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CHAPTER I 

INTRODUCTION 

 

1.1 General 

In recent years, there is a growing interest among researchers in engineering 

mechanics to study behaviors of smart materials due to their useful applications in 

various disciplines. Due to their inherent coupling phenomena (electro-mechanical or 

magneto-mechanical), smart materials have been extensively used in aerospace 

structures, intelligent or smart structures, nondestructive testing devices, medical 

devices, and sensing and actuation applications. Several types of smart materials have 

already been developed, namely piezoelectric materials, shape memory alloys, 

electrostrictive materials, magenetostrictive or piezomagnetic materials, electroactive 

polymers and electro/magneto–rheological fluids, etc. Among all materials mentioned 

above, the most widely used smart materials in practical applications are piezoelectric 

materials. A few examples of piezoelectric materials are Barium Titanate (BaTiO3), 

Lead Zirconate Titanate (PZT) and Polyvinylidene Fluoride (PVDF), etc. 

Piezoelectric materials exhibit electro-mechanical coupling phenomenon that they can 

produce electric field when deformed under a mechanical stress (direct piezoelectric 

effect), and conversely they can deform when subjected to an electric field (converse 

piezoelectric effect), which are very useful for sensing and actuation applications. 

Even though smart materials are applicable in various fields, they also have 

some drawbacks in practical situations due to their fracture behaviors. Therefore, 

composite materials, which are composed of two or more different materials to 

achieve desire performance, have been developed. The examples of traditional 

composite materials are fiber-reinforced concrete and metal matrix composite 

(MMC), whereas 1-3 piezocomposite is a smart composite material, which is 

composed of piezoelectric fiber in one direction through the thickness embedded in a 

passive non-piezoelectric polymer (see Figure 1.1). The behavior of composite 

materials is very complicated and depends on several factors such as the volume 
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fraction of the piezoelectric fiber, the material properties of each component, the 

aspect ratio,  permeable and impermeable conditions at the interface. In addition, 

temperature range under working condition is also an important factor. For example, 

piezocomposites that are employed for sensing and actuation applications in 

aerospace structures could be subjected to extreme environmental conditions, in 

which the temperature varies from –500°C to +1000°C. 

To develop suitable piezocomposites for practical applications under extreme 

temperature range, fundamental understanding of mechanics and effective properties 

of 1-3 piezocomposites is important. In order to achieve that it is ordinary to focus on 

a typical unit cell of piezocomposite. Therefore, this research is concerned with the 

development of accurate model and analytical solution of a thermopiezoelectric finite 

composite cylinder subjected to axisymmetric loading with considering temperature 

effects. Finally, a computer program has been developed to investigate transient 

behavior of a unit cell of 1-3 piezocomposite under axisymmetric  mechanical, 

electric and thermal loading. 

1.2 Background and Review 

In this section, a background in this field and the literature review including 

the previous work relevant to the current work are provided. In order to know 

overview, background and literature review are separated into three parts. The first 

part is focus on the models, technique to solve the problem of circular cylinder 

subjected to arbitrary axisymmetric loading. The governing equation concerns only 

mechanical field. The second part is focus on model, technique to solve the problem 

and solution from piezoelectric composite cylinder subjected to axisymmetric load, 

both mechanical load and electric load. And the governing equation in this part not 

related to entropy equation. The third part is focus on model, technique to solve the 

problem and solution thermopiezoelectric composite cylinder in term of axisymmetric 

load by using governing equation and entropy equation. 
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1.2.1 Review on Circular Cylinders 

One of the most fundamental problems in the theory of elasticity is stress 

analysis of finite cylinder subjected to arbitrary boundary conditions. Filon (1902) 

investigate the case of a finite solid cylinder subjected to uniaxial compression with 

end friction. Saito (1952) presented a Fourier Bessel solution for a circular cylinder by 

using Love’s stress function to satisfy axisymmetric boundary conditions. Wei et al. 

(1999) presented a new analytical solution for an elastic solid finite cylinder subjected 

to the axial point load strength test (PLST) by using the displacement potential 

technique to uncouple equilibrium equations. They found that the maximum tensile 

stress increases with increasing Young’s modulus but it decreases when Poison’s ratio 

and area loading are decreased. Wei and Chau (2000) later derived a general solution 

for finite elastic isotropic solid circular cylinders subjected to arbitrary surface load. 

They said, this approach is most compatible with stress analysis of finite solid 

isotropic elastic cylinder. Shao (2005) investigated the case of a multi-layered circular 

hollow cylinder subjected to axisymmetric loading including steady state temperature. 

By using the solution from Shao (2005), Shao and Ma (2008) obtained thermal and 

mechanical stresses in a hollow cylinder by employing Laplace transform technique 

and series expansion method. Wei and Chau (2009) derived an analytical solution in 

the form of Fourier-Bessel series for a finite transversely isotropic elastic cylinder 

subjected to non-uniform compression with the end boundary conditions constraint by 

friction. They proposed general solution from Lekhnitskii’s stress function and the 

result is useful in the analysis of fiber – reinforced coposites. In addition, Ying and 

Wang (2010) presented an analytical solution for a finite hollow cylinder under plane 

strain condition subjected to non-uniform thermal shock by using trigonometric series 

expansion and the separation of variable techniques. 

1.2.2 Review on Piezoelectric and Piezocomposite Materials 

The theoretical foundation and electroelastic governing equations of linear 

piezoelectric materials are presented by Parton and Kudryavtsev (1988). Sottos and Li 

(1994) investigated the influence of matrix stiffness, inter layer stiffness, rod aspect 

ratio and rod volume fraction on 1-3 piezocomposites under hydrostatic response. 
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Rajapakse and Zhou (1997) studied an infinite piezoelectric composite cylinder 

subjected to axisymmetric electromechanical loading by using Fourier integral 

transform. Hou et al. (2003) presented plane strain solution of a non-homogenous 

piezoelectric hollow cylinder subjected to dynamic loading by using the separation of 

variable technique. Rajapakse et al. (2004) developed a general solution for a finite 

annular piezoelectric cylinder subjected to axisymmetric end loading. Senjuntichai et 

al. (2008) presented analytical solution for piezoelectric cylinder subjected to electric 

voltage and mechanical axial loading applied at the end. Rajapakse and Chen (2008) 

presented a fully coupled analytical model for hydrostatic response of 1-3 

piezocomposites to determine the effective properties of 1-3 piezocomposites. This 

problem considered linear quasi-static. Recently, Wu and Tsai (2012) presented 

analytical solutions of circular hollow sandwich cylinders, made of functionally 

graded piezoelectric materials (FGPM), subjected to electro-mechanical loading to 

investigate the influence of various parameters such as aspect ratio, open and closed-

circuit surface conditions, and materials properties to the solutions. 

1.2.3 Review on Thermopiezoelectricity 

Kapuria et al (1996) used a potential function technique to obtain an analytical 

solution of a finite transversely isotropic piezoelectric cylindrical shell subjected to 

axisymmetric thermal, pressure and electrostatic loading. Fulin et al (1996) proposed 

potential functions and Fourier-Hankel transforms to develop axisymmetric solutions 

of transversely isotropic thermopiezoelastic materials. By using potential functions, 

Ashida and Tauchert (1998) investigated temperature, displacement, stress and 

electric fields of a finite circular piezoelectric disk subjected to axisymmetric loading. 

In addition, they also presented general solutions for a three dimensional  

thermopiezoelectric solid of class 6 mm, and for an infinite plate of class 2 mm with 

the same boundary conditions. Ding et al. (2000) proposed a general solution of 

dynamic problems for piezothermoelastic of transversely isotropic piezoelectric 

materials, and showed that the solution can be degenerated for quasi-static problems 

by ignoring the inertia terms. Zheng et al. (2002) employed potential function and 

integral transfrom techniques to investigate thermopiezoelectric response of a 
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piezoelectric thin film subjected to laser heating. In addition, they also presented a 

prediction of  a failure mechanism under heating environment.  

Wang et al. (2001) presented an analytical solution for piezothermoelastic 

solids of crystal class 6 mm by using potential functions that satisfy thermal, 

mechanical and electrical boundary conditions with coupling effects, and showed that 

their result agree with those given by Ashida et al. (1994). Wang (2006) investigated 

transient thermal fracture of a piezoelectric cylinder subjected to transient thermal 

environment by considering two types of boundary conditions. The first type is set up 

based on the classical theory of thermal conduction, whereas the second type involves 

the stress and electric displacement intensity factor at the crack tip in the cylinder. 

Both types of boundary conditions include electrically permeable and impermeable 

conditions. Tanigiwa and Ootao (2007) proposed the exact solution for transient 

temperature of piezothermoelastic with two-layered hollow cylinder, which consisted 

of isotropic elastic and piezoelectric layers, subjected to axisymmetric heating by 

employing Airy's stress function and the Laplace transforms. 

1.3 Research Objective 

The key objective of this research is to solve an exact solution for 

thermopiezoelectric finite composite cylinder and consider temperature effect in 

transient state. 

1.4 Research Scopes 

1) Studies the thermopiezoelectric finite cylinder, in which compose of 

piezoelectric fiber embedded in finite transversely isotropic peizoelectric 

matrix. 

2) The problem is subjected to axisymmetric loading; mechanic load, electric 

load, thermal load. 

3) Loading conditions are assumed to be symmetry along plane x-axis. 
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1.5 Research Methodology 

1) Formulate boundary value problem due to axisymmetric problem and reduce 

the field equations into equilibrium equations in term of elastic displacement, 

electric potential and temperature field. 

2) Using Laplace transform technique to solve temperature equation separately. 

3) Take Laplace transform to equilibrium equation and uncouple equilibrium 

equations by using potential functions technique into homogenous part and 

non-homogenous part. 

4) Get the general solution in term of arbitrary constants in time domain by 

solving differential equations of homogenous and non-homogenous equations. 

5) Match boundary conditions to get arbitrary constants for complete the general 

solution in time domain. 

6) Take inverse Laplace transform to complete general solution in time domain 

for get complete general solution. 

1.6 Research Significance 

The exact solution for thermopiezoelectric finite composite cylinder is used to 

be a benchmark solution for unit cell. In addition, this solution can used to investigate 

an effective properties of composite materials such as modulus, behavior under 

loading with consider temperature effect.  

 

 

 

 

 

Figure 1.1 1-3 Piezocomposite 
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CHAPTER II 

BASIC EQUATIONS AND GENERAL SOLUTIONS 

In this chapter, the formulation of boundary value problem associated with an 

axisymmetric boundary condition of thermopiezoelectric finite composite cylinder is 

presented. 

2.1 Problem Statement 

 

 

 

 

 

 

Figure 2.1 A thermopiezoelectric finite composite cylinder under consideration 

Consider a linear thermopiezoelectric finite composite cylinder of length 2h as 

shown in Fig. 2.1. It consists of an embedded fiber of radius a with the outer radius of 

the matrix denoted by b. Both fiber and matrix are made of a linear, transversely 

isotropic thermopiezoelectric material of a special class 6mm. A Cartesian reference 

coordinate system  , ,x y z and the cylindrical coordinate system  , ,r z are chosen, 

for convenience, such that the origin is located at the center of the cylinder, and the z-

axis directs along the axis of the cylinder. The composite cylinder is subjected to 

axisymmetric boundary conditions (i.e. axisymmetric mechanical, electrical and 

thermal boundary conditions) that are even functions (or, equivalently, symmetric) 

with respect to the coordinate z. 
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2.2 Basic Field Equations 

Basic field equations for a three-dimensional linear thermopiezoelectric 

material presented in this section follow directly from Mindlin (1974) and Parton and 

Kudryavtsev (1988). The Cauchy stress tensor ij , the electric induction vector iD and 

the heat flux vector ih , in the absence of body forces, free charges and heat sources, 

are governed by equilibrium equations and conservation laws as, 

, 0ij j   (2.1) 

, 0i iD   (2.2) 

, 0i ih T S   (2.3) 

where 0T  and S  denote the constant positive reference temperature at which natural 

state of zero stress and strain exist, and the entropy density respectively. In 

addition, ,if  and f  denote the spatial and time derivatives of a function f, 

respectively. Hereafter, the lower-case indices range from 1 to 3 and the repeated 

indices imply the summation over their range. 

The infinitesimal strain tensor ij , the electric field vector iE , and the 

temperature gradient ie  can be expressed in terms of the elastic displacement 

vector iu , the electric potential  and the temperature change   (from the reference 

temperature 0T ) respectively as, 

 , ,

1

2
ij i j j iu u    (2.4) 

,i iE    (2.5) 

,i ie    (2.6) 
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The Cauchy stress tensor ij , the electric induction vector iD , the entropy 

density S  and the heat flux vector ih  are related to the infinitesimal strain tensor ij , 

the electric field vector iE , the temperature change   and the temperature gradient 

according to the following linear constitutive laws, 

ij ijkl kl kil k ijc e E     
 
 (2.5) 

i ikl kl ik k iD e E p     (2.6) 

kl kl k kS p E      (2.5) 

i ij jh K e  (2.6) 

where , , , , , ,ijkl ikl kl ij ik kc e K p  denote the elastic constants, piezoelectric constants, 

temperature-stress coefficients, coefficients of heat conduction, dielectric constants, 

pyroelectric constants, and the thermal expansion coefficient. It is noted that the 

thermal expansion coefficient is written in term of the mass density  , the heat 

capacity per unit volume at constant strain vC  and the absolute temperature T as 

/vC T  . 

 The above field equations can be written for a special case of a transversely 

isotropic thermopiezoelectric medium undergoing axisymmetric deformation along 

the z-axis. Equations (2.1) – (2.3) for this particular case, based on the cylindrical 

coordinate systems, are given by 

0rrrr rz

r z r

     
  

 
                         (2.11) 

0rz zz rz

r z r

   
  

                           
(2.12) 

0r z rD D D

r z r

 
  

 
                                                (2.13) 
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0
r z rh h h

T S
r z r

 
   

 
                                                (2.14) 

Similarly, the equations (2.4) – (2.6) then become 

1
, , ,

2

r r z r z
rr zz rz

u u u u u

r r z z r
   

    
     
    

                           (2.15a – 2.15d) 

,r zE E
r z

  
   

 
                                                    (2.16a – 2.16b) 

,r ze e
r z

  
   

 
                                                             (2.17a – 2.17b) 

In addition, the constitutive relations (2.7) – (2.10) for this case are given by 

11 12 13 31 11rr rr zz zc c c e E                                                    (2.18a) 

12 11 13 31 11rr zz zc c c e E                                                       (2.18b) 

13 13 33 33 33zz rr zz zc c c e E                                                        (2.18c) 

44 152rz rz rc e E                                                  (2.18d) 

15 11 12r rz rD e E p                          (2.19a) 

31 31 33 33 3z rr zz zD e e e E p                           (2.19d) 

11 11 33 1 3rr zz r zS p E p E                                  (2.20) 

11r rh K e  ;   33z zh K e                               (2.21a – 2.21b) 

By combining (2.14), (2.17), (2.20) and (2.21) along with additional assumptions that 

the velocity gradient is negligible and the electric field is quasi-static, it leads to an 

uncoupled Fourier heat conduction equation governing the temperature change   , 
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2 2
2

2 2

1

r r r z t


 
     

    
     

                          (2.22) 

where 33 11/K K   is the ratio of the heat conduction coefficient,  denotes the 

thermal diffusivity and t  denotes the time variable. 

Similarly, by combining (2.11) – (2.12), (2.15) and (2.18), it yields two equilibrium 

equations in terms of the elastic displacement    and    the electric potential   and the 

temperature change   : 

   
2 22 2

11 11 44 13 44 15 31 112 2 2

1
0r r z

r

u u u
c u c c c c e e

r r r r z r z r z r

 


      
         

        
 

        (2.23) 

 
2 2 2 2

13 44 44 33 44 15 33 332 2 2 2

1 1
0r r z z zu u u u u

c c c c c e e
z r r r z r r r r r z z

   


         
           

           

  

        (2.24)

 

Finally, combining (2.13), (2.16) and (2.19) leads to the governing field equation. 

 
2 2

15 31 15 332 2

1r r z z zu u u u u
e e e e

z r r r r r z

      
      

       
   

 
2 2

11 33 3 12 2

1
0p p

r r r z z r r

           
         

      
                

                            (2.25) 

It is evident that the three governing field equations (2.23) – (2.25) are fully coupled 

whereas the governing equation for the temperature change (2.22) is independent of 

the elastic displacement and the electric potential. 

2.3 General Solution for Temperature and Potential Functions 

Before solving for the general solution, the following non-dimensional 

parameters are introduced and shown in appendix. For convenient notation, all 
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quantities have been used the same as previous notation. The equations (2.22) – (2.25) 

become 

2 2
2

2 2

1

r r r z t


 
     

    
     

              (2.26) 

   
2 22 2

11 11 44 13 44 15 31 112 2 2

1
0r r z

r

u u u
c u c c c c e e

r r r r z r z r z r

 


      
         

        
 

        (2.27) 

 
2 2 2 2

13 44 44 33 44 15 33 332 2 2 2

1 1
0r r z z zu u u u u

c c c c c e e
z r r r z r r r r r z z

   


         
           

           

                  (2.28) 

 
2 2 2 2

15 31 15 33 11 33 32 2 2 2

1 1
0r r z z zu u u u u

e e e e p
z r r r r r z r r r z z

              
             

            

                  

(2.29) 

The general solution to a system of the above governing differential equations 

(2.26) – (2.29) is constructed as follows. First, the Fourier heat conduction equation 

(2.26) is solved separately in a Laplace transform domain using a separation of 

variable technique. Once the general solution for the temperature change is obtained, 

the three coupled equations (2.27) – (2.29) are solved simultaneously in the Laplace 

transform domain using the potential function approach along with the separation of 

variable technique. Details of such solution procedure are outlined below. 

2.3.1) Solution for temperature 

 The Laplace transform of any function ( , , )r z t  with respect to a time t  can 

be expressed as (Sneddon, 1951) 

   
0

, , , , str z s r z t e dt 


                            (2.30) 
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The inverse Laplace transform of  , ,r z s  with respect to Laplace transform 

parameter is given by (Sneddon, 1951) 

   
1

, , , ,
2

i

st

i

r z s r z s e ds
i





 


 

 

                                      (2.31) 

where 1i    and   is a sufficiently large real number 

By taking the Laplace transform of Eq. (2.26), it leads to 

2 2

2 2

1

` ` `
s

r r r z
 

   
   

   
                                     (2.32) 

where `
r

r


 . The partial differential equation (2.28) can be solved by using a 

standard separation of variable technique, i.e. ( , ) ( , )R r s Z z s  , and the resulting 

general solution for   is given by 

   0 0

0

( , , ) cos sin
p p

p p p p p p

p

r r
r z s A I B K C z D z

 
  

 





     
           
      

    

  

   0 0

0

cosh sinh
q q

q q q q q q

q

r r
E J F Y G z H z

 
 

 





     
            
      

    

   

                  (2.33) 

where  
2

p p s    ;  
2

q q s    ; , ,p p   , ,q q   , ,p pA B  , ,p pC D 

, ,q q qE F G  
 

and qH  ( , 0,1,2,..., )p q    are arbitrary functions; nI  and nK  are 

modified Bessel functions of the first kind and second kind of the 
thn order, 

respectively; and nJ  and nY  are Bessel functions of the first kind and second kind of 

the 
thn  order, respectively (see Watson, 1962). 
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2.3.2) Potential functions for displacements and electric potential 

 To solve a coupled system of equations (2.27) – (2.29), the potential function 

technique (Ashida, 1994) is utilized. In this technique, the elastic displacement ,r zu u  

and the electric potential   are represented by four potential functions 1 2, 3,    and 

4  in the following forms. 

 1 2 3 4ru
r
   


   


                                    (2.34a) 

 11 1 12 2 13 3 14 4zu l l l l
z

   


   


            (2.34b) 

 21 1 22 2 23 3 24 4l l l l
z

    


   


              (2.35) 

where 1il  and 2il  1,2,3,4i   are unknown constant to be determined. By inserting 

(2.34)–(2.35) into (2.27) – (2.29), it leads to the following three equations. 

4

11 , 11 , , 11

1

1
i rr i r j i zz

i

c c M
r r r


   



  
   

  
                                    (2.36) 

4

, , , 33

1

1
i i rr i i r i i zz

i

N N P
z r z


   



  
   

  
               (2.37) 

4

, , , 3 1

1

1
i i rr i i r i i zz

i

F F G p p
z r z r r

  
  



     
        

     
            (2.38) 

where Mi, Ni, Pi, Fi, and Gi are arbitrary constants defined in appendix. 

 To obtain the solution of (2.36) – (2.38), it is sufficient to find the potential 

functions such that   1,2,3i i   satisfy a system of homogenous differential 

equations (2.39)  and 4  satisfy a system of non-homogenous differential equations 

(2.40). 
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3

11 , 11 , ,

1

1
0i rr i r j i zz

i

c c M
r r

  


  
   

  
                                   (2.39a) 

3

, , ,

1

1
0i i rr i i r i i zz

i

N N P
z r

  


  
   

  
                                  (2.39b) 

3

, , ,

1

1
0i i rr i i r i i zz

i

F F G
z r

  


  
   

  
                         (2.39c) 

11 4, 11 4, 4 4, 11

1
rr r zzc c M

r r r


   

  
   

  
                       (2.40a) 

4 4, 4 4, 4 4, 33

1
rr r zzN N P

z r z


   

  
   

  
                       2.40b)

 

4 4, 4 4, 4 4, 3 1

1
rr r zzF F G p p

z r z r r

  
  

     
        

     
                     (2.40c) 

To avoid directly solving a system of fully coupled homogeneous equations (2.39), it 

is customary to obtain the solution for each  1,2,3i i   from the following system 

of fully uncoupled homogeneous equations. 

11 , 11 , ,

1
0i rr i r j i zzc c M

r
                                                   (2.41a) 

, , ,

1
0i i rr i i r i i zzN N P

r
                  (2.41b) 

, , ,

1
0i i rr i i r i i zzF F G

r
                                         (2.41c) 

In order to obtain a non-trivial solution for i of the above system, , , ,i i i iM N P G
 

and iF must satisfy the following relation, 
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2

11

, 1,2,3
ˆ

i i i
i

i i

M P G
i

c N F
                   (2.42) 

The equation (2.42) is used to determine  1 2,i il l  and 2

i  1,2,3i  . In particular, 2

i  

are roots of the following cubic equation. 

     
3 2

2 2 2 0i i iA B C D                               (2.43) 

where , , ,A B C D   are constants expressed explicitly in terms of materials properties 

(see appendix). Upon exploiting the relation (2.42), the system of three equations 

simply reduces to 

2 2
2

2 2

1
0i i i

i
r r r z

  


  
  

  
                          (2.44) 

By taking Laplace transform of Eq. (2.44), it results in 

2 2

2 2

1
0i i i

ir r r z

    
  

  
                          (2.45) 

where i

i

z
z


 . The general solution i in the Laplace transform domain can readily 

be obtained by using the separation of variable technique, i.e.    , ,i R r s Z z s  , 

 ,i R r s   and  ,i Z z s  . The final result is given by 

     0 0

1

, cos sinim im
i im im im im im im

m i i

z z
r z A I r B K r C D

 
  

 





    
         

    


  

   
2

2

0 0 0

1

cosh sinh 2 lnin in
in in in in in in i i

n i i i

z z z
E J r F Y r G H A r B r

 
 

  





       
               
         

  

        (2.46) 
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where ,m n  are constant; 0 , , , , , , ,i im im im im in in inA A B C D E F G  and inH  1,2,3i   are 

arbitrary constants. 

A particular solution of a system of non-homogenous equations (2.40) can be 

obtained explicitly for the thermopiezoelectric crystal class 6 mm (i.e., 1 0p  ). By 

first taking Laplace transform of (2.40), it leads to 

11 4, 11 4, 4 4, 11

1
rr r zzc c M

r r r


   

  
   

  
            (2.47a) 

4 4, 4 4, 4 4, 33

1
rr r zzN N P

z r z


   

  
   

  
                                 (2.47b)

 

4 4, 4 4, 4 4, 3

1
rr r zzF F G p

z r z


  

  
    

  
                                  (2.47c) 

By substituting the general solution for the temperature change given by (2.33) into 

(2.47) and choosing the constants M4, N4, P4, F4, and G4 such that 

33 311

2 2 2

2 2 2

11 4 4 4 4 4
m m m

m m m

p

c M N P F G




  
  

  


  

     
       

     

                    (2.48a) 

33 311

2 2 2

2 2 2

11 4 4 4 4 4

m

m m m
m m m

p

c M N P F G



  
  

  


   

     
       

     

        (2.48b) 

The particular solution 4  can then be obtained in the Laplace transform domain as 

     4 4 0 4 0 4 4

0

, , cos sin
p p

p p p p p p

p

r r
r z s A I B K C z D z
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   4 0 4 0 4 4

0

cosh sinh
q q

q q q q q q

q

r r
E J F Y G z H z

 
 

 





     
        
      

    

          (2.49) 

where , , ,p p p p        and 4 4 4 4 4 4 4, , , , , ,p p p p q q qA B C D E F G  and 4qH   are arbitrary 

functions. It is remarked that the conditions (2.48) are employed to determine the 

constants 14l  and 24l  (see the appendix). 

Since the current research focuses only on axisymmetric boundary conditions that are 

symmetric with respect to the plane 0z  , the potential functions must be even 

functions with respect to the z-coordinate. For completeness of the general solution, 

the potential functions given by (2.46) must contain a solution of a radially symmetric 

plane problem of an annular cylinder. As a result, the general solution for the potential 

function and the temperature change in the Laplace transform domain are given by 

     
2

2

0 00 0 0

1

, 2 ln cos im
i i im im im im

mi i

zz
r z A r B r A I r B K r


  

 





    
          
     

  

   0 0

1

cosh            for 1,2,3in
in in in in

n i

z
E J r F Y r i


 







 
      

 
          (2.50a) 

   4 4 0 4 0

0

, , cos
p p

p p p

p

r r
r z s A I B K z

 
 

 





     
     

    
    

     

 4 0 4 0

0

cosh
q q

q q q

q

r r
E J F Y z

 


 





     
     

    
    

            (2.50b) 

 0 0

0

( , , ) cos
p p

p p p

p

r r
r z s A I B K z
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 0 0

0

cosh
q q

q q q

q

r r
E J F Y z

 


 





     
       

    
    

              (2.51) 

2.4 General Solutions for Field Quantities 

The general solution of the elastic displacements and electric potential , ,r zu u   in the 

Laplace transform domain can readily be obtained by substituting (2.50) – (2.51) into 

(2.34) – (2.35), and this results in 

   
3 3

0 00 1 1

1 1 1

1
2 cos im

r i im im im im im

i i m i

z
u A r B A I r B K r

r


  





  

 
       

 
   

     
3

1 1 4 1 4 1

1 1 0

cosh cos
p p pin

in in in in in p p p

i n pi

r rz
E J r F Y r A I B K z

  
   

   

 

  

       
                      

   

 4 1 4 1

0

cosh
q q q

q q q

q

r r
E J F Y z

  


  





      
     

    
    

             (2.52) 

   
3 3

1
0 1 0 02

1 1 1

4 sini im im
z i i im im im im

i i mi i i

l z
u A z l A I r B K r

 
 

  



  

 
        

 
    

     
3

1 0 0 14 4 0 4 0

1 1 0

sinh sin
p pin in

i in in in in p p p p

i n pi i

r rz
l E J r F Y r l A I B K z

  
   

   

 

  

      
                       

    

 14 4 0 4 0

0

sinh
q q

q q q q

q

r r
l E J F Y z

 
 

 





     
      

    
    

             (2.53) 

   
3 3

2
0 2 0 02

1 1 1

4 sini im im
i i im m im im

i i mi i i

l z
A z l A I r B K r

 
  

  



  

 
        

 
    

     
3

2 0 0 14 4 0 4 0

1 1 0

sinh sin
p pin in

i in in in in p p p p

i n pi i

r rz
l E J r F Y r l A I B K z
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 24 4 0 4 0

0

sinh
q q

q q q q

q

r r
l E J F Y z

 
 

 





     
      

    
    

             (2.54) 

The general solutions for the strain, the electric field, the temperature gradient, the 

stress and electric induction can be obtained from (2.15) – (2.19). For convenience, 

such solution is separated into five parts. The first part corresponds to the non-series 

term, and is denoted by a superscript ‘0’. The second part corresponds to the series of 

the modified Bessel function associated with 1il  and 2il  1,2,3i  , and it is denoted by 

a superscript ‘1’. The third part corresponds to the series of the Bessel function 

associated with 1il  and 2il  1,2,3i  , and it is denoted by a superscript ‘2’. The fourth 

part corresponds to the series of the modified Bessel function associated with 14l , 24l  

and the temperature field, and it is denoted by a superscript ‘3’. The last part 

corresponds to the series of the Bessel function associated with 14l  , 24l  and the 

temperature field, and it is denoted by superscript ‘4’. 

3
0

0 00 2
1

1
2rr i

i

A B
r




                 (2.55a) 

           
3

2 21

0 1 0 1

1 1

cosim im im
rr im im im im im im im im

i m i

z
I r I r A K r K r B

r r

  
      





 

     
         

      


                

(2.55b) 

           
3

2 22

0 1 0 1

1 1

coshin in in
rr in in in in in in in in

i n i

z
J r J r E Y r Y r F

r r

  
      





 

     
           

      


                 

(2.55c) 

 
2

3

0 1 4

0

cos
p p p p

rr p p

p

r r
I I A z

r

   
 

   





         
        
      
       



    

 

 
2

0 1 4

0

cos
p p p p

p p

p

r r
K K B z

r

   


   





         
        
      
       

          (2.55d) 

 
2

4

0 1 4

0

cosh
q q q q

rr q q

q

r r
J J E z

r
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2

0 1 4

0

cosh
q q q q

q q

q

r r
Y Y F z

r

   


   





         
         
      
       

            (2.55e) 

3
0

0 00 2
1

1
2 i

i

A B
r




                 (2.56a) 

   
3

1

1 1

1 1

cosim im
im im im im

i m i

z
A I r B K r

r


 
  





 

 
     

 
          (2.56b) 

   
3

2

1 1

1 1

coshin in
in in in in

i n i

z
E J r F Y r

r


 
  





 

 
      

 
           (2.56c) 

 3

4 1 4 1

0

cos
p p p

p p p

p

r r
A I B K z

r


  
 

  





      
     

    
    

          (2.56d) 

 4 44

1 1

0

cosh
q q q

q q q

q

r r
E J F Y z

r


  
 

  





      
      

    
    

           (2.56e) 

0 1
02

1

4 i
zz i

i i

l
A







                  (2.57a) 

   
2

3
1

1 0 0

1 1

cosim im
zz i im im im im

i m i i

z
l A I r B K r

 
  

 



 

   
       

   
          (2.57b) 

   
2

3
2

1 0 0

1 1

coshin in
zz i in in in in

i n in i

z
l E J r F Y r

 
  

 



 

   
      

   
            (2.57c) 

 
2

3

14 4 0 4 0

0

cos( )
p p

zz p p p p

p

r r
l A I B K z

 
  

 





     
       

    
    

          (2.57d) 

   
2

4

14 4 0 4 0

0

ˆ cosh
q q

zz q q q q

q

r r
l E J F Y z

 
  

 





     
      

    
    

           (2.57e) 

       
23

1

1 1 1 1

1 1

1
1 1 sin

2

im im
zr i im im i im im

i m i i

z
l A I r l B K r

 
  

 



 

 
        

 


        

(2.58a) 

       
23

2

1 1 1 1

1 1

1
1 1 sinh

2

n in
zr i in in i in in

i n i i

z
l E J r l F Y r

 
  

 



 

 
         

 
        (2.58b) 
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     3

14 4 1 14 4 1

0

1
1 1 sin

2

p p p p

zr p p p

p

r r
l A I l B K z

   
 

  





       
        

    
    


        

(2.58c) 

     4

14 4 1 14 4 1

0

1
1 1 sinh

2

q q q q

zr q q q

q

r r
l E J l F Y z
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It is worth noting that all unknown constants appearing in the general solution 

presented above need to be determined once the boundary value problem is 

formulated.  
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CHAPTER III 

FORMULATION OF PIEZOCOMPOSITE CYLINDER 

 

3.1 Piezocomposite Cylinders Subjected to Thermal Loading 

 

, 0m f

zh   

 

 1 ,T z t   

 

 

Fig. 3.1 Piezocomposite cylinder subjected to zero heat flux at both ends and 

prescribed temperature at curve surface. 

In this section, arbitrary constants , , , , , , ,p p q q p p q qA B E F             defined 

previously are solved separately for the thermal boundary conditions. Consider the 

case of a piezocomposite cylinder as shown in Fig. 2.2, which is subjected to zero 

heat flux at both ends and a prescribed temperature  1 ,T z t  at its curved surface. The 

interface at r a  is assumed to be perfectly bonded and permeable. Because the 

general solutions of temperature fields in previous section are in the Laplace domain, 

the Laplace transform is applied to the boundary conditions. To identify the domains 

of fiber and matrix, the superscript m  represents the matrix domain and the fiber 

domain is identified by the superscript f . The boundary condition in the Laplace 

domain can be expressed as 

( , 1) 0m

zh r        for  a r b            (3.1a) 
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( , 1) 0f

zh r        for  0 r a           (3.1b) 

( , ) ( , ),  ( , ) ( , )m f m f

r ra z a z h a z h a z    for  1 1z       (3.2a - 3.22b) 

1( , ) ( , )m b z T z s      for  1 1z            (3.33) 

where 1
1

0

( , )
( , )

T z s
T z s

T
 denotes the non-dimensional temperature. 

 First consider the Eq. (3.1), the acceptable eigenvalue and the eigenfunction 

must be in terms of cosine functions. Therefore, the general solutions of temperature 

field are 
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Where  for 1,2,3,...m m

p p p p      

In view of Eq. (3.2), m
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pA  can be expressed in terms of m

pA  as 
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Substitution m

pB  from Eq. (3.5a) into Eq. (3.3). The unknown m

pA  can be determined 

by introduced Fourier cosine series expansion into the right hand side terms 
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                  (3.7b) 

The constants 
m

pB  and 
f

pA  can be taken from Eq. (3.5). In addition, the potential 

functions 4

m and 4

f  in Eq. (2.49) can be expressed as 
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where 
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3.2 Piezocomposite Cylinder Subjected to Mechanical and Electrical Loading 
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Fig 3.2 Piezocomposite cylinder subjected to prescribed traction and electric 

 displacement at curve surface 

In this section, all arbitrary constants 
0 00, ,iA B

 
, ,im imA B

 
, ,in inE F

 4 4, ,p pA B
 

4 4, ,q qE F
 

,im in   in the previous section are solved for the applied mechanical and 

electrical loading. Consider the case of a piezocomposite cylinder as shown in  

Fig. 3.2 This composite cylinder is subjected to prescribed traction and electric 

displacement at its curve surface. The boundary condition in Laplace domain can 

be expressed as 
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_0 _1 _ 2 _3( , 1, ) 0m m m m m

zz zz zz zz zzr s             for a r b        (3.9a) 
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Let 
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   1 1 0m m m m
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To satisfy the eigenvalue problem of Eq. (3.19), the eigenvalue must be the same 

value for each  ( 1,2,3)i i   and 
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First, consider the boundary condition in Eq. (3.10). To satisfy the boundary 

condition, let choose , ,m f m f

im im  . Therefore, , ( , 1, )m f

zr r s  can be reduced to 

, , 2 , 3ˆ ˆ ˆm f m f m f

zr zr zr    . Then, using Eq. (2.65) with boundary condition in Eq. (3.9a), 

the following equations can be obtained 

3
0 0

0

1

4m m m

zz zzi i

i

A


                 (3.21a) 

     
3

1 1

0 0

1 1

cosm m m m m m

zz zzmi im i im i

i m

A I m r B K m r m z   


 

   
          (3.21b) 

   
3

2 2

0 0

1 1

cosh
m

m m m m m m n
zz zzni in n in n m

i n i

z
E J r F Y r


  





 

 
      

 
           (3.21c) 

 3

4 0 4 0

0

cos

m m

p pm mT m m

zz zzp p pm m
p

r r
A I B K p z

 
 

 





     
      

    
    



 33 0 0

0

cos

m m

p pm m m

p pm m
p

r r
A I B K p z

 
 

 





     
      

    
    

            (3.21d) 

Where 
0 1 2,  ,   and m m m mT

zzi zzmi zzni zzp     see appendix 

Substituting Eq. (3.20) into Eq. (3.21c), and let  
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Eq. (3.22) then becomes 
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Then, use basic function  0

m

nH r  to expanding the Bessel and modified Bessel 

function in radial direction of matrix.  
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Where 0 0,  ,   and m m m m

I mi Ijmi K ni Kjnic c c c  see appendix 

 n  is order of Bessel function or modified Bessel function.        (3.24g) 

Then, Eq. (3.21) becomes 

     
3 3

1 1 1 1 1

0 0

1 1 1 1 1

1 1
n nm m m m m m m m

zz zzni I ni in zzni Ijni in j

n i j n i

c A c A H r 
  

    

         

     
3 3

1 1 1 1

0 0

1 1 1 1 1

1 1
n nm m m m m m m

zzni K ni in zzni Kjni in j

n i j n i

c B c B H r
  

    

                (3.25a)  

     3 3 3

33 0 33 0

0 1 0

1 1
n nm mT m m m m mT m m m m m

zz zzp I ni n zzp Ijni n j

n j n

c A c A H r     
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     3 3

33 0 33 0

0 1 0

1 1
n nmT m m m m mT m m m m m

zzp K ni n zzp Kjni n j

n j n

c B c B H r    
  

  

           
       

                (3.25b) 

By using linearly dependent vectors, the sum of coefficient in front of vectors 

 0

m

jH r  is must be equal to zero, yields 

   
3 3 3

0 1 1 1 1

0 0 0

1 1 1 1 1

4 1 1
n nm m m m m m m m

zzi i zzni I ni in zzni K ni in

i n i n i

A c A c B
 

    

          

   3 3

33 0 33 0

0 0

1 1 0
n nmT m m m m mT m m m m

zzp I ni n zzp K ni n

n n

c A c B   
 

 

            
             (3.26a) 

   
3 3 3

1 1 1 1 2

1 1 1 1 1

1 1 cosh
m

n nm m m m m m m mn
zzni Ijni in zzni Kjni in zzni inm

n i n i i i

c A c B F




 

    

 
        

 
    

   3 3

33 33

0 0

1 1 0
n nmT m m m m mT m m m m

zzp Ijni n zzp Kjni n

n n

c A c B   
 

 

            
            (3.26b) 

To limit range of summation, we truncate the upper limit toQ . Therefore, the 

number of equation for 0m

zz   is 1 Q . 

Then, using Eq. (3.65) with boundary condition in Eq. (3.9b), the following 

equations can be obtained 

3
0 0

0

1

4f f f

zz zzi i

i

A


                 (3.27a) 

   
3

1 1

0

1 1

cosf f f f

zz zzmi im i

i m

A I m r m z  


 

             (3.27b) 

 
3

2 2

0

1 1

cosh
f

f f f f n
zz zzni in n f

i n i

z
E J r


 





 

 
   

 
             (3.27c) 
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   3

4 0 33 0

0 0

cos cos

f f

p pf fT f f f

zz zzp p pf f
p p

r r
A I p z A I p z

 
   

 

 

 

    
     

   
   

         (3.27d) 

Where 
0 1 2,  ,   and f f f fT

zzi zzmi zzni zzp     see appendix 

Then, use basic function  0

f

nJ r  due to  1 0f

nJ a  for expanding the Bessel and 

modified Bessel function in radial direction of fiber.  

   0 0

1

f f f f

n i I mi Ijmi j

j

I m r c c J r 




                (3.28) 

Where 0  and f f

I mi Ijmic c  see appendix       

 n  is order of Bessel function or modified Bessel function. Eq. (3.27) becomes 

     
3 3

1 1 1 1 1

0 0

1 1 1 1 1

1 1
n nf f f f f f f m

zz zzni I ni in zzni Ijni in j

n i j n i

c A c A J r 
  

    

                 (3.29a)  

     3 3 3

33 0 33 0

0 1 0

1 1
n nf fT f f f f fT f f f f m

zz zzp I ni n zzp Ijni n j

n j n

c A c A J r     
  

  

           
      

      (3.29b) 

By using linearly dependent vectors, the sum of coefficient in front of vectors 

 0

m

jJ r  is must be equal to zero, yields 

   
3 3

0 1 1 3

0 0 33 0

1 1 1 0

4 1 1 0
n nf f f f f fT f f f f

zzi i zzni I ni in zzp I ni n

i n i n

A c A c A 
 

   

         
             (3.30a) 

   
3 3

1 1 2 3

33

1 1 1 0

1 cosh 1 0
f

n nf f f f f fT f f f fn
zzni Ijni in zzni in zzp Ijni nf

n i i ni
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      (3.30b) 
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To limit range of summation, we truncate the upper limit toQ . Therefore, the 

number of equation for 0f

zz   is 1 Q . 

By following this method, the boundary conditions at both end (3.10), 0m f

zr zr    

can be reduced to 

3
2

1

0m m

zrni in

i

F


                 (3.31a) 

3
2

1

0f f

zrni ni

i

E


                (3.31b) 

Where 2 2 and m f

zrni zrni   see appendix 

To limit range of summation, we truncate the upper limit toQ . Therefore, the number 

of equation for 0m

zr   is Q  and 0f

zr   is Q . 

The boundary conditions at both end (3.11), 0m f

z zD D   can be reduced to 

3 3 3
0 1 1 1 1 3 3 3 3

0 0 0 0 0

1 1 1 1 1 0 0

0m m m m m m m m m m m m m m

zi i I ni zni ni K ni zni ni I n zn n K n zn n

i n i n i n n

A c A c B c A c B
   

      

                

                 (3.32a) 

3 3 3
1 1 1 1 2 3 3 3 3

1 1 1 1 1 0 0

0m m m m m m m m f m m f m m

Ijni zni ni Kjni zni ni zji ji Ijn zn n Kjn zn n

n i n i j n n

c A c B F c A c B
   

      

              
 

      (3.32b) 

Where 
0 1 1 2 3,  ,  ,   and m m m m m

zi zni zni zrni zji      see appendix 

3 3
0 1 1 3 3

0 0 0

1 1 1 0

0f f f f f f f f

zi i I ni zni ni I n zn n

i n i n

A c A c A
 

   

                   (3.33a) 
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3 3
1 1 2 3 3

1 1 1 0

0f f f f f f f f

Ijni zni ni zji ji Ijn zn n

n i j n

c A E c A
 

   

                  (3.33b) 

Where 
0 1 1 2 3,  ,  ,   and f f f f f

zi zni zni zji zn       see appendix 

To limit range of summation, we truncate the upper limit to Q . Therefore, the number 

of equation for 0m

zD   is 1 Q  and 0f

zD   is 1 Q . 

Then consider boundary conditions at outer surface (3.12) – (3.14) and at the interface 

(3.15) – (3.18). To formulate linear equations by using linearly independent vector 

method, Fourier cosine – sine series expansion in z  direction is needed.  

Fourier cosine series expansion 

 
 

   0

1

cos
2

c

cn

n

f z
f z f z n z





              (3.34a) 

Where    
1

0

0

2cf z f z dz              (3.34b) 

     
1

0

2 coscnf z f z n z dz             (3.34c) 

Fourier sine series expansion 

   
1

sinsn

n

f z f n z




              (3.35a) 

Where     
1

0

2 sinsnf f z n z dz             (3.35b) 

Therefore, linear equations due to the boundary condition at outer surface (3.12), 

 ,m

rr P z s   can be expressed as 
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3 3
0 0 2 2 3 3 0

0 00 0 0 0

1 1 1 2

rrm
m m m m m m m m m m m

rri i rrb c ni rrni ni rrI rrK

i n i

p
A B f F A B



  

        
       

(3.36a) 

3 3 3
1 1 2_ 3 3

1 1 1 1

m m m m rrmb m m m m m rrm

Irrji ji Krrji ji nji ni rrI n rrK n j

i i n i

A B F A B p


   

          
      

(3.36b) 

Where 0 0 1 1 2 3 3 1 2 3,  ,  ,  ,  ,  ,  ,  ,  ,  ,   m m m m m m m m m m m

rri rrb Irrji Krrji rrni rrI rrK rr rr rr rrbC C C C        and

 

m

rrbC   see 

appendix 

To limit range of summation, we truncate the upper limit to Q . Therefore, the number 

of equation for  ,m

rr P z s   is 1 Q . 

The boundary condition at outer surface (3.13),  ,m

rz V z s   can be expressed as 

3 3
1 1 3 3

1 1

m m m m m m m m rrm

Irzji ji Krzji ji Irzj j Krzj j j

i i

A B A B v
 

       
            

(3.37) 

Where 
1 1 3 3,  ,   and m m m m

Irzji Krzji Irzj Krzj   
 
see appendix 

To limit range of summation, we truncate the upper limit to Q . Therefore, the number 

of equation for  ,m

rz V z s   is Q . 

The boundary condition at outer surface (3.14),  ,m

rD D z s  can be expressed as 

3 3
1_ _ 1_ _ 3 3

1 1

D rmb I m D rmb K m m m m m rm

ni ni ni ni Irn n Krn n n

i i

A B A B D
 

       
           

(3.38) 

Where 
1 1 3 3,  ,   and m m m m

Irji Krji Irn Krn     see appendix. 

To limit range of summation, we truncate the upper limit to Q . Therefore, the number 

of equation for  ,m

rD D z s  is Q .  
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Then, the linear equations due to the boundary condition at the interface (3.15) 

m f

rr rr   can be expressed as 

3 3
0 0 2 2 3 3

0 00 0 0 0

1 1 1

m m m m m m m m m m m

rri i rra c ni rrni ni rrI rrK

i n i

A B f F A B


  

       
 

3 3
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1 1 1

f f f f f f f

rrI rri i c ni rrni ni

i n i

A A f E


  

                   (3.39a) 

3 3 3
1 1 2_ 3 3
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m m m m rrma m m m m m

Irrji ji Krrji ji nji ni rrI n rrK n

i i n i

A B F A B


   

         
 

3 3
1 2_ 3

1 1 1

f f rrfa m f m

Irrji ji nji ni rrI n

i n i

A F A


  

                 (3.39b) 

Where  
0 0 1 1 2 3 3 0 0 1,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,m m m m m m m m m f f f

rri rra Irrji Krrji rrni rrI rrK rra rra rri rra IrrjiC C            

 2 3 1 2 3 ,  , ,  ,   and m f f f f f

rrni rrI rr rr rr rraC C C C    see appendix. 

To limit range of summation, we truncate the upper limit to Q . Therefore, the number 

of equation for m f

rr rr   is 1 Q .

 

3 3 3
1 1 3 3 1 3

1 1 1

m m m m m m m m f f f f

Irzni in Krzni ni Irzn n Krzn n Irzni in Irzn n

i i i

A B A B A A
  

           
          

(3.40) 

Where 
1 1 1 3 3 1 3,  ,  ,  ,  ,   and m m m m m f f

Irzni Krzni Krzni Irzn Krzn Irzni Irzn        see appendix. 

The boundary condition at the interface (3.15) m f

rz rz   can be expressed as

 

3 3
3_ _ 3_ _ 3_ _

0 00 0 0 0 0 0 0 0

1 1

1
2 2m m Cu rm I m Cu rm K m f Cu rf I f

i i

i i

a A B A B a A A
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(3.41a) 

3 3 3
1 1 3 3 1 3

1 1 1

m m m m m m m m f f f f

Iur ni Kur ni Iurn n Kurn n Iur ni Iurn n

i i i

A B A B A A
  

           
                             

(3.41b) 
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 Where 3 3 3 1 1 1 3 3 3,  ,  ,  ,  ,  ,  ,   and m f f m m f m m f

Iur Iur Iur Iur Kur Iur Iurn Kurn Iurn          see appendix.
  

To limit range of summation, we truncate the upper limit to Q . Therefore, the number 

of equation for m f

rz rz   is 1 Q . 
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(3.42) 

Where
 

1 1 3 2 2 3 3 3,  ,  ,  ,  ,  ,   and m m f m f m m f

Iuz Kuz Iuz uzji uzji Iuzj Kuzj Iuzj         see appendix. 
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0

f f f

s j I j jf A

 
 
 
 
 

 
           

(3.43) 

Where
 

1 1 3 2 2 3 3 3,  ,  ,  ,  ,  ,   and m m f m f m m f

I K I ji ji I j K j I j                see appendix. 

3 3
1_ _ 1_ _

3_ _ 3_ _

1 1 4 4

3 3_ _
1_ _ 4

1

CD rm I m CD rm K m

CD rm I m CD rm K mni ni ni ni

i i n n n n
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CD rf I f n n
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A
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(3.44)

 

Where 
1 1 1 3 3 3,  ,  ,  ,   and m m f m m f

IDrnia KDrnia IDrnia IDrnia KDrnia IDrnia       see appendix. 

 The equation            3.26 , 3.30 , 3.31 3.33 , 3.36 3.44   are used to 

generate a system of linear algebraic equations of order (7 15 )J  with arbitrary 

constant 0 0 0,  ,  ,  ,  B ,  F ,   and Em m f m m m f m

i i i ni ni ni ni niA B A A A  . This system of linear algebraic 

equations can be solved numerically.   
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CHAPTER IV 

NUMERICAL RESULTS 

 

In this chapter, the result for special case of transient response of 

thermopiezoelectric cylinder which homogenous material is presented. A computer 

code has been developed to obtain the numerical results from the boundary value 

problems that formulated in the previous chapter. Since the problem is formulated in 

the Laplace domain, the transient solutions are obtained by employing a numerical 

Laplace inversion scheme. In this thesis, Laplace inversion scheme proposed by 

Stehfest (1970) is employed. The formula due to Stehfest is given by 

 
1

log 2 log 2N

n

n

f t c f n
t t

 
  

 
                (4.1a) 

Where  
 

        

  2min , 2
2

1 2

2 !
1

2 ! ! 1 ! ! 2 !

Nn N
n N

n

k n

k k
c

N k k k n k k n



   

 
   

           (4.2b) 

and N is an even number. 

4.1 Piezoelectric Cylinder under Uniform Temperature 

 

 

 

        1 1( ) ( )T t T f t             1 1( ) ( )T t T f t  

 

Fig 4.1 Piezoelectric cylinder subjected to zero heat flux at both ends with uniform 

temperature at its curve surface. 
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Consider a cylinder subjected to uniform temperature 1 1( ) ( )T t T f t  at its 

curve surface is shown in Fig 3.1. The inner and outer diameter of the cylinder are 

0.1a h , and 0.4b h  respectively, with same material properties , ,

1 3 1m f m fk k   and 

the thermal expansion coefficient 
6 14.4 10x K   . Let the constant positive 

reference temperature be 0 300T K . The complete solutions in this case are given by 

0 0
0 0 0 0

m m
m m m

m m

r r
A I B K

 


 

   
     

   
  for  a r b           (4.2a) 

0
0 0

f
f f

f

r
A I






 
  

 
    for  0 r a           (4.2b) 

where  
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A T f s

   

   

       
        

        
 

           (4.2c) 
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           (4.2d) 
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          (4.2e) 
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 There are two cases of the time-dependency ( )f t  for the thermal loading 

considered in the numerical study as shown in Fig. 3.2.  

f(t)       f(t) 

                      

 

          
1T               

1T  

 

             t          1           t   

 (a)          (b) 

Fig 4.2 Time-dependency of thermal loading considered in the numerical study. 

 The Laplace transforms for the loading cases (a) and (b) are given by Eqs. 

(4.3) and (4.4) respectively.  

   1
a

T
f s

s
     for case (a)             (4.3) 

  
  1

2

1 s

b

e T
f s

s


    for case (b)           (4.4) 

Transient response of thermopiezoelectric cylinders under thermal loading is 

presented next. It is noted that the temperature distributions in the fiber and matrix 

parts given by Eqs. (4.2) are independent along the length of the cylinder (the  z-

direction). Therefore, only radial variation is shown in the numerical results. First, it 

is important to examine the convergence of the numerical Laplace inversion scheme 

given by Eq. (3.1). Radial profiles of nondimensional temperature change in a 

thermopiezocomposite cylinder for different values of N at 0.1t   under thermal  

loading case (a) are shown in Fig. 4.3. Numerical results presented in Fig. 4.3 indicate 

that the converged time domain solution for this problem is obtained when N is 

greater than 12. 
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Fig 4.3 Convergence of solutions with respect to the number of term in Laplace 

inversion scheme ( N ) at 0.1t  . 

 

             

 

 

 

 

 

                    

Fig 4.4 Radial profiles of transient temperature in a thermopiezocomposite solid 

cylinder under loading case (a). 
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Radial profiles of transient temperature in a thermopiezocomposite solid 

cylinder for different values of time are shown in Figs. 4.4. The numerical solutions 

for those figures are compared with the exact solution (conduction of heat in solids - 

carslaw and jaeger). The temperature change throughout the cylinder is nearly zero 

except in the vicinity of the applied temperature. Thereafter, the temperature in the 

cylinder gradually increases with time before reaching the steady-state temperature, 

which is 1T   throughout the cylinder.   

 

 

 

 

 

 

 

 

Fig 4.5 Radial profiles of transient temperature in a thermopiezocomposite composite 

cylinder under loading case (a). 

Radial profiles of transient temperature in a thermopiezocomposite composite 

cylinder for different values of time are shown in Figs. 4.5. The ration of heat 

conduction coefficients properties between matrix and fiber is 3m fK K   . The 

temperature distribution of matrix is faster than fiber because the value of heat 

conduction coefficient of matrix is greater than fiber. Thereafter, the temperature in 

the cylinder gradually increases with time before reaching the steady-state 

temperature, which is 1T   throughout the cylinder.  The temperature at any value of 
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time from thermal cylinder problem is used to input data to thermopiezoelectric 

problem. 

4.2 Comparison Elastic Finite Solid Cylinder under Mechanical loading. 

 In this section, Firstly, let compare numerical results with Meleshko and Yu 

(2012) in case of mechanical band loading. The cylinder is elastic with h a  and 

Poisson’s ratio 1 3  . And boundary condition at outer surface are defined by 

 
,  2

0,  2

p z h
P z

h z h

  
 

 
                 (4.5) 

 

 

 

( , )m

rr P z s         ( , )m

rr P z s   

 

 

Fig 4.6 Thermopiezoelectric cylinder subjected to mechanical loading at its 

curve surface. 

In Figs. (4.5) – (4.7) are shown the comparison of radial, axial and shear 

stresses along z-direction at various radius r .  The number of term for converge 

solution at inside solid cylinder is greater than 30. But for satisfied boundary 

condition at outer surface, the number of them is greater than 200.  
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Fig 4.7 Radial stress along z-direction of elastic finite cylinder compare with 

Meleshko and Yu (2012). 

 

 

 

 

 

 

 

Fig 4.8 Shear stress along z-direction of elastic finite cylinder compare with  

Meleshko and Yu (2012). 
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Fig 4.9 Axial stress along z-direction of elastic finite cylinder compare with  

Meleshko and Yu (2012). 

4.3 Thermopiezoelectric Finite Solid Cylinder under Mechanical loading. 

 The solution of thermopiezoelectric solid cylinder is presented. This solution 

is used for a benchmark solution for compare with thermopiezoelectric composite 

cylinder. The numerical results for thermopiezoelectric finite cylinder subjected to 

constant mechanic and temperature loading at curve surface are presented. The 

thermopiezoelectric solid cylinder is composed of radius a  and height 2h . Material 

properties of thermopiezoelectric for this thesis are defined by 

 9 2

11 12 13 33 4474.1,  45.2,  39.3,  83.6,  13.2     10c c c c c N m                (4.6) 

2

15 31 330.138,  0.160,  0.347     e e e C m                   (4.7) 

 6 2

11 330.621,  0.551     10 N Km                  (4.8) 
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 -12 2 2

11 3382.6,  90.3     10    C Nm                           (4.9) 

 -6

3 2.94     10p C N                  (4.10) 

In Figs. 4.8, the number of series solution  Q  for complete solution of radial 

stress of thermopiezoelectric solid cylinder due to temperature loading in transient 

state at 0z   are varied. For convergence of solution, the number of series solution 

 Q  have to greater than 15. Therefore, for boundary of constant temperature and 

mechanical loading, the number of series solution  Q  is selected 15 terms. 

 Figs. 4.9 – 4.10 is shown the radial and axial displacement due to constant 

temperature. The radial and axial displacement is increasing when time is increasing 

in transient state. It is corresponding that the cylinder is extend when its subjected to 

temperature. When time is come to steady state 2t  , the maximum radial and axial 

displacement is equal to the thermal linear expansion of thermopiezoeletric material 

 0.00000425ru   and  0.000002749zu   respectively. 

 Figs 4.11  is shown the radial stress due to constant temperature. In transient 

state 2t  , the expansion of cylinder is not uniform, strain components are exist. 

Therefore, the stresses are exist in cylinder. When time is increasing to steady state 

2t  , the expansion of cylinder is uniform, strain component are not exist. Therefore, 

the stresses in cylinder are reduced to zero. 

 Figs. 4.12 – 4.14 is shown the radial displacement, axial displacement and 

radial stress in r-direction due to constant temperature and constant mechanical 

loading. The effect of temperature is more decreasing when time is increasing in 

transient state. Because of applied temperature when its come to steady state is seem 

to applied permanent displacement to cylinder. 
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Fig 4.10 Convergence of solutions of radial stress due to constant temperature at 

0z   with respect to the number of term in series complete solution  Q  at 0.1t   

 

 

 

 

 

 

 

 

Fig 4.11 Radial displacement due to constant temperature at 0z   with respect to 

various normalize time. 
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Fig 4.12 Axial displacement due to constant temperature at 0r   with respect to 

various normalize time. 

 

 

 

 

 

 

 

 

Fig 4.13 Radial stress due to constant temperature at 0z   with respect to various 

normalize time. 
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Fig 4.14 Radial displacement due to constant temperature and mechanical loading     

at 0r   with respect to various normalize time. 

 

 

 

   

 

 

 

 

Fig 4.15 Axial displacement due to constant temperature and mechanical loading      

at 0r   with respect to various normalize time. 
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Fig 4.16 Axial displacement due to constant temperature and mechanical loading      

at 0r   with respect to various normalize time. 

4.4 Thermopiezoelectric Finite Solid Cylinder under Mechanical loading in 

transient state. 

In this section, the numerical results for thermopiezoelectric finite solid 

cylinder subjected to constant temperature and band mechanical loading with same 

material properties as previous section are presented. The boundary condition at outer 

surface are defined by 

 
  0

0

,  
,

0,  

p s z h
P z s

h z h

 
 

 
               (4.11) 

 The number of series solution  Q  in this case is greater than 50 for converge 

solution. Because in transient state is very sensitive, therefore the number of series 

solution is more required than regular case. 
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Fig 4.17 Radial stress along z-direction due to constant temperature and band 

mechanical loading 0 2h h with respect to various normalize radius. 

 

 

 

 

 

 

 

 

Fig 4.18 Radial stress along z-direction due to constant temperature and band 

mechanical loading 0 4h h with respect to various normalize radius. 
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Fig 4.19 Shear stress along z-direction due to constant temperature and band 

mechanical loading 0 2h h  with respect to various normalize radius. 

 

 

 

 

 

 

 

 

Fig 4.20 Shear stress along z-direction due to constant temperature and band 

mechanical loading 0 4h h  with respect to various normalize radius. 
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Fig 4.21 Axial stress along z-direction due to constant temperature and band 

mechanical loading 0 2h h  with respect to various normalize radius. 

 

 

 

 

 

 

 

 

Fig 4.22 Axial stress along z-direction due to constant temperature and band 

mechanical loading 0 4h h  with respect to various normalize radius. 
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4.5 Thermopiezoelectric Finite Composite Cylinder under Mechanical loading in 

transient state. 

 

 

 

( , )m

rr P z s         ( , )m

rr P z s   

 

Fig 4.23 Thermopiezoelectric Finite Composite Cylinder under Mechanical  

loading at curve surface. 

In this section, the numerical results for thermopiezoelectric finite composite 

cylinder subjected to constant temperature and constant mechanical loading at outer 

surface are presented. Material properties for both fiber and matrix are same as 

previous section. Therefore, the results of solid cylinder in section 4.2 are used to 

compare the results in this section.  

The problem statement are defined by radius of fiber is 0.1a h , the radius of 

matrix is b h  and height of cylinder is 2h . The reason for choose size of fiber equal 

to 0.1a h  is generated domain of composite closer to single domain. The mechanic 

boundary conditions are assumed to be a perfectly bonded and the electric boundary 

conditions are assumed to be an permeable. The composite problem is more 

complicated than solid problem because it has an interface between two materials. 

Therefore, the number of series solution  Q is more required than solid problem. For 

this problem, the used number of series solution is 150 terms.  
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Fig 4.24 Comparison of radial displacement along r-direction between single domain 

and composite domain due to constant temperature at 0.1t   

 

 

 

 

 

 

 

Fig 4.25 Comparison of radial displacement along r-direction between single domain 

and composite domain due to constant temperature at 0.5t   
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Fig 4.26 Comparison of radial displacement along r-direction between single domain 

and composite domain due to constant temperature at 0.1t   

 

 

 

 

 

 

 

Fig 4.27 Comparison of radial displacement along r-direction between single domain 

and composite domain due to constant temperature at 0.5t   
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Fig 4.28 Comparison of radial stress along r-direction between single domain and 

composite domain due to constant temperature and constant loading at 0.1t   

 

 

 

 

 

 

 

 

Fig 4.29 Comparison of radial displacement along r-direction between single domain 

and composite domain due to constant temperature and constant loading at 0.5t   
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In Figs. 4.20 – 4.25, the results from composite domain in transient state are 

close or exactly the same with the results from single domain at any radius except 

near the interface. But at the interface, all quantities look jumping and make curve not 

smooth. Because the interface of fiber, it seems to be an outer surface of the cylinder 

in section 4.2 and the interface of matrix it seems to be and inner surface of hollow. In 

section 4.2, to satisfied boundary condition at outer surface, number of series solution 

 Q have to greater than 200 terms. Because, at the interface, the functions that 

explain the behavior of thermopiezoelectric is very complicated. Therefore, number of 

series solutions  Q  in case of composite materials are more needed than 150 terms. 

However, to increase more terms, the computer program cannot get the value of 

coefficient because the numerical error of operation the large value in the system of 

linear equations. Therefore, one of the solutions to solve this problem is try to 

manipulate or scale the large value. When time is closer to steady state, the jumping 

behavior at the interface is decreasing. And the results of composite domain are same 

as the results of single domain. 
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CHAPTER V 

CONCLUSIONS 

 

5.1 Summary and Major Findings 

The complete solutions for transinet response of thermopiezoelectric finite 

composite cylinder subjected to axisymmetric loading are presented. The temperature 

field are solved separately by using separation of variable method in Laplace domain. 

Then solved mechanic and electric filed by potential function method in Laplace 

domain. After matching general solution wiht boudary conditions in Laplace domain, 

the numerical inversion of Laplace scheme is needed. In this thesis, Gaver-Stehfest 

scheme is used to transform solution on Laplace domain to time domain. The number 

of Gaver-Stehfest term for converge is greater than 12.  

For complete solution of thermopiezoelectric finite solid cylinder, the number 

of series solution  Q  for stress field, displacement field and are required at least 15  

terms. The stress field due to temperature in transient state are less significant when 

the time is incresing and not producing when the time is in steady state. But for 

displacement field, the effect of temperature is more significant when the time 

incresing in transient state and constant when the time is steady state. 

For complete solution of thermopiezoelectric finite composite cylinder, the 

number of series solution  Q  for stress field, displacement field and are required 

more than 150  terms for capture the bahavior at the interface. The limitation of our 

computer programming is not maniputale the very large value of number. Therfore, 

the solution at the interface still have an error in all quantitles in transient state. The 

solution of composite domain are almost or exactly the same with the solution of 

single domain when the radius is not close to the interface. For steady state, the 

solution of composite domain and single domain are exaclty the same at any point of 

cylinder. The stress field due to temperature in transient state are less significant when 

the time is incresing and not producing when the time is in steady state. But for 



 65 

displacement field, the effect of temperature is more significant when the time 

incresing in transient state and constant when the time is steady state. 

5.2 Suggestions for Future Work  

The boundary value problem focused on in the current study is restricted only 

to the axisymmetric boundary conditions and temperature boundary condition is not 

depends on z-direction. Therefore, too many choice for improve the solution for 

general case. For instance, 

(i) To manipulate the operation of the very large number to get a correct 

solution at the interface. 

(ii) The boundary condition of temperature field can be depends on z-

direction. 

(iii) The mechanic and electric boundary condition can be arbitary.  
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APPENDIX B 

From Eq. (2.43) the coefficients , ,A B C  and D are given by 

2

15 44 11A e c    

2 2 2
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From Eq. (2.48), the value of 14l  and 24l  for   can be determined in term of material 

properties by solving 2 equations as shown below. 
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From Eq. (2.48), the value of 14l  and 24l  for   can be determined in term of material 

properties by solving 2 equations as shown below 
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Normalization all field quantities 
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