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CHAPTER I 
INTRODUCTION 

1.1 Motivation and literatures surveys 

Data mining is a branch of Computer Sciences to extract or search for 
knowledge from a large amounts of data. In general, data mining tasks can be 
classified into two categories: descriptive and predictive tasks. A descriptive task 
characterizes general properties of data in the database such as an association rule. It 
is interested in the relations between variables in a large database. On the other 
hand, a predictive task uses the historical data to build a model for predicting 
unknown instances such as a classifier and a cluster model. Classification is the task 
of generalizing known structure to apply to the new data and cluster is the task of 
discovering groups and structures in a dataset [9]. 

When scientists deal with a large-size dataset, one interesting problem is to 
detect anomaly from data or outliers which are different from the others. These 
instances are crucial in some areas such as a fraud in the banking system, a network 
intrusion in the network system and a breast cancer detection of patients in medical. 
Outlier detection is the process to discover outliers from large datasets [11]. Two 
main approaches of an outlier detection have been used which are the distance-
based and the density-based approach. In the distance-based approach, an outlier is 
an instance which is relatively far from other instances. The algorithm is to identify an 
instance that locates too far from most instances. In the density-based approach, it 
estimates the density distribution based on its neighborhoods. If an instance lies in a 
sparse neighborhood, it is claimed to be an outlier. On the other hand, if an instance 
lies in a dense neighborhood, it is claimed to be normal. 

There are many researches involving outlier detections. Some works aim to 
assign an outlier score to an instance in order to predict an outlier. This technique is 
known as outlier scoring. It uses a numerical ranking system to assign a degree of 
outlier. One of the well-known outlier scoring algorithm was proposed by Breuniq et 
al. [3] called Local Outlier Factor (LOF) algorithm which inspires many researchers to 
publish a new outlier scoring algorithm. It assigns an outlier score to each instance 
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relying on a density-based clustering. Afterwards, there are many published articles 
introduced based on LOF. In 2002, Hawkins et al. [11] used the multi-layer 
perceptron known as Replicator Neural Networks (RNNs) to measure an outlier score 
by ranking an instance according to the magnitude of the reconstruction error. In 
2003, Jiang et al. [13] introduced an algorithm called Generalized Local Outlier Factor 
(GLOF) algorithm for measuring degree of an outlier. It uses the nearest neighborhood 
concept and does not require a prior knowledge of a number of outliers in the 
datasets. In that year, He et al. [12] introduced an algorithm for discovering outliers 
called Cluster-based Local Outlier Factor (CBLOF) algorithm. They assigned each 
instance by an outlier factor using a size of the cluster and a distance between an 
instance and its closest cluster. In 2009, Zhang et al. [25] proposed an outlier score 
called Local Distance-based Outlier Factor (LDOF) to give the scores for scattered 
real world datasets. LDOF measures the distance from an instance to its neighbors 
and decides an outlier from the first n highest distances. 

In this thesis, we propose a new parameter-free outlier score named the 
Ordered distance difference Outlier Factor (OOF). We compute the outlier score for 
each instance by the ordered distance differences. This research is inspired by the 
local outlier factor. LOF and other outlier scorings require at least one parameter. 
Hence, OOF seem promising as it requires no parameter. 

1.2 Research objective 

The goal of our research is to obtain a new outlier score called the Ordered 
distance difference Outlier Factor (OOF) with the OOF algorithm. In addition, we 
prove some properties of this outlier score. The OOF algorithm is implemented and 
its performance is compared with the local outlier factor (LOF). 

1.3 Thesis overview 

In chapter II, the background knowledge such as the metric measure, the 
meaning of an outlier and outlier detection are shown. Next, the local outlier factor 
(LOF) is explained. In chapter III, the Ordered distance difference Outlier Factor (OOF) 
is presented with definitions, an algorithm and some properties of this outlier score. 
Then, the experiments and results are presented in chapter IV. We compared the 
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performance with the LOF algorithm. Finally, chapter V gives the conclusion of this 
thesis. 
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CHAPTER II 
BACKGROUND KNOWLEDGE 

 In this chapter, we describe the background knowledge and the main concept 
for our thesis based on metric distance. We divide this chapter into four parts. First, 
we give a definition of a metric space and a distance function on the metric space. 
Next, we introduce the meaning of an outlier and outlier detection. After that, we 
discuss the Local Outlier Factor (LOF). Finally, we show the definition and the 
algorithm of LOF with an example to illustrate this outlier score. 

2.1 Metric 

The distance between any two data points can be measured as a numerical 
value that can exhibit the dissimilarity between them in a dataset. We define the 
metric by the next definition. 

Definition 2.1 (Metric space) 

Let   be an arbitrary set. A metric space is an ordered pair (   ) where a 
function       [   ) is a metric on   such that for any        , the 
following holds: 

1)  (   )       (Positiveness), 

2)  (   )    if and only if     (Identity), 

3)  (   )   (   )   (Symmetry), 

4)  (   )   (   )   (   )  (Triangle inequality). 

Let   be a set and     be the data points in  . The function   is called the 
distance function.  (   ) means the distance between the instance   and   such 
that it is defined by the following statement. 

Definition 2.2 (Minkowski distance) 

Let   be a subset of the Euclidean space   . For any data points   
(          ) and   (          ) in  , the Minkowski distance is defined by 

  (   )  (∑|     |
 

 

   

)

 
 ⁄

 

where    . 
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 If    , we called the Manhattan distance. It is written as, 

  (   )  ∑|     |

 

   

 

and if    , we called the Euclidean distance. It is written as, 

  (   )  √∑(     ) 
 

   

  

Example 2.1 

Consider two data points,   (   ) and   (   ). 

 

Figure 1  The distance between two data points 

The Manhattan distance between the data points   and   is 

  (   )  ∑ |     |
 
    |   |  |   |       . 

The Euclidean distance between the data point   and   is 

  (   )  √∑ (     ) 
 
    √(   )  (   )  √      √    . 
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Figure 2  Manhattan distance and Euclidean distance 

 We can see that the distance between two points are given by the difference 
metric. In this thesis, we use the Euclidean distance which is a widely accepted 
metric in various applications. 

2.2 Outlier 

Outlier is an instance in a dataset that does not conform to a notion of 
normal patterns [4]. Most researchers refer to the Hawkins’ definition [10] which 
stated that “an outlier is an observation that deviates so much from other 
observations as to arouse suspicion that it was generated by a different mechanism”. 
Hawkins-outlier focuses on finding the abnormal instances from a dataset. Then, the 
meaning of an outlier depends on each approach. Filzmoser et al. [7] divides outliers 
in four approaches as the following. 

1) Statistical Approach 

Statistic was the earliest approach used for an outlier detection. It assumes a 
distribution or a probability model for a dataset and then identifies outliers with 
respect to the model using the discordancy test [2, 22]. Many techniques are only 
applicable in one dimension. If the number of dimensions increases, it becomes 
difficult and inaccurate to identify an outlier of a dataset. 
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2) Deviation Approach 

Arning [19] proposed a deviation-based method which identifies outliers by 
inspecting the main characteristic of instances in a dataset and instances that deviate 
from these features. 

3) Distance Approach 

The distance-based outlier depends on the notion of the neighborhood of an 
instance. It is first introduced by Knorr and Ng [15, 16] and modified by Ramaswamy 
[21]. This approach uses   nearest neighbors concept. Distance-based outliers are 
instances which there are less than   instances within the distance of each instance 
in a dataset. It needs to determine an appropriate value of the parameter. The 
distance-based approach is effective in a low dimensional dataset. 

4) Density Approach 

The density-based approach estimates the density distribution of all instances 
and identifies outliers as those lying in a sparse region. Breuniq [3] assigned a local 
outlier factor (LOF) to each instance based on the local density of its neighborhoods 
which is determined by a given minimum number of the nearest neighbors (      ). 
There are many researches on density-based outlier scoring that were developed  
[12, 13, 17]. They can detect the outliers that would be missed by other approaches 
with a single or a global criterion. 

We briefly conclude that an outlier is an instance or an example that 
significantly different from others by some properties. These properties depend on 
some information in each collection or an interested domain of each research. 

2.3 Outlier Detection 

Outlier detection is an important task in data mining and knowledge discovery 
problems. It is an algorithm to find patterns of a dataset that does not conform to 
most instances. These anomalous patterns are often referred to as anomaly 
instances in different application domains. Outlier detection has two categories such 
as labeling and scoring [4]. 
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2.3.1 Labeling Techniques 

These techniques assign a label (normal/outlier) to each instance in a dataset. 
They behave like a classification algorithm and provide a set of outliers and a set of 
normal instances. These techniques can indicate an exact outlier but the drawback is 
no ranking among outliers. 

2.3.2 Scoring Techniques 

These techniques assign an outlier score to each instance. The result is a 
ranking of outliers. An analyst may choose the top few outliers or use a cut-off 
threshold to select outliers. The disadvantage is how to select the threshold to 
indicate outliers. It is not straightforward and has to be arbitrarily fixed by a user. 

In the recent years, most researches are interested in deriving the outlier 
scores [11, 17, 19]. First outlier score was published by Breuniq [3], called “Local 
Outlier Factor” or “LOF”. 

2.4 Local Outlier Factor 

In 2000, Breuniq proposed a new outlier score called the Local Outlier Factor 
(LOF). It is assigned each instance a degree of an outlier. LOF uses the minimum 
number of the nearest neighbors as a parameter,  . Then,   is a particular value that 
specifies the number of required nearest neighbors. 

Definition 2.3 ( -distance of an instance  ) 

 Let   be a dataset. Given a positive integer  . the  -distance of an instance 
    is denoted by           ( ), there exists     such that 

1)   (   )  {   | (   )   (   )} 
2) |  (   )|      
3)   (   )  {   | (   )   (   )} 
4) |  (   )|   . 

where   (   ) is the set of instances in an open ball centered at   with a radius 
 (   ) and   (   ) is the set of instances in a closed ball centered at   with a 
radius  (   ). 

Then,           ( )   (   ). 
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Figure 3    distance of an instance   

Then,           ( ) represents the distance between an instance   and 
the  th nearest neighbor of  . If    , it is the minimum distance of an instance. 
From Figure 3, the distance between   and   is the           ( ). Next, they 
defined the  - distance nearest neighborhood. 

Definition 2.4 ( -distance nearest neighborhood of an instance  ) 

Let   be a dataset. For any positive integer  , the  -distance nearest 
neighborhood of  , defined by 

  ( )  {    { }| (   )            ( )}  
 Then, the  -distance nearest neighborhood of   contains every instance 
whose distances from   is not greater than           ( ). These instances are 
called the  -nearest neighbors of  . Then, a set of   ( ) from Figure 3 is four 
instances that are in the dashed circle around  . 

Definition 2.5 (reachability distance of an instance   with respect to an instance  ) 

Let   be a positive integer. The reachability distance of an instance   with 
respect to an instance   is defined by 

           (   )     {          ( )  (   )}  
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Figure 4  Reachability distance of an instance   with respect to an instance   

 If the instance   is far away from  , then the reachability distance between   
and   is their actual distance. However, if they are sufficiently close or the instance   
is in the  -distance nearest neighborhood of  , the reachability distance is replaced 
by the  -distance of  . For example in Figure 4,            (    ) is   
        ( ) and            (    ) is  (    ). It is used as a measure of the 
volume to determine the density in the neighborhood of any instance. 

Definition 2.6 (local reachability density of an instance  ) 

Let   be the positive integer. The local reachability density of   is defined by 

    ( )   (
∑            (   )    ( )

|  ( )|
)⁄   

 The local reachability density uses the idea of the reachability distance 
between neighbors and itself. It is the inverse of the average reachability distance of 
its neighbors based on  . If the instance lies deep in a group, the local reachability 
density will be high because each reachability distance is small. Then, it is used for 
calculating the local outlier factor in the next definition. 

Definition 2.7 (local outlier factor of an instance  ) 

Let   be a positive integer. The local outlier factor of   is defined by 

    ( )  

∑
    ( )
    ( )

    ( )

|  ( )|
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The local outlier factor of an instance   captures the degree of an outlier. It is 
the average ratio of the local reachability density of   and those of  ’s  -nearest 
neighbors. If LOF is closed to 1, this instance is placed deeply in a cluster. However, 
if it is high, this instance is likely to be an outlier. Next, we give an example to 
compute the LOF score of a dataset. 

Example 2.2 

Let the dataset contain 20 instances. 
   (   )    (   )    (   )    (   )    (   )    (    )    
(    )    (    )    (    )    (    )    (   )    (     )    
(    )    (    )    (    )    (    )    (    )    (    )    

(   ) and    (     ). 

 

Figure 5  The dataset of LOF example 

 We set the minimum number of the neighbors (      ) as  . Firstly, we 
must compute the distance between any two instances. Next, we choose three 
instances to compute LOF. They are         . 

 

 



 12 

Case   : The set of neighbors of the instance    is   (  )  {           }. 

 Compute           (  )   . 

 Compute the reachability distance of   , 
            (     )     {          (  )  (     )}     {       }    
            (     )     {          (  )  (     )}     {   }    
            (     )     {          (  )  (     )}     {       }    

            (     )     {          (  )  (     )}     {   }   . 

 Then the local reachability density of   , 

    (  )   (
∑            (    )    (  )

|  (  )|
)⁄   

(       )

 
⁄  

 

 
. 

 Compute the local reachability density of the neighbors of   , 

      (  )   (
∑            (    )    (  )

|  (  )|
)⁄   

(       )

 
⁄  

 

 
 

      (  )   (
∑            (    )    (  )

|  (  )|
)⁄   

(       )

 
⁄  

 

 
 

      (  )   (
∑            (    )    (  )

|  (  )|
)⁄   

(       )

 
⁄  

 

 
 

      (  )   (
∑            (    )    (  )

|  (  )|
)⁄   

(       )

 
⁄  

 

 
. 

 Then the local outlier factor of the instance   , 

      (  )  
∑

    ( )

    (  )
    (  )

|  (  )|
 

(
 

 
 
 

 
 
 

 
 
 

 
)

 

 

 ⁄  
  

  
        . 

Case   : The set of neighbors of the instance    is   (  )  {           }. 

 Compute           (  )   . 

 Compute the reachability distance of   , 
            (     )     {          (  )  (     )}     {       }    
            (     )     {          (  )  (     )} 

      {           }        

            (     )     {          (  )  (     )} 

    {           }        

            (     )     {          (  )  (     )} 

      {       }       . 

 Then the local reachability density of   , 

    (  )   (
∑            (    )    (  )

|  (  )|
)⁄   

(                   )

 
⁄        . 
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 Compute the local reachability density of the neighbors of   , 

      (  )   (
∑            (    )    (  )

|  (  )|
)⁄         

      (  )   (
∑            (    )    (  )

|  (  )|
)⁄      

      (  )   (
∑            (    )    (  )

|  (  )|
)⁄         

      (  )   (
∑            (    )    (  )

|  (  )|
)⁄        . 

 Then the local outlier factor of the instance   , 

      (  )  
∑

    ( )

    (  )
    (  )

|  (  )|
 
(                        )

      
 ⁄        . 

Case   : The set of neighbors of the instance    is   (  )  {              }. 

 Compute           (  )       . 

 Compute the reachability distance of   , 
            (     )     {          (  )  (     )} 

      {       }        
            (     )     {          (  )  (     )} 

    {           }        
            (     )     {          (  )  (     )} 

      {       }        
            (     )     {          (  )  (     )} 

    {           }        

             (     )     {          (  )  (     )}     {   }   . 

 Then the local reachability density of   , 

    (  )   (
∑            (    )    (  )

|  (  )|
)⁄   

(                         )

 
⁄        . 

 Compute the local reachability density of the neighbors of   , 

      (  )   (
∑            (    )    (  )

|  (  )|
)⁄         

      (  )   (
∑            (    )    (  )

|  (  )|
)⁄         

      (  )   (
∑            (    )    (   )

|  (  )|
)⁄         

      (  )   (
∑            (    )    (  )

|  (  )|
)⁄         

      (  )   (
∑            (    )    (  )

|  (  )|
)⁄        . 
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 Then the local outlier factor of the instance   , 

    (  )  
∑

    ( )
    (  )

    (  )

|  (  )|
 

  
(                                  )

      
 ⁄          

 These computations show details for computing LOF of three instances, 
      and   . For other instances, the LOF score of each instance is shown in 
Table 1 computed by RapidMiner software. Note that LOF score of the instance    
and    are significantly higher than the other instances and LOF of the other 
instance is closed to  . 

Table 1  The LOF example 

Instance LOF Instance LOF 

   0.96875    1.0267 
   0.96875    1.1125 
   1.1429    0.8998 
   0.96875    0.9852 
   0.96875    1.1057 
   0.9407    1.0284 
   1.0151    1.0020 
   0.9919    0.9859 
   0.9914    2.6088 
   0.9628    1.8770 
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CHAPTER III 
ORDERED DISTANCE DIFFERENCE OUTLIER FACTOR 

 We introduce a new outlier score, called “Ordered distance difference Outlier 
Factor” or OOF. It uses the difference between two ordered distances. We give 
definitions and some properties of OOF. First, we define the notation of a dataset 
and an instance. Let   be a dataset with   instances and         be instances 
with   attributes. Next, we give the notions of the distance between the instance   
and  ,  (   ). The Euclidean distance is used in this thesis. Moreover, we define the 
       ( ) as the minimum distance of an instance   and  ( ) represented the 
distance matrix of a dataset  . 

3.1 Definitions of Ordered Distance Difference Outlier Factor 

We begin with the notion of the difference distance between two instances 
with respect to any instance. This definition is necessary in our work. 

Definition 3.1 (Difference distance between two instances with respect to any 
instance) 

The difference distance between the instance   and   with respect to   is 
defined by 

   (   )  | (   )   (   )|  

 The difference distance between two instances with respect to any instance 
is the difference of two distances when fix a common instance. Figure 6 shows the 
difference distance between   and   with respect to   or    (   ), it is the 
difference between  (   ) and  (   ). This value is always non negative. Next, we 
discuss definitions to compute the OOF score. 
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Figure 6  The difference distance between two instances with respect to any 
instance 

Definition 3.2 (Ordered distance matrix) 

Let  ( ) be an instance in a dataset   such that   {       }. The ordered 
distance matrix of the dataset   is defined by 

 ( )  

(

 
 
 ⃑  

 ⃑  
 

 ⃑  )

 
 

 

where   {       } and  ⃑   is the ordered distance vector of row  th of the 
distance matrix such that 

 ⃑   (     ( )
 
    

( )  
    

( )   
    

( )   
    

( )) 

where  
    

( )   ( ( )  
(  

( ))) and     ( )  {       } with  
    

( )       ( )
 

     
    

( ) . 

 For each ordered distance vector  ⃑  , we sort the distance between an 
instance  ( ) and the other instance in this vector by ascending order. Then, a row of 
the ordered distance matrix represents the ordered distance between a given 
instance and the others. 

 To generate the ordered distance matrix, we necessary have a distance matrix 
and a permutation matrix to construct an ordered distance vector  ⃑  . The 
permutation matrix is a square matrix that has only 1 in each row and column and 0 
in other position. This matrix represents a specific permutation of   elements. First, 
we define a permutation function   of   elements by 

  {       }  {       }  
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given as 

(
  
 ( )  ( )

  
  ( ))  

A permutation matrix    is defined by 

   (

  ( )
  ( )
 

  ( )

) 

where    is a row vector of length   with 1 in the  th position and 0 in other 
positions. Then, the ordered distance vector  ⃑   is generated by the row vector of the 
distance matrix  ⃑⃑   multiply the permutation matrix of an instance  , 

 ⃑    ⃑⃑     
( )  

 To compute the ordered distance matrix, we consider instances in Figure 7 
(left). We construct  ⃑   of the ordered distance matrix by create an axis from an 
instance  ( ), called an axis of distance value from  ( ), and project other instances 
into this axis with their distances (Figure 7 (right)). Then, we get a permutation matrix 
of an instance  , 

  
( )  

(

 
 
 
 

  
  

   
   

  
  

  
  
  

   
   
   

  
  
  

  
  

   
   

  
  )

 
 
 
 

  

Then, the ordered distance vector  ⃑   is computed by 

 ⃑   (                            )

(

 
 
 
 

  
  

   
   

  
  

  
  
  

   
   
   

  
  
  

  
  

   
   

  
  )

 
 
 
 

  

We get  ⃑   (                            ). In generally, the  
    

( ) is 
the distance between the instance  ( ) and the  th nearest neighbor of  ( ) and      
is always zero. Hence, the ordered distance matrix of the dataset   is the following 
matrix. 
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 ( )  

(

 
 
 
 

  
    

( )

  
    

( )

 
    

( )

 
    

( )

  
    

( )

  
    

( )

  
    

( )  
    

( )   
    

( )

  
  

    
( )

 
 
    

( )

  
  

    
( ))

 
 
 
 

  

 Next, we define the ordered distance difference matrix. 

 

Figure 7  The axis of the distance value from  ( ) 

Definition 3.3 (Ordered distance difference matrix) 

Let  ( ) be an instance in a dataset   such that   {       }. The ordered 
distance difference matrix of the dataset   is defined by 

  ( )  

(

 
 
  ⃑  

  ⃑  
 

  ⃑  )

 
 

 

where   {       } and   ⃑   is the ordered distance difference of row  th of the 
distance matrix such that 

  ⃑   (    (  
( )   

( ))     (  
( )     

( ))     (  
( )     

( ))) 

where    (  ( )     ( ))   ( ( )  (  
( )))   ( ( )  (    

( ))),   {       } and 
  
( )  {       }. 

 To obtain the ordered distance difference matrix, we first construct the 
ordered distance matrix. Then, we compute the difference between two adjacent 
distances. First, we define an adjacency matrix. It is an     square matrix that has 1 
in the position next by the diagonal line and 0 in every other position. We denote 
the adjacency matrix     in this form, 
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(

  
 

   
   
   

   
   
   

   
   
   

   
   
   )

  
 
  

Then, we compute the ordered distance difference matrix by 
  ( )   ( )   ( )       

Figure 7 (right) shows how to construct this matrix. Consider the   ⃑  , we set 
zero to the first element in this row because there is no instance to compute the 
difference with  ( ). Next, the    (   ) is  ( ( )  ( )) or the distance between 
 ( ) and  ̂( ) on the axis of distance value from  ( ) from the Figure 7 (right). 
Similarly,    (   ) is the difference between  ( ( )  ( )) and  ( ( )  ( )) or the 
distance between  ̂( ) and  ̂( ) and repeat this computation in other instances. 
Then,    (  ( )     ( )) is the difference between the instance  ( ( )  (  

( ))) and 

 ( ( )  (    
( ))) or the distance between  ̂(  ) and  ̂(    ) on the axis of distance 

value from  ( ). Therefore, the ordered distance difference matrix of the dataset   is 
a following matrix, 

  ( )  

(

 
 
 

    (  
( )   

( ))

    (  
( )   

( ))

   (  
( )   

( ))

   (  
( )   

( ))

    (  
( )     

( ))

    (  
( )     

( ))

    (  
( )   

( ))    (  
( )   

( ))     (  
( )     

( ))

  

    (  
( )   

( ))

 

   (  
( )   

( ))

  

    (  
( )     

( )))

 
 
 

  

 We use the value in the ordered distance difference matrix to calculate an 
outlier score of each instance. The main idea is to use the average of ordered 
distance difference values which have the same instance. First, we define a delta 
function by 

  ( )  {
 
 
           

  ( )   ( )

  ( )   ( )
  

If an instance  ( ) is the same instance as the given instance  ( ), the delta function 
is  . If they are different, it is  . Then, 

∑ [∑    (  
( )     

( ))  (  
( )) 

   ] 
   

 
 

as an outlier score of an instance  ( ). We illustrate values from this formula with an 
example in Figure 8. Consider the dataset   with one cluster and an instance that 
represents an outlier in 2-dimensional space. For example, the outlier score of  ( ) is  
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∑ [∑    (  
( )     

( ))  (  
( )) 

   ] 
   

 
  

The outlier scores of instances in the dataset   are shown in Table 2. The outlier 
score of each instance in a cluster    is small but the score of an instance  ( ) 
(1.75551) is higher than other instances and the instance  ( ) has a significant high 
score (6.24855). Since the instance  ( ) is the nearest instance from  ( ), the ordered 
distance difference of  ( ) has a larger value when consider on an axis of the 
distance value from  ( ). This reason affects the outlier score of the instance  ( ). 
Next, we use this formula to compute the outlier score of a two-cluster dataset 
(Figure 8: the dataset  ) and the result is shown in Table 3. We can see that the 
instance  ( ) and  ( ) (2.08842 and 3.08342) have significantly higher outlier scores 
when compare with other instances in each cluster. The impact of an outlier score is 
the same as the dataset   because the instance  ( ) and  ( ) are the nearest 
instances from the different cluster    and   . Then, an axis of the distance value 
makes a large ordered distance difference value of  ( ) and  ( ). Then, we should 
adjust the formula to reduce this impact. We choose the minimum distance to 
develop the ordered distance difference outlier factor formula by the next definition. 

Table 2  The outlier score of OOF example (dataset A) 

Instance Outlier score 
 ( ) 0.21637 
 ( ) 0.25935 
 ( ) 0.95446 
 ( ) 0.45939 
 ( ) 1.75551 
 ( ) 6.24855 

 

 

 

 

 

 



 21 

Table 3  The outlier score of OOF example (dataset B) 

Instance Outlier score 
 ( ) 0.26516 
 ( ) 1.26141 
 ( ) 0.82781 
 ( ) 0.45259 
 ( ) 2.08842 
 ( ) 3.08342 
 ( ) 0.35129 
 ( ) 0.49667 
 ( ) 0.51099 
 ( ) 0.60141 

 

Figure 8  Two dataset examples 

Definition 3.4 (Ordered distance difference outlier factor) 

The ordered distance difference outlier factor (OOF) of an instance  ( ) is 
defined by 

   ( ( ))  
∑ [∑    {   (  

( )     
( ))  (  

( ))        ( ( ))} 
   ] 

   

 
  

 It is the OOF formula to compute an outlier score for each instance. For 
example in Figure 8, dataset   has 6 instances. Then, we get the distance matrix 

 ( )  

(

 
 
 
 

            
            
            

            
            
            

            
            
            

            
            
            )
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Next, we construct the ordered distance matrix by computing all vector  ⃑    ⃑⃑   
  
( ) and we get 

 ( )  

(

 
 
 
 

            
            
            

            
            
            

            
            
            

            
            
            )

 
 
 
 

  

Then, we compute the ordered distance difference matrix by   ( )   ( )  
 ( )      and we get 

  ( )  

(

 
 
 
 

    (   )    (   )

    (   )    (   )

    (   )    (   )

   (   )    (   )    (   )

   (   )    (   )    (   )

   (   )    (   )    (   )

    (   )    (   )

    (   )    (   )

    (   )    (   )

   (   )    (   )    (   )

   (   )    (   )    (   )

   (   )    (   )    (   ))

 
 
 
 

  

If we calculate the ordered distance difference outlier factor of the instance  ( ),  
   ( ( ))  [   {   (   )        ( 

( ))}     {   (   )        ( 
( ))}

    {   (   )        ( 
( ))}     {         ( ( ))}

    {   (   )        ( 
( ))}     {   (   )        ( 

( ))}]

    
and we get the outlier score of the instance  ( ). Table 4 and 5 show the OOF 
results for the others. We see that an outlier score of an instance in a cluster are 
small in both dataset. In case of the outlier, an instance  ( ) in the dataset   has a 
significantly high score that indicates the outlying degree of this instance. If the 
instance has a large OOF score, it implies that this instance has a high probability to 
be an outlier. We use the minimum distance because it can reduce a problem of 
two nearest instances in the different cluster. As illustrated in Figure 9, the minimum 
distance and the ordered distance difference of the instance  ( ) (left) has a large 
value. In case of the dataset  , we can see that the ordered distance difference of 
the instance  ( ) has a large value but the minimum distance is small. Then, the 
OOF formula will use the minimum distance to calculate this outlier score. Then, the 
outlier score of the instance  ( ) and  ( ) are small and close to other outlier scores 
(Table 5). Finally, the formula in definition 3.4 is the ordered distance difference 
outlier factor that is used in our thesis. 
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Table 4  The OOF score (dataset A) 

Instance Outlier score 
 ( ) 0.41321 
 ( ) 1.25590 
 ( ) 1.04331 
 ( ) 0.96000 
 ( ) 0.92911 
 ( ) 8.45360 

 

Table 5  The OOF score (dataset B) 

Instance Outlier score 
 ( ) 0.61559 
 ( ) 0.91159 
 ( ) 0.92750 
 ( ) 0.83971 
 ( ) 0.86930 
 ( ) 1.33795 
 ( ) 1.19670 
 ( ) 1.11111 
 ( ) 1.13311 
 ( ) 1.11111 

 



 24 

 
Figure 9  The relation between the ordered distance difference and the 

minimum distance in two datasets 

 The ordered distance difference outlier factor or OOF captures the degree of 
an outlier based on the average of the ordered distance difference with every 
instance. The low score (closed to  ) indicates an instance which lies in a cluster 
while the significantly high score indicates an instance that is an outlier. 
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3.2 Ordered Distance Difference Outlier Factor Algorithm 

INPUT: a dataset   with   instances and   numeric attributes. 

STEP 1: Compute the distance between the instance  ( ) and  ( ) for every pair 
    {       } to construct the distance matrix  ( ). 

STEP 2: Sort the distance in every row of  ( ) by descending order to construct 
the ordered distance matrix  ( ) and keep the index of each value in this 
matrix. 

STEP 3: Compute the ordered distance difference matrix   ( ) by finding the 
ordered distance difference    (  

( )     
( ))   ( ( )  (  

( )))  

 ( ( )  (    
( ))) in each row when   {       }. 

STEP 4: Compute the OOF score of instance   ( ) by 

 if    (  ( )     ( ))         ( (  
( ))), summarize    (  ( )     ( )) in 

the OOF score with index   ( ); 

 else, summarize        ( (  
( ))) in the OOF score with index   ( ). 

STEP 5: Compute the average OOF score of each instance. 

STEP 6: Order the instances according to their OOF scores. 

OUTPUT: Top   OOF scores of instances in the dataset  . 

 

 For time complexity, STEP 1 computes the distance between every two 
instances. One instance has   attributes and is used to compute the distance with   
instances. Then, it takes  (   ). STEP 2 is a distance sorting by using the technique 
of quick sort algorithm that takes  (     ). Then, this step takes  (      ). STEP 
3, 4 and 5 compute the ordered distance differences and OOF scores by considering 
every value in     matrix. Thus, they take  (  ) time complexity. Finally, STEP 6 is 
to sort the instances and takes  (     ). Then, the overall time complexity of the 
OOF algorithm is  (          ). 
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Table 6  Time complexity of OOF algorithm 

STEP Time Complexity 

1  (   ) 

2  (      ) 

3  (  ) 

4 – 5   (  ) 

6  (     ) 

  (          ) 
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CHAPTER IV 
EXPERIMENTS AND RESULTS 

 This section is divided into three parts. First, we generate a synthetic 2-
dimensional dataset for testing our algorithm. Second, we use real-world datasets 
from UCI that are standard datasets in the benchmark repository for testing 
algorithms in data mining.  In our work, we choose vineyard (52 instances, 4 
attributes), pollution (60 instances, 16 attributes), glass (214 instances, 9 attributes), 
bodyfat (252 instances, 15 attributes) and strike (625 instances, 7 attributes). All 
datasets in this experiment contains only numerical value. The ordered distance 
difference outlier factor algorithm or OOF algorithm is implemented using the Python 
language via SAGE version 5.7. We compare results with the Local Outlier Factor. We 
set the LOF minimum points parameter from 4 to 10 and running the experiment on 
RapidMiner software. Third, we use six datasets (Synthetical dataset and five UCI 
datasets above) to check the number of similar instances in the top-10 outlier scores 
to compare the performance with LOF. Moreover, we choose four outlier scoring 
methods to compare with LOF which are Connectivity-based Outlier Factor (COF), 
LOcal Correlation Integral (LOCI), Local Outlier Probability (LoOP) and INFLuenced 
Outlierness (INFLO). In all methods, parameters are set as following: the minimum 
neighbor is set to 10, a parameter   is set to 0.5 for LOCI and the normalization 
factor is assigned to 3.0 for LoOP. 

 

4.1 A Synthetic Example 

Figure 10 shows the 2-dimensional dataset containing 3 clusters and 7 
isolated instances. Each cluster has 500 instances. There are two Gaussian clusters 
with different density and one uniform cluster. For remaining instances, we input 
these to be outliers in this dataset. Figure 11 shows the outlier score of OOF and LOF 
as a bar chart. The height of each bar represents the scale of an outlier score. It is 
easy to see that OOF score of instances in each cluster are small. However, outlier 
scores are slightly high. Our algorithm gives the same result as LOF with different 
values. The OOF score depends on the distance of each instance in a dataset but 
LOF score uses the ratio of the density of an instance and its neighbor. 
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Note that a significantly high OOF score of an instance may not be the same 
as LOF score because two methods use different calculation. However, a high outlier 
score of instance in a cluster is still less than a score of an out-of-cluster instance for 
both methods. 

 

Figure 10  The synthetic dataset 

 

Figure 11  The OOF and LOF result 

4.2 UCI Dataset 

Five UCI datasets which are used in this research are vineyard (52 instances, 4 
attributes), pollution (60 instances, 16 attributes), glass (214 instances, 9 attributes), 
bodyfat (252 instances, 15 attributes) and strike (625 instances, 7 attributes). Since 
LOF is the most popular used method to compute an outlier score, we choose LOF 
as the main comparison. The performance is checked by using the difference ratio. It 
is a fraction of outlier scores between a next lower score and its score. If the 
difference ratio is small, this instance and instances that have larger scores will be 
outliers. In this thesis, we set the difference ratio as 0.7. 
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4.2.1 Vineyard Dataset 

Information:  52 instances, 4 attributes 

Table 7  The information of the vineyard dataset 

 min max mean S.D. 

row_number 1.000 52.000 26.500 15.155 

lugs_1989 0.000 8.000 3.279 1.939 

lugs_1990 2.500 14.000 9.654 2.338 

lugs_1991 2.500 26.000 18.087 4.394 

 Table 8 and Figure 12 show the result of LOF scores and OOF scores 
by descending ordered. This result indicates that the first two instances, 
instance 1 and 52, are outliers because both of the second difference 
ratios are less than 0.7. 

Table 8  The LOF and OOF result of the vineyard dataset 

LOF OOF 

Index Outlier score Difference ratio Index Outlier score Difference ratio 

1 3.232 0.819 1 8.332 0.859 

52 2.650 0.607 52 7.162 0.552 

10 1.611 0.878 30 3.955 0.884 

2 1.416 0.980 27 3.500 0.976 

51 1.388 0.984 45 3.419 0.949 

29 1.366 0.984 19 3.246 0.975 

30 1.345 0.962 22 3.168 0.983 

19 1.294 0.977 10 3.117 0.998 

3 1.265 0.991 51 3.113 0.982 

35 1.254  43 3.058  
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Figure 12  The top 50 scores of LOF and OOF (vineyard) 

 

4.2.2 Pollution Dataset 

Information:  60 instances, 16 attributes 

Table 9  The information of the pollution dataset 

 min max mean S.D. 
PREC 10.000 60.000 37.267 9.985 
JANT 12.000 67.000 33.983 10.169 
JULT 63.000 85.000 74.583 4.763 

OVR65 5.600 11.800 8.798 1.465 
POPN 2.920 3.530 3.263 0.135 
EDUC 9.000 12.300 10.973 0.845 
HOUS 66.800 90.700 80.913 5.141 
DENS 1441.000 9699.000 3876.050 1454.102 
NONW 0.800 38.500 11.870 8.921 
WWDRK 33.800 59.700 46.082 4.613 
POOR 9.400 26.400 14.373 4.160 

HC 1.000 648.000 37.850 91.978 
NOX 1.000 319.000 22.650 46.333 
SO@ 1.000 278.000 53.767 63.390 

HUMID 38.000 73.000 57.667 5.370 
MORT 790.733 1113.156 940.358 62.206 
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Table 10 and Figure 13 show the result of LOF scores and OOF scores 
by descending ordered. Both results indicate that the first instance is an 
outlier. It is an instance 59. Consider the OOF result, an instance 38 is 
probably an outlier (the difference ratio of the instance 38 is 0.466). For 
the LOF result, three instances (29, 48 and 38) may be outliers (the 
difference ratio of the instance 38 is 0.677). 

Table 10  The LOF and OOF result of the pollution dataset 

LOF OOF 

Index Outlier score Difference ratio Index Outlier score Difference ratio 

59 6.443 0.629 59 2032.632 0.424 

29 4.053 0.962 38 862.330 0.466 

48 3.903 0.8829 29 402.686 0.725 

38 3.446 0.677 48 292.193 0.866 

55 2.334 0.970 5 253.321 0.896 

9 2.266 0.917 16 227.126 0.986 

5 2.078 0.964 40 224.081 0.966 

16 2.004 0.986 9 216.571 0.932 

40 1.976 0.986 49 202.005 0.971 

17 1.954  47 196.289  
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Figure 13  The top 50 scores of LOF and OOF (pollution) 

4.2.3 Glass Dataset 

Information:  214 instances, 9 attributes 

Table 11  The information of the glass dataset 

 min max mean S.D. 
refractive index 1.511 1.533 1.518 0.003 

Na 10.730 17.380 13.407 0.816 
Mg 0.000 4.490 2.684 1.442 
Al 0.290 3.500 1.444 0.499 
Si 69.810 75.410 72.650 0.774 
K 0.000 6.210 0.497 0.652 
Ca 5.430 16.190 8.957 1.423 
Ba 0.000 3.150 0.175 0.4972 
Fe 0.000 0.510 0.057 0.097 

Table 12 and Figure 14 show the result of LOF scores and OOF scores 
by descending ordered. Both methods give different results. There are 
three instances of significantly high outlier score (208, 185 and 186) for LOF 
and two instances (185 and 107) for OOF but the difference ratios are 
bigger than 0.7. Then, this dataset has no outlier. 
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Table 12  The LOF and OOF result of the glass dataset 

LOF OOF 

Index Outlier score Difference ratio Index Outlier score Difference ratio 

208 8.092 0.841 185 3.369 0.919 

185 6.806 0.917 107 3.099 0.835 

186 6.246 0.737 208 2.590 0.975 

181 4.608 0.946 202 2.527 0.973 

187 4.361 0.846 108 2.459 0.877 

164 3.692 0.978 190 2.157 0.937 

104 3.613 0.960 106 2.022 0.944 

190 3.471 0.961 164 1.909 0.926 

202 3.336 0.980 113 1.769 0.848 

85 3.272  187 1.501  

 

Figure 14  The top 50 scores of LOF and OOF (glass) 
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4.2.4 Bodyfat Dataset 

Information:  252 instances, 15 attributes 

Table 13  The information of the bodyfat dataset 

 min max mean S.D. 
Density 0.995 1.109 1.056 0.019 

Age 22.000 81.000 44.885 12.602 
Weight 118.500 363.150 178.924 29.389 
Height 29.500 77.750 70.149 3.663 
Neck 31.100 51.200 37.992 2.431 
Chest 79.300 136.200 100.824 8.430 

Abdomen 69.400 148.100 92.556 10.783 
Hip 85.000 147.700 99.905 7.164 

Thigh 47.200 87.300 59.406 5.250 
Knee 33.000 49.100 38.590 2.412 
Ankle 19.100 33.900 23.102 1.695 
Biceps 24.800 45.000 32.273 3.021 

Forearm 21.000 34.900 28.664 2.021 
Wrist 15.800 21.400 18.230 0.934 
class 0.000 47.500 19.151 8.369 

 Table 14 and Figure 15 show the result of LOF scores and OOF scores 
by descending ordered. Both results indicate that the first instance is an 
outlier. It is an instance 39. Consider the second highest instance, two 
methods give different results. LOF gives the instance 42 but OOF gives the 
instance 41. Consider on the difference ratio, LOF indicates the instance 
39, 42 and OOF gives the only instance 39. 
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Table 14  The LOF and OOF result of the bodyfat dataset 

LOF OOF 

Index Outlier score Difference ratio Index Outlier score Difference ratio 

39 7.164 0.463 39 91.756 0.263 

42 3.321 0.654 41 24.199 0.760 

41 2.173 0.884 216 18.401 0.886 

36 1.922 0.913 36 16.317 0.992 

5 1.755 0.911 169 16.199 0.981 

207 1.599 0.956 152 15.898 0.951 

200 1.530 0.999 96 15.133 0.996 

12 1.529 0.994 5 15.087 0.992 

216 1.520 0.988 42 14.973 0.973 

16 1.502  175 14.694  

 

Figure 15  The top 50 scores of LOF and OOF (bodyfat) 
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4.2.5 Strike Dataset 

Information:  625 instances, 7 attributes 

Table 15  The information of the strike dataset 

 min max mean S.D. 
country 1 18 9.552 5.180 

year 1951 1985 1967.880 10.057 
unemployment 0.000 17.000 3.555 3.034 

inflation -2.900 27.500 5.957 4.625 
representation 8.160 78.700 40.847 13.153 
centralization 0.000 1.000 0.456 0.312 

volume 0.000 7000.000 302.302 560.660 
 Table 16 and Figure 16 show the result of LOF scores and OOF scores 
by descending ordered. The first five instances 102, 176, 223, 329 and 416 
have the different ordered for both methods (the difference ratio of the 
instance 416 is 0.645 for LOF and the difference ratio of the instance 102 is 
0.238 for OOF), although they have higher significant scores from the rest. If 
we look at all attributes of this dataset, the attribute “country” and “year” 
are nominal, not numeric. Hence, two attributes are not appropriate to use 
in the outlier score computation. 
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Table 16  The LOF and OOF result of the strike dataset 

LOF OOF 

Index Outlier score Difference ratio Index Outlier score Difference ratio 

223 13.016 0.775 176 2326.215 0.465 

102 10.090 0.913 223 1083.706 0.418 

176 9.216 0.662 416 453.435 0.912 

329 6.104 0.609 329 413.689 0.849 

416 3.721 0.645 102 351.409 0.238 

185 2.401 0.880 158 83.927 0.824 

36 2.113 0.950 330 69.168 0.982 

521 2.009 0.969 192 67.977 0.925 

158 1.947 0.970 333 62.924 0.800 

101 1.889  339 50.380  

 

Figure 16  The top 50 scores of LOF and OOF (strike) 
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4.3 The Number of Similar Instances in top-10 Outlier Scores 

We check the performance of each outlier scoring technique with LOF by 
concentrate on the percentage of similar instances in top-n outlier scores when n is 
vary from 1 to 10 instances. The bar chart with the horizontal axis is the number of 
top outlier scores and the vertical axis is the percentage of the similar instances is 
reported. All other methods give a same order of higher scores with LOF. For the 
synthetic dataset, we insert 7 isolated instances to be outliers. Figure 17 and Table 
17 show these four outliers. If we consider vineyard dataset, they show the instance 
1 and 52 (Figure 18 and Table 18) as the highest outlier scores. In pollution and 
bodyfat datasets, all methods give the same instances as LOF (instance 59 for Figure 
19 and Table 19 and instance 39 for Figure 21 and Table 21). For the strike dataset, 
the percentages of the similar instances (Figure 22) are high between 4 to 6 top 
scores. Then, this dataset has 4, 5 or 6 outliers. However, when we consider on the 
glass dataset, all methods gives less percentages of the similar instances. It conforms 
to reason that this dataset may not contain an outlier. To summarize, all methods 
give similar results for scores but the ranking is different. Each method has a different 
ranking of the outlier scores which depend on each technique. 
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4.3.1 Synthetic Dataset 

 
Figure 17  The percentage of similar instances in the top-n scores (synthetic) 

Table 17  Top 10 outlier score (synthetic) 

LOF OOF COF LOCI LoOP INFLO 

1501 1504 1501 1504 1501 1501 

1507 1502 1504 1502 1502 1507 

1504 1501 1502 1507 1504 1504 

1502 1503 1507 1501 1507 1502 

1506 650 1503 1506 1503 1506 

1505 464 275 1505 275 1505 

275 185 1505 1462 1297 275 

1503 275 1388 1503 1506 1503 

1297 1013 1078 1297 1078 1297 

563 131 563 1063 1505 464 
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4.3.2 Vineyard Dataset 

 
Figure 18  The percentage of similar instances in the top-n scores (vineyard) 

Table 18  Top 10 outlier score (vineyard) 

LOF OOF COF LOCI LoOP INFLO 

1 1 1 52 1 1 

52 52 52 1 52 52 

10 30 30 10 10 2 

2 27 27 30 51 51 

51 45 10 19 2 3 

29 19 45 51 37 31 

30 22 16 37 45 28 

19 10 43 28 30 50 

3 51 44 2 28 10 

35 43 37 45 19 27 
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4.3.3 Pollution Dataset 

 
Figure 19  The percentage of similar instances in the top-n scores (pollution) 

Table 19  Top 10 outlier score (pollution) 

LOF OOF COF LOCI LoOP INFLO 

59 59 59 59 59 59 

29 38 29 16 29 38 

48 29 38 38 16 9 

38 48 40 54 38 16 

55 5 49 29 40 5 

9 16 5 40 9 29 

5 40 9 48 46 54 

16 9 25 9 48 39 

40 49 35 21 5 12 

17 47 12 5 47 40 
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4.3.4 Glass Dataset 

 
Figure 20  The percentage of similar instances in the top-n scores (glass) 

Table 20  Top 10 outlier score (glass) 

LOF OOF COF LOCI LoOP INFLO 

208 185 185 108 185 186 

185 107 181 112 208 185 

186 208 186 172 186 187 

181 202 190 107 181 164 

187 108 208 173 56 172 

164 190 187 185 190 173 

104 106 164 111 85 104 

190 164 172 186 104 190 

202 113 173 164 202 208 

85 187 104 113 71 181 
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4.3.5 Bodyfat Dataset 

 
Figure 21  The percentage of similar instances in the top-n scores (bodyfat) 

Table 21  Top 10 outlier score (bodyfat) 

LOF OOF COF LOCI LoOP INFLO 

39 39 39 39 39 39 

42 41 42 41 42 42 

41 216 156 182 41 41 

36 36 36 35 36 36 

5 169 216 192 207 182 

207 152 28 42 5 3 

200 96 207 178 182 241 

12 5 5 152 3 207 

216 42 61 172 216 156 

16 175 162 50 156 5 
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4.3.6 Strike Dataset 

 
Figure 22  The percentage of similar instances in the top-n scores (strike) 

Table 22  Top 10 outlier score (strike) 

LOF OOF COF LOCI LoOP INFLO 

223 176 223 223 223 223 

102 223 102 102 329 102 

176 416 176 176 102 176 

329 329 329 329 176 329 

416 102 416 416 185 185 

185 158 185 158 416 416 

36 330 101 335 36 36 

521 192 288 339 240 240 

158 333 36 322 101 237 

101 339 404 336 237 101 

  



 45 

CHAPTER V 
CONCLUSION 

We present a new algorithm to compute an outlier score for each instance, 
called the ordered distance difference outlier factor (OOF). It is implemented using 
Python. OOF algorithm has the time complexity  (          ) where   is the 
number of instances in a dataset and   is the number of attributes. It can be 
potentially used for classifying distance-based outliers. The OOF uses the ordered 
distance difference concept. The procedure begins with sorting the distance between 
every instance and a given instance in a dataset and determining an instance by an 
axis of distance values. Next, we find the ordered distance difference of every 
instance and compute the OOF score by comparing with the minimum distance. If 
there are many instances that have small scores, these instance are definitely in a 
cluster. On the other hand, if OOF of an instance has a significantly higher score than 
the other scores, this instance is an outlier. 

 OOF algorithm does not need any parameter to compute outlier scores. In 
other word, it is a parameter-free method, while other outlier scoring methods need 
to set at least one parameter. However, OOF method has some weak points. There 
are patterns of instances that OOF does not give a significant high score for the 
outlier. It is an outlier that is surrounded by groups of clusters as a ring (Figure 23). 
Table 23 shows the OOF of an outlier and an instance in a cluster when we add the 
clusters to this problem. We can see that OOF of an outlier in the sample of one, 
two and four clusters give a high significant value but OOF of an outlier in the 
remaining samples fall within the range of the OOF of instances in a cluster. Hence, 
OOF does not detect outliers in this case. On the other hand, if there are many 
clusters lie among an outlier, it seems that the outlier at the center and every cluster 
around it may form a large cluster. 

We conclude that the OOF can generate efficient outlier scores for any 
dataset. These scores are used to predict outliers if the difference ratio is smaller 
than some threshold setting by a user. However, we do not detect outliers from OOF 
scores that are small and the difference ratios are close to 1. 
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For the future work, currently there is no criterion to decide which score is 
the best to classify an outlier in each dataset. It is up to users to decide outliers from 
an outlier scores ranking. Therefore, we plan to apply the criterion to OOF algorithm 
for a better outlier detection. 

Table 23  The OOF result of the example of an outlier that lies among many 
cluster on a ring 

A number of clusters OOF of an outlier OOF of an instance in a cluster 
1 0.642776 0.001612 to 0.020598 
2 0.637884 0.001197 to 0.066555 
4 0.591629 0.000324 to 0.063103 
6 0.004059 0.001440 to 0.036866 
8 0.021373 0.001040 to 0.025334 
10 0.012251 0.001300 to 0.015786 

 

 

Figure 23  The example of an outlier that lies among many clusters on a ring 
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APPENDIX A: OOF PROPERTIES 

We analyze some properties of the ordered distance difference outlier factor 
in   dimensional space. We will investigate the OOF of an instance that lies in a 
cluster and an instance that likely to be an outlier. 

Property 1 (One cluster) 

Let   be a dataset that contains one cluster of instances  . Let   
   {       ( )|   } where   is a number of instances in   and   | |. Then, 
   ( )   . 

Proof. 

Assume an instance  ( ) in a cluster  . Since the ordered distance difference outlier 
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Then,    ( ( ))   . 

From this property, if any two instances have a small distance, the minimum 
distance will be close to zero and   is small. Figure 24 shows the example for this 
property. OOF of instances in a cluster are between 0.007454 and 0.083246 and   = 
0.088080. Next, we consider a two clusters dataset. 
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Figure 24  One cluster of the instances 

Property 2 (Two clusters) 

 Let   be a dataset with   instances that partition into two clusters    and   . 
Let      {       ( )|   }. Then,    ( )   . 

Proof. 

Without loss of generality, assume an instance  ( ) in a cluster   . If any two 
instances in each cluster have a small distance, it indicates the small ordered 
distance difference and minimum distance. Then, OOF converges to zero and 
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      {       ( )|   } 

    . 

Then,    ( ( ))   . 

 This property is similar to the property 1. When any two instances have a 
small distance,   is small. Moreover, we can find    of OOF in each cluster   . Figure 
25 shows OOF of instances between 0.006479 and 0.063960 with    = 0.066529 in 
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the left cluster and between 0.006526 and 0.104805 with    = 0.110744 in the right 
cluster. Next, we consider an outlier. 

 

Figure 25  Two clusters of the instances 

Property 3 (One outlier) 

 Let   be a dataset with   instances that contains clusters            and 
one outlier  ( ). Let       {       ( )|    } be an OOF boundary value of a 
cluster   . Then,    ( ( ))     for all  . 

Proof. 

Assume an instance  ( ) be an outlier. Without loss of generality, we prove this 
property for two clusters       and one outlier  ( ) (see Figure 26). It easy to see 
that        (  )       . Consider the axis of the distance value from any instance 
in a cluster   , we get    (  ( )        ( ))    . It is similar to the axis of the 
distance value from any instance in   . Then,    ( ( ))       . 
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Figure 26  The dataset contains two clusters and one outlier 

By the property 3, we conclude that the OOF score of an outlier is greater 
than an OOF boundary value    of an instance in any cluster. 
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APPENDIX B: OOF ALGORITHM 

Read File Code 

f = open("data/filename.txt", "r") 

n = f.readline() 

m = f.readline() 

data_num = int(n) 

att_num = int(m) 

D = [] 

for i in range(data_num): 

    dstr = f.readline() 

    tlist = dstr.split("\t") 

    tlist = [float(tlist[j]) for j in range(att_num)] 

    D.append(tlist) 

f.close() 

 

Ordered Distance Difference Outlier Factor Code 

def OOF(data): 

    n = len(data) 

    m = len(data[0]) 

    distance = [] 

    for i in range(n): 

        distance.append([]) 

        for j in range(n): 

            distance[i].append(0) 

    for i in range(n): 

        for j in range(i, n): 

            dis = 0 

            for k in range(m): 

                dis += math.pow(data[i][k] - data[j][k], 2) 

            distance[i][j] = math.sqrt(dis) 

            distance[j][i] = math.sqrt(dis) 

    sumscore = [] 

    for i in range(n): 

        sumscore.append(0) 

    delta = [] 

    min = [] 

    for i in range(n): 

        group = [] 

        diffdist = [] 

        for j in range(n): 

            group.append([distance[i][j], j]) 

        group.sort() 

        for j in range(n): 
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            if j != 0: 

                diffdist.append([group[j][0] - group[j-1][0], group[j][1]]) 

            else: 

                diffdist.append([0, group[j][1]]) 

        min.append(group[1]) 

        delta.append(diffdist) 

    for i in range(n): 

        for j in range(n): 

            if min[delta[i][j][1]][0] < delta[i][j][0]: 

                sumscore[delta[i][j][1]] += min[delta[i][j][1]][0] 

            else: 

                sumscore[delta[i][j][1]] += delta[i][j][0] 

    OOF_score = [] 

    for i in range(n): 

        sumscore[i] /= n - 1 

        p.append(sumscore[i]) 

        OOF_score.append([sumscore[i], i+1]) 

    top_OOF = sorted(OOF_score, reverse = True) 

    print top_OOF
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