CHAPTER VI

DISCUSSION AND CONCLUSION

In chapter I, the first quantum correction to the partition function of free
particles system was reviewed showing that inter-potential can be produced by itself.
This is a statistical effect for several systems. Bosons would like to have the same
quantum numbers because of their attractive inter-potential, and fermions could not be
in the same state because of their repulsive inter-potential. It has been shown that the
development of the theoretical explanation of the Bose condensation is close to the
superflidity of liquid helium. In this development it is recognised that Landau, the first
to carry the idea of quasi-particles related to this problem, suggested the necessity of
considering the collective elementary excitations rather than individqal molecules in his
classic papers in 1941, 1947[9-10]. Further, Feynman [11-14] developed the Landau
suggestion for quantum liguid, superfluidity. For his calculations he introduced the
new method of guantum statistical mechanics based on his quantum formalism path
integrations. A few years before research, Bogoliubov [15] used and developed the idea
of Landau for the problem of superfiuidity 'in molecular Bose gas. In his work, he used
the method of second quantization together with his (now) famous approximately
procedure. Finally, he found a description of superfluidity with connections to

excitation energy. Using the experimental method of high momentum neutron scattering
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on liquid helium {16], it is now known that the excitation spectrums of the Bose

condensation has two branches.

In chapter II, the relationship between the Feynman propagators and the
quantum partition functions was shown. This is very important because the study aimed

to show the use of this method of functional path integration.

In chapter HOI, the ansatz interaction between particles was introduced,

suggestiong a function in terms of the combination of exponential over the power laws,
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that is, |———--<| It was shown that this function contains two aspects of
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interesting behaviour as did the oniginal Lennard-Jones function: strong, short-range
repulsive interaction and weak, long-range attractive interaction, The problem in this
chapter was how to use this interaction in the momentum space and for non-uniform
media. However, it was suggest that a method of transformation by some point in the
approximation process is not good enough. However, most results push the claim that it

is good enough.

In chapter IV, the Hamiltonian action was computed, using the Hamiltonian by
the method of second quantization. This Hamiltonian method was used in the next
calculation of action by the method of functional integration. A further point discussed
is the broken symmetry of the Hamiltonian. By this procress, an important constrain
" about the conservation of the number of particles was undertaken, leading to the semi-
classical integrals of motion which separate the particles into two types: the classical

condensate particles and the quantum excited (over condensate) particles. The ability to
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separate provided a way of treating the particles in ground state (condensate state)
similar to the classical particles; and, then, the creation annihilation operators of the &

zero particles as the ordinary numbers can be approximated.

In chaptef V, the partition function from the action in chapter IV was calculated.
All terms of the calculation to the components of the matrices were moved in an effort
to calculate the partition function by matrix algebra. Finally, a necessity of
approximation was introduced because the system lies in the low temperature regime,
the adiabatic approximation. It has been shown that the partition function will be
infinite at some point in the phase space and by definition of excitation energy can be
defined as the excitation spectrum of our system as a function in divided parts of the
partition function. The excitation energy depends upon the momentum % , the density of

ground state particles p,, the interaction between the condensate particles g(0,0) the
interaction between the over-condensate particles g(k .k}, and the interaction between

the condensate and over-condensate particles g(l? ,0). These spectrums have two

dominant behaviours in different areas in phase space. The first speétrum dominate in
the area of slow momentum and high density of ground state particles where as the
second spectrum dominate in the area of rapid exists in the density of the ground state
particles which lower than the existed density of the first branch. This result brings
about to the interpretation of the phonon-roton and the maxon-roton spectrums
respectively. What we have seen from this result is that the first branch spectrum is the

spectrum of the system that leads to the Bose condensation and that the second branch
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spectrum is the spectrum of the system which passes from the Bose condensate region

to the higher momentum area.

The energy shift ‘of the second branch is an interesting point also. Here we

would like to suggest that this energy shift is probably arisen from the separation of the
ground state from the remain excited state. It is revealed that the additional g(k,0) in

the linear terms through Hy has the effect on the energy shift and is the cause of the

energy shift also.
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