at most 
length M. That is, 

 

 

Therefore, with Early Termination, the proposed algorithm spends O(M2n2), 
where M << n, while original work done on single length requires O(mn2). That is, the 
proposed algorithm’s running is bounded by length of patterns. In addition, the 
proposed algorithm is an anytime algorithm, it can provide best-so-far motifs while 
running as it is an anytime algorithm. This also gives us an advantage when users want 
to determine roughly the current motifs to use in another subroutine or process. 
 
4.3.2 Empirical observations 

Empirical scalability experiments are shown in Figure 4.7. The datasets are the 
same as those in multi-pattern dataset section.  All algorithms are executed on Intel-i7 
3GHz server. As in Figure 4.7, the proposed method is approximately a few magnitudes 
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faster than kBM. Notice that kBM and Proposed without Early Termination is essentially 
the same order of magnitude. With Early Termination, the algorithm is a few magnitudes 
faster than kBM. Therefore, it is not dead-end when worst-case time complexity is high 
as speedup over average case is possible. 

 

 
Figure 4.7 : Comparison among three methods. The y-axis represents running time in hours. 

The x-axis represents length of time series. The proposed method is a few magnitudes 

faster than kBM.  

4.3.3 Anytime proper length time series motif discovery 
In this section, two desirable properties of anytime algorithm are evaluated: 

monotonicity and interruptibility properties (cf. Section 2.1.4). In order for quality of the 
algorithm to be measurable, this work use correctness (cf. section 4.1) as a 
measurement.  The datasets are from mpd1 to mpd4. The results are shown as Figure 
4.8. 
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Figure 4.8 : Correctness plot for mpd1 to mpd4 datasets. 

As for monotonicity, the correctness value for each dataset is non-decreasing.  In 
addition, a user can interrupt the algorithm at anytime while running. For example, a 
user wants the partial result from the mpd4 dataset while running at w = 200. He or 
she can obtain the valid result at correctness more than 80 percent since most of 
patterns are of length less than 200. Consequently, the algorithm still has a high 
percentage of correctness while running at w = 200.   This demonstrates the 
interruptibility of the algorithm in cases that user may request the premature answer 
from the running algorithm. 

4.3.4 Is parameter-free algorithm always slow? 
 With inefficient implementation, the running time is bounded by brute force 
search as O(n4), where n = time series length. This is too slow and impractical. On the 
other hand, with additional optimization via Early Termination, it is possible to speedup 
since the algorithm will run on need-only basis. 

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500

Correctness plot

mpd1 mpd2

mpd3 mpd4

w w

w w

correctness correctness

correctness correctness

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400



 47 
 

According to the running time analysis, the proposed algorithm runs at most  
O(M2n2), where M is the largest patterns and M << n, while original work done on single 
length requires O (mn2). That is, the amount of pruning power depends on the pattern 
size. In addition, Figure 4.7 does strongly suggest that the proposed algorithm with Early 
Termination allows a very impressive speedup over brute force search (kBM).  

To summarize, parameter-free algorithm with an efficient implementation allows 
a speedup over brute force. It also can prune off search space at run time. Hence, both 
theoretical and experimental evident strongly suggest that the statement “parameter-
free algorithm is always not faster non-parameter-free algorithm” is also a myth. 

4.4 Parameter-freeness Test: comparison with state-of-the-art algorithm 
There are many existing works that requires many predefined parameters. Exact 

Motif Discovery [2] (called thereafter MK – Mueen-Keogh) is selected as a baseline 
because it requires only length of motif to be specified.  The objective in this section is 
to show that the proposed algorithm manages to find proper length of motif for each 
class without indicating any parameter while state-of-the-art method [2] requires a user 
to select window size. To be fair to the MK method, benefit is given to them by manually 
selecting the “best” length for them. 

The real-world datasets are used. This dataset is ECG— abnormal ECGs with 
features of PVCs and ventricular couplets on bradycardia, and WPW [14]. The record is 
30 minutes long.  Abnormal ECG is more preferable because it exhibits anomaly in 
some beats.   
    The proposed method shows a result in Figure 4.9. The first rank motif is motif of 
length 194, which has myriad neighbors. In fact, this first motif is a regular heartbeat. 
The more interesting discovery is the second motif of length 247. Although the best motif 
lengths of those classes are 195 and 245, respectively, obtained by “picking” the best 
length for running MK, the differences are not significant. In addition, the proposed 
method is quite effortless to the user because it can discover the commensurate size of 
each class without letting the user “manually” select a length as a parameter. 
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Figure 4.9 : A snippet of ECG dataset. Total length is 15420.  The highlight colors are motif 
discovered at length w=194 and 247, respectively. The proposed method is able to find two 
different classes of motif. Each length is 194 and 247, respectively, while state-of-the-art 
(MK) method uses “best size” of 195 and 245, respectively 

4.5 Experiment Summary  
 The experiments have been designed to correspond to the objectives: 
parameter-freeness, correctness, and speed. The metrics used for this work are 
(Accuracy-on-Recall) AoR, and (Accuracy-on-Detection) AoD. The datasets are from 
both planted patterns with random walk and real-world datasets.  

As for correctness, the datasets are planted patterns with random walk since the 
exact position of patterns are known, and it is easy to evaluate objectively. There are two 
subsections: single-pattern datasets and multi-pattern datasets. The single-pattern is a 
simple time series data. The purpose of using single-pattern datasets is to evaluate the 
proposed algorithm’s behavior with AoR and AoD. The next datasets are multi-pattern 
datasets. In this datasets, the proposed algorithm is compared to kBM via results of 
multi-pattern datasets. The main finding is that the proposed algorithm manages to 
discover proper length of motifs with consistently high k-AoD and AoR while kBM’s k-
AoD deteriorates in some cases, especially in larger patterns. 

As for speed, the datasets are the same as above. The proposed algorithm is 
compared to kBM in terms of speed analysis. Theoretically, According to the running 
time analysis, the proposed algorithm runs at most O(M2n2), where M is the largest 
patterns and M<< n, while original work done on single length requires O(mn2).  On the 
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other hand, kBM requires O(n4). Experimentally, the proposed algorithm is a few 
magnitudes faster than kBM.  

Finally, as for parameter-freeness, the dataset is real-world data from ECG—
abnormal ECGs with features of PVCs and ventricular couplets on bradycardia, and 
WPW. This work is compared to MK motif discovery. The benefit has given to MK via 
selecting the “best” parameter for them. The result is that the proposed algorithm 
effortlessly discovered the “proper” length of two classes of motifs: regular beats and 
anomaly beats while the lengths of these two classes are commensurate with “best” 
length from MK.  
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CHAPTER V 

CONCLUSION AND RECOMMENDATIONS 

4.1 General Conclusion 

 Time series motif discovery has been actively explored in the past decade. The 
problem of finding proper predefined parameters is untenable and still unsolved. 
Reducing parameters to be zero is difficult since the motifs are highly sensitive to 
choices of length as a parameter. In addition, even if the motif discovery is run at various 
parameters, it is still arduous to rank all of them objectively, not to mention possible 
redundancy of sub-motifs. Ultimately, the running all possible ranges of parameter is 
computationally expensive.  

There are some attempts to deal with a parameter issue. However, they cannot 
truly eliminate parameters. The first parameter-free motif discovery(kBM) has addressed 
this problem, but it is not as efficient due to scalability problem and solution quality. 
Hence, these reasons inspire this work to introduce a proper length time series motif 
discovery with parameter-freeness. The objectives of this work are parameter-freeness, 
correctness, and speed.  

One of most quintessential of time series motif discovery is a definition of motifs. 
A good motif definition reflects a good algorithm design. It is possible that motifs be 
defined in various ways depending on domain applications. In fact, there are two main 
bases of those definitions: similarity basis or frequency basis. These definition, however, 
assume that length of motifs to be discovered is known by users. Unfortunately, this 
information is barely available to users, even for domain experts. Since variable length of 
motif is required to be defined in order to evaluate precisely, kBM has defined motifs as 
K-best motifs. In short, K-best motifs mean location-similarity supported motifs. That is, a 
good motif should have a lot of its supported subset. In this work’s perspective, the 
definition of K-best motifs is biased toward larger size of motifs. Therefore, this work 
introduces alternative definition of variable-length motifs via K-compression motifs. 
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There are misconceptions regarding parameter-freeness of an algorithm. This 
work clarifies via introducing three parameter-free myths. These myths are confirmed by 
experimental evidences.  

The proposed algorithm is parameter-free. The principle behind the algorithm is 
that a proper length motif is a hypothesis that can best compress the time series. This 
can be realized via MDL principle. In addition, this work utilizes compression score 
function as heuristic information in both Update Answer Sets and Early Termination 
Techniques.  The gist is that by using compression score function, the algorithm 
manages to run on need-only basis of search space.  

The experiments have been designed to correspond to the objectives: 
parameter-freeness, correctness, and speed. The metrics used for this work are RR, k-
AoD, and AoR. The datasets are from both planted patterns with random walk and real-
world datasets. As for correctness, the main finding is that the proposed algorithm 
manages to discover proper length of motifs with consistently high k-AoD and AoR while 
kBM’s k-AoD deteriorates in some cases especially in larger patterns. As for speed, the 
proposed algorithm is faster than kBM, theoretically and experimentally. 

4.2 Recommendations 

 Even though the proposed algorithm manages to discover motifs with high 
accuracy, the outputs sometimes include noises as a subsequence (false positive). This 
error may affect the ranking of that class of motifs. In the worst case, some potential 
motifs are missing (this is a subtle point regarding how to select a criterion or create/add 
members).  This happens because the choice of compression is MDL principle 
implemented via entropy basis. Entropy is regard as a “coarse” grain MDL. Therefore, a 
further refined version of MDL can enhance the accuracy. Furthermore, Euclidean 
distance does not allow warping distance in the time series. This can be improved by 
using alternative distances that allow warping such as Dynamic Time Warping (DTW). 
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 As for speed, one weakness of this work is at the very small size of motifs there 
are myriads candidates. So, it is slightly slow at the beginning since most of small size 
motifs are likely to be similar. One way to mitigate this issue is to provide an optional 
parameter to begin with any length other than 2. Typically, this optional parameter is 
trivial since some small motifs are meaningless. 

Even if the proposed algorithm has speedup over brute force search, a question 
still remains: can it be faster? For example, why runs from bottom to top incrementally 
only one length.  Why not run on every other two lengths? By doing this, it is possible to 
incorporate Apriori-like algorithm to discover proper length at a very fast speed.  
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