
การจ าแนกการกระท าของตวัละครในโปรแกรมจ าลองเกมเล่นตามบทบาทโดยใชโ้ครงข่าย
ประสาทแบบแพร่กระจายยอ้นกลบัท่ีคืนสภาพได ้

นายปิยชยั เอ่ียมสุขวฒัน์

วทิยานิพนธ์น้ีเป็นส่วนหน่ึงของการศึกษาตามหลกัสูตรปริญญาวทิยาศาสตรมหาบณัฑิต

สาขาวชิาวทิยาการคอมพิวเตอร์และสารสนเทศ ภาควชิาคณิตศาสตร์และวทิยาการคอมพิวเตอร์

คณะวทิยาศาสตร์ จุฬาลงกรณ์มหาวทิยาลยั

ปีการศึกษา 5222

ลิขสิทธ์ิของจุฬาลงกรณ์มหาวทิยาลยั

บทคดัยอ่และแฟ้มข้อมลูฉบบัเตม็ของวิทยานิพนธ์ตัง้แตปี่การศกึษา 2554 ท่ีให้บริการในคลงัปัญญาจฬุาฯ (CUIR)

เป็นแฟ้มข้อมลูของนิสติเจ้าของวิทยานิพนธ์ท่ีสง่ผา่นทางบณัฑิตวิทยาลยั

The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository(CUIR)

are the thesis authors' files submitted through the Graduate School.

CLASSIFYING CHARACTER’S ACTION IN ROLE-PLAYING GAME SIMULATION
USING RESILIENT BACKPROPAGATION NEURAL NETWORK

Mr.Piyachai Eamsukawat

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Science Program in Computer Science and Information

Department of Mathematics and Computer Science

Faculty of Science

Chulalongkorn University

Academic Year 2012

Copyright of Chulalongkorn University

iv

ปิยชยั เอ่ียมสุขวฒัน์ : การจ าแนกการกระท าของตวัละครในโปรแกรมจ าลองเกมเล่นตาม
บทบาทโดยใชโ้ครงข่ายประสาทแบบแพร่กระจายยอ้นกลบัท่ีคืนสภาพได.้
(CLASSIFYING CHARACTER’S ACTION IN ROLE-PLAYING GAME SIMULATION
USING RESILIENT BACKPROPAGATION NEURAL NETWORK)

อ.ท่ีปรึกษาวทิยานิพนธ์หลกั : ผศ.ดร.ศรันญา มณีโรจน์,
อ.ท่ีปรึกษาวทิยานิพนธ์ร่วม : ผศ.ดร.ศุภกานต ์พิมลธเรศ, 63 หนา้.

 งานวิจยัท่ีใช้การเรียนรู้ของเคร่ืองจกัรกลเพื่อสร้างเน้ือหาสาระท่ีออกแบบใหม่ในเกม
คอมพิวเตอร์มีอยูม่ากมาย ส่ิงท่ีทา้ทายคือการจ าแนกการกระท าของตวัละครโดยใช้การเรียนรู้ของ
เคร่ืองจกัรกลเพราะสามารถน าไปใช้ในเกมคอมพิวเตอร์โดยตรงและปรับปรุงการเรียนรู้ของตวั
ละครเก่ียวกบัการใชก้ลยุทธ์ภายใตส้ภาพการณ์ท่ีแตกต่างกนัของเกม ส่ิงน้ีท าให้เกมน่าต่ืนเตน้มาก
ข้ึน ตม้ไมก้ารตดัสินใจเร็วมาก สามารถจ าแนกการกระท าของตวัละครในโปรแกรมจ าลองเกมเล่น
ตามบทบาทคอมพิวเตอร์ แต่ความแม่นย านั้นไม่เพิ่มข้ึนมากเม่ือจ านวนการกระท าของตวัละครเพิ่ม
มากข้ึน ในงานวิจยัน้ีโครงข่ายประสาทแบบแพร่กระจายยอ้นกลบัท่ีคืนสภาพไดถู้กใช้เพื่อจ าแนก
การกระท าของตวัละครในโปรแกรมจ าลองเกมเล่นตามบทบาทคอมพิวเตอร์และเปรียบเทียบความ
แม่นย ากบัตน้ไมค้วามคิดไวมาก กลยุทธ์คงทีและกลยุทธ์ท่ีเปล่ียนแปลงได้ถูกทดสอบในการ
ทดลองเหล่าน้ี ผลการทดลองแสดงให้เห็นว่าขอ้มูลฝึกฝนจ านวนมากตามขอ้มูลเกมคอมพิวเตอร์ท่ี
สอดคลอ้งกนันั้นวธีิการท่ีเสนอน้ีท างานไดป้ระสิทธิภาพดีกวา่วิธีการท่ีมีอยู ่โครงข่ายประสาทแบบ
แพร่กระจายยอ้นกลบัท่ีคืนสภาพได้สามารถถูกออกแบบให้ใช้ในเกมคอมพิวเตอร์เพื่อลดความ
ซับซ้อนในการเขียนข้อก าหนดทางโปรแกรมและเพิ่มความสนุกในคอมพิวเตอร์เกมโดยเพิ่ม
ทางเลือกใหก้บัผูเ้ล่น

ภาควชิา คณิตศาสตร์และวทิยาการคอมพิวเตอร์ ลายมือช่ือนิสิต
สาขาวชิา วิทยาการคอมพิวเตอร์ และเทคโนโลยสีารสนเทศ ลายมือช่ือ อ.ท่ีปรึกษาวทิยานิพนธ์หลกั
ปีการศึกษา 2555 ลายมือช่ือ อ.ท่ีปรึกษาวิทยานิพนธ์ร่วม

v

5472629423 : MAJOR COMPUTER SCIENCE AND INFORMATION TECHNOLOGY
KEYWORDS : RESILIENT BACKPROPAGATION/RESILIENT PROPAGATION (RPROP)/
NEURAL NETWORK/ARTIFICIAL INTELLIGENCE (AI)/GAME/COMPUTER ROLE-
PLAYING GAME (CRPG)/PLAYER MODELING/STRATEGY/VERY FAST DECISION TREE
(VFDT)/ MACHINE LEARNING(ML)

PIYACHAI EAMSUKAWAT : CLASSIFYING CHARACTER’S ACTION IN ROLE-
PLAYING GAME SIMULATION USING RESILIENT BACKPROPAGATION
NEURAL NETWORK. ADVISOR : ASST. PROF. SARANYA MANEEROJ, Ph.D.,
CO-ADVISOR : ASST. PROF. SUPHAKANT PHIMOLTARES, Ph.D., 63 pp.

 There are many researches using Machine Learning (ML) to create new design
contents in computer game. The challenging task is to classify game character’s action
using ML because it can be straightforwardly implemented in the game, thereby
enhancing character learning about how to deploy strategies under different game
situations. This makes the game more exciting. Very Fast Decision Tree (VFDT) can
classify character’s actions in computer role-playing game (CRPG) simulation but the
accuracy is not much improved when the number of character’s actions is increased. In
this research, Resilient Backpropagation (RPROP) can improve such accuracy when the
character’s actions increase, so RPROP is implemented to classify character’s action in
the CRPG simulation and compared the accuracy with VFDT. The static strategies and
the changing strategies are tested in these experiments. The results show that at the
high number of training data corresponding to the computer game data, the proposed
scheme performs better than the existing method. RPROP can be designed to use in
computer game to decrease the complexity of programming script and improve the
excitement of the computer game by giving the player more alternatives.

Department : Mathematics Student’s Signature
Field of Study : Computer Science and Information Technology Advisor’s Signature

Academic Year : 2012 Co-advisor’s Signature

vi

ACKNOWLEDGEMENTS

 I would like to acknowledge my advisor, Assistant Professor, Saranya Maneeroj,
Ph. D. and my co-advisor Assistant Professor, Suphakant Phimoltares, Ph. D., at The
Advanced Virtual and Intelligent Center (AVIC) for their support. In fact, this thesis is
never going to complete without them. They always give me the new bright ideas as
much as I need and also alert me, every time I am careless.

 I also would like to acknowledge R. M. M. Vallim and J. Gama for giving me with
the data sets which are very benefit for this research. The data sets are very important.
By receiving them instead of generating new data sets, save a lot of researching time.

 I would like to appreciate Ms. Nonglak Puttacharoen, faculty staff who always
gives the very important information and help me solve a lot of problems as my another
advisor.

 My gratitude has to belong to my seniors, Ph.D. student at AVIC. They
generously teach me a lot of knowledge and kindly take care of me.

 Thank you my parents for my financial support and their kindness together with
my family. They always back me up with their love.

CONTENTS

 Page
ABSTRACT IN THAI iv
ABSTRACT IN ENGLISH v
ACKNOWLEDGEMENTS vi
CONTENTS vii
LIST OF TABLES ix
LIST OF FIGURES x

CHAPTER I INTRODUCTION 1
 1.1 Objectives 6
 1.2 Scope 6
 1.3 Research methodology 6
 1.4 Benefits 7

CHAPTER II THEORITICAL BACKGROUND 10
 2.1 Multilayer Feed Forward Artificial Neural Network 10
 2.2 Decision Tree 12
 2.3 Reinforcement Learning 13
 2.4 Greedy Algorithms 14

CHAPTER III RELATED WORKS 15

 3.1 Dyna-H 16

 3.2 Action-dependent Learning Rates with Trends (ALeRT) 20

 3.3 Cross Entropy Method (CEM) 24

 3.4 Very Fast Decision Tree (VFDT) 26

 3.5 Resilient Backpropagation (RPROP) 33

viii

 Page

CHAPTER IV PROPOSED METHOD 35

 4.1 Database of Character’s Action 35

 4.2 Learning Strategies 41

 4.2.1 Learning Static Strategies 42

 4.2.2 Learning Changing Strategies 44

CHAPTER V RESULTS 48

 5.1 Results of Learning Static Strategies 48

 5.2 Results of Learning Changing Strategies 52

CHAPTER VI DISCUSSION 56

 6.1 Discussion of Learning Static Strategies 56

 6.2 Discussion of Learning Changing Strategies 57

CHAPTER VII CONCLUSION 59

REFERENCES 61
BIOGRAPHY 63

ix

LIST OF TABLES

Table Page
1.1 Task schedule 8
4.1.1 Examples of offensive fighter database 38
4.1.2 Examples of defensive fighter database 39
4.1.3 Examples of offensive wizard database 40
4.1.4 Examples of defensive wizard database 41
4.2 Pattern of the changing strategies training 46
5.1.1 Comparison between RPROP and VFDT for offensive fighter 49
5.1.2 Comparison between RPROP and VFDT for defensive fighter 50
5.1.3 Comparison between RPROP and VFDT for offensive wizard 51
5.1.4 Comparison between RPROP and VFDT for defensive wizard 52
5.2.1 Comparison between RPROP and VFDT for Changing Strategies Fighter
 by starting from Offensive Fighter 54
5.2.2 Comparison between RPROP and VFDT for Changing Strategies Fighter
 by starting from Defensive Fighter 55
6.1 Examples of offensive fighter database 56

x

LIST OF FIGURES

Figure Page
1.1 Spronck’s Minigate environment 2007 3
3.1 diagram of multilayer feed forward artificial neural network 11
3.2 diagram of decision tree 13

CHAPTER I

INTRODUCTION

 Computer Role Playing Game (CRPG) is the type of computer game. Player has
to play as a role of a main character or a group of main characters. CRPG aims to
present the story of the characters ‟ such as fairy tales, historical stories, or fantasy
stories. CRPG normally is turn-based Gameplay which is a playing style in the computer
game. About the turn-based Gameplay, two or more characters fight in two teams ‟ one
team is controlled by the player and the other is controlled by computer. The characters
have their own turn. The player can play by selecting character’s action when the
characters in the player team have their turn. In the opposite way, some developers
want to create different CRPG to present in the computer game market, so CRPG also
has the other type of Gameplay ‟ such as side-scrolling action style or first person
shooting style. The simple thing to do in CRPG over fight, is questing. The questing can
be anything which the computer game can do; for example, the game asks the player
some questions or gives player some puzzle games to solve. Machado et al. (2011)
stated the objectives in CRPG are fighting, questing, finding items and leveling ‟
leveling is the content that makes player’s character stronger by fighting and questing.
Finding items can be the objective but it is always optional objective and leveling is
reward of fighting and questing. The finding items and leveling are important because
the player’s characters have to be strong enough to fight bosses who are stronger than
normal enemies. With good strategies, the boss fight will be easier. CRPG allows the
player to decide to use some different strategies. The strategy planning is the exciting
part of CRPG because the player involves with a lot of decisions, so the player has
choices which sometimes bad strategies can satisfy the player more than the better
strategies. And by choosing the choice, the player also involves the story more too.
 In this thesis, CRPG is used to generate character’s action. The CRPG is
Spronck’s Minigate environment (2007) which is the simulation of fighting in CRPG with

 2

turn-based table style ‟ also called tactical CRPG. The difference from turn-based
CRPG is the battle field. The turn-based CRPG does not design the distance on the
battle field and all the field areas are the same area for every characters on the field. But
the tactical CRPG has the field that separates into many areas like hexes. Every hex has
its own type of field that can be different from others, so some characters can be on the
grass field when some of them are on the dessert field but actually they are on the same
battle field. The different areas can have different effects which give the benefit for the
characters and the player has to plan the strategies involving with the hexes on battle
field as well. However in Minigate environment, every area is the same, so this is not
important. The other thing about the tactical CRPG’s battle field is the distance. In turn-
based CRPG, the distance is not calculated but in tactical CRPG, there are distances in
the battle field. The character can move and the character’s actions have range limit. In
Minigate environment, two teams of four characters have to fight each other till death.
The survivor team is the winner. In each team, there are two fighter characters and two
wizard characters. The fighter has strong melee attack and a lot of hit point but wizard
has a lot of tricky spells, so the common strategy is using the fighter attack while keep
enemy busy with the wizard’s spells. The other strategy is using the range attack or
spells to eliminate the wizard enemy first because the wizard has not much hit point.
However, there is no best strategy ‟ that makes the balance in the game. The other key
to victory in this game is randomness. There are many random elements which are the
hit rate of the attack, the effect of spell and then potions and wizard’s spell can become
random set too, if the rule setup for it to be random sets. In this way, the strategies have
to adapt to these random elements which are randomly occur during the game too, so
the static strategy is not going to be the best.

 3

Figure 1.1 : Spronck’s Minigate environment 2007

 There are a lot of computer games nowadays. Every computer game company
wants to create a new product and get more customers which can create the large
competitive market. In order to survive in the market, a new computer game must have
some new contents. In this way, a lot of computer researchers also want to develop the
new contents. In this research area, Machine Learning (ML) is now very popular
because there are a lot of ML techniques to use with many different types of computer
games. The types of computer game can be action game or real-time strategy game

 4

which has a lot of actions in every second. However, in some types of computer game
like turn-based game, there is some amount of time when the game stops and waits for
players to decide their action. In these types, there are different in computational time
for ML techniques because in the action game or the real-time strategy game, the game
time cannot stop until the game ends but in the turn-based game, the game time stops
in a lot of phases. And the ML techniques have different computational time, so the
computer researcher has to consider the suitable ML techniques for the type of
computer game. And then, there are some different ideas to use ML in the computer
game. R. Lopes el at. 2011 separated the ideas into five adaptable contents which
include game worlds, Gameplay mechanics, Non-playing characters (NPC) and Artificial
Intelligent (AI), game narratives, and game scenarios (include quests). In these
contents, some adaptive ideas can be about personal preference or about playing
experience. This thesis uses the adaptive AI content to adapt with the playing
experience. And to use the combination, there is a model of playing which is called
player modeling. When people have some experience in the game, they will create their
sets of strategies. And when the sets of strategies come with specific environment in the
game, they can be classified into types of playing strategy which is the player modeling.
The player modeling alone cannot do anything because it is just the set of strategy
without someone using it, so the computer game must have some functions to adapt to it
which are the five adaptable contents.
 In the traditional of game developing, CRPG always creates for single player
mode ‟ a player plays against the computer AI. The computer game character which is
played by the computer AI is called non player character (NPC) (S. Yildirim et al. 2009).
The computer AI is a programming language and writes by a lot of rule-based script ‟
one type of static AI. For examples, in this thesis, the character’s actions were
generated by using rule-based script of R. Vallim el at. (2010), such as; if the hit point is
lower than half and have potion of the hit point, use drink potion of the hit point action ‟
the rests are showed in Chapter 3.4. Very Fast Decision Tree. However, the static AI has
problems. First, it is easy to recognize by human because it is created by simple rules

 5

and never changes. Second, it always has weakness. In the previous example when the
hit point is lower than half with the potion, the computer AI will use the potion, so if player
make its hit point drop to just a half and then kill it in next turn, it will never have a
change to use the potion. The example shows that the weakness of the static AI makes
the computer AI not good enough in the game. Then third, it is easy for human to predict
what it is going to do. After its script is understood; its weakness is also found and then
every action of its can be predicted. Finally, the rule-based script become more
complicated when the computer AI has to be developed more in order to be good
enough to play with human. All four problems of the static AI are presented by I. Szita et
al. (2009). Now a lot of researchers present using ML instead to solve all of the problems
of static AI and the computer AI with ML is called adaptive AI. There are some works of
the researchers with the adaptive AI which are showed in the next section.
 In the researching area, R. Vallim et al. (2010) have used Very Fast Decision
Tree (VFDT) to classify character’s action in Minigate environment. VFDT can predict the
character’s action in some quality accuracy but when there are more number of the
data, the accuracy raise slowly because VFDT use information gain and entropy which
are not change more when the number of the data increase. Read more details of VFDT
in the next section.
 The other one of ML is artificial neural network (ANN). ANN has been used for
classification and clustering purpose. The idea of ANN is to translate input into output in
the way that human’s neurons use its signals. By using all of input to compute the
accuracy, ANN can classify the character’s action in some amount of number better
than VFDT In ANN area, there are two problems which are; first, it takes too long to
process learning time which is how ANN improves the translation to be more accurate
and second, how to improve the accuracy. So M. Riedmiller et al. (1992) has presented
Resilient Backpropagation (RPROP) to make the learning time process faster. However,
RPROP is not only faster but it also improves the accuracy of ANN in some cases when
the decreasing factor allow the ANN to find the highest accuracy when the slope
between error percentages and the changing weight value is very high. The more

 6

details of ANN and RPROP are stated in the next section. In this thesis, RPROP is used
to solve the slow improvement of accuracy when use VFDT to classify the increasing
number of character’s actions.

 1.1. Objectives

 In this study, the main objective is to classify character’s action of computer role
playing game with high accuracy by using neural network.

 1.2. Scope

 In this study, the identification system is constrained as follows:

1.2.1. Using RPROP neural network with three layers and total of five hidden
nodes to classify the character’s actions.
1.2.2. Using the character’s actions which were generated by R. Vallim el at.
(2010).
1.2.2. Comparing VFDT and neural network in classifying the character’s action

 1.3. Research Methodology
 In the procession, there are several tasks as following:

 Literature review: In order to understand this area of researching, a lot of paper
must be review. The importance key is about understanding the trend of using
ML in the computer game. Start review survey paper, understand meaning of
technical words and then focus on some topics.

 Collect data: The technical term of the research must be used to test the
methodology. So data are needed for the experiment. At the beginning, the data
are generated but the problem is the data preparation was described in the
reference unclearly. So asking for help from the other researchers is a best way
to go around the problem. By sending Email to R. Vallim and J. Gama for help,

 7

the data were given kindly. Observe VFDT: The replication of the reference
experiment was setup. In this time, the data were the problem, because by using
Massive Online Analysis (“MOA” is an application that performs VFDT with the
data.), the calculation could not be observed, so the problem was how the data
were calculated. To find the answer, the MOA’s programming script must be
understood.

 Test ANN with data: For ANN, it cannot use MOA to do the job. So other
application has to be prepared to test the data. The formation of the data has to
be changed in order to use with this application.

 Configuration of ANN: Because ANN can be used with any data, to make the
ANN becomes more specific to these data, some configurations have to be
tested. And in this process, RPROP had been decided to be used as ANN that
was fit for the data.

 Collect and discuss the results: This process did not take too long because
RPROP was good in time consumption, so the taken time came from some
discussions and tried to improve the results.

 Report the experiment: This thesis and conference paper was written. This is very
important because the proposed scheme and the experiment must be published
in order to give the knowledge in another point of view.

 8

Table 1.1 : Task schedule

Step

Tasks

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 Literature
review

2 Collect data

3 Observe very
fast decision
tree method

4 Test ANN with
data

5 Configuration
of ANN

6 Collect and
discuss the
results

7 Report the
experiment

 1.4. Benefits

 There are two benefits in this thesis. First, some ML techniques can be used to
create new contents in the computer game. In this thesis, RPROP was used in CRPG to
classify the character’s action and the reason to use RPROP because it can classify the
character’s action better than VFDT when the total number of the action increase too
some amount of numbers. It is shown that the way to use ML in the computer game has
to use ML that is compatible.
 The second benefit is the example of using the computer game in the computer
researching. Actually, there are many researches using some computer games or
physical games to explain about social, psychological or teaching; however, using
computer game is able to generate a lot of data by using only a few computers and

 9

there are a lot of computer games to use too. Other than using new algorithms to create
new contents in the game, some computer games can be used to test the new
algorithms.

CHAPTER II

THEORITICAL BACKGROUND

 As mention in previous section, the proposed method is using RPROP to classify
the character’s action in CRPG. RPROP is a multilayer feed forward ANN, so in the
section Multilayer Feed Forward ANN is explained with the other important algorithms
which are decision tree, reinforcement learning, and greedy algorithm.

 2.1. Multilayer Feed Forward Artificial Neural Network
 Basic of ANN come from linear function.

bxaxaxaxay nn ...332211 (1)

And then when there are more than one output (y), the formula moves to matrix.

mnmnmmm

n

n

n

m b

b

b

b

x

x

x

x

aaaa

aaaa

aaaa

aaaa

y

y

y

y

......

...

...............

...

...

...

...

3

2

1

3

2

1

321

3333231

2232221

1131211

3

2

1

 (2)

The inputs),...,,,(321 nxxxx are fed to the equation. Where x is input; y is output; a
and b are constant values. There is a diagram of multilayer feed forward artificial neural
network is shown as following.

 11

Figure 3.1 diagram of multilayer feed forward artificial neural network

In order to get output, input is needed for calculating with something in the middle way.
As in equation (2), there are a and b to use. In ANN, a is “weight” and b is “bias”. The
data is formed to be layers because the data come from the same sources as levels of
layers. The input nodes are in the input layer. The output nodes are also in the output
layer. Furthermore, there are hidden nodes between input node and output node in
Figure 3.1. Each hidden node has its a and its b . Each hidden node calculates its
outputs separately and sends the outputs to output nodes. The hidden node can be
more than one layer. If there are two or more than two hidden layers, the hidden node’s
outputs will be sent to the hidden nodes in the next hidden layers instead of the output
nodes and the last hidden layer will send the hidden node’s outputs to the output node.
The output nodes have to calculate the outputs from the hidden nodes as their inputs.
The output node also has its a and its b to calculate the outputs. And then the way of
the arrows have only direction forward to the output. It is called a feed forward network ‟
there is no backward error signal feed back to the previous layer. The error is also
defined by mean of square error or sum square error:

Mean Square Error: 22

33

2

22

2

11)'(...)'()'()'(
1

NN yyyyyyyy
N

MSE

input node x1

Input layer Output layer Hidden layer

Hidden

node

Hidden

node

Hidden

node

Hidden

node

input node x2

input node x3

input node xn

output node

y1

output node

y3

output node

ym

output node

y2

 12

Sum Square Error: 22

33

2

22

2

11)'(...)'()'()'(NN yyyyyyyySSE
Where N is total number of output)(y ; 'y is the network output; y is the class of the
output.

And then the error is used to adjust the weight by:)()()1(t
w

E
twtw

ij

ijij

 where

)(twij is old weight;)1(twij is new weight; E is the error; is learning rate.

 2.2. Decision Tree
 Some of Machine Learning (ML) techniques are developed by using decision
tree. Decision tree is the data structure which stores the data in the set ‟ call node. The
nodes have the connection that can track and link themselves like a tree. Decision tree
has level of the tree that is defined by one node at the lowest level of the tree which is a
root node and the nodes at the highest level of the tree are leaf nodes. The connections
between the nodes call branches. The node that has a branch link to the node on the
lower level of the tree call parent node. The node which has a parent call child node.
The nodes have relation parent and child when they are linked together with a branch.
The nodes have the grand child and grandparent relation when its child node has its
child node and the other one is child of the child node of the child node. The node
without any child node is also the leaf node. The nodes which are not the root node or
the leaf node are the interval nodes. There are types of decision tree. If the tree has no
more than two children in every node, it is called binary tree. If the tree has random
children on some nodes, it is multiple tree.

 13

figure 3.2 diagram of decision tree

Where n is the highest level of the tree.

 2.3 Reinforcement Learning
 In this thesis, a lot of related works are used MLs which are reinforcement
learning (RL). RL is a learning technique that uses a fitness function to adjust the main
functions. The fitness function is the function that generates the reward. First, the main
functions have to generate the output from the input that feed to them. Then the fitness
function will give the reward according to the output. The reward is a score that can be
positive or negative score. If the reward is a negative score, the main functions have to
change in order to change the output and get a positive score. So when the main
functions make more score, it means the learning algorithms have been trained the
function successfully.

interval node, level

2

interval node, level

1

leaf node, level

n

root node, level

0

 14

 2.4. Greedy Algorithm
 Greedy algorithm is the optimal selection. This algorithm is used to select the
highest value from the data. However, in this thesis, there is greedy algorithm that is a
different greedy algorithm. It is epsilon-greedy algorithm (-greedy algorithm).
-greedy algorithm is reinforcement learning. -greedy algorithm selects the highest
value from the data by probability 1 . The can be changed by using the learning
experience and fitness function.

CHAPTER III

RELATED WORKS

 In computer game commercial nowadays, there are a lot of similar games with
the same styles and contents. There are a lot of people who still buy new games which
are similar to the old ones, so the computer game developers do not want to develop
any new style game or create different content which cost a lot of money and have a risk
for the popularity. People, who play the game as a player, are suffering from the
business plan. Because the player wants to play new computer games but the new ones
always are similar to the old ones. And then the game developer knows that the old style
still make money, so there is no need to develop the new style; like a cycle.
 In the past century, the most developing in computer game was game graphic
and graphic art. A lot of games had series and a lot of them were developed mostly in
the graphic. In addition to the computer market, the graphic card was developed so fast
too. However, the graphic is now developed to the satisfy quality. It has some room to
develop but it should not be the important content in the game anymore. A lot of players
and game reviewers (the player who discuss about the content in the game; has to have
a lot of experience on a lot of different games) always say that the computer game is
good or bad, not come from the graphic but its Gameplay. Somehow graphic has to
satisfy the player. Too low and outdate graphic game always has bad comments.
 The important content in the computer game is Gameplay. Gameplay is the way
that player plays the game; include the style of game such as First Person Shooting
(FPS) game, Real Time Strategy (RTS) game, Turn-based Strategy game, Puzzle game,
Fighting game, Sport game, Racing game and Role-playing game (RPG). In these
different types of Gameplay, there are different ways to add or improve the contents of
the game. The Gameplay is the important content because it is how the player plays the
game. If the Gameplay focus on the wrong way, it can make the player bored and
confused. For example, the RPG with a slow pace Gameplay is very bored; even, it has

 16

a fantastic graphic and wonderful story, it is still too bored to play. Because Gameplay is
what player has to do for the most of the time in the game, playing with the bad
Gameplay is not acceptable at all.
 RPG is the story-based game. It has a long story which is told to the player along
with the Gameplay. Tropical RPG always has a story about a hero or a group of heroes
who have to save the world. The hero might be a kid or someone who have amnesia, so
the person does not know anything about the world. Then the story is going to tell about
the world to the hero and the player knows everything as the hero was told. The
Gameplay always is turn-based strategy which the player choose the character’s action
in order to beat the other player. If it is single player game, the other player is AI. In this
thesis, RPG is called Computer Role-playing game (CRPG) to avoid misunderstanding
because Role-playing game in education and psychology is mean the game which
people have to act as their roles and then the researchers record what the people do in
the situation. There are some types of Gameplay in CRPG. The developers can mix
CRPG with every other Gameplay. So instead of turn-based strategy, it can be fighting,
FPS, RTS or the other types. Because CRPG has quite a few types of Gameplay, some
literature researches about CRPG have to be reviewed.
 Nowadays every computer game’s contents have been developed so far but the
contents which are still able to developed, are the adaptable contents. According to a
research of R. Lopes el at. (2011), there are five adaptable contents ‟ game world,
Gameplay mechanics, NPC and AI, game narratives and game scenarios (include
quests). These contents had been integrated with ML in some different ways. ML are
proposed in a lot of researches which use ML for adapt the contents in the computer
game. And to understand the research in this area, these following researches about
CRPG have been reviewed in this section.

 3.1. Dyna-H
 CRPG was tested with different ML. M. Santos et al. (2012) using path finding in
CRPG to demonstrate Dyna-H algorithm. In an environment where the path has a lot of

 17

obstructions, AI has to find the shortest path, by using ML. In this experiment, Dyna-H,
Dyna-Q and Q-learning are the examined techniques.
 Dyna architecture is a reinforcement learning which uses the experience to
improve the learning model ‟ the model is the classification of the learning. It looks like
normal reinforcement learning; however, it has the direct learning that has the condition
when the learning experience is not good enough to create a new model yet, so it can
skip to create the poor model and learn from more experience before it can create the
good model.
 In Santos’ work, Dyna architecture has already present that it can combine with
Q-learning or heuristic planning. When it combines with Q-learning, it is Dyna-Q ‟
presented by R. Sutton el at. 1991. First, Q-learning algorithm is explained and then
Dyna-Q. Q-learning algorithm start with Q-table. It has state which is a situation where
the AI are in and action which is the option to choose in the situation. There are always
more than one action to choose and every action will bring the AI into a new state. In the
beginning of the learning, there are all of possible states and actions in the Q-table.
Every actions have to have their own state ‟),(xx asQ where s is state, a is action and
x is assumed to define any state or any action in the Q-table. And every action has the
initial score equal to 0 . In addition, there are some fitness functions to update the
scores.

Algorithm 3.1.1 : Q-learning
1) Initiate Q-table which all states and actions have scores equal to 0 : 0),(asQ .
2) Use -greedy to randomly select the starting state.
3) In the AI’s state, select the action in the state with highest score from the Q-table. If
there is more than one, select randomly.
4) Do the selected action and use the fitness functions to update the Q-table.
5) Repeat 3) and 4) until the AI’s state is the ending state.
6) Repeat 2) to 5), if the learning is going on to the next round.

 18

The ending state has to be notified in the learning condition. Normally in the path
finding, the ending state is the exit or the destination and the action is moving up, down,
left or right. However P. Patel el at. (2011) presented using Q-table in First Person
Shooting game (FPS game) which uses death of the character as the ending state.
 There are the Q-table combine with Dyna architecture ‟ Dyna-Q. The algorithm
does not allow the learning to skip to create the model; however, the model is used to
select the next state; allows the ML to predict the reward of the action on the previous
state before select the next action.

Algorithms 3.1.2 : Dyna-Q
1) Initiate Q-table which all states and actions have scores equal to 0 : 0),(asQ .
And Model which all states and actions have scores equal to 0 : 0),(asM .
2) Use -greedy to randomly select the starting state.
3) In the AI’s state, select the action in the state with highest score from the Q-table. If
there is more than one, select randomly.
4) Do the selected action and use the fitness functions to update the Q-table. And
update the Model. rewardasM),(, where reward is the score from the fitness
functions.
5) Select the previous state randomly by using -greedy.
6) Select the previous action randomly by using -greedy.
7) Use the model to calculate the reward of the action that selected in 6) and update the
score in Q-table.
8) Repeat 5) to 7) until N time; where N is the select number that is selected by user.
9) Repeat 2) to 8), if the learning is going on to the next round.

 In the last, for Dyna-H, the heuristic function (H) is calculated to find the worst
action. By finding the longest distance in the game, H can find the worst action by these
equations.

 19

 2||'||),(goalsasH (1)

),(maxarg),(asHHaha (2)

where),(asH is heuristic function of action a at state s ; 's is the next state after do
action a ; goal is the last state;),(Haha is the worst action in all states of),(asH .

H can find the worst action because ||'|| goals has the highest value when 's is the
state that has the longest distance from the goal. If the action is movement that moves
away from the goal, the action is the worst. Algorithm of Dyna-H is stated as following:

Algorithms 3.1.3 : Dyna-H
1) Initiate Q-table which all states and actions have scores equal to 0 : 0),(asQ .
And Model which all states and actions have scores equal to 0 : 0),(asM .
2) Use -greedy to randomly select the starting state.
3) In the AI’s state, select the action in the state with the highest score from the Q-table.
If there is more than one, select randomly.
4) Do the selected action and use the fitness functions to update the Q-table. And
update the Model. rewardasM),(, where reward is the score from the fitness
function.
5) Select the worst action by H.
 2||'||),(goalsasH (1)

),(maxarg),(asHHaha (2)

where),(asH is heuristic function of action a at state s ; 's is the next state after do
action a ; goal is the last state;),(Haha is the worst action in all states of),(asH .

 20

6) If the action that selected in 3) is not the worst action that selected in 5) then select
state and action randomly by using -greedy.
7) Use the model to calculate the reward of the action that selected in 6) and update the
score in Q-table.
8) Repeat 5) to 7) until N time; where N is the select number that is selected by user.
9) Repeat 2) to 8), if the learning is going on to the next round.

 The results of Dyna-H are better than either Q-learning or Dyna-Q. Because of
the model, Dyna-Q can get more scores and can update them into Q-table, so Dyna-Q
has learned more than Q-learning in the same total amount of the learning rounds. And
then Dyna-H also learns more than Dyna-Q in the same amoun of rounds too. However,
in each round, Dyna-H spends more resources on the process than Dyna-Q and Dyna-
Q is more than Q-table. So it depends on how the game is decided to use the ML. If the
resources are low, Q-table is a good ML but if the resources are enough, using Dyna-H
or Dyna-Q to use the resource should be better. Q-learning generates a random action
to calculate the updating Q-table and then it selects the best score action from the table.
In contrast, Dyna-H calculates all possible actions to calculate the table. When compare
with Q-learning which always chooses the same path that it knows best, it is difficult for it
to choose a new path. In these results, Dyna-H can select the best action in less
learning rounds than Q-learning and Dyna-Q. After that it has much better results than
the others. As mentioned in the previous chapter, some CRPGs have the battle field for
the Gameplay mechanic. So CRPG should use the MLs to improve their AI’s path
finding.

 3.2. ALeRT
 M. Cutumisu et al. (2008) presented Action-dependent Learning Rates with
Trends (ALeRT) algorithm which was adapted from State-Action-Reward-State-Action
(Sarsa) algorithm. Sarsa is an algorithm that is similar to Q-learning. For Q-learning, the
first action is selected randomly and then it is not recorded that it is the first action.

 21

However, for Sarsa, the first action is still the same that is selected randomly but it is
recorded and then in every round, the first action is this action. There is the algorithm of
Sarsa.

Algorithms 3.2.1 : Sarsa Algorithm
1) Initiate Q-table which all states and actions have scores equal to 0 : 0),(asQ .
2) Use -greedy to randomly select the first state.
3) Use -greedy to randomly select the first action.
4) In the AI’s state, select the action in the state with highest score from the Q-table. If
there is more than one, select randomly.
5) Do the selected action and use the fitness functions to update the Q-table.
6) Repeat 4) and 5) until the AI’s state is the ending state.
7) Repeat 4) to 6), if the learning is going on to the next round.

Using Sarsa can fix the first selecting action. The action is not selected randomly
but selected based on selected strategies, so the experiments can be fixed into
categories of the selecting actions.

Then about ALeRT, it is added the eligibility trace of the state-action pair (),(ase

) and the trace decay parameter (). The),(ase is the value that give the positive or
negative reward. The is a constant that updates the),(ase . And it uses Delta-Bar-
Delta (presented by R. Sutton el at. 1992) to detect the changing environment. The
learning rate is separated for each action and use the win or learning fast (WoLF
presented by Bowling and Veloso 2001) to decrease the learning rate if the action make
the character win the match to slow the learning or increase the learning rate. If the
action make the character loss the match to speed the learning up because when the
character losses, it should learning more quickly to change its strategies but when it
wins, it does not need to learning to change its strategies as when it losses.

 22

Algorithms 3.2.2 : ALeRT
1) Initiate Q-table with all state and action scores are 0 . 0),(asQ .
2) Initiate the eligibility trace. 0),(ase .
3) Initiate the action value. 0),(as .
4) Use -greedy to randomly select the first state.
5) Use -greedy to randomly select the first action.
6) Update),(ase for every action in this state by)1(),(),(11 ttttt iasease : ti is
total number of available action at step t .
7) In the AI’s state, select the action in the state with highest score from the Q-table. If
there is more than one, select randomly.

8) Update error () by
ti

tt asras
1

),(),(: r is reward of),(tt as .

9) Do the selected action and use the fitness functions to update the Q-table.
10) Update error () by),(*),(),(tttttt asQasas : In this experiment,
decreasing factor () of each algorithm is 1.
11) Update action value () by),(**),(),(ttatttt aseasas
12) Update the eligibility trace (),(ase) by),(**),(tttt asease : In this experiment,
trace decay parameter () of ALeRT is 0 .

13) Calculate a new changing learning rate () by
step

 minmax : minmax , are

the highest learning rate value and the lowest learning rate value in the previous actions
which are in range of step which is fixed to 20 in this experiment.
14) Increase learning rate () if

meanmeanmeanttmean faverageas *||0),(* , or decrease learning rate (
) if 0),(* ttmean as , or else use the current learning rate
: mean is Delta-Bar which is average value of learning rate in range of step (20 previous
steps), meanaverage is average of Delta-Bar, f is a constant factor which its value is
not reviewed by M. Cutumisu et al. (2008), mean is a standard deviation of Delta-Bar.
15) Repeat 6) to 14) until the AI’s state is the ending state.
16) Calculate a new (probability of greedy algorithm) by these conditions,

 23

if the AI win the match, increase the :
step

 minmax

, if the AI loss the match, decrease the :
step

 minmax

: minmax , are the highest value of and the lowest value of in step ‟ the minmax , are
limited to some value that is not reviewed by M. Cutumisu et al. (2008). The starts with
the max in this experiment. step is the range of the record which is fixed to 15 in this
experiment.
17) Repeat 6) to 16) , if the learning is going on to the next round.

 In M. Cutumisu et al. (2008), the P. Spronck el at. (2006)’s dynamic script called
M1, was used to compare with ALeRT. M1 is used in some computer games. It can
change the rule-based of the AI game by using low resources in the computation
process.
Algorithms 3.2.3 : M1
1) Use -greedy to randomly select the state.
2) Use -greedy to randomly select the action.
3) Do the selected action and use the fitness functions to update the Q-table.
4) Repeat 1) to 3) , if the learning is going on to the next round.

 The last AI uses the optimal rule-based script which is the best strategy in the
control environment. The authors have to predict the situation where the rule-based can
make the best strategies in every situation. The optimal script is not reviewed by M.
Cutumisu et al. (2008). However as Szita et al. (2009) stated, the rule-based script is too
complicate to be a best strategy. In the M. Cutumisu et al. (2008)’s work, the optimal
script is used to compare in the position of the best strategy ‟ the worst that optimal
script can do, is having equal win rate with the other algorithms when they have learned
to their full potential.
 ALeRT has the changing learning rate values due to changing of environment.
So in the experiment, the fighting match of Never Winter Night (CRPG, own by BioWare)

 24

was tested with Sarsa, ALeRT, M1 and optimal script. The condition is the environment
of the match will change when the characters change their equipments for melee fighter,
range fighter and healer. The game is setup with two characters with two different MLs.
The two of them have to fight until one of them die, so the survivor will be the winner. In
the match between ALeRT and M1, at the beginning, both of them have the 50% win
rate. However after the equipment changing ALeRT’s win rate increases to 80%
because it can adapt to the new environment faster. In the match between ALeRT and
optimal script, ALeRT can increase win rate to 50% against optimal script in 500
matches but the other algorithms cannot do that.
 In their experiment, M. Cutumisu et al. (2008) showed that ALeRT is a fast
learning algorithm and it can still learning fast when there are changing in the
environment by modifying the separated learning rate for each action, the changing
probability of greedy algorithm and the changing of learning speed when win or loss the
match.

 3.3. Cross-Entropy Method
 Szita et al. (2009) wants to solve the problems of static AI which are
complicated, weak, predictable and static. The static AI always has weaknesses
because it is difficult to program the AI to do the right thing in every situation and then
the human player can predict or guess the weaknesses by using some playing
experience. By using some strategies, the player can exploit the weakness of the static
AI and dominate the game. With the static AI which cannot change the strategy at all,
the player can find and use the strongest strategy against the AI to the end game which
makes the game boring because for the rest of the game, the player has to do the same
strategy ‟ also when the player play the second time too. To eliminate the weaknesses,
the programmers have to program the AI very carefully and the code must cover all
situations, so there are too many conditions which are needed to be added to the code.
After that when there are the problems, changing the codes must be very difficult tasks
because the codes always have to be very complicated.

 25

 Too solve the problem, Szita et al. (2009) used cross-entropy method (CEM) that
was presented by Rubinstein in a CRPG ‟ Minigate environment. CEM is used to select
the best strategy and also shift to the different strategies to get various strategies. CEM
is one of reinforcement learning. Three random actions will be generated as a set of
strategies to measure the performance of the strategies. The different orders of actions
provide different strategies.

Algorithms 3.3.1 : Cross-Entropy Method (CEM)
1) Initiate probability of every action : nppppp ...321 where 1p to np are the
same value.
2) Use -greedy to randomly select three actions and the set of the three actions is fixed
at order of the actions which are used in these orders by the AI character.
3) Do the action and update the action’s score by using fitness function. In Szita’s
experiment, there are two sub fitness functions which are strength and diversity. If the AI
wins the match, it will get more score from the strength function and if the AI uses the
actions what are different from the previous match, it will get more score from the
diversity function.
4) Do 2) and 3) until N matches: N is number of matches before the probability will be
updated; N is assigned by the author.
5) Update the probability by: if ip is in the top N* of set of action list,

)*/(' Npp ti and then iii ppp **)1(.
6) Do 2) to 5) again, if the learning is going on to the next round.

 In their experiment, authors want CEM to select strategies for AI. The first is
choosing the strongest strategy. The other is choosing diverse strategy. So, the strategy
has to be strongest but not always be the same strategy. At the end of learning, the best
set of strategies was chosen as a macro strategy. Such macros are brought to use with
the dynamic script (see algorithms 3.2.3) to create random event. The dynamic script is
one of reinforcement learning and usually implements in computer game. In the

 26

experiment, dynamic script is used to compare with CEM in the strong and diversity
ways. Both CEM with dynamic script AI and dynamic script AI have to play with the four
difficulties of the static AI and the results of the matches are recorded in how the strong
and diversity ways they are.
 The results showed that using CEM with dynamic script can choose stronger
and more diverse strategies than using only dynamic script. Because the actions
conflict with the others, some actions are good but when combine with the wrong
actions, they do not work well. So using the macros can fix the good combination. About
the diversity, CEM with the diverse fitness function also create the micros with the good
diversity among themselves but dynamic which can only select the action randomly
cannot tell the different between the selected action and the previous action to select
them differently.

 3.4. Very Fast Decision Tree
 After Szita proposed using CEM with Minigate environment, Vallim et al. (2010)
also used Minigate environment to generate their different style patterns and selected
very fast decision tree (VFDT) which created by Domingos et al. (2000), as the learning
technique to classify the character’s action which are created by the rule-based scripts.
The rule-based scripts make the character always acts the same thing in the same
situation and creates the patterns in the game. VFDT is used to classify the patterns. The
character’s actions are created by the four sets of rule-based scripts. Each set make the
character do different actions in the same situation, so the four sets are created different
patterns. These patterns are also called the character’s strategies because the patterns
give the character’s decision to choose actions. In this experiment, the four sets of rule-
based script create four types of character’s strategies which are fighter’s offensive
tactic, fighter’s defensive tactic, wizard’s offensive tactic and wizard’s defensive tactic.
The rule-based scripts are shown as follows:

 27

The fighter’s offensive tactic:

 if (HP < 50) and (PotionHealing = yes) then DrinkPotionH

 if (HP 50) then AttackClosestEnemy
The wizard’s offensive tactic:

 if (HP < 50) and (PotionHealing = yes) then DrinkPotionH

 if (HP 50) and (Level3SpellDG = yes) and (TypeClosestEnemy = wizard) then
CastLevel3DGSpellCenterEnemy

 if (HP 50) and (Level2SpellDG = yes) then CastLevel2DGSpellClosestEnemy

 if (HP 50) and (Level1SpellDG = yes) then CastLevel1DGSpellWeakestEnemy

 if (HP 50) then AttackClosestEnemy
The defensive fighter’s tactic:

 if (RoundNumber 1) and (PotionFR = yes) then DrinkPotionFR

 if (HP < 50) and (PotionHealing = yes) then DrinkPotionH

 if (HP 50) then AttackClosestEnemy
The defensive wizard’s tactic:

 if (HP < 50) and (PotionHealing = yes) then DrinkPotionH

 if (HP 50) and (Level2SpellDF = yes) then CastLevel2DFSpellCenterEnemy

 if (HP 50) and (Level3SpellDF = yes) then CastLevel3DFSpell

 if (HP 50) and (Level1SpellDF = yes) then CastLevel1DFSpellClosestEnemy

 if (HP 50) then AttackClosestEnemy
Key words:
 HP = percentage of own hit point
 PotionHealing = potion of healing (a parameter for detecting potions of healing)

*Potion of healing is used only in this rule-based script. Potion of healing will be
called “potion of hit point” later.

 DrinkPotionH = choose action “drink potion of healing”

 28

 AttackClosestEnemy = find the closest enemy and choose action “malee attack”
target the closet enemy.

 Level3SpellDG = level 3 damage spell (a parameter for detecting level 3 damage
spell)

 Level2SpellDG = level 2 damage spell (a parameter for detecting level 2 damage
spell)

 Level1SpellDG = level 1 damage spell (a parameter for detecting level 1 damage
spell)

 TypeClosestEnemy = type of the closest enemy
 CastLevel3DGSpellCenterEnemy = find the center of enemies and choose the

action “cast level 3 damage spell” target the center of enemies
 CastLevel2DGSpellClosestEnemy = find the closest enemy and choose the action

“cast level 2 damage spell” target the closest enemy
 CastLevel1DGSpellWeakestEnemy = find the weakest enemy and choose the

action “cast level 1 damage spell” target the weakest enemy
 RoundNumber = turn (a parameter for natural how many times the characters do

their actions ‟ start from 1 to 20)
 PotionFR = potion of fire resistance (a parameter for detecting potions of fire

resistance)
 DrinkPotionFR = choose action “drink potion of fire resistance”
 Level3SpellDF = level 3 damage spell (a parameter for detecting level 3 defensive

spell)
 Level2SpellDF = level 2 damage spell (a parameter for detecting level 2 defensive

spell)
 Level1SpellDF = level 1 damage spell (a parameter for detecting level 1 defensive

spell)
 CastLevel3DFSpell = choose the action “cast level 3 defensive spell”
 CastLevel2DFSpellCenterEnemy = find the center of enemies and choose the

action “cast level 2 defensive spell” target the center of enemies

 29

 CastLevel1DFSpellClosestEnemy = find the closest enemy and choose the action
“cast level 1 defensive spell” target the closest enemy

 Then these four types of strategies are used to create four types of databases.
By using the strategies in the game, the situation and the action of the characters were
recorded. A lot of playing matches were simulated by Minigate environment to generate
large databases. In the records, the situations are defined as attributes and the actions
are classes. The databases were designed as follows:

„ Offensive fighter database has seven attributes and two classes. The attributes
are hit point, closet enemy distance, influence status, location status, potion of hit point,
potion of fire resistance, and potion of free action. The classes are attacking, and
drinking potion of hit point.
„ Defensive fighter database has eight attributes and three classes. The attributes
are turn, hit point, closet enemy distance, influence status, location status, potion of hit
point, potion of fire resistance, and potion of free action. The classes are attacking,
drinking of potion hit point, and drinking of fire resistance potion.
„ Offensive wizard database has 11 attributes and five classes. The attributes are
hit point, closet enemy distance, closet enemy type, influence status, location status,
potion of hit point, potion of fire resistance, potion of free action, offensive spell level 1,
offensive spell level 2, and offensive spell level 3. The classes are attacking, drinking
potion hit point, casting offensive spell level 1, casting offensive spell level 2, and
casting offensive spell level 3.
„ Defensive wizard database has 11 attributes and five classes. The attributes are
hit point, closet enemy distance, closet enemy type, influence status, location status,
potion of hit point, potion of fire resistance, potion of free action, defensive spell level 1,
defensive spell level 2, and defensive spell level 3. The classes are attacking, drinking
potion hit point, casting defensive spell level 1, casting defensive spell level 2, and
casting defensive spell level 3.

 30

 definition of attributes

 Turn (1-20): number of playing rounds. Turn = 1 means that the character has
passed 1 round. There is no record from an initial turn. It is recorded as natural
number.

 Hit point (1-100): percentage of hit point. If the character receives damage from
the enemy, it decreases and if it is 0, the character die, so the hit point is never 0
in the record. It is natural number, not float number.

 Closet enemy distance (1-20): distance of a closet enemy on the field. It is in-
game distance. it is recorded as natural number, not float number.

 Closet enemy type (0, 1): a fighter type or a wizard type. For a fighter enemy, it is
0 and for a wizard, it is 1.

 Influence status (0, 1): mark of spell effect. For a character with no spell effect, it
is 0 and for a character with spell effect, it is 1.

 Location status (0, 1): inside the area of spell effect. For a character in a normal
area, it is 0 and for a character in a spell area, it is 1.

 Potion of hit point (0, 1): having potion of hit point in inventory. If the character
has the item, it is 1, or else 0.*

 Potion of fire resistance (0, 1): having potion of fire resistance in inventory. If the
character has the item, it is 1, or else 0.*

 Potion of free action (0, 1): having potion of free action in inventory. If the
character has the item, it is 1, or else 0.*

 Offensive spell level 1 (0, 1): able to cast offensive spell level 1. If the character
has the spell, it is 1, or else 0.*

 Offensive spell level 2 (0, 1): able to cast offensive spell level 2. If the character
has the spell, it is 1, or else 0.*

 Offensive spell level 3 (0, 1): able to cast offensive spell level 3. If the character
has the spell, it is 1, or else 0.*

 31

 Defensive spell level 1 (0, 1): able to cast offensive spell level 1. If the character
has the spell, it is 1, or else 0.*

 Defensive spell level 2 (0, 1): able to cast offensive spell level 2. If the character
has the spell, it is 1, or else 0.*

 Defensive spell level 3 (0, 1): able to cast offensive spell level 3. If the character
has the spell, it is 1, or else 0.*

 * In the script, there are random generated rules which random character’s items and
spells.

 VFDT are decision tree that can decide the highest entropy or information gain of
all attributes in the patterns which are used as training set to create root node and use
the decided attribute to separate the patterns into groups of the patterns with the same
class at the leaves node. However, there is a threshold which is criteria to create a new
level of tree. In the case of under the threshold, the creation of the new level will be
terminated. Therefore, Naïve Bayes is used to solve this problem to select the class of
the pattern at the current leaf node.

Algorithms 3.4.1: VFDT
1) Initiate the root node every data start at.
2) Calculate the entropy and the information gain in every leaf node by:

n

i

tiptiptEntropy
1

2)|(log)|()(where)(tEntropy is Entropy of an attribute;

)|(tip is probability of a value (i) in an attribute (t); n is total number of values (i) in
an attribute (t).

k

j

j

j
leafEntropy

parentN

leafN
parentEntropy

1

)(
)(

)(
)(where is the Information Gain;

)(parantEntropy is the entropy of the parent node; jleafEntropy)(is the entropy of
the leaf node which uses attribute j to split;)(parantN is a total number of data in
parent node before splitting; jleafN)(is a total number of data in this leaf node after
splitting by attribute j ; k is total of attributes in the leaf node.

 32

3) Spit the leaf node by the highest entropy or the highest information gain if the
condition in the Hoeffding function is true. Calculate Hoeffding function which is criteria

to create a new level of tree by:)()(
2

1
ln

2 ba
n

R

 or

n

Rba
2

1
ln

)()(2 where is Hoeffding bound which is the criteria

that is compared with the difference between the highest entropy and the second
highest entropy; R is the range of a random variable r ; is a value that equal to 1
minus probability of r (probability of 1r);)(a is the highest entropy or the
highest information gain in the leaf node;)(b is the second highest entropy or the
second highest information gain in the leaf node; is the threshold what is suggested
by the authors ‟ in their experiment, is equal to 0.
4) Every data in the leaf node has to be classified by Naïve Bayes.
5) Rebuild the tree when there are more N number of data come into the data set ‟ N is
the lowest number of data that the user suggest to rebuild the tree. In Vallim et al.
(2010), N is equal to 1.

 In their works, they have four types of characters which are offensive fighter,
defensive fighter, offensive wizard and defensive wizard. First, the characters were
tested separately in static strategy learning. All character’s actions of each character
type were used to create a decision tree by the VFDT algorithms. Then it was used to
classify the test sets and the classification compared the output with the actual test sets
to get the accuracy. Second, the offensive fighter and defensive fighter were tested in
the changing strategy learning. The classification did the same with the static strategy
learning but there is a different data set. The sequence of the data set had an
importance role. The offensive fighter and the defensive fighter have a mixture in the
data set with the sequence which offensive fighter’s actions were randomly selected first
until a thousand actions, defensive fighter’s actions were played until a thousand and

 33

five hundreds actions and then these two types of actions were randomly selected one
thousand and five hundreds each alternatively.
 Their work was a main reference in this work. The character’s actions in this work
are given by them too. In order to improve the performance of the classification, the
resilience backpropagation (RPROP) has tested with the character’s actions.

 3.5. Resilience Backpropagation (RPROP)
 For RPROP related work, A. Mark et al. (2004) use Genetic Algorithm and
RPROP to predict opponent’s strategies and find counter strategies in Prisoner’s Dilmma
game and Rock Paper Scissors with Well game. Both games are not CRPG type but are
competitive game between two players that the one who gets more score at the end of
the game is the winner. Genetic Algorithm is the other reinforcement learning. By
randomly generating playing situation and test with fitness function, it can select best
opponent strategy and best counter strategy. Combined with playing history, all of
playing situations and strategies as patterns are fed to RPROP to build the network and
find the predicted action of opponent.

Algorithms 3.5.1 : Genetic Algorithm
1) Randomly initiate data set.
2) Randomly initial copies of data by using random weights ‟ the random weights are
changes which some copies are created complete randomly but some copies are
created with some parts of the other data in their parts, like the crossing over in the
biological chromosomes.
3) Select best four actions into the future of the opponent from 16 previous actions of the
opponent.
4) Calculate of the actions to get the best action of the opponent in the next round.
5) Select own action and do the action to evaluate the score.
6) Use the new score to update the Genetic algorithm’s random weight and RPROP
network’s weight.

 34

 RPROP is a multi-layered feed-forward network with the increasing and
decreasing factors which are different in values ‟ presented by M. Riedmiller el at. 1992.
It is proposed to improve the original Backpropagation. RPROP can train a network fast
because the idea that use of the high increasing factor can push the point forward to
where the lowest error can be obtained. In the case that the error is not the lowest, the
low decreasing factor can slowly find the lowest point. This is usually faster than using
only learning rate of the Backpropagation to adjust weight values when the learning rate
has to be low, so it makes the pushing forward steps slower than RPROP by

 0)(*)1(,*0

 t

w

E
t

w

E
if

ijij

 ijw 0)(*)1(,*0

 t

w

E
t

w

E
if

ijij

 else,0
Where 0 is the original weight adjusted or the)1(twij in the Multilayer Feed Forward
Artificial Neural Network which is stated as follows (see Chapter 2.1.):

)()()1(t
w

E
twtw

ij

ijij

 Where ijw (t) is old weight; ijw (t+1) is new weight; E is the

error; is learning rate;
 is increasing factor and is decreasing factor and 10 .

 In A. Mark’s work, they focus only on two similar players, not apply on CRPG
which has diverse characters.

CHAPTER IV

PROPOSED METHOD

 This proposed method aims to eliminate the problem of VFDT which the problem
is when the number of data increases, the accuracy increase slowly because VFDT uses
information gain or entropy as mentioned in the previous section. By using RPROP, the
increasing data will be considered as the input patterns and the data can improve the
accuracy much more faster compared to VFDT. So this proposed method aims to use
RPROP to add more accuracy in the classifying character’s action.

 4.1. Databases of Character’s Actions
 The databases of the character’s actions have been received from Vallim et al.
(2010). The data were generated by recording the patterns of a computer role-playing
game ‟ Minigate environment created by Pieter Spronck, 2007. There are four types of
database ‟ offensive fighter database, defensive fighter database, offensive wizard
database, and defensive wizard database.

„ Offensive fighter database has seven attributes and two classes. The attributes
are hit point, closet enemy distance, influence status, location status, potion of hit point,
potion of fire resistance, and potion of free action. The classes are attacking, and
drinking potion of hit point.
„ Defensive fighter database has eight attributes and three classes. The attributes
are turn, hit point, closet enemy distance, influence status, location status, potion of hit
point, potion of fire resistance, and potion of free action. The classes are attacking,
drinking of potion hit point, and drinking of fire resistance potion.
„ Offensive wizard database has 11 attributes and five classes. The attributes are
hit point, closet enemy distance, closet enemy type, influence status, location status,

 36

potion of hit point, potion of fire resistance, potion of free action, offensive spell level 1,
offensive spell level 2, and offensive spell level 3. The classes are attacking, drinking
potion hit point, casting offensive spell level 1, casting offensive spell level 2, and
casting offensive spell level 3.
„ Defensive wizard database has 11 attributes and five classes. The attributes are
hit point, closet enemy distance, closet enemy type, influence status, location status,
potion of hit point, potion of fire resistance, potion of free action, defensive spell level 1,
defensive spell level 2, and defensive spell level 3. The classes are attacking, drinking
potion hit point, casting defensive spell level 1, casting defensive spell level 2, and
casting defensive spell level 3.

 The definitions of the attributes
„ Turn (1-20): number of playing round. Turn = 1 is mean the character has
passed one round. There is no record from an initial turn. It is recorded as natural
number.
„ Hit point (1-100): percentage of hit point. If the character receives damage from
the enemy, it decreases and if it is 0, the character die, so the hit point is never 0 in the
record. It is natural number, not float number.
„ Closet enemy distance (1-20): distance of a closet enemy on the field. It is in-
game distance. It is record as natural number, not float number.
„ Closet enemy type (0, 1): a fighter type or a wizard type. For a fighter enemy, it is
0 and for a wizard, it is 1.
„ Influence status (0, 1): mark of spell effect. For a character with no spell effect, it
is 0 and for a character with spell effect, it is 1.
„ Location status (0, 1): inside the area of spell effect. For a character in a normal
area, it is 0 and for a character in a spell area, it is 1.
„ Potion of hit point (0, 1): having potion of hit point in inventory. If the character
has the item, it is 1, or else 0.*

 37

„ Potion of fire resistance (0, 1): having potion of fire resistance in inventory. If the
character has the item, it is 1, or else 0.*
„ Potion of free action (0, 1): having potion of free action in inventory. If the
character has the item, it is 1, or else 0.*
„ Offensive spell level 1 (0, 1): able to cast offensive spell level 1. If the character
has the spell, it is 1, or else 0.*
„ Offensive spell level 2 (0, 1): able to cast offensive spell level 2. If the character
has the spell, it is 1, or else 0.*
„ Offensive spell level 3 (0, 1): able to cast offensive spell level 3. If the character
has the spell, it is 1, or else 0.*
„ Defensive spell level 1 (0, 1): able to cast offensive spell level 1. If the character
has the spell, it is 1, or else 0.*
„ Defensive spell level 2 (0, 1): able to cast offensive spell level 2. If the character
has the spell, it is 1, or else 0.*
„ Defensive spell level 3 (0, 1): able to cast offensive spell level 3. If the character
has the spell, it is 1, or else 0.*
 * In this rule, there are random generated character’s items and spells.

 38

Examples of the databases

Table 4.1.1 : Examples of offensive fighter database
HP CED IS LS Potion

HP
Potion

FR
Potion

FA
Class

60 5 0 0 0 0 1 Attack_closest_enemy
63 2 0 1 0 1 0 Attack_closest_enemy
36 19 1 0 1 0 0 Drink_potion_A
89 8 0 1 1 1 1 Attack_closest_enemy
12 4 1 0 0 1 1 Attack_closest_enemy
90 13 1 0 1 1 1 Attack_closest_enemy
22 14 0 0 1 1 0 Drink_potion_A
25 18 0 1 1 1 1 Drink_potion_A
34 11 1 1 1 1 1 Drink_potion_A
75 20 1 0 1 1 1 Attack_closest_enemy

 39

Table 4.1.2 : Examples of defensive fighter database
Turn HP CED IS LS Potion

HP
Potion

FR
Potion

FA
Class

8 34 12 1 0 1 1 0 Drink_potion_A
12 84 19 0 1 0 0 0 Attack_closest_enemy
8 20 3 0 0 1 1 1 Drink_potion_A
13 46 7 0 0 0 1 1 Attack_closest_enemy
12 98 2 0 1 1 1 1 Attack_closest_enemy
4 27 9 1 0 0 0 1 Attack_closest_enemy
5 75 14 0 0 0 0 1 Attack_closest_enemy
7 98 7 1 0 1 0 1 Attack_closest_enemy
13 22 2 0 0 1 1 0 Drink_potion_A
1 37 11 0 1 1 0 1 Drink_potion_B

 40

Table 4.1.3 : Examples of offensive wizard database
H
P

CE
D

CE
T

I
S

L
S

Poti
on
HP

Potio
n FR

Potio
n FA

OFS
L1

OFS
L2

OFS
L3

Class

23 7 1 0 0 1 0 1 1 1 0 Drink_potion_A

75 20 0 1 1 1 0 0 1 1 1
Cast_DSpell2_cl

osestEnemy
1 14 0 0 1 1 1 1 0 1 0 Drink_potion_A

83 2 1 0 0 0 0 0 0 0 1
Cast_DSpell3_c

enterEnemy

73 9 1 0 0 0 1 0 1 1 1
Cast_DSpell3_c

enterEnemy

74 18 1 1 0 1 1 0 0 1 0
Cast_DSpell2_cl

osestEnemy
25 15 0 1 1 1 0 1 0 0 1 Drink_potion_A

92 2 0 0 0 1 0 0 0 0 0
Attack_closest_

enemy

98 9 0 0 0 0 1 1 1 1 0
Cast_DSpell2_cl

osestEnemy

51 6 1 1 1 0 1 0 1 0 0
Cast_DSpell1_w

eakestEnemy

 41

Table 4.1.4 : Examples of defensive wizard database
H
P

CE
D

CE
T

I
S

L
S

Poti
on
HP

Potio
n FR

Potio
n FA

OFS
L1

OFS
L2

OFS
L3

Class

23 7 1 0 0 1 0 1 1 1 0 Drink_potion_A
75 20 0 1 1 1 0 0 1 1 1 Cast_DSpell2
1 14 0 0 1 1 1 1 0 1 0 Drink_potion_A
83 2 1 0 0 0 0 0 0 0 1 Cast_DSpell3
73 9 1 0 0 0 1 0 1 1 1 Cast_DSpell2
74 18 1 1 0 1 1 0 0 1 0 Cast_DSpell2
25 15 0 1 1 1 0 1 0 0 1 Drink_potion_A

92 2 0 0 0 1 0 0 0 0 0
Attack_closest_

enemy
98 9 0 0 0 0 1 1 1 1 0 Cast_DSpell2
51 6 1 1 1 0 1 0 1 0 0 Cast_DSpell1

 4.2. Learning Strategies

 First, the static strategies need to be tested with the ML algorithm ‟ RPROP. In
order to classify the character’s action, the character must have their situation pattern in
the game been recorded. As presented in the previous topic, the databases are used as
the character’s situation pattern that can describe their situation in the game. And then
the pattern is used to classify the character’s action in the training of ML. After the ML
train the network, the network will be able to classify the character’s action from the
character’s situation pattern of the test sets. Finally the classes from the testing will be
compared with the class from the original records of the test sets. The comparison is
used to calculate the classification accuracy which shows the relation of the ML and the
data set. If the percentages of the accuracy are high that mean the ML is suitable with
the data set. In the testing run, the number of the data set was proved to have impact

 42

with the accuracy. So the test was repeated with the different number of the data in the
training sets.
 After the first test, the changing strategies are the next tests for the ML. If ML is
suitable for the CRPG, it should be able to handle with changing strategies. The
changing strategy is the natural way of the human player who is learning to use a new
strategy. A new strategy makes a human player be better because there are more
strategies to choose. Some strategies are for fun too but they are not the purpose. The
human player also adapts a new strategy to counter the enemy’s strategy which is made
the AI have to learn the changing strategies. Without ML, it is very difficult to make the AI
learn the changing strategies, so using ML is solution and this is why the changing
strategies are tested.

 4.2.1. Learning Static Strategies

 In the research, the test runs show that when using the attributes as inputs,
RPROP will give outputs what classes of the character’s actions are. In these following
steps, the network was configured and tested with the database:
1) There are four RPROP networks for four databases which contain configured
parameters and function as follows.
„ one input layer with number of attributes that equals to number of input nodes
„ one hidden layer with five hidden nodes
„ one output layer with number of classes that equals to number of output nodes
„ mean square error as performance function
„ Log-Sigmoid as transfer function
„ Stoping criteria:
 „ performance goal is 0
 „ maximum number of epochs to train = 1,000
 „ minimum performance gradient = 0.000001
„ learning-rate = 0.01

 43

„ increasing factor = 1.2
„ decreasing factor = 0.5
2) For each database from section 4.2., ten different sets of 1,000 patterns are
used as ten training sets.
3) For each database, ten different sets of 500 patterns are used as ten test sets.
4) The character’s action was changed into binary numbers corresponding to
output classes:
„ Offensive fighter. There are two output classes: attacking (1, 0) and drinking
potion of hit point (0, 1)
„ Defensive fighter. There are three output classes: attacking (1, 0, 0), drinking
potion of hit point (0, 1, 0) ,and drinking potion of fire resistance(0, 0, 1)
„ Offensive wizard. There are five output classes: attacking (1, 0, 0, 0, 0), drinking
potion of hit point (0, 1, 0, 0, 0), casting offensive spell level 1 (0, 0, 1, 0, 0), casting
offensive spell level 2 (0, 0, 0, 1, 0), and casting offensive spell level 3 (0, 0, 0, 0, 1).
„ Defensive wizard. There are five output classes: attacking (1, 0, 0, 0, 0), drinking
potion of hit point (0, 1, 0, 0, 0), casting defensive spell level 1 (0, 0, 1, 0, 0), casting
defensive spell level 2 (0, 0, 0, 1, 0), and casting defensive spell level 3 (0, 0, 0, 0, 1).
5) There were total numbers of 5, 10, 15, 20, 25, 30, 40, 50, 100, 200, 300, 400,
500, and 1000 training set patterns.
6) Each training set in 2) with each total number of the patterns in 5) were used to
train each network to test with the 10 different test sets in 3)
7) The overall accuracy of the network is calculated. From the output, the outputs
always are values from 0 to 1, so the greatest value among all output nodes in the
network will be considered as 1 and the others are 0. The output was compared to the
actual class for each character’s action in the test set. Then the accurate ones are taken
into account and used to calculate percentage of accuracy.
8) The average percentage of accuracy between each pair of different training set
and test set with the same total number of patterns in 5) is calculated.

 44

 4.2.2. Learning Changing Strategies

 After that, in order to compare the changing strategies which have been tested
with VFDT by Vallim et al., the changing strategies were also tested by using RPROP
under the consideration as follows.
1) The RPROP was configured the same as the first testing in the previous
subsection.
2) Because the database from Vallim et al. (2010) does not contain patterns for
changing strategies experiment, the new datasets of patterns were created. There are
new training sets which are created by mixing offensive and defensive fighter’s actions
and two types of test sets: offensive test set and defensive test set.
3) The new training sets were generated from a combination of offensive and
defensive fighters’s actions as follows.
a) Training by 500 offensive fighter’s actions and testing by 50 offensive fighter’s
actions
b) Training by a) including 500 offensive fighter’s actions (1,000 offensive fighter’s
actions) and testing by 50 defensive fighter’s actions
c) Training by b) plus 500 defensive fighter’s actions (1,000 offensive fighter’s
actions and 500 defensive fighter’s actions) and testing by 50 defensive fighter’s actions
d) Training by c) plus 500 defensive fighter’s actions (1,000 offensive fighter’s
actions and 1,000 defensive fighter’s actions) and testing by 50 defensive fighter’s
actions
e) Training by d) plus 500 defensive fighter’s actions (1,000 offensive fighter’s
actions and 1,500 defensive fighter’s actions) and testing by 50 offensive fighter’s
actions
f) Training by e) plus 500 offensive fighter’s actions (1,500 offensive fighter’s
actions and 1,500 defensive fighter’s actions) and testing by 50 offensive fighter’s
actions

 45

g) Training by f) plus 500 offensive fighter’s actions (2,000 offensive fighter’s
actions and 1,500 defensive fighter’s actions) and testing by 50 offensive fighter’s
actions
h) Training by g) plus 500 offfensive fighter’s actions (2,500 offensive fighter’s
actions and 1,500 defensive fighter’s actions) and testing by 50 defensive fighter’s
actions
i) Training by h) plus 500 defensive fighter’s actions (2,500 offensive fighter’s
actions and 2,000 defensive fighter’s actions) and testing by 50 defensive fighter’s
actions
j) Training by i) plus 500 defensive fighter’s actions (2,500 offensive fighter’s
actions and 2,500 defensive fighter’s actions) and testing by 50 defensive fighter’s
actions
k) Training by j) plus 500 defensive fighter’s actions (2,500 offensive fighter’s
actions and 3,000 defensive fighter’s actions) and testing by 50 offensive fighter’s
actions
4) Each pair of training set and test set from a) to k) was tested five times.
5) The average accuracy was calculated from a) to k) separately.
6) Do 1) to 5) again in opposite way by swapping each offensive set to defensive
set and swapping each defensive set to offensive set.

 46

 Pattern of the charging strategies training
 In step 3) of the changing strategies, there are patterns as follows:

Table 4.2 : Pattern of the changing strategies training
Step Purpose of step

1) Initiate the network. Train 500 data
of A training set and test by A test set.
(A is the first strategy to start learning
from. A can be offensive fighter
strategy or defensive fighter strategy)

This is the simulation where the learning ML
does normally training ‟ it is trained and tested
with the same type of strategy.

2) Add 500 data of A training set to
training set. test by B test set.
(B is the second strategy to learning. B
is the opposite strategy of A. If A is
offensive fighter strategy, B has to be
defensive fighter strategy.)

In this step, it is the simulation of the situation
when the opponent suddenly changes its
strategy and the learning character must be
catch off guard because it is only learning the
opponent’s previous strategy. The purpose of
the step is creating the most errors from the
classifying when the opponent changes its
strategy. The errors will show how the
accuracy will improve when the character
learns the changing strategies.

3) Add 500 data of B training set. Test
by B test set.

In this step, the data of B training set is added
to the training set, so the learning character
has some data of B to classify the strategy of B
in the B test set. So this step should have more
accuracy than step 2). However, in the training
set, there are 1,000 of A and 500 of B, so the
learning character will confuse. Then the
learning character is more likely to use the
data of A to classify and make some errors

 47

because the test set is the data set of B.
4) Add 500 data of B training set. Test
by B test set.

This step is the same as the previous step but
adding more data of B will make the learning
character more likely to use data of B to
classify, so it can get more accuracy. And from
step 2) to 4), the accuracy will be improved
because of adding data of B, but the purpose
is comparing the improved accuracy between
VFDT and RPROP to see which one is the best.

5) Repeat step 2) to step 4) but swap
A to B and B to A.

In this step, the learning character’s situation is
repeat step 2) to 4) again but this time, the
character will have some data which are the
same type of strategy as the test set, so the
learning will be improved its accuracy. about
the purpose of this step, the accuracies are
compared between VFDT and RPROP after the
changing strategies occur continuously.

 At step 5), there will be the accuracy which is the first result of the learning
changing strategies and at step 6), the accuracy of RPROP is the second result of the
learning changing strategies. These two results are different from using different data
sets by swapping the time when using offensive training sets and defensive training
sets.

CHAPTER V

RESULTS

 In this section, there are results of learning static strategies and results of
learning changing strategies. The results show the accuracy and compare the accuracy
between VFDT and RPROP when use the same data sets.
 5.1. Results of Learning Static Strategies
 In this section, the results from VFDT in Vallim et al. (2010) and proposed
method have been compared in Table 5.1.1 to Table 5.1.4 for the learning static
strategies which are four different data types: offensive fighter, defensive fighter,
offensive wizard, and defensive wizard. The four data types are different in their
attributes and classes as mentioned in section III. Each data type was trained and
tested separately.

 49

Table 5.1.1 : Comparison between RPROP and VFDT for offensive fighter

total action in
training set

VFDT
accuracy (%)

RPROP
accuracy (%)

VFDT
SD

RPROP
SD

5
10
15
20
25
30
40
50
100
200
300
400
500
1000

76.58
80.06
83.9

86.76
88.74
89.04
91.28
92.5
96.2

96.16
96.04
96.74
96.8

97.51

67.13
76.45
78.07
83.41
86.89
90.79
92.81
94.28
97.49
98.79
99.22
99.63
99.65
99.89

1.75
4.33
7.25
6.02
4.75
4.03
3.88
2.29
1.34
1.27
1.2
1.57
1.47
2.04

8.6
7.99
8.83
8.23
8.06
4.42
4.13
3.3
1.73
1.12
0.84
0.52
0.5
0.24

 In Table 5.1.1, RPROP has higher accuracy than VFDT when the total of actions
in training sets are at least 30.

 50

Table 5.1.2 : Comparison between RPROP and VFDT for defensive fighter

total action in
training set

VFDT
accuracy (%)

RPROP
accuracy (%)

VFDT
SD

RPROP
SD

5
10
15
20
25
30
40
50
100
200
300
400
500
1000

71.9
72.8

75.72
79

80.38
84.14
88.66
89.98
92.86
94.86
95.64
96.1

96.44
96.68

56.56
65.7
70.9

72.94
77.18
79.11
83.3

84.94
88.86
92.94
94.45
95.85
96.81
97.36

10.8
10.65

6.2
8.36
5.89
5.18
3.1
4.74
3.08
3.59
2.04
1.47
1.59
1.01

9.91
9.53
7.72
6.3
6.15
6.57
4.83
4.56
2.86
2.27
1.85
1.74
1.84
2.37

 In Table 5.1.2, RPROP has more accuracy than VFDT when the total number of
actions in training sets are at least 500. The total actions have to have more compared
to the offensive fighter.

 51

Table 5.1.3 : Comparison between RPROP and VFDT for offensive wizard

total action in
training set

VFDT
accuracy (%)

RPROP
accuracy (%)

VFDT
SD

RPROP
SD

5
10
15
20
25
30
40
50
100
200
300
400
500
1000

30.14
38.54
46.56
55.42
60.48
65.84
72.4

76.44
84.8

89.78
92.18
93.58
93.9

95.64

36.19
41.44
45.158
50.16
51.78
54.28
60.2
65.7

78.22
90.66
94.35
95.91
96.74
97.64

2.02
1.8
5.23
6.6
5.47
3.66
3.55
4.46
3.48
1.88
1.97
1.43
1.54
1.25

6.85
8.76
7.71
7.76
7.12
7.28
7.27
6.75
5.69
4.69
2.95
2.47
1.87
1.67

 In Table 5.1.3, RPROP has higher accuracy than VFDT when the total number of
actions in training set are at least 200.

 52

Table 5.1.4 : Comparison between RPROP and VFDT for defensive wizard

total action in
training set

VFDT
accuracy (%)

RPROP
accuracy (%)

VFDT
SD

RPROP
SD

5
10
15
20
25
30
40
50
100
200
300
400
500
1000

32.58
40.82
52.46
60.4

65.58
70.22
77.36
84.08
91.6

95.82
77.12
84.44
92.78
94.52

40.7
46.84
53.33
57.76
61.07
65.28
71.88
76.64
89.18
96.19
97.57
98.03
98.55
99.1

6.85
9.72
7.22
7.1
5.55
5.29
5.34
5.25
4.37
1.04

20.73
12.21
3.87
2.9

6.86
8.09
6.69
7.51
7.34
6.45
6.55
5.87
4.54
2.06
1.21
1.40
0.76
0.97

 In Table 5.1.4, RPROP has higher accuracy than VFDT when the total number of
actions in training sets are at least 200.

 At the beginning of the learning static strategies, RPROP yields accuracy lower
than that of VFDT. However after the total number of training data increases to 100-500,
the accuracies of RPROP are going to be better than those of VFDT, so if there are at
least 500 data, RPROP can be used to classify the character’s action better than VFDT.

 53

 5.2. Result of Learning Changing Strategies
 In Table 5.2.1 and Table 5.2.2 the results of changing strategies between
offensive fighter and defensive fighter showed that the accuracies have been changed
between increasing and decreasing. When the strategy has been changed, the
accuracy becomes decrease and then conversely increases when more actions have
been added more to the training set which is the pattern in section 4.3.2. There are two
results. The first is the result of learning changing strategies when the training data set
starts from pure offensive fighter’s actions and the second is the result which is started
from pure defensive fighter’s actions.

 54

Table 5.2.1 : Comparison between RPROP and VFDT for Changing Strategies Fighter
by starting from Offensive Fighter

total action in training set VFDT
accuracy (%)

RPROP
accuracy (%)

500
1000
1500
2000
2500
3000
3500
4000
4500
5000
5500

78
64
82
94
64
78
80
74
76
88
70

83.6
64

68.8
70.4
82

84.4
86

71.2
70

70.8
76.4

 In table 5.2.1, the accuracy of RPROP is better every time when using offensive
fighter test set but with the defensive fighter test set, the accuracy is worse.

 55

Table 5.2.2 : Comparison between RPROP and VFDT for Changing Strategies Fighter
by starting from Defensive Fighter

total action in training set VFDT
accuracy (%)

RPROP
accuracy (%)

500
1000
1500
2000
2500
3000
3500
4000
4500
5000
5500

94
60
58
84
64
70
100
70
78
78
88

78
70.8

80.58
85.6

66.64
72.4
76.8
83.2
84.4
85.6
74.8

 In table 5.2.2, when the training set starts from the pure defensive fighter training
set, the accuracy corresponding to defensive fighter training set is better.

 In learning changing strategies, the RPROP’s accuracy is better when the test
sets are the offensive fighter test sets. The defensive fighter test sets yields the lower
accuracy. And then, in Table 5.1.2, when the training sets start from pure defensive
fighter’s action, the accuracy is better than that of Table 5.1.1 which starts from pure
offensive fighter’s actions.

CHAPTER VI

DISCUSSIONS

 This section has to follow the previous section, so there are discussion of
learning static strategies and discussion of learning changing strategies.

 6.1. Discussion of Learning Static Strategies
 From the results, RPROP performs better than VFDT when the number of data
increases and the accuracy of VFDT starts to increase slowly. In the small number of the
actions, RPROP cannot show a good performance; however, practically, the small
number always occurs only in the initial state of the learning system. In the CRPG, the
number of character’s actions always increases rapidly. For example, in Minigate
environment, there are eight characters in the game and each character has its own
action every turn. By average, the game ends in 10 turns, which means there are 80
character’s actions in one game. And from the result, RPROP gives very good results if
the number of training character’s actions is not less than 300 which are only about four
to seven game records, so it is suitable to classify the character’s action.
 The reason that RPROP is better than VFDT when the total number of data in
training set increases is the useage of the pattern of character situation as the input. For
an example, in table 6, the offensive fighter has 60 percentage of hit point, closest
enemy distance of five units, no influence status, no local status, no potion of hit point,
no potion of fire resistance and some potion of free action, so the inputs are x1 = 60, x2
= 5, x3 = 0, x4 = 0, x5 = 0, x6 = 0, x7 = 1. These inputs are used to train the network. They
are different inputs for every character situations.

Table 6.1 : Examples of offensive fighter database
HP CED IS LS Potion

HP
Potion
FR

Potion
FA

Class

60 5 0 0 0 0 1 Attack_closest_enemy

 57

 For VFDT case, it has to calculate all character situations into the information
gain or entropy for each of the attribute that is a value ranging from 0 to 1. And then
VFDT uses the value to create the tree. In the way, the process does not use the primary
data. So some data can be different but the value of the information gain or entropy are
the same. Because of that, when the number of data is higher, the more possible that
will happen is higher too. In addition, the secondary data which are the information gain
of entropy only used to select the attribute that will use to create the next level of the
tree. It does not do anything different if it does not change the sequence. In an example,
if entropy of hit point is the highest, even it decreases but still is the highest; in this case,
it is still do the same effect for the classification.
 In learning static strategy, the defensive fighter test has a problem that attacking
class and drinking potion of fire resistance class have very similar attributes. From
human’s view, drinking potion of fire resistance only occurs in the first turn when the
character has a potion of fire resistance to drink but in the other hand, RPROP does not
focus on the turn attribute enough while the other attributes are very similar. This might
be caused by a very few number of drinking potion of fire resistance class in the training
set. In the common way, this action rarely occurs in the game. However, the result
should be better by using more balanced class database.

 6.2. Discussion of Learning Changing Strategies
 In the same reason as mentioned in learning static strategies, the defensive
fighter’s problem decreases accuracy in the changed strategy when using defensive
fighter test set. The classification cannot distinguish between attacking class and
drinking potion of fire resistance class in the test set, so the accuracy was quite low
when compared to when the testing uses the offensive fighter test set. The accuracy
should be improved by using balanced class training sets. However, the other idea is
about the drinking potion of fire resistance action which should not be able to classify by
human player. Because the defensive fighters always drink the potion of fire resistance

 58

in the first turn of the match if they have the potion of resistance in their inventories and
no human player can judge the strategies of the opponents before seeing any previous
actions. In addition, there is no way to see their inventories at all. So there is no way for
the human player to classify this type of opponent action. Then by comparing the ML in
the way that even human player cannot be able to do is not useful and this way might
lead to the over power AI player which always ruin the balance of strategies in the every
types of computer games. However, the experiments still have to maintain the reference
format in order to compare the results in respect.

CHAPTER VII

CONCLUSION

 This research is one attempt to find an adaptive AI in CRPG by using RPROP to
improve the accuracy of classifying character’s action. The computer game nowadays
has been developed to have various styles. At the start, this research is for improving
computer game content. The computer game contents which can be developed are
graphic, sound, story, world and gameplay. The important content in this research is
gameplay. It is the content that rules the game. Gameplay has a lot of types which are
fighting, racing, sports, FPS, RTS, and RPG. Gameplay can be developed by different
ways which are adding new strategy, mixing between two or more types of gameplay
(for example, mixing FPS and RPG become Action RPG) or creating a new type of
Gameplay. This research focuses on adding new strategy into Gameplay. Because the
different types of Gameplay are not always compatible to developing way, RPG was the
one that is focused on this research. RPG player usually must play when the game
allows the player to play and then wait while the game allows the others to play until the
next time when the game allows the player to play again ‟ this style is also called turn-
based game. The moment when the game allows the player to play is call the player’s
turn. The player must play and change to the other player turn. The turn-based game
leaves a duration for the player to plan and play their strategy. This duration can be long
for a while, so if it is the AI player’s turn, it can also take its time a little bit to use its
complicated computation ‟ it still should not take a long time because the human player
does not want to wait but it has more time when compared to some types of gameplay
which use fast pace or real time interactive. On the other hand, RPG has grinding which
force the player to play with the same enemies multiple times which are boring, so it is
an inspiration to add new strategies to the enemies and it is also useful to have a lot of
playing records in the game. This is the inspiration that an adaptive strategy AI is
needed. The RPROP is chosen in this implementation because of its speed of learning

 60

and accuracy. The results show that RPROP is good to be used as character’s action
classifier. In addition, to improve the AI in computer game and to provide more content
in the gameplay, this research way must continue to make computer game become
more entertaining.

REFERENCE

 [1] M. C. Machado, E. P. C. Fantini and L. Chaimowicz, Player Modeling: Towards a
Common Taxonomy, The 16th International Conference on Computer
Games, pp. 50-57, 2011.

[2] I. Szita, M. Ponsen and P. Spronck, Effective and diverse adaptive game AI,
IEEE Transaction Computational Intelligence and AI in Game, vol. 1, no.
1, pp.16-27, 2009.

[3] S. Yildirim and Sindre Berg Stene, A Survey on the Need and Use of AI in Game
Agents, Society for Computer Simulation International, pp. 225-237,
2008.

[4] J. Furnkranz, Recent Advances in Machine Learning and Game Playing, J.
OGAI, vol. 26, no. 2, 2007.

[5] M. Riedmiller and H. Braun, RPROP ‟ a Fast Adaptive Learning Algorithm,
Proceeding of ISCIS VII, 1992.

[6] M. Santos, J. A. Martín H., V. López and G. Botella, Dyna-H: A Heuristic Planning
Reinforcement Learning Algorithm Applied to Role-playing Game
Strategy Decision Systems, Knowledge-base Systems, vol. 32, pp. 28-
36, 2012.

[7] M. Cutumisu, D. Szafron, M. Bowling and R. S. Sutton, Agent Learning using
Action-dependent Learning Rates in Computer Role-playing Games,
Proceeding of the 4th Artificial Intelligence and Interactive Digital
Entertainment Conference, pp. 22-29, 2008.

[8] R. S. Sutton and A. G. Barto, Temporal-Difference Learning, Reinforcement
Learning: An Introduction. Cambridge, Mass: MIT Press, 1998.

[9] P. Spronck, M. Ponsen, I. Sprinkhuizen-Kuyper, and E. Postma, Adaptive Game
AI with Dynamic Scripting, Machine Learning, vol 63, no. 3, pp. 217-248,
2006.

 62

[10] R. Rubinstein, The Cross-Entropy Method for Combinatorial and Continuous
Optimization, Methodology and Computer in Applied Probability, vol. 1,
pp. 127-190, 1999.

[11] R. M. M. Vallim and J. Gama, Data Stream Mining Algorithms for Building
Decision Models in a Computer RolePlaying Game Simulation, Brazilian
Symposium on Games and Digital Entertainment, pp. 108-116, 2010.

[12] P. Domingos and G. Hulten, Mining High-Speed Data Streams, Proceeding of
the 6th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 71-80, 2000.

[13] A. Mark, B. Sendhoff and H. Wersing, A Decision Making Framework for Game
Playing Using Evolutionary Optimization and Learning, Evolution
Computation, pp. 373-380, 2004.

[14] R. S. Sutton, Dyna, an integrated architecture for learning, planning, and
reacting. SIGART Bulletin, vol. 2 issue 4, pp. 160‟163, 1991.

[15] C. J. C. H. Watkins and P. Dayan, Machine Learning, Technical note Q-learning.
vol. 8, issue 3-4, pp. 279, 1992.

[16] P. G. Patel, N. Carver and S. Rahimi, Tuning Computer Gaming Agents using Q-
Learning, Computer Science and Information Systems, pp. 581-588,
2011.

[17] R. S. Sutton, Adapting Bias by Gradient Descent: An Incremental Version of
Delta-Bar-Delta, Proceedings of the 10th National Conference on AI, pp.
171-176, 1992.

[18] P. Spronck, Minigate Environment, http://ilk.uvt.nl/~pspronck/minigate.html,
2007.

[19] P. Tan, M. Steinbach and V. Kumar, Introduction to Data Mining, International
Edition, Addison Wesley, Pearson, 2006.

[20] S. Haykin, Neural Network a Comprehensive foundation, Second Edition,
Prentice Hall, Pearson, 1999.

 63

BIOGRAPHY

 Piyachai Eamsukawat was born at Khonkean, Thailand. He received a bachelor
degree of Biology Science from Chulalongkorn University. Now he is pursuing a Master
Degree in Computer Science from Chulalongkorn University.

	Cover (Thai)
	Cover (English)
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	CONTENTS
	 CHAPTER I INTRODUCTION
	1.1. Objectives
	1.2. Scope
	1.3. Research Methodology

	CHAPTER II THEORITICAL BACKGROUND
	2.1. Multilayer Feed Forward Artificial Neural Network
	2.2. Decision Tree
	2.3 Reinforcement Learning

	 CHAPTER IV PROPOSED METHOD
	4.1. Databases of Character’s Actions
	4.2. Learning Strategies

	CHAPTER V RESULTS
	5.1. Results of Learning Static Strategies
	5.2. Result of Learning Changing Strategies

	CHAPTER VI DISCUSSIONS
	6.1. Discussion of Learning Static Strategies
	6.2. Discussion of Learning Changing Strategies

	CHAPTER VII CONCLUSION
	REFERENCE
	BIOGRAPHY

