CHAPTER I

BOSE-EINSTEIN STATISTICS

AND BOSE CONDENSATION

1.1 BOSE-EINSTEIN STATISTICS AND QUANTUM CORRECTION[1]

Bose-Einstein statistics state that each energy level of many boson systems can
be occupied by any number of particles, the dominant characteristic of this system being
statistical attraction between particles. However, because bosons would like to have the
same cjuantum numbers, there is a vital and fascinating distinction between bosons and
fermion. Thus, this research investigates an idea of quantum correction and how the

system produces its statistical potential, automatically.

By introducing a function £(r)
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it can be seen that f(F) is the expectation value of Exp(i--") of the free particle
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system. From the expression of partition function,
Q0 =Trle™™] = Trle ™) (1.2)

is obtained, where, X is a kinetic energy operator and a system is non-interacting

system.
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where P is an permutation operator and the plus sign for boson and the minus sign for

fermion,

For very high temperatures the integrand may be approximated as follows. The

sum Z contains N! terms, while the term corresponding to the unit permutation is
P

P=1is [ Vi (0)]” =1. Because the term corresponding to the unit permutation which

only interchanges 7, and 7, is [ f (i-; --F})]2 , then
Z(i)r[ f(Ft ~ Pf,)... f(F, = PF, )] = 11%“ £ +§; Fofufukn. (1.4)

where, f, = f (t"} - FJ) - the plus sign applying to bosons and the minus sign applying to

fermions. According to f(¥) in the equation (1.1), fy venishes if |i-;—r'j| >>A. In




another way, this may approximat the right hand side of equation (1.4) by 1% Z f,.f .

inf
Further, this can be expressed as:
1Y, 2 = 112 £2)
inf i<f
= Exp[- ﬁZﬁ:j} (1.5)
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where,
0 = kT Log(1% £?)
2, -7
=—kT Log; 1% Exp| - ———— (1.6)
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using the plus sign for bosons and the minus sign for fermions. Therefore, an

improvement over equation (1.3) is the formula

Q=Tr[e"ﬂ‘]=%£g);;.[dﬁ.[dfe oEd3) o

This shows that a free particle system, ie. ideal gas, has the same effect as that of
endowing the particles with inter-particle potential [1] ©(r), as the potential ¥(r) is
attractive for bosons and repulsive to fermions, as illustrate in Figure 1.1. This first
quantum correction to the partition function of the free particle system is sometimes

called statistical attraction between bosons and statistical repulsion between fermions.
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Figure 1.1 The inter-potential of bosons and fermions syétem[l].
1.2 BOSE CONDENSATION

In the previous section the statistical attraction between bosons in a system of
non-interacting particle was reviewed. This fascinating attraction leads to a review of

Bose condensation as follows.

Onnes (1911) [2) condensed “He into a liquid state at 5.22 K and over the next
13 years observed the sudden change in properties of “He at 2.2 K. In 1924, using Bose
statistics [3] for any particles with an integer spin qi.:antum number, Einstein [4]

predicted a new state of matter, a system which has all particles at the lowest energy
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level. This system can be interpreted as the single particle state system. Frohlich (1937)

{5] tried to connect and form conclusions about both ideas, suggesting that the A
transition at T, is a special case of order-disorder transition. London (1938) [6, 7] tried

to interpret the Frohlich (1937) model starting with his idea about the new theory of
Einstein, the Bose-Einstein condensation state. He also suggested that Bose
condensation is a special case of order-disorder transition and focused most of his
interest on a discontinuous point on a graph of heat capacity, C,, and temperature, T, of
the ideal boson gas. Finally, he concluded that the superfluidity in liquid ‘He is a
manifestation of Bose condensation. Tisza (1938) [8] also conjectured that the
superfiuid component in his phenomenological two-fluid model could be interpreted as
the fraction of the “He Bose condensed atoms. However, the condensate fraction and the
superfluid fraction are not the sane in a Bose condensed liquid like superfluid *He . At
zero temperature, the superfluid fraction is 100% while the condensate fraction is only

about 9%.

Landau (1941) [9, 10] classical paper strongly argues against any connection
between a Bose condensate and the two-fluid model. However, the modern view
vindicates Landau and London in that the microscopic basis of Landau’s quasiparticle

picture and the two-fluid model lies in the existence of a Bose condensate.

The Landau theory of superfluidity is based on the low-lying excited state of a
Bose liquid, sl'iowing that the low temperature thermodynamic and transport properties
of superfluid “He could be understood in terms of a weakly interacting gas of Bose

“quasiparticies”, phonon and roton.




The microscopic basis of Landau’s picture was developed by Feyman [11, 12,
13, 14] in the period 1953-1957. Feynman dealt directly with the excited states of Bose
liquid, as oppose to Bogoliubov (1947) [15] who dealt directly with the excited states of

boson gas.

Bogoliubov [15], in one of the first treatments of a broken symmetry, gives the

derivation of the phonon spectrum in a weakly interesting dilute Bose gas.

From the above information about 9% of the condensate fraction of the
condensate fraction in liquid “He is decreasing to zero at T,. This fact stimulated some

physicists to study the high momentum scattering of liquid “He [16] over the next 40
years. Finally, the results of the above study give more information about the two-
branch structures of the sharp peak: the narrow (n) and wide (w) branches discussed in

the maxon-roton regime. The first of them (n) could exist at any high temperature T.

1.3 SCOPE OF THIS RESEARCH

We argue with the idea of Landau [9, 10] of the exciatation picture and follows
with the Bogoliubov [15] idea of how to define the excitation. The functional
integration, formulated by Feynman and including some mathematical technique for
calculating from Popov [17} and Yarunin [18, 19, 20], were used. It is also suggested
that the microscopic theory of the two-branches excitation in the weakly interacting

dilute Bose gas and an ansatz interaction between Bose gas be incorporated.
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