EVALUATION OF IPR CORRELATIONS FOR VERTICAL WELL

จูพาสงกรณมหาวทยาสย Chulalongkorn University

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Engineering Program in Petroleum Engineering Department of Mining and Petroleum Engineering

Faculty of Engineering

Chulalongkorn University

Academic Year 2013

Copyright of Chulalongkorn University บทคัดย่อและแฟ้มข้อมูลฉบับเต็มของวิทยานี้พนธ์ตั้งแต่ปีการศึกษา 2554 ที่ให้บริการในคลังปัญญาจุฬาฯ (CUIR) เป็นแฟ้มข้อมูลของนิสิตเจ้าของวิทยานิพนธ์ ที่ส่งผ่านทางบัณฑิตวิทยาลัย

The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository (CUIR)

are the thesis authors' files submitted through the University Graduate School.

การประเมินสหสัมพันธ์การไหลเข้าหลุมผลิตแนวตั้ง

นายสุขสันต์ เหลืองวัฒนวิไล

HULALONGKORN UNIVERSITY

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาวิศวกรรมปิโตรเลียม ภาควิชาวิศวกรรมเหมืองแร่และปิโตรเลียม คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2556 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

Thesis Title	EVALUATION OF IPR CORRELATIONS FOR
	VERTICAL WELL
Ву	Mr. Suksan Luangwattanawilai
Field of Study	Petroleum Engineering
Thesis Advisor	Assistant Professor Suwat Athichanagorn, Ph.D.

Accepted by the Faculty of Engineering, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

_____Dean of the Faculty of Engineering

(Professor Bundhit Eua-arporn, Ph.D.)

THESIS COMMITTEE

_____Chairman

(Associate Professor Sarithdej Pathanasethpong)

_____Thesis Advisor

(Assistant Professor Suwat Athichanagorn, Ph.D.)

_____Examiner

(Falan Srisuriyachai, Ph.D.)

_____External Examiner

(Witsarut Tungsunthomkhan, Ph.D.)

สุขสันต์ เหลืองวัฒนวิไล : การประเมินสหสัมพันธ์การไหลเข้าหลุมผลิตแนวตั้ง. (EVALUATION OF IPR CORRELATIONS FOR VERTICAL WELL) อ.ที่ปรึกษา วิทยานิพนธ์หลัก: ผศ. ดร. สุวัฒน์ อธิชนากร, 113 หน้า.

ความสัมพันธ์ของสหสัมพันธ์การไหลเข้าหลุมผลิตอธิบายถึงความสัมพันธ์ระหว่างอัตรา การผลิตโดยอาศัยแรงขับจากแหล่งกักเก็บปิโตรเลียมที่เกิดจากผลต่างของความดันระหว่าง ค่าเฉลี่ยของความดันแหล่งกักเก็บและความดันการไหลก้นหลุมผลิต วัตถุประสงค์ของการศึกษานี้ คือ การประเมินสหสัมพันธ์การไหลเข้าหลุมผลิตในแนวตั้งจากสมการทั้งห้าสมการที่นำเสนอ สำหรับการคาดการณ์สมรรถนะการผลิตของแต่ละหลุมผลิตน้ำมัน ได้แก่ Vogel, Fetkovich, Jones et al., Kilns & Marcher, และ Sukarno & Wisnogroho โดยการเปรียบเทียบ สมรรถนะของหลุมผลิตจากผลลัพธ์ระหว่างโปรแกรมแบบจำลอง ECLIPSE100 และจากผลการ คำนวณของสมการสหสัมพันธ์การไหล เพื่อศึกษาและเพิ่มความเข้าใจเกี่ยวกับความถูกต้องและ ความน่าเชื่อถือของแต่ละสหสัมพันธ์การไหลในแหล่งกักเก็บปิโตรเลียมที่มีแรงขับจากก๊าซที่ ละลายในน้ำมัน

จากผลการศึกษาค่าเฉลี่ยของค่าความผิดพลาดร้อยละเฉลี่ยสัมบูรณ์ของแต่ละ สหสัมพันธ์การไหล บ่งชี้ว่า Jones et al. มีค่าความถูกต้องและค่าความน่าเชื่อถือมากที่สุด รองลงมาคือ Fetkovich, Vogel, Sukarno & Wisnogroho, และ Kilns & Marcher ตามลำดับ โดยภาพรวมพบว่า ค่าเฉลี่ยของความผิดพลาดร้อยละเฉลี่ยสัมบูรณ์มีแนวโน้มลดลงอย่างมี นัยสำคัญในทุกๆสหสัมพันธ์การไหลเมื่อค่าความสามารถในการซึมผ่านมีค่ามากขึ้น นอกจากนี้ยัง พบว่า แต่ละสหสัมพันธ์การไหลเข้าหลุมผลิตจะมีความถูกต้องและแม่นยำเฉพาะบางคุณลักษณะ ของหลุมกักเก็บปิโตรเลียมหนึ่ง แต่อาจจะไม่ถูกต้องและแม่นยำสำหรับคุณลักษณะของหลุมผลิต อื่นๆ

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

ภาควิชา วิศวกรรมเหมืองแร่และปิโตรเลียม สาขาวิชา วิศวกรรมปิโตรเลียม ปีการศึกษา 2556

ลายมือชื่อนิ	สิต	
ลายมือชื่อ อ	ว.ที่ปรึกษาวิทยานิพนธ์หลัก	

5471218021 : MAJOR PETROLEUM ENGINEERING

KEYWORDS: INFLOW PERFORMANCE RELATIONSHIP (IPR) / MEAN ABSOLUTE PERCENTAGE ERROR (MAPE) / SOLUTION GAS DRIVE RESERVOIR / VERTICAL WELL

SUKSAN LUANGWATTANAWILAI: EVALUATION OF IPR CORRELATIONS FOR VERTICAL WELL. ADVISOR: ASST. PROF. SUWAT ATHICHANAGORN, Ph.D., 113 pp.

An inflow performance relationship describes the relationship between the well production rate as a function of driving force in reservoir which is the differential pressure between average reservoir pressure and the well bottomhole flowing pressure. When there is two-phase flow in the reservoir, we need to use an empirical correlation to represent this relationship. The objective of this study is to evaluate five IPRs proposed in the literature for predicting individual oil well performance which are Vogel, Fetkovich, Jones et al., Kilns & Marcher, and Sukarno & Wisnogroho. The evaluation of IPR correlations is done by comparing the bottom-hole pressure obtained from ECLIPSE100 simulation with the calculated bottom-hole pressure from IPR correlations in order to gain an understanding of their accuracy and reliability for solution gas drive reservoirs.

As a result, the average and standard deviation of Mean Absolute Percentage Error (MAPE) between the simulated pressure (ECLIPSE100) and the calculated pressure for the five IPR correlations show that Jones et al.'s correlation gives the best value while Fetkovich, Vogel, Sukarno and Wisnogroho, and Klins and Majcher follow in less accurate order. Overall, MAPE tends to decrease significantly for every IPR correlations when the absolute permeability increases. In addition, an individual IPR correlation has more accuracy and precision at one aspect reservoir but not at the other conditions.

UHULALONGKORN UNIVERSITY

Department:	Mining and Petroleum	Student's Signature
	Engineering	Advisor's Signature
Field of Study:	Petroleum Engineering	
Academic Year:	2013	

ACKNOWLEDGEMENTS

First of all, I would like to express my gratitude toward Asst. Prof. Suwat Athichanagorn, my thesis advisor, for giving me basic knowledge of petroleum engineering, invaluable guidance, and encouragement throughout the course of the study.

I would like to express my great appreciation to all faculty members in the Department of Mining and Petroleum Engineering who have provided petroleum knowledge and useful advice that would be beneficial for my future career. In addition, I want to thank the thesis committee members for their helpful comments and suggestions which greatly contributed many improvements.

I would like to thank Schlumberger for providing ECLIPSE reservoir simulation software to the Department of Mining and Petroleum Engineering. In addition, I would like to thank JMP for providing the trial software version for generation of cases studied. I am also indebted to Mr. Teerawat Vaccharasiritham for his valuable providing basic knowledge of using ECLIPSE reservoir simulation software and for his patient technical support throughout this study including appreciation all the supports from friends and classmates.

I would like to express my gratitude to Chevron Thailand Exploration and Production, Ltd. for providing financial support for this study.

I am grateful to my parents, Mr. Apichai and Mrs. Sanae Luangwattanawilai for their love and support for my studies.

จุฬาลงกรณมหาวิทยาลย Chulalongkorn University

CONTENTS

THAI ABSTRACT	.iv
ENGLISH ABSTRACT	V
ACKNOWLEDGEMENTS	.vi
CONTENTS	vii
LIST OF TABLES	X
LIST OF FIGURES	xii
LIST OF ABBREVIATIONS	XV
NOMENCLATURES	vi
CHAPTER I INTRODUCTION	. 1
1.1 Background	. 1
1.2 Objective	. 1
1.3 Outline of methodology	. 2
1.4 Thesis outline	. 3
CHAPTER II LITERATURE REVIEW	. 4
2.1 Vogel's IPR correlation	. 4
2.2 Fetkovich's IPR correlation	. 5
2.3 Jones et al.'s IPR correlation	. 6
2.4 Klins & Marcher's IPR correlation	. 7
2.5 Sukarno & Wisnogroho's IPR correlation	. 7
CHAPTER III THEORY AND CONCEPT	10
3.1 Productivity index and IPR	10
3.2 Factors affecting inflow performance	13
3.2.1 Phase behavior in reservoir	14
3.2.2 Relative permeability behavior	14
3.2.3 Oil viscosity behavior	15
3.2.4 Oil formation volume factor	16
3.2.5 Skin factor	17

viii

Page

3.2.6 Drive mechanism	
3.2.6.1 Solution gas drive	
3.2.6.2 Gas cap drive	
CHAPTER IV METHODOLOGY	21
4.1 Reservoir simulation model for base case	21
4.1.1 Reservoir model	21
4.1.2 PVT properties	22
4.1.3 SCAL (Special Core Analysis) section	25
4.1.4 Well schedule	
4.2 Generation of cases studied	
4.3 Generation of data points for IPR	
4.4 IPR construction and evaluation method	
4.4.1 Vogel's IPR	
4.4.2 Fetkovich's IPR	
4.4.3 Sukarno and Wisnogroho's IPR	55
4.4.4 Klins and Majcher's IPR	58
4.2.5 Jones et al.'s IPR	63
CHAPTER V RESULTS AND DISCUSSIONS	66
5.1 Evaluation of IPR correlations	
5.1.1 Vogel's IPR	78
5.1.2 Fetkovich's IPR	
5.1.3 Sukarno and Wisnogroho's IPR	
5.1.4 Klins and Majcher's IPR	
5.3.5 Jones et al.'s IPR	
5.2 Performance comparison of five IPR correlations	
5.2.1 Overall comparison	
5.2.2 Comparison based absolute permeability	

Page

CHAPTER VI CONCLUSIONS AND RECCOMENDATIONS	97
6.1 Conclusions	97
6.2 Recommendations	99
REFERENCES	100
VITA	113

ix

LIST OF TABLES

Table 2.1 Constants for Equation (2.12) of overbalance perforation, Sukarno [6]	8
Table 2.2 Constants for Equation (2.12) of underbalance perforation, Sukarno [6]	9
Table 4.1 Reservoir properties (case R001)	22
Table 4.2 Input data for ECLIPSE PVT Correlation	23
Table 4.3 Water PVT properties	.23
Table 4.4 Fluid density at surface condition	.24
Table 4.5 Input data for Corey's correlation	25
Table 4.6 Water and oil relative permeability	.26
Table 4.7 Gas and oil relative permeability	27
Table 4.8 Detailed properties of cases studied	.30
Table 4.9 Well bottomhole flowing pressure predictions by Vogel's correlation (cas	se
R001)	51
Table 4.10 Calculation of the mean absolute percentage error of Vogel's IPR (case	
R001)	52
Table 4.11 Well bottomhole flowing pressure predictions by Fetkovich's correlation	n
(case R001)	54
Table 4.12 Calculation of the mean absolute percentage error of Fetkovich's IPR	
(case R001)	55
Table 4.13 Well bottomhole flowing pressure predictions by Sukarno and	
Wisnogroho's correlation (case R001)	.57
Table 4.14 Calculation of the mean absolute percentage error of Sukarno and	
Wisnogroho's IPR (case R001)	.58
Table 4.15 Newton-Raphson result for Klins and Majcher's IPR at $q_{o} = 600 \text{ STB/D}$	
(case R001)	61
Table 4.16 Well bottomhole flowing pressure predictions by Klins and Majcher's	
correlation (case R001)	.61
Table 4.17 Calculation of the mean absolute percentage error of Klins and	
Majcher's IPR (case R001)	62
Table 4.18 Well bottomhole flowing pressure predictions by Jones et al.'s	
correlation (case R001)	64
Table 4.19 Calculation of the mean absolute percentage error of Jones et al.'s IPR	
(case R001)	65

Pag	ge
Table 5.1 Summary of MAPE for all cases of five IPRs6	6
Table 5.2 APE for all cases of five IPRs at 60% absolute open flow rate7	2
Table 5.3 Summary performance prediction on eight designed test points	9
Table 5.4 Summary performance prediction at 60% absolute open flow rate9)0
Table 5.5 The comparison of performance prediction for high absolute	
permeability9	13
Table 5.6 Comparison of performance prediction for low absolute permeability	
(60% absolute open flow rate)9	94
Table 5.7 Comparison of performance prediction for medium absolute	
permeability (60% absolute open flow rate)9	95
Table 5.8 Comparison of performance prediction for high absolute permeability	
(60% absolute open flow rate)9	5
Table 5.9 Comparison of performance prediction for high absolute permeability	
when neglecting the cases with Pb of 4,712.048 psia (60% absolute open	n
flow rate)9	96

LIST OF FIGURES

Page

Figure 2.1 Pressure function concept, Ahmed [3]	6
Figure 3.1 Inflow performance relationships	12
Figure 3.2 Inflow performance relationships with changing productivity index	13
Figure 3.3 Oil reservoir phase diagram, Beggs [7]	14
Figure 3.4 Gas-Oil relative permeability, Somabutr [8]	15
Figure 3.5 Oil viscosity behaviors, Beggs [7]	16
Figure 3.6 Oil formation volume factor behaviors, Beggs [7]	16
Figure 3.7 Effect of skin factor, Beggs [7]	17
Figure 3.8 Solution gas drive performance, Beggs [7]	19
Figure 3.9 Gas cap drive performance, Beggs [7]	19
Figure 3.10 Computer-calculated inflow performance relationships for a solution-g	jas
drive reservoir, Beggs [7]	20
Figure 4.1 Reservoir model with well schematic of IPR	21
Figure 4.2 Dry gas PVT properties (no vaporized oil)	24
Figure 4.3 Live oil PVT properties (dissolved gas)	24
Figure 4.4 Water/ oil saturation function	28
Figure 4.5 Gas/oil saturation function	28
Figure 4.6 Well bottomhole pressures for different oil production rate	47
Figure 4.7 Slope of well bottomhole flowing pressure for different oil production	
rates	48
Figure 4.8 Inflow performance relationship curve	48
Figure 4.9 A plot to determine $(q_o)_{max}$ for Vogel's IPR	50
Figure 4.10 Vogel's IPR curve (case R001)	51
Figure 4.11 Determination of coefficient <i>C</i> and exponent <i>n</i> for Fetkovich's IPR (cas	е
R001)	53
Figure 4.12 Fetkovich's IPR curve (case R001)	54
Figure 4.13 A plot to determine $(q_o)_{max}$ for Sukarno and Wisnogroho's IPR (case	
R001)	56
Figure 4.14 Sukarno and Wisnogroho's IPR curve (case R001)	57
Figure 4.15 A plot to determine $(q_o)_{max}$ for Klins and Majcher's IPR (case R001)	60
Figure 4.16 Klins and Majcher's IPR curve (case R001)	62

Pag	e
-----	---

xiii

Figure 4.17	' A plot to determine coefficient A and B for Jones et al.'s IPR (case	
	R001)	.63
Figure 4.18	3 Jones et al.'s IPR curve (case R001)	.65
Figure 5.1	MAPE distributions for Vogel's IPR	.78
Figure 5.2	Average and standard deviation of MAPE for Vogel's IPR with absolute	
	permeability at 100 mD, 500 mD and 1,000 mD	.79
Figure 5.3	APE distribution for Vogel IPR at 60% of maximum oil production rate	
	(absolute open flow)	.80
Figure 5.4	MAPE distributions for Fetkovich's IPR	.80
Figure 5.5	Average and standard deviation of MAPE for Fetkovich's IPR with absolu	ute
	permeability at 100 mD, 500 mD and 1,000 mD	.81
Figure 5.6	APE distribution for Fetkovich IPR at 60% of maximum oil production ra	te
	(absolute open flow)	.82
Figure 5.7	MAPE distributions for Sukarno and Wisnogroho's IPR	.83
Figure 5.8	Average and standard deviation of MAPE for Sukarno and Wisnogroho's	
	IPR with absolute permeability at 100 mD, 500 mD and 1,000 mD	.83
Figure 5.9	APE distribution for Sukarno and Wisnogroho's IPR at 60% of maximum	oil
	production rate (absolute open flow)	.84
Figure 5.10	MAPE distributions for Klins and Majcher's IPR	.84
Figure 5.11	Average and standard deviation of MAPE for Klins and Majcher's IPR wi	th
	absolute permeability at 100 mD, 500 mD and 1,000 mD	.85
Figure 5.12	2 APE distributions for Klins and Majcher's IPR at 60% of maximum oil	
	production rate (absolute open flow)	.86
Figure 5.13	MAPE distributions for Jones et al.'s IPR	.87
Figure 5.14	Average and standard deviation of MAPE for Jones et al.'s IPR with	
	absolute permeability at 100 mD, 500 mD and 1,000 mD	.87
Figure 5.15	APE distributions for Jones et al.'s IPR at 60% of maximum oil producti	ion
	rate (absolute open flow)	.88
Figure 5.16	Average and standard deviation of MAPE for five's IPR with absolute	
	permeability at 100 mD	.91
Figure 5.17	Average and standard deviation of MAPE for five's IPR with absolute	
	permeability at 500 mD	.91
Figure 5.18	8 Average and standard deviation of MAPE for five's IPR with absolute	
	permeability at 1000 mD	92

Average and standard deviation of MAPE for five's IPR with absolute	
permeability at 1000 mD with neglect the bubble point pressure at	
4,712 psia	93
Probability for 5 IPRs of design test points yield MAPE less than 1.0 %	.98
Probability for 5 IPRs as 60% of absolute open flow rate yield APE less	
	 Average and standard deviation of MAPE for five's IPR with absolute permeability at 1000 mD with neglect the bubble point pressure at 4,712 psia Probability for 5 IPRs of design test points yield MAPE less than 1.0 % Probability for 5 IPRs as 60% of absolute open flow rate yield APE less

Page

LIST OF ABBREVIATIONS

- STB/DStock tank barrel per daySCF/STBStandard cubic foot per stock-tank barrel
- mD Millidarcy
- psia Pound per square inch absolute
- rb/stb Reservoir barrel per stock-tank barrel
- cp Centipoise
- lb/cuft Pound per cubic foot
- IPR Inflow Performance Relationship
- MAPE Mean Absolute Percentage Error

NOMENCLATURES

$ ho_{_{o}}$	Density of oil
$ ho_{_{\scriptscriptstyle W}}$	Density of water
$ ho_{_g}$	Density of gas
k _h	Horizontal permeability
k_v	Vertical permeability
k	Absolute permeability of the porous media
$\mu_{_g}$	Viscosity of gas
$\mu_{_{O}}$	Viscosity of oil
R _s	Gas solubility
S _w	Water saturation
S _o	Oil saturation
S _g	Gas saturation
S _{wco}	Connate water saturation
k _{rog}	Oil relative permeability in presence of gas phase
k _{row}	Oil relative permeability in presence of water phase
k _{ro}	Oil relative permeability

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

CHAPTER I

1.1 Background

Different oil reservoirs are composed of unique combination of rock & fluid properties and natural drive mechanism. There are no reservoirs which are identical in all characteristics. Predicting oil reservoir performance requires understanding of the well inflow performance relationship (IPR). An inflow performance relationship describes the relationship between the well production rate as a function of driving force in reservoir which is the differential pressure between average reservoir pressure and the well bottomhole flowing pressure. Having knowledge of the pressure-rate behavior enables the petroleum engineers to evaluate the precise productivity of well and determine the optimized production design and timing for doing artificial lift and make properly project planning.

For steady-state flow of a single, incompressible fluid, the inflow performance relationship can be derived from a straight-line relationship between the well bottomhole flowing pressure and production rate from Darcy's law. In contrast, when there is a presence of two-phase flow in a reservoir, the relationship should not be expected to be a straight line. The IPR is in fact nonlinear. Several of the most widely used empirical methods for predicting an IPR for a well are presented for different reservoir conditions such as Vogel's equation, Fetkovich's equation, Jones, Blount & Glaze's equation, Kilns & Marcher's equation, and Sukarno & Wisnogroho's equation. In this study, a black oil reservoir simulator ECLIPSE100 is used to evaluate the prediction of five well inflow performance correlations. The parameters which are considered in this study are solution gas-oil ratio, oil ^OAPI gravity, vertical to horizontal permeability ratio, absolute permeability, skin factor, Corey exponent for relative permeability to oil, Corey exponent for relative permeability to gas, and perforation ratio.

1.2 Objective

1. To evaluate common correlations used to estimate present inflow performance relationship of two-phase flow in vertical well for various reservoir and fluid properties. The benefit from this evaluation will provide the oil and gas company and petroleum engineer to utilize one of the most accurate and precise IPR correlations for any reservoir conditions in overall result at the starting point of well inflow performance prediction since we don't know the conditions of the well yet when performing the well test. This also support the estimation of the ability of the well to produce, determine the optimized production design and selection of timing for doing artificial lift and make properly project planning.

1.3 Outline of methodology

- 1. Study various related literatures and collect required input data for reservoir simulation model.
- 2. Construct reservoir simulation model with a single vertical well of solution gas drive reservoir.
- 3. Generate cases studied by using JMP trial software version for 150 cases and vary the fluid, rock properties and completion characteristic as the following:
 - a. Gas solubility (R_s): 210, 500, 1000, 2000, scf/STB
 - b. API gravity of oil : 23, 25, 35, 45 , *°API*
 - c. Absolute permeability:100, 500, 1000, md
 - d. k_v/k_h ratio: 0.01, 0.1, 1
 - e. Skin factor: 0, 5, 10, 20
 - f. Perforation ratio: 0.4, 0.8
 - g. Corey exponent for relative permeability to oil (n_o) : 2, 3
 - h. Corey exponent for relative permeability to gas (n_g) : 2, 3
- 4. Simulate each case with eight different constant oil production rates: 600, 800, 1000, 12000, 1400, 1600, 1800, and 2000 STB/D in order to obtain the bottom-hole flowing pressures.
- 5. Plot the well bottomhole flowing pressure against time to determine the producing time that reaches the pseudo-steady state period.
- 6. The bottom-hole flowing pressures obtained from ECLIPSE100 simulation and the calculated bottom-hole pressures from IPR correlations for eight different oil flow rates at the beginning of pseudo-steady state are compared.

- 7. Evaluate the bottom-hole flowing pressures from simulation and calculated values from IPR correlations by determination of Mean Absolute Percentage Error (MAPE) and standard deviation.
- 8. Discuss and summarize the accuracy and reliability of all five IPR correlations.

1.4 Thesis outline

This thesis consists of six chapters as outlined below:

Chapter I introduces the background and indicates the objective and methodology of this study.

Chapter II presents some previous works related to well inflow performance relationship which include both laboratory experiments and simulation studies.

Chapter III introduces the general concept of IPR and describes related theories.

Chapter IV provides detail of the reservoir model used in this study including reservoir dimensions, PVT data, and rock and fluid properties.

Chapter V illustrates and discusses the evaluation of results of the five IPR correlations performed under diverse reservoir conditions.

Chapter VI provides the conclusions and recommendations obtained from this study.

CHAPTER II LITERATURE REVIEW

This chapter describes some previous studies on well inflow performance relationship correlations. Development of method, advantage, disadvantage and improvement in oil production of each method are discussed. There are several empirical methods that are designed to predict the non-linear behavior of the IPR for solution gas drive reservoirs. Most of these methods require at least one stabilized flow test in which q_o and p_{wf} are measured. The following empirical methods are designed to generate present inflow performance relationships: Vogel's equation, Fetkovich's equation, Jones et al.'s equation, Kilns & Marcher's equation, and Sukarno & Wisnogroho's equation.

2.1 Vogel's IPR correlation

Vogel [1] normalized the IPRs and expressed the calculated IPRs in dimensionless form. He plotted the IPR curve based on two dimensionless parameters which are:

Dimensionless pressure =
$$\frac{P_{wf}}{\overline{P_r}}$$
 (2.1)

Dimensionless flow rate =
$$\frac{q_o}{(q_o)_{max}}$$
 (2.2)

where $(q_o)_{max}$ is the oil flow rate at the condition of absolute open flow. From calculation performed at 21 reservoir conditions, he plotted the dimensionless IPR curves which resulted in a similar shape, and the equation of a curve is:

$$\frac{q_o}{(q_o)_{max}} = 1 - 0.2 \left(\frac{p_{wf}}{\bar{p}_r}\right) - \left(\frac{P_{wf}}{\bar{P}_r}\right)^2$$
(2.3)

where

$$\begin{array}{ll} q_o & = \mbox{Oil flow rate at } P_{wf} \\ (q_o)_{max} & = \mbox{maximum oil flow rate at absolute open flow condition} \\ \overline{P}_r & = \mbox{average reservoir pressure, psig} \\ P_{wf} & = \mbox{well bottom-hole flowing pressure, psig} \end{array}$$

2.2 Fetkovich's IPR correlation

Fetkovich [2] observed that the non-linear flow behavior of wells has the pressure function falling into either of the two conditions as shown schematically in Figure 1. The following are two conditions of pressure function:

1. Undersaturated oil reservoir, where the pressure function f(p) is in the condition at $P > P_b$, then:

$$f(p) = \left(\frac{1}{\mu_o B_o}\right) \tag{2.4}$$

where

 $\mu_{_{\mathcal{O}}}$ = oil viscosity at pressure p, cp

 B_0 = oil formation volume factor at pressure p, bbl/STB

2. Saturated oil reservoir, where pressure function f(p) is in the condition at $P < P_b$. He suggested that $k_{ro}/\mu_o B_o$ changes in linear function with pressure and the straight line passes the original coordinate. The mathematical equation can be given as:

$$f(p) = (\frac{1}{\mu_o^{B_0}})(\frac{p}{p_b})$$
(2.5)

where

 $\mu_{_o}$ = oil viscosity at bubblepoint pressure $p_{_b}$, cp

 B_0 = oil formation volume factor at bubblepoint pressure p_b , bb/STB

 P_b = bubblepoint pressure, psi

Figure 2.1 Pressure function concept, Ahmed [3]

To account for non-Darcy flow in oil wells, Fetkovich proposed the following approach to predict the well performance:

$$q_{o} = C(\bar{p}_{r}^{2} - p_{wf}^{2})^{n}$$
(2.6)

where the value of *n* ranges from 0.5 for highly turbulent flow to 1.0 for totally laminar flow. To determine the performance coefficient *C* and exponent *n* in Equation (2.6), this method requires at least two tests to solve for these two parameters. Plotting log-log scale of Equation (2.6) will result in a linear line providing a slope 1/n and intercept of Cat $\overline{p}_r^2 - p_{wf}^2 = 1$. Once we determine the exponent *n*, then *C* value can be calculated by using any point on linear plot, as given by:

$$C = \frac{q_o}{(\bar{p_r}^2 - \bar{p_{wf}}^2)^n}$$
(2.7)

2.3 Jones et al.'s IPR correlation

Jones *et al.* [4] developed a relationship between production rate and pressure as the following expression:

$$\frac{p_{r} - p_{wf}}{q_{o}} = A + Bq_{o}$$

$$(2.8)$$

where A and B are the coefficients in which A is in the laminar flow condition and B is in the turbulent flow. In order to determine these two coefficients, a multi-rate test is required. Equation (2.8) indicates that a relationship of a ratio of pressure drawdown to flow rate versus the production rate on Cartesian yields a straight line, where A is the y-intercept and B is the slope of straight line. Once the value of A and B are determined from a plot, the flow rate at any well flowing pressure can be calculated by Equation (2.9).

$$q_{o} = \frac{-A + \sqrt{A^{2} + 4B(p_{r} - p_{wf})}}{2B}$$
(2.9)

2.4 Klins & Marcher's IPR correlation

Klins and Majcher [5] investigated the effects of numerous reservoir and fluid properties on IPR curves. With 19,492 data points from 21 theoretical solution gas drive reservoirs, eight skin factors and seven reservoir depletion stages, Klins and Majcher simulated and generated 1344 IPR curves. They found that bubble point pressure and reservoir depletion caused a major effect on the curves. The skin and r_e/r_w had a significant influence on only the normalized curves. By nonlinear regression techniques, they proposed the following IPR.

$$\frac{q_o}{\left(q_o\right)_{max}} = 1 - 0.295 \left(\frac{P_{wf}}{\overline{P}_r}\right) - 0.705 \left(\frac{P_{wf}}{\overline{P}_r}\right)^n \tag{2.10}$$

in which

$$n = (0.28 + 0.72 \frac{P_r}{P_b})(1.235 + 0.001P_b)$$
(2.11)

2.5 Sukarno & Wisnogroho's IPR correlation

Sukarno and Wisnogroho [6] developed inflow performance in perforated wells by using computer program for various sets of data. Based on simulation results that attempt to account for perforation technique and perforation geometry, the authors grouped the IPR curves obtained from model based on perforation technique and perforation radius. A nonlinear regression analysis has been run for data set in each group and yielded the following mathematical model:

$$\frac{q_o}{q_{max}} = a_0 - a_1 \left(\frac{P_{wf}}{\overline{P}_r}\right) - a_2 \left(\frac{P_{wf}}{\overline{P}_r}\right)^2$$
(2.12)

where

- 1. the constants a_0 , a_1 and a_2 which depend on the perforation radius and perforation technique, are shown in Tables 1 and 2.
- 2. q_{max} is maximum production rate without perforation.

Table 2.1 Constants for Equation (2.12) of overbalance perforation, Sukarno [6]

<i>r_p</i> , inch	SPF	<i>a</i> ₀	<i>a</i> ₁	a ₂
> 0.3	16	0.91995	0.08072	-0.97117
	12	0.90482	0.08881	-0.96534
	8	0.87333	0.10715	-0.983464
	4	0.77503	0.12529	-0.87781
	2	0.61710	0.26632	-0.86983
≤0.3	16	0.83925	0.12038	-0.93283
	12	0.79505	0.14935	-0.91988
	8	0.73507	0.11547	-0.82687
	4	0.57857	0.09956	-0.65332
หาลง	2	0.33247	0.20784	-0.52487

UHULALONGKORN UNIVERSITY

<i>r_p</i> , inch	SPF	<i>a</i> ₀	a ₁	a ₂
≥0.19	16	0.95146	0.06546	-0.98175
	12	0.93806	0.05464	-0.95875
	8	0.92006	0.05473	-0.94102
>0.3	4	0.91196	0.07855	-0.95974
-1000	2	0.85540	0.06302	-0.88678
<0.3	4	0.79507	0.15189	-0.91899
	2	0.64374	0.22082	-0.38782

Table 2.2 Constants for Equation (2.12) of underbalance perforation, Sukarno [6]

CHAPTER III

THEORY AND CONCEPT

This chapter presents fundamental principles used to describe well inflow performance relationship and also important concepts related to this principle.

3.1 Productivity index and IPR

The accurate prediction of oil well performance should be made as oil flow into a well from the reservoir. Oil flow into a well depends on reservoir characteristics and drawdown pressure. The relationship between the well flowing pressure and oil inflow rate is called the *inflow performance relationship*. The production rate at various sandface flowing pressures can be determined from plotting this relationship called IPR analysis.

Typically, the measurement of the ability of the well to produce is called *productivity index (J)*. The productivity index *J* is described as the ratio of the total liquid flow rate to the pressure drawdown. When there is a water-free oil production, the productivity index is defined as:

$$J = \frac{q_o}{\overline{P_r} - P_{wf}} = \frac{q_o}{\Delta P}$$
(3.1)

where

- q_{o} = oil flow rate, STB/day
- J = productivity index, STB/day/psi

 \overline{P}_r = volumetric average drainage area pressure (static pressure)

P_{wf} = bottom-hole flowing pressure

 ΔP = drawdown pressure, psi

Generally, the productivity index is determined from a production test on the well. The well is shut in until reaching the static reservoir pressure. Then, the well is allowed to produce at a constant flow rate and a stabilized bottom-hole flowing pressure. Observing a surface stabilized pressure does not necessarily points toward a

stabilized bottom-hole flowing pressure, meaning that the bottom-hole flowing pressure is then required to be recorded continuously. With the purpose of accurately measuring the productivity index of a well, it is important to allow the well to flow at a constant flow rate for a sufficiently period of time to reach the pseudo-steady state or steady state because the productivity index is valid only if the well is flowing at these conditions.

For the pseudo-steady state laminar flow of a well in the center of a circular drainage area, the equation is given as

$$Q_{o} = \frac{0.00708k_{o}h\left(\bar{p}_{r} \cdot P_{wf}\right)}{\mu_{o}B_{o}\left[ln\left(0.472r_{e}/r_{w}\right)\right]}$$
(3.2)

where

$q_{o} = inflow$	v rate, STB/day
------------------	-----------------

 k_o = effective oil permeability, md

 \overline{P}_r = volumetric average drainage area pressure (static pressure), psi

$$P_{wf}$$
 = bottom-hole flowing pressure, psi

$$r_e =$$
well's drainage radius, ft

$$r_w$$
 = wellbore radius, ft

$$\mu_o$$
 = oil viscosity, cp and

 B_0 = oil formation volume factor, Rb/STB

Equation (3.2) is combined with Equation (3.1) to give:

$$J = \frac{0.00708k_{o}h}{\mu_{o}B_{o}[\ln(0.472r_{e}/r_{w})]}$$
(3.3)

The inflow equation of oil flow can then be written as

$$q_{o} = J\left(\overline{P}_{r} - P_{wf}\right)$$
(3.4)

Figure 3.1 Inflow performance relationships.

From Figure 3.1, there are several important features of the straight line IPR which are

- 1. As p_{wf} equals the average reservoir pressure, the flow rate is zero because of the absence of any pressure drawdown.
- 2. As p_{wf} is zero, a point of maximum flow rate occurs. This maximum rate is called "absolute open flow (AOF)". In practice, the well cannot be produced at this condition. The AOF can be written as

$$AOF=J\overline{p_r}$$
 (3.5)

- 3. The productivity index can be obtained from reciprocal of a slope of the straight line.
- 4. The intercept of \overline{P}_r is at q_o being equal to zero.

This implies that the pressure function $f(P)=k_o/\mu_o B_o$ remains constant, which is unlikely the case, as will be presented later in this thesis.

The productivity index of oil well can also be expressed as Equation (3.6) when including the skin effects of both turbulence and actual formation damage as given in Equation (3.7).

$$J = \frac{0.00708h}{\left(\bar{p}_{r} p_{wf}\right) \left[\ln\left(0.472 r_{e}/r_{w}\right) + 5' \right]} \int_{p_{wf}}^{\bar{p}_{r}} \frac{k_{o}}{\mu_{o}B_{o}} d$$
(3.6)

$$S' = S + Dq \tag{3.7}$$

where

- *S* = skin factor due to permeability change
- D = turbulence coefficient

Equation (3.6) reveals that J will not be constant except the pressure function is independent of pressure. It also can be expressed that the variables affecting the productivity index are essentially those that are dependent on the pressure, specifically, oil viscosity, oil formation volume factor and relative permeability to oil.

3.2 Factors affecting inflow performance

From the previous section, if the effects of changing conditions on some of the variables cause productivity index J to change, the slope of the IPR plot will change, and a nonlinear relationship between p_{wf} and q will exist as shown in Figure 3.2. For oil reservoirs, the primary factors affecting the IPR are (1) phase behavior in reservoir (2) relative permeability (3) oil viscosity (4) oil formation volume factor (5) skin factor (6) drive mechanism and (7) drawdown or production rate.

Figure 3.2 Inflow performance relationships with changing productivity index

3.2.1 Phase behavior in reservoir

Figure 3.3 represents a typical P-T phase diagram for an oil reservoir. The liquid, gas and two-phase regions are presented, and bubblepoint pressure in the reservoir can be observed at which the first free gas forms in the reservoir when the pressure is dropped while the reservoir temperature remains constant.

The reservoir fluid illustrated in Figure 4 is above the bubblepoint pressure at the initial reservoir pressure. As a result, free gas would be absent anywhere in the reservoir. Nevertheless, free gas will form and relative permeability to oil will be reduced when the reservoir pressure decreases below the bubblepoint pressure. Consequently, *J* value will decline around the wellbore if a well is produced at a rate that requires bottomhole flowing pressure be lower than the bubblepoint pressure may be well above the bubblepoint pressure. As pressure depletion in the reservoir takes place, the average reservoir pressure will likely be below the bubblepoint pressure and free gas will be present in the reservoir.

Figure 3.3 Oil reservoir phase diagram, Beggs [7]

3.2.2 Relative permeability behavior

The ability of liquid phase to flow will be lower when free gas is present in the pores of reservoir rock. Consequently, the gas saturation reduces the effective flow area of the liquids even when it is not great enough to permit gas to flow. The behavior of the gas-oil relative permeability as a function of liquid saturation is presented in Figure 3.4. The relative permeability is defined as the proportion of effective permeability to particular fluid to absolute permeability of the rock, $k_{ro}=k_o/k$. The relative permeability to gas will be increased if the gas saturation increases in the reservoir. Thus, the oil will flow less because relative permeability to oil decreases.

3.2.3 Oil viscosity behavior

At pressure below the bubblepoint, the oil viscosity is increased and the gas will vaporize out of solution as the pressure decreases. Particularly, at the constant temporary condition, the viscosity of oil saturated with gas will decrease if pressure is dropped from initial condition to bubblepoint pressure. Figure 3.5 shows graphically the behavior of oil viscosity, μ_{o} versus pressure at constant temperature. After the reservoir pressure falls below the bubblepoint pressure, oil viscosity increases and causes productivity index to decrease. On the other hand, the slope of Inflow Performance Relationship will increase.

Figure 3.4 Gas-oil relative permeability, Somabutr [8].

Figure 3.5 Oil viscosity behavior, Beggs [7].

3.2.4 Oil formation volume factor

The liquid will not expand unless the pressure is decreased. In the other words, when the bubblepoint pressure of oil is reached, gas will evaporate out of solution and cause the oil to shrink. Figure 3.6 illustrates the behavior of B_o versus p at constant temperature. From the plot, the curve shows that productivity index will increase as B_o decreases when the pressure is below the bubblepoint pressure, and the slope of IPR curve will decrease.

Figure 3.6 Oil formation volume factor behaviors, Beggs [7]

3.2.5 Skin factor

The skin factor S' is positive when there is extra pressure drop caused by damage, negative for decreased pressure drop caused by stimulation and zero for unchanged in permeability. Either well stimulation or formation damage can change the value of the absolute permeability, k. By performing well stimulation, the absolute permeability will be increased around the wellbore causing a negative skin. Clay swelling or pore plugging brings about a positive skin factor which decreases the absolute permeability. When the skin factor decreases, the productivity index will increase as expressed in Equation 3.6. For that reason, the slope of inflow performance will be decreased. Figure 3.7 illustrates the influence of S' on the pressure profile of oil well. As the permeability around the wellbore is increased by stimulation process, the wellbore flowing pressure will also increase. Then, the well stimulation causes the productivity index of oil reservoir to increase.

Figure 3.7 Effect of skin factor, Beggs [7]

3.2.6 Drive mechanism

The source of driving force to cause the oil and gas to flow into the wellbore has a significant effect on both the performance of oil reservoir and the total production system. Two basic types of drive mechanism which are solution gas drive and gas cap drive related in this study will be discussed. The behavior of reservoir pressure $\overline{P_R}$, the pressure function $f(\overline{P_R})$ calculated at $p = \overline{P_R}$, and surface producing gas/oil ratio, R, versus cumulative recovery, Np, is discussed in details for each drive mechanism.

3.2.6.1 Solution gas drive

A solution gas drive reservoir is disconnected from any outside pressure of driving force such as water encroachment. The initial pressure is above the bubble point pressure, and for that reason, free gas is absent in the reservoir. Then, only the expansion of the fluids remaining in the reservoir can replace the produced fluids. Usually, we neglect the expansion of the connate water.

Before reaching $\overline{p}_{R}=p_{b}$ condition, the reservoir pressure declines quickly with production. Subsequently, it is only the oil that expands to replace the produced fluid. As long as the pressure is above the bubble point, the producing gas/oil ratio will remain constant and equal to R_{si} . Moreover, $f(p_{R})$ will remain constant due to absence of free gas in the reservoir.

As soon as pressure drops below bubble point pressure, free gas will expand, and \overline{p}_R will decrease less rapidly. Conversely, *R* will increase quickly when the gas saturation exceeds the critical gas saturation, then depleting more of the reservoir driving force. If abandonment conditions are reached, *R* will begin to reduce as most of the gas has been produced. Moreover, the reservoir gas volumes are more closely equal to the standard surface volumes at lower reservoir pressure condition.

Typically, recovery factor of solution gas drive reservoir at abandonment conditions ranges between 5% and 30% of original oil in place. In addition, some type of pressure maintenance may be applied to increase recovery. Figure 3.8 illustrates a typical solution gas drive performance under primary depletion. Note that when the reservoir pressure drops below the bubblepoint pressure, the slope of IPR will increase since the pressure function $f(p_R)$ quickly decreases, therefore, decreasing the productivity index.

Figure 3.8 Solution gas drive performance, Beggs [7].

3.2.6.2 Gas cap drive

A gas cap drive reservoir is also closed boundary; there is no any outside pressure of driving force supported. However, at the initial pressure condition, the oil is saturated with gas. Therefore, free gas will be present. When oil is produced, the gas cap then expands and helps to preserve the reservoir pressure. Furthermore, as the reservoir pressure declines due to production, gas will evolve from the saturated oil.

Speaking of the decline of reservoir pressure, the reservoir pressure of a solution gas drive decreases faster than that of gas cap drive reservoir. Re-injecting the produced gas into the gas cap can also increase the recovery efficiency of reservoir. In addition, the effects of gravity may increase recovery. Figure 3.9 graphically shows a typical performance of a gas cap drive reservoir.

Figure 3.9 Gas cap drive performance, Beggs [7].

As the depletion proceeds below the bubble point pressure of a solution gas drive reservoir, the ability of well to produce decreases predominantly as the reservoir pressure is lower, and oil become more resistant to flow in the face of increasing gas saturation. The result is a progressive decline of the IPR's, as illustrated by the IPR curves in Figure 3.10.

Figure 3.10 Computer-calculated inflow performance relationships for a solution-gas drive reservoir, Beggs [7].

CHAPTER IV METHODOLOGY

The purpose of this thesis is to evaluate five IPR correlations use to estimate present inflow performance relationship of two-phase flow in vertical well. In evaluation, there are three elements to the problem that must be examined: the well bottom-hole flowing pressure, Mean Absolute Percentage Error (MAPE), and standard deviation of MAPE. In this chapter, a reservoir model, method to evaluate the IPR correlations, and example of calculation are presented.

4.1 Reservoir simulation model for base case

4.1.1 Reservoir model

A homogeneous rectangular reservoir model is constructed. The block centered geometry model consists of Cartesian grid of $25 \times 25 \times 5$ cells in the x-, y- and z-direction, respectively. Each cell has the dimension of 150 ft. x 150 ft. x 20 ft. as shown in Figure 4.1.

The reservoir is initially saturated since the reservoir pressure is at the bubble point pressure. The depth of top face is set at 3,034.864 ft. The reservoir properties of the base case (case R001) are listed in Table 4.1.

Figure 4.1 Reservoir model with well schematic of IPR.

Parameter	Value	Units
Porosity	18.0	%
Horizontal permeability	100	mD
Vertical permeability	100	mD
Datum depth	3,034.864	ft
Depth of top face	3,034.864	ft
Bubble point pressure	1,367.089	psia
Initial reservoir pressure @ datum depth	1,367.089	psia

Table 4.1 Reservoir properties (case R001).

4.1.2 PVT properties

The PVT properties of reservoir fluids used in this study are set up by using ECLIPSE correlation set 2. The input parameters are listed in Table 4.2 for correlation input. Table 4.3 shows the properties of water, and Table 4.4 demonstrates the density of each fluid. The properties of dry gas and live oil PVT obtained from the correlation are presented in Figures 4.2 and 4.3, respectively.

Input parameter	Value	Units
Oil gravity	23	ÅPI
Gas gravity	0.85	_
Solution gas	210 (case R001)	scf/STB
Reference pressure	4,000	psia
Reservoir temperature	200	۴
Porosity	18.0	%
Rock type	Consolidated Sandstone	-
Rock compressibility	1.942842E-6	/psi

Table 4.2 Input data for ECLIPSE PVT correlation.

Table 4.3 Water PVT properties.

Property	Value	Units
Reference pressure (<i>Pref</i>)	4,000	psia
Water FVF at <i>Pref</i>	1.021734	rb/stb
Water compressibility	3.098498E-6	/psi
Water viscosity at Pref	0.3013227	ср
Water viscosibility	3.387726E-6	/psi

23

Property	Value	Units
Oil density	57.11876	lb/cuft
Water density	62.42803	lb/cuft
Gas density	0.05306378	lb/cuft

Table 4.4 Fluid density at surface condition.

Figure 4.2 Dry gas PVT properties (no vaporized oil).

Figure 4.3 Live oil PVT properties (dissolved gas).

4.1.3 SCAL (Special Core Analysis) section

In this study, Corey's correlation is used to construct the relative permeability curves. The parameters set up in Corey's correlation are listed in Table 4.5. The values of relative permeability curves obtained from these input data are tabulated in Tables 4.6 and 4.7. Also, the plots of relative permeability are displayed in Figures 4.4 and 4.5.

Corey water	4	Corey Gas	3	Corey oil/water	3
S _{wmin}	0.2	S _{gmin}	0	Corey oil/gas	3
5 _{wer}	0.2	S _{gcr}	0.025	5 _{org}	0.1
S _{wi}	0.2	S _{gi}	0	5 _{orw}	0.35
5 _{wmax}	1.0	k _{rg} (S _{org})	0.8	k _{ro} (S _{wmin})	0.8
k _{rw} (S _{orw})	0.8	k _{rg} (S _{gmax})	0.8	k _{ro} (S _{gmin})	0.8
k _{nw} (S _{wmax})	1.0		_		

Table 4.5	Input	data	for	Corey's	correlat	tion.

รูพาลงปรณ์มหาวิทยาลัย Chulalongkorn University

S _w	k _{rw}	k _{ro}
0.20	0.00	0.80
0.25	0.0001219326	0.56186557
0.30	0.001950922	0.37640604
0.35	0.009876543	0.23703704
0.40	0.031214754	0.13717421
0.45	0.076207895	0.070233196
0.50	0.15802469	0.02962963
0.55	0.29276025	0.00877915
0.60	0.49943606	0.001097394
0.65	0.80	0.00
1.00	1.00	0.00

Table 4.6 Water and oil relative permeability.

	S _g	k _{rg}	k _{ro}
	0.00	0.00	0.80
	0.025	0.00	0.7173105
	0.109375	0.0015625	0.48054199
	0.19375	0.0125	0.30261537
	0.278125	0.0421875	0.17512463
1	0.3625	0.10	0.089663812
-	0.446875	0.1953125	0.037826921
	0.53125	0.3375	0.011207976
St.	0.615625	0.5359375	0.001400997
18-2	0.70	0.80	0.00
ULA	0.80	0.80	0.00

Table 4.7 Gas and oil relative permeability.

Figure 4.5 Gas/oil saturation function.

4.1.4 Well schedule

In this study, it is assumed that the wellbore diameter is 6-5/8 inches, and there is no skin for the base case (case R001). The well will be put on production at a certain maximum flow rate. The minimum bottomhole flowing pressure for the production well (tested well; TEST_1) is set at 14.7 psia.

4.2 Generation of cases studied

To obtain suitable data to construct IPR curve, numerical simulation was run using data from 150 cases to compare the ECLIPSE100 result with five equations, including Vogel, Fetkovich, Sukarno and Wisnogroho, Klins and Majcher and Jones, Blount, and Glaze. The following are the fluid, rock properties and completion characteristic use for generating the simulation cases:

- a. Gas Solubility (R_s): 210, 500, 1000, 2000 , SCF/STB
- b. API gravity of oil : 23, 25, 35, 45 , °API
- c. Absolute permeability:100, 500, 1000 md
- d. k_v/k_h ratio: 0.01, 0.1, 1
- e. Skin factor: 0, 5, 10, 20
- f. Perforation ratio: 0.4, 0.8
- g. Corey exponent for relative permeability to oil (n_o) : 2, 3
- h. Corey exponent for relative permeability to gas (n_g) : 2, 3

In this study, a trial version of JMP software is utilized in order to generate 150 cases by combining various fluid, rock properties and completion characteristic as mentioned above. Table 4.8 represents all 150 cases with different reservoir conditions generated from JMP trial software version.

Run ID.	Gas solubility R _s (scf/STB)	°API	SG.	P _b (psia)	Absolute permeability <i>(mD)</i>	K _v (mD)	$\frac{\kappa_v}{\kappa_h}$	Perforation ratio	Skin factor	Corey exponent for k _{rg} (n _g)	Corey exponent for k _{ro} (n _o)
R001	210	23	0.85	1367.089	1000	10	0.01	0.4	0	3	3
R002	210	23	0.85	1367.089	1000	10	0.01	0.4	5	2	2
R003	210	23	0.85	1367.089	1000	10	0.01	0.4	5	3	3
R004	210	23	0.85	1367.089	1000	10	0.01	0.8	10	2	3
R005	210	23	0.85	1367.089	1000	100	0.1	0.4	0	2	3
R006	210	23	0.85	1367.089	1000	100	0.1	0.4	5	3	2
R007	210	23	0.85	1367.089	1000	100	0.1	0.8	5	3	3
R008	210	23	0.85	1367.089	1000	100	0.1	0.4	10	2	2
R009	210	23	0.85	1367.089	1000	100	0.1	0.4	20	2	2
R010	210	23	0.85	1367.089	1000	100	0.1	0.8	20	2	2

Table 4.8 Detailed properties of cases studied.

Run ID.	Gas solubility R _s (scf/STB)	°API	SG.	P _b (psia)	Absolute permeability <i>(mD)</i>	K _v (mD)	$\frac{\kappa_v}{\kappa_h}$	Perforation ratio	Skin factor	Corey exponent for k _{rg} (n _g)	Corey exponent for k _{ro} (n _o)
R011	210	23	0.85	1367.089	1000	1000	1	0.4	0	2	3
R012	210	23	0.85	1367.089	1000	1000	1	0.8	0	2	3
R013	210	23	0.85	1367.089	1000	1000	1	0.8	10	2	2
R014	210	23	0.85	1367.089	100	1	0.01	0.4	0	2	3
R015	210	23	0.85	1367.089	100	1	0.01	0.4	0	3	3
R016	210	23	0.85	1367.089	100	1	0.01	0.8	5	3	3
R017	210	23	0.85	1367.089	100	IVERSI	0.01	0.4	10	3	3
R018	210	23	0.85	1367.089	100	1	0.01	0.8	20	2	3
R019	210	23	0.85	1367.089	100	10	0.1	0.8	5	3	2
R020	210	23	0.85	1367.089	100	100	1	0.8	0	2	3

Table 4.8 Detailed properties of cases studied (continued)

Run ID.	Gas solubility R _s (scf/STB)	°API	SG.	P _b (psia)	Absolute permeability <i>(mD)</i>	К _v (mD)	$\frac{K_v}{K_h}$	Perforation ratio	Skin factor	Corey exponent for k _{rg} (n _g)	Corey exponent for k _{ro} (n _o)
R021	210	23	0.85	1367.089	100	100	1	0.4	0	3	2
R022	210	23	0.85	1367.089	100	100	1	0.8	0	3	3
R023	210	23	0.85	1367.089	100	100	1	0.8	10	2	3
R024	210	23	0.85	1367.089	100	100	1	0.4	20	3	2
R025	210	23	0.85	1367.089	100	100	1	0.4	20	3	3
R026	210	23	0.85	1367.089	500	5	0.01	0.8	5	2	2
R027	210	23	0.85	1367.089	500	IVERSI	0.01	0.8	20	2	2
R028	210	23	0.85	1367.089	500	5	0.01	0.8	20	2	3
R029	210	23	0.85	1367.089	500	5	0.01	0.8	20	3	3
R030	210	23	0.85	1367.089	500	50	0.1	0.4	0	3	2

Table 4.8 Detailed properties of cases studied (continued)

Run ID.	Gas solubility R _s (scf/STB)	°API	SG.	P _b (psia)	Absolute permeability <i>(mD)</i>	K _v (mD)	$\frac{\kappa_v}{\kappa_h}$	Perforation ratio	Skin factor	Corey exponent for k _{rg} (n _g)	Corey exponent for k _{ro} (n _o)
R031	210	23	0.85	1367.089	500	50	0.1	0.4	0	3	2
R032	210	23	0.85	1367.089	500	50	0.1	0.8	0	3	2
R033	210	23	0.85	1367.089	500	50	0.1	0.8	0	3	3
R034	210	23	0.85	1367.089	500	50	0.1	0.8	10	2	3
R035	210	23	0.85	1367.089	500	500	1	0.8	0	3	2
R036	210	23	0.85	1367.089	500	500	1	0.4	5	3	3
R037	210	23	0.85	1367.089	500	500	FY 1	0.4	10	2	3
R038	210	23	0.85	1367.089	500	500	1	0.8	20	2	2
R039	210	23	0.85	1367.089	500	500	1	0.8	20	3	2

Table 4.8 Detailed properties of cases studied (continued)

Run ID.	Gas solubility R _s (scf/STB)	°API	SG.	P _b (psia)	Absolute permeability (mD)	K _v (mD)	$\frac{\kappa_v}{\kappa_h}$	Perforation ratio	Skin factor	Corey exponent for k _{rg} (n _g)	Corey exponent for k _{ro} (n _o)
R040	500	25	0.85	2651.55	1000	10	0.01	0.4	20	2	2
R041	500	25	0.85	2651.55	1000	10	0.01	0.8	0	3	2
R042	500	25	0.85	2651.55	1000	10	0.01	0.8	20	3	2
R043	500	25	0.85	2651.55	1000	100	0.1	0.8	5	2	3
R044	500	25	0.85	2651.55	1000	100	0.1	0.4	10	3	3
R045	500	25	0.85	2651.55	1000	100	0.1	0.4	10	3	3
R046	500	25	0.85	2651.55	1000	1000	1	0.8	0	2	2
R047	500	25	0.85	2651.55	1000	1000	1	0.8	0	2	3
R048	500	25	0.85	2651.55	1000	1000	1	0.8	5	3	2

Table 4.8 Detailed properties of cases studied (continued)

Run ID.	Gas solubility R _s (scf/STB)	°API	SG.	P _b (psia)	Absolute permeability (mD)	K _v (mD)	$\frac{\kappa_v}{\kappa_h}$	Perforation ratio	Skin factor	Corey exponent for k _{rg} (n _g)	Corey exponent for k _{ro} (n _o)
R049	500	25	0.85	2651.55	1000	1000	1	0.8	20	3	3
R050	500	25	0.85	2651.55	100	1	0.01	0.4	0	2	2
R051	500	25	0.85	2651.55	100	1	0.01	0.4	0	3	3
R052	500	25	0.85	2651.55	100	1	0.01	0.8	0	2	2
R053	500	25	0.85	2651.55	100	1	0.01	0.8	5	3	3
R054	500	25	0.85	2651.55	100	10	0.1	0.4	5	3	3
R055	500	25	0.85	2651.55	100	10	0.1	0.4	20	2	3
R056	500	25	0.85	2651.55	100	100	1	0.8	0	2	2
R057	500	25	0.85	2651.55	100	100	1	0.8	5	2	3

Table 4.8 Detailed properties of cases studied (continued)

Run ID.	Gas solubility R _s (scf/STB)	°API	SG.	P _b (psia)	Absolute permeability <i>(mD)</i>	K _v (mD)	$\frac{\kappa_v}{\kappa_h}$	Perforation ratio	Skin factor	Corey exponent for k _{rg} (n _g)	Corey exponent for k _{ro} (n _o)
R056	500	25	0.85	2651.55	100	100	1	0.8	0	2	2
R057	500	25	0.85	2651.55	100	100	1	0.8	5	2	3
R058	500	25	0.85	2651.55	100	100	1	0.4	10	2	3
R059	500	25	0.85	2651.55	100	100	1	0.4	20	3	2
R060	500	25	0.85	2651.55	100	100	1	0.8	20	3	3
R061	500	25	0.85	2651.55	500	າຍ 5ຄັຍ	0.01	0.4	5	3	3
R062	500	25	0.85	2651.55	500	5	0.01	0.4	10	2	2
R063	500	25	0.85	2651.55	500	5	0.01	0.8	10	3	3

Table 4.8 Detailed properties of cases studied (continued)

Run ID.	Gas solubility R _s (scf/STB)	°API	SG.	P _b (psia)	Absolute permeability <i>(mD)</i>	K _v (mD)	$\frac{\kappa_v}{\kappa_h}$	Perforation ratio	Skin factor	Corey exponent for k _{rg} (n _g)	Corey exponent for k _{ro} (n _o)
R064	500	25	0.85	2651.55	500	5	0.01	0.4	20	3	2
R065	500	25	0.85	2651.55	500	50	0.1	0.4	0	2	2
R066	500	25	0.85	2651.55	500	50	0.1	0.8	0	2	3
R067	500	25	0.85	2651.55	500	50	0.1	0.4	10	3	2
R068	500	25	0.85	2651.55	500	50	0.1	0.4	20	2	3
R069	500	25	0.85	2651.55	500	500	1	0.8	5	3	2
R070	500	25	0.85	2651.55	500	500	1	0.4	10	2	2
R071	500	25	0.85	2651.55	500	500	1	0.8	10	3	3
R072	1000	35	0.85	3534.718	1000	10	0.01	0.8	0	3	3

Table 4.8 Detailed properties of cases studied (continued)

Run ID.	Gas solubility R _s (scf/STB)	°API	SG.	P _b (psia)	Absolute permeability <i>(mD)</i>	K _v (mD)	$\frac{\kappa_v}{\kappa_h}$	Perforation ratio	Skin factor	Corey exponent for k _{rg} (n _g)	Corey exponent for k _{ro} (n _o)
R073	1000	35	0.85	3534.718	1000	10	0.01	0.4	5	2	2
R074	1000	35	0.85	3534.718	1000	10	0.01	0.4	5	2	2
R075	1000	35	0.85	3534.718	1000	10	0.01	0.8	20	3	2
R076	1000	35	0.85	3534.718	1000	10	0.01	0.8	0	3	2
R077	1000	35	0.85	3534.718	1000	100	0.1	0.8	0	3	3
R078	1000	35	0.85	3534.718	1000	100	0.1	0.8	10	3	2
R079	1000	35	0.85	3534.718	1000	1000	1	0.8	0	2	2
R080	1000	35	0.85	3534.718	1000	1000	1	0.4	5	3	3
R081	1000	35	0.85	3534.718	1000	1000	1	0.4	20	2	3

Table 4.8 Detailed properties of cases studied (continued)

Run ID.	Gas solubility R _s (scf/STB)	°API	SG.	P _b (psia)	Absolute permeability <i>(mD)</i>	K _v (mD)	$\frac{\kappa_v}{\kappa_h}$	Perforation ratio	Skin factor	Corey exponent for k _{rg} (n _g)	Corey exponent for k _{ro} (n _o)
R082	1000	35	0.85	3534.718	1000	1000	1	0.4	20	3	3
R083	1000	35	0.85	3534.718	1000	1000	1	0.4	20	3	3
R084	1000	35	0.85	3534.718	100	1	0.01	0.4	5	2	2
R085	1000	35	0.85	3534.718	100	1	0.01	0.4	0	2	2
R086	1000	35	0.85	3534.718	100	10	0.1	0.8	5	2	2
R087	1000	35	0.85	3534.718	100	10	0.1	0.8	5	3	3
R088	1000	35	0.85	3534.718	100	10	0.1	0.8	10	3	2
R089	1000	35	0.85	3534.718	100	10	0.1	0.8	0	2	3
R090	1000	35	0.85	3534.718	100	10	0.1	0.8	10	3	3

Table 4.8 Detailed properties of cases studied (continued)

Run ID.	Gas solubility R _s (scf/STB)	°API	SG.	P _b (psia)	Absolute permeability <i>(mD)</i>	K _v (mD)	$\frac{\kappa_v}{\kappa_h}$	Perforation ratio	Skin factor	Corey exponent for k _{rg} (n _g)	Corey exponent for k _{ro} (n _o)
R091	1000	35	0.85	3534.718	100	10	0.1	0.4	20	2	2
R092	1000	35	0.85	3534.718	100	10	0.1	0.8	20	2	3
R093	1000	35	0.85	3534.718	100	100	1	0.8	0	2	3
R094	1000	35	0.85	3534.718	100	100	1	0.4	5	3	2
R095	1000	35	0.85	3534.718	100	100	1	0.8	10	3	2
R096	1000	35	0.85	3534.718	100	100	1	0.8	20	3	2
R097	1000	35	0.85	3534.718	500	5	0.01	0.4	0	3	3
R098	1000	35	0.85	3534.718	500	5	0.01	0.8	0	3	2
R099	1000	35	0.85	3534.718	500	5	0.01	0.4	5	2	3

Table 4.8 Detailed properties of cases studied (continued)

Run ID.	Gas solubility R _s (scf/STB)	°API	SG.	P _b (psia)	Absolute permeability <i>(mD)</i>	K _v (mD)	$\frac{\kappa_v}{\kappa_h}$	Perforation ratio	Skin factor	Corey exponent for k _{rg} (n _g)	Corey exponent for k _{ro} (n _o)
R100	1000	35	0.85	3534.718	500	5	0.01	0.8	10	2	2
R101	1000	35	0.85	3534.718	500	5	0.01	0.8	10	2	3
R102	1000	35	0.85	3534.718	500	50	0.1	0.4	0	2	3
R103	1000	35	0.85	3534.718	500	50	0.1	0.4	20	2	2
R104	1000	35	0.85	3534.718	500	50	0.1	0.8	20	2	3
R105	1000	35	0.85	3534.718	500	500	1	0.4	0	3	2
R106	1000	35	0.85	3534.718	500	500	1	0.4	0	3	3
R107	1000	35	0.85	3534.718	500	500	1	0.4	0	2	2
R108	1000	35	0.85	3534.718	500	500	1	0.4	5	2	2

Table 4.8 Detailed properties of cases studied (continued)

Run ID.	Gas solubility R _s (scf/STB)	°API	SG.	P _b (psia)	Absolute permeability <i>(mD)</i>	K _v (mD)	$\frac{\kappa_v}{\kappa_h}$	Perforation ratio	Skin factor	Corey exponent for k _{rg} (n _g)	Corey exponent for k _{ro} (n _o)
R109	1000	35	0.85	3534.718	500	500	1	0.4	10	2	3
R110	2000	45	0.85	4712.048	1000	10	0.01	0.8	0	3	3
R111	2000	45	0.85	4712.048	1000	10	0.01	0.8	10	3	2
R112	2000	45	0.85	4712.048	1000	10	0.01	0.8	10	2	3
R113	2000	45	0.85	4712.048	1000	10	0.01	0.8	10	3	3
R114	2000	45	0.85	4712.048	1000	100	0.1	0.8	5	2	3
R115	2000	45	0.85	4712.048	1000	100	0.1	0.4	10	3	2
R116	2000	45	0.85	4712.048	1000	100	0.1	0.4	20	3	3
R117	2000	45	0.85	4712.048	1000	100	0.1	0.8	20	2	2

Table 4.8 Detailed properties of cases studied (continued)

Run ID.	Gas solubility R _s (scf/STB)	°API	SG.	P _b (psia)	Absolute permeability <i>(mD)</i>	K _v (mD)	$\frac{\kappa_v}{\kappa_h}$	Perforation ratio	Skin factor	Corey exponent for k _{rg} (n _g)	Corey exponent for k _{ro} (n _o)
R118	2000	45	0.85	4712.048	1000	1000	1	0.4	0	3	2
R119	2000	45	0.85	4712.048	1000	1000	1	0.8	0	3	2
R124	2000	45	0.85	4712.048	100	1	0.01	0.4	0	3	2
R125	2000	45	0.85	4712.048	100	1	0.01	0.4	0	2	3
R126	2000	45	0.85	4712.048	100	1	0.01	0.8	0	2	3
R128	2000	45	0.85	4712.048	100	าย 1ลัย	0.01	0.4	20	3	3
R129	2000	45	0.85	4712.048	100	10	0.1	0.4	0	2	2
R130	2000	45	0.85	4712.048	100	10	0.1	0.8	0	3	2
R131	2000	45	0.85	4712.048	100	10	0.1	0.4	5	2	3

Table 4.8 Detailed properties of cases studied (continued)

Run ID.	Gas solubility R _s (scf/STB)	°API	SG.	P _b (psia)	Absolute permeability <i>(mD)</i>	K _v (mD)	$\frac{\kappa_v}{\kappa_h}$	Perforation ratio	Skin factor	Corey exponent for k _{rg} (n _g)	Corey exponent for k _{ro} (n _o)
R132	2000	45	0.85	4712.048	100	10	0.1	0.4	10	3	2
R133	2000	45	0.85	4712.048	100	10	0.1	0.8	20	3	2
R134	2000	45	0.85	4712.048	100	100	1	0.8	0	2	2
R135	2000	45	0.85	4712.048	100	100	1	0.4	20	2	3
R136	2000	45	0.85	4712.048	100	100	1	0.4	20	2	3
R137	2000	45	0.85	4712.048	500	5 5	0.01	0.8	5	3	3
R138	2000	45	0.85	4712.048	500	IVE5ISI	0.01	0.8	0	3	3
R139	2000	45	0.85	4712.048	500	5	0.01	0.4	0	3	3
R140	2000	45	0.85	4712.048	500	5	0.01	0.4	20	3	3

Table 4.8 Detailed properties of cases studied (continued)

Run ID.	Gas solubility R _s (scf/STB)	°API	SG.	P _b (psia)	Absolute permeability <i>(mD)</i>	K _v (mD)	$\frac{\kappa_v}{\kappa_h}$	Perforation ratio	Skin factor	Corey exponent for k _{rg} (n _g)	Corey exponent for k _{ro} (n _o)
R141	2000	45	0.85	4712.048	500	50	0.1	0.4	0	3	3
R142	2000	45	0.85	4712.048	500	50	0.1	0.8	0	3	3
R143	2000	45	0.85	4712.048	500	50	0.1	0.8	5	3	2
R144	2000	45	0.85	4712.048	500	50	0.1	0.8	5	2	3
R145	2000	45	0.85	4712.048	500	500	1	0.4	5	2	2
R146	2000	45	0.85	4712.048	500	500	1	0.4	5	3	2
R147	2000	45	0.85	4712.048	500	500	FY ¹	0.8	5	2	3
R148	2000	45	0.85	4712.048	500	500	1	0.4	10	3	3
R149	2000	45	0.85	4712.048	500	500	1	0.8	0	2	2
R150	2000	45	0.85	4712.048	500	500	1	0.8	20	3	3

Table 4.8 Detailed properties of cases studied (continued)

Refer to nonlinear convergence error case from ECLIPSE100 simulation result

4.3 Generation of data points for IPR

Firstly, the simulation is run for eight different constant oil production rates: 600, 800, 1000, 1200, 1400, 1600, 1800, and 2000 STB/D, respectively. Then, the well bottomhole flowing pressure is plotted against time on Cartesian scale in order to determine the producing time that reaches the pseudo-steady state period where the data points display a straight line as shown in Figure 4.6. From Figure 4.6, the starting of pseudo-steady state is approximately at 20 days after the production starts.

In order to select the accurate starting point of pseudo-steady state period, the derivatives of pressure respective with respect to time or the slopes of pressure curves in Figure 4.6 are plotted as illustrated in Figure 4.7. When the slope is constant, the fluid flow in the reservoir reaches pseudo-steady state conditions. Compared to Figure 4.6, the graph also shows the same trend as the slope becomes constant after 20 days onward for case R001 as an example.

Figure 4.6 Well bottomhole pressures for different oil production rate.

The eight pairs of bottomhole flowing pressure at the beginning of pseudosteady state flow and oil production rate will be needed to construct inflow performance relationship as shown in Figure 4.8.

Figure 4.7 Slope of well bottomhole flowing pressure for different oil production rates

Figure 4.8 Inflow performance relationship curve.

4.4 IPR construction and evaluation method

When getting all eight corresponding well bottomhole pressures and oil production rates from ECLIPSE100, then the data are fitted into each IPR's equation

to find the absolute open flow which is the maximum flow rate and determine the required coefficient of each IPR correlation in order to evaluate the common five correlations used to estimate present inflow performance relationship of two-phase flow in single vertical well in solution gas drive reservoirs. This study utilizes calculated maximum flow rate and coefficients to determine the well bottomhole flowing pressure corresponding to each oil production rate. Then, eight well bottomhole flowing pressures for eight different oil production rates are compared with well bottomhole flowing pressures for eight deviation. Finally, we calculate the average of mean absolute percentage error and determine the standard deviation of MAPE of total cases studied. The proportion of cases studied which yield MAPE below 1% is observed and compared among each IPR correlations. In addition, the dispersion of MAPE value is also investigated.

4.4.1 Vogel's IPR

The Vogel IPR equation is expressed as

$$\frac{q_o}{(q_o)_{max}} = 1 - 0.2 \left(\frac{P_{wf}}{\overline{P}_r}\right) - 0.8 \left(\frac{P_{wf}}{\overline{P}_r}\right)^2$$

Thus, plotting q_o versus $1-0.2 \left(\frac{P_{wf}}{P_r}\right) - 0.8 \left(\frac{P_{wf}}{P_r}\right)^2$ will enable us to find $(q_o)_{max}$. Having done that in Figure 4.9 with $\overline{P}_R = 1,370.607 \text{ psi}$, the slope of the graph which is $(q_o)_{max}$ is 9,579.03707 STB/D.

Therefore, Vogel's IPR for this case is then

$$\frac{q_{o}}{9,579.037 \text{ STB/D}} = 1-0.2 \left(\frac{P_{wf}}{1,370.607 \text{ psia}}\right) - 0.8 \left(\frac{P_{wf}}{1370.607 \text{ psia}}\right)^{2}$$

After obtaining the expression for Vogel's IPR, the next step is to determine the well bottomhole flowing pressure for different oil rates in order to compare with the ones generated by ECLIPSE100 reservoir simulator. For example, when the oil production rate is 600 STB/D, Vogel's IPR becomes

$$\frac{600 \text{ STB/D}}{9,579.037 \text{ STB/D}} = 1-0.2 \left(\frac{P_{wf}}{1,370.607 \text{ psia}}\right) - 0.8 \left(\frac{P_{wf}}{1370.607 \text{ psia}}\right)^2$$

or
$$0.00058368(P_{wf})^2 + 0.00014592(P_{wf}) + 1-0.062636 = 0$$

Thus,

Figure 4.9 A plot to determine $(\boldsymbol{q}_o)_{max}$ for Vogel's IPR

After that, the calculation for well bottomhole flowing pressure is repeated for oil production rate of 800, 1000, 1200, 1400, 1600, 1800, and 2000 in stock tank barrel per day. Table 4.9 shows the calculation result for case R001. Then, the predicted values in Table 4.9 are used to construct the IPR curve as shown in Figure 4.10.

Oil production rate (STB/D)	Well bottomhole flowing pressure (psig)	
600.000	1,322.15105	
800.000	1,305.64580	
1,000.000	1,288.95401	
1,200.000	1,272.06920	
1,400.000	1,254.98452	
1,600.000	1,237.69271	
1,800.000	1,220.18603	
2,000.000	1,202.45627	

Table 4.9 Well bottomhole flowing pressure predictions by Vogel's correlation (case R001)

Figure 4.10 Vogel's IPR curve (case R001)

In order to compare the performance prediction of Vogel's IPR, the calculated bottomhole flowing pressures are compared with the ones obtained from simulation. The mean absolute percentage error (MAPE) is used in this study. It is defined by the formula

MAPE =
$$\frac{100\%}{n} \sum_{t=1}^{n} \frac{|A_t - F_t|}{A_t}$$
 (4.1)

Where A_t is the actual value, F_t is the forecast value and n is number of the samples. In the case of a perfect fit, MAPE is zero if the division is not zero.

9 ₀	A _t	F _t	$A_{t}-F_{t}$ Abs(<u></u>)	MAPE
(STB/D)	P _{wf} (ECLIPSE)	P _{wf} (Vogel)	A _t	(%)
600	1,319.3362	1,322.15105	0.00213	
800	1,303.9633	1,305.64580	0.00129	
1,000	1,288.2430	1,288.95401	0.00055	
1,200	1,272.1156	1,272.06920	0.00004	0 0744
1,400	1,255.5183	1,254.98452	0.00043	
1,600	1,238.3712	1,237.69271	0.00055	
1,800	1,220.6233	1,220.18603	0.00036	
2,000	1,203.1838	1,202.45627	0.00060	

Table 4.10 Calculation of the mean absolute percentage error of Vogel's IPR (case R001).

4.4.2 Fetkovich's IPR

To analyze the performance of Fetkovich's IPR, it is necessary to solve the performance coefficient *C* and exponent *n* in the equation $q_o = C (\overline{P}_R^2 - P_{wf}^2)^2$. By plotting oil production rate obtained from simulation on the y-axis and the difference of squares between the average reservoir pressure and the well bottomhole flowing pressure also obtained from simulation on x-axis, regression with power model can be performed to obtain coefficient *C* and exponent *n*. From Figure 4.11, the coefficient *C* is 0.00236 and exponent *n* is equal to 1.0528. At this point, Fetkovich's IPR for this case can be expressed as

งกรณมหาวทยาลย

$$(q_o)_{max} = 0.00236(\overline{P}_r^2 - P_{wf}^2)^{1.0528}$$

Figure 4.11 Determination of coefficient *C* and exponent *n* for Fetkovich's IPR (case R001).

The next step is to utilize the coefficient *C* and exponent *n* in the calculation of the maximum oil production rate and well bottomhole flowing pressure at different flow rates to construct the IPR curve. From Fetkovich's IPR, substituting $P_{wf} = 0$ psia and $\overline{P}_r = 1,370.607$ psia, C = 0.00236 and n = 1.0528, we obtain

$$(q_o)_{max} = 0.00236((1,370.067)^2 - 0)^{1.0528}$$

 $(q_o)_{max} = 9,518.4147 \text{ STB/D}$

Table 4.11 shows the results of well bottomhole flowing pressure corresponding to each oil production rate vary from 600 to 2,000 STB/D calculated from the equation:

$$P_{wf} = \sqrt{1,370.607^2 - \left(\left(\frac{q_0}{0.00236}\right)^{\frac{1}{1.0528}}\right)}$$

(case R001)					
Oil production rate	Well bottomhole flowing				
(STB/D)	pressure (psia)				
600.000	1,320.049				
800.000	1,303.757				
1000.000	1287.469				
1200.000	1271.139				
1400.000	1254.736				
1600.000	1238.235				
1800.000	1221.617				
2000.000	1204.865				
5747.000	849.805				
9518.415	0.000				

Table 4.11 Well bottomhole flowing pressure predictions by Fetkovich's correlation

After that, we construct the IPR curve and determine MAPE in the same fashion as in the case of Vogel's method. The results are shown on Figure 4.12 and Table 4.12.

Figure 4.12 Fetkovich's IPR curve (case R001)

90	A _t	F _t	$A_t - F_t$	MAPE
(STB/D)	P _{wf} (ECLIPSE)	P _{wf} (Fetkovich)	Abs()	(%)
600	1,319.3362	1,320.049	0.00054	
800	1,303.9633	1,303.757	0.00016	
1,000	1,288.2430	1,287.469	0.00060	
1,200	1,272.1156	1,271.139	0.00077	0.0626
1,400	1,255.5183	1,254.736	0.00062	
1,600	1,238.3712	1,238.235	0.00011	
1,800	1,220.6233	1,221.617	0.00081	
2,000	1,203.1838	1,204.865	0.00140	

Table 4.12 Calculation of the mean absolute percentage error of Fetkovich's IPR

(case R001).

4.4.3 Sukarno and Wisnogroho's IPR

This IPR can be determined and constructed similar to Vogel's method. However, the correlation utilizes a different equation to solve for pressure-rate behavior. Likewise, MAPE and standard deviation calculation can be done in the same fashion with other correlations. The Sukarno and Wisnogroho's IPR is expressed as

$$\frac{q_o}{(q_o)_{max}} = 0.90482 - 0.08881 \left(\frac{P_{wf}}{\overline{P}_r}\right) - 0.96534 \left(\frac{P_{wf}}{\overline{P}_r}\right)^2$$

Thus, we need to determine $(q_o)_{max}$ first. This can be done by plotting q_o versus 0.90482-0.08881 $\left(\frac{p_{wf}}{p_r}\right)$ -0.96534 $\left(\frac{p_{wf}}{p_r}\right)^2$ and fit the curve with a straight line passing through the origin. The slope of the straight line is $(q_o)_{max}$.

Figure 4.13 shows the curve fitting to the simulated results obtained in case R001. The maximum oil production rate which is the slope of the graph is 7,947.0349 STB/D.

Figure 4.13 A plot to determine $(q_o)_{max}$ for Sukarno and Wisnogroho's IPR (case R001)

In order to construct IPR curve, we need to determine the well bottomhole flowing pressures for different flow rates. A sample calculation when $q_o = 600 \text{ STB/D}$ is shown below:

$$\frac{600 \text{ STB/D}}{7,947.035 \text{ STB/D}} = 0.90482 - 0.08881 \left(\frac{P_{wf}}{1,370.607 \text{ psia}}\right) - 0.96534 \left(\frac{P_{wf}}{1,370.607 \text{ psia}}\right)^2$$

$$0.000704312(P_{wf})^2 + 0.00006479P_{wf}) + 1 - 0.0754998 = 0$$

$$P_{wf} = \frac{-0.00006479 \pm \sqrt{0.000704312^2 - (4)(0.000704312)(1 - 0.0754998)}}{2(0.00006479)}$$

$$P_{wf} = 1,334.991 \text{ psia}$$

The corresponding well bottomhole flowing pressures calculated for different oil production rates for Sukarno and Wisnogroho's IPR are illustrated in Table 4.13. The IPR curve is plotted in Figure 4.14. Then, MAPE is determined for case R001 as shown in Table 4.14.
Oil production rate	Well bottomhole flowing
(STB/D)	pressure (psia)
600.000	1334.991
800.000	1315.592
1000.000	1295.886
1200.000	1275.861
1400.000	1255.500
1600.000	1234.745
1800.000	1213.697
2000.000	1192.215
4768.000	835.842
7947.035	0.000

Table 4.13 Well bottomhole flowing pressure predictions by Sukarno and Wisnogroho's correlation (case R001)

Figure 4.14 Sukarno and Wisnogroho's IPR curve (case R001)

9 ₀	A _t	Ft	A+-F+	
(STB/D)	P _{wf} (ECLIPSE)	P _{wf} (Sukarno and	$Abs(\frac{1}{A_t})$	(%)
		Wisnogroho)		
600	1319.3362	1334.9914	0.01187	
800	1303.9633	1315.5916	0.00892	
1000	1288.2430	1295.8865	0.00593	
1200	1272.1156	1275.8614	0.00294	0 50204
1400	1255.5183	1255.5000	0.00001	0.59204
1600	1238.3712	1234.7849	0.00290	
1800	1220.6233	1213.6969	0.00567	
2000	1203.1838	1192.2151	0.00912	

Table 4.14 Calculation of the mean absolute percentage error of Sukarno and Wisnogroho's IPR (case R001).

4.4.4 Klins and Majcher's IPR

For Klins and Majcher's IPR, the methodology is similar to Vogel's method. However, the correlation uses a different equation to solve for pressure-rate behavior. Moreover, solving for pressure-rate behavior needs Newton-Raphson technique to calculate the well bottomhole flowing pressure.

The Klins and Majcher's IPR is expressed as

$$\frac{q_o}{\left(q_o\right)_{max}} = 1-0.295 \left(\frac{P_{wf}}{\overline{P}_r}\right) - 0.705 \left(\frac{P_{wf}}{\overline{P}_r}\right)^r$$

where

$$n=(0.28+0.72\frac{\overline{P_R}}{P_b})(1.235+0.001P_b)$$

In order to evaluate this IPR performance prediction, first we need getting all eight corresponding well bottomhole pressures and oil production rates. Then, these data points are feeded into Klins and Majcher's equation to find absolute open flow. Figure 4.15 shows the plot to find Klins and Majcher's IPR maximum oil production rate for case R001 which is 8,280.567 STB/day.

Then, we calculate n value from the above equation. After that, we determine the well bottomhole flowing pressure by utilizing Newton-Raphson technique.

As an example, for case R001, $q_o = 600 \text{ STB/D}$, $(q_o)_{max} = 8,280.567 \text{ STB/D}$, $\overline{P}_r = 1,370.607 \text{ psia}$ and $\overline{P}_r = 1,370.607 \text{ psia}$

Then substitute into equation (2.11),

$$n = (0.28 + 0.72 \frac{1,370.607}{1,370.607})(1.235 + 0.001(1,370.607))$$

Next, we use Newton-Rapshon's method to find the only real root of the equation below correct to 5 decimal places.

Newton-Rapshon's formula is

$$x_{t+1} = x_t - \frac{f(x)}{f(x)}$$
(4.2)

Rearrangement of Klins and Majcher's IPR equation becomes

$$\frac{0.705}{(\bar{P}_r)^n} (P_{wf})^n + \frac{0.295}{\bar{P}_r} (P_{wf}) + \frac{q_o}{q_{o,max}} - 1 = 0$$

$$f(P_{wf}) = \frac{0.705}{1,370.607^{2.6056}} (P_{wf})^{2.6056} + \frac{0.295}{1,370.607} (P_{wf}) + \frac{600}{8,280.567} - 1$$

$$f'(P_{wf}) = \frac{0.705}{1.370.607^{2.6056}} (2.6056) (P_{wf})^{1.6056} + \frac{0.295}{1.370.607}$$

Given

and

Now, Newton-Rapshon's formula here is

$$(P_{wf})_{t+1} = (P_{wf})_t - \frac{\frac{0.705}{1,370.607^{2.6056}} (P_{wf})^{2.6056} + \frac{0.295}{1,370.607} (P_{wf}) + \frac{600}{8,280.567} - 1}{\frac{0.705}{1,370.607^{2.6056}} (2.6056) (P_{wf})^{1.6056} + \frac{0.295}{1,370.607}}$$

Let us make an initial guess $(P_{wf})_0 = 1,350 \text{ psia}$. So, with our value of $(P_{wf})_0 = 1,350 \text{ psia}$, our approximation for $(P_{wf})_1$ is given by

$$(P_{wf})_{1} = 1,350 - \frac{\frac{0.705}{1,370.607^{2.6056}} \left(P_{wf}\right)^{2.6056} + \frac{0.295}{1,370.607} \left(P_{wf}\right) + \frac{600}{8,280.567} - 1}{\frac{0.705}{1,370.607^{2.6056}} \left(2.6056\right) \left(P_{wf}\right)^{1.6056} + \frac{0.295}{1,370.607}}$$

≈1,323.25682 psia

Using a scientific calculator, it is possible to finish the sum. Take the value of $(P_{wf})_1$ and repeat the above calculations using this as the initial guess. The resulting answer will be $(P_{wf})_2$. Again, repeat the procedure until the 5th decimal places remain unchanged. Therefore, $P_{wf}=1,322.883$ psia correctly rounded to 5 decimal places. Table 4.15 shows the result of calculation well bottomhole flowing pressure at $q_p=600$ STB/D using Newton-Raphson method.

Later, all oil production rates are calculated for corresponding well bottomhole flowing pressure and the calculated results are demonstrated in Table 4.16. Afterward plot the IPR curve as represented in Figure 5.16. Then, MAPE is determined for case R001 as shown in Table 4.17.

Figure 4.15 A plot to determine $(q_o)_{max}$ for Klins and Majcher's IPR (case R001)

t	$(P_{wf})_t$	$f((P_{wf})_t)$
0	1350.00000	0.040737203
1	1323.25682	0.000554089
2	1322.88292	0.00000107
3	1322.88285	0.00000000
4	1322.88285	0.00000000

Table 4.15 Newton-Raphson result for Klins and Majcher's IPR at q_o =600 STB/D (case R001)

Table 4.16 Well bottomhole flowing pressure predictions by Klins and Majcher's correlation (case R001)

Oil production rate	Well bottomhole flowing
(STB/D)	pressure (psia)
600.000	1322.883
800.000	1306.438
1000.000	1289.705
1200.000	1272.671
1400.000	1255.321
1600.000	1327.639
1800.000	1219.610
2000.000	1201.216
4968.000	866.558
8280.567	0.000

Figure 4.16 Klins and Majcher's IPR curve (case R001)

Table 4.17 Calculation of the mean absolute percentage error of Klins and Majcher's IPR (case R001).

90	A _t	F _t	A+-F+	
(STR/D)	Pur (ECLIPSE)	P _{wf} (Klins and	$Abs(\frac{1}{A_{+}})$	(%)
(310/0)	, ny ()	Majcher)	۲.	
600	1319.3362	1322.883	0.00269	
800	1303.9633	1306.438	0.00190	
1000	1288.2430	1289.705	0.00114	
1200	1272.1156	1272.671	0.00044	0 1 1 7 1 5
1400	1255.5183	1255.321	0.00016	0.11715
1600	1238.3712	1327.639	0.00059	
1800	1220.6233	1219.610	0.00083	
2000	1203.1838	1201.216	0.00164	

Finally repeat each step to solve for other cases and calculate the average MAPE and standard deviation for Klins and Majcher's IPR.

4.2.5 Jones et al.'s IPR

In this correlation, IPR can be constructed similar to Vogel methodology for the first three steps. Then, a set of oil production rates corresponding to well bottomhole flowing pressures are plotted to find the two coefficients in which A is in the laminar flow condition and B is in the turbulent flow. Then, the well bottomhole flowing pressure at any given oil production rate can be calculated by the equation

The calculated well bottomhole flowing pressures are shown in Table 4.18. Figure 4.17 displays the plot to determine coefficients A and B for case R001. The calculation yields A=0.0819 and B=0.0000007.

Figure 4.17 A plot to determine coefficients A and B for Jones et al.'s IPR (case R001)

Example calculation of case R001, at q_o =600 STB/D and \overline{P}_r =1,370.607 psia Substitute the coefficients A and B, q_o =600 STB/D and \overline{P}_r =1,370.607 psia into Equation (8),

So that

 $\frac{1,370.607 \text{ psia-P}_{wf}}{600 \text{ STB/D}} = 0.0819 + 0.0000007(600 \text{ STB/D})$

$$P_{wf}$$
=1,321.215 psia

Next, we repeat each step to solve for other oil production rates and then plot IPR curve as shown in Figure 4.18. After that, we average MAPE and calculate standard deviation for Jones, Blount and Glaze's IPR as illustrated in Table 4.19.

Table 4.18 Well bottomhole flowing pressure predictions by Jones et al.'s correlation (Case R001)

Oil production rate	Well bottomhole flowing
(STB/D)	pressure (psia)
600.000	1321.315
800.000	1304.639
1000.000	1288.007
1200.000	1271.319
1400.000	1254.575
1600.000	1237.775
1800.000	1220.919
2000.000	1204.007
8910.154	585.291
14850.257	0.000

Figure 4.18 Jones et al.'s IPR curve (case R001)

Table 4.19 Calculation of the mean absolute percentage error of Jones et al.'s IPR (case R001).

MAPE	$A_t - F_t$	Ft	A _t	90	
(%)	A t	P _{wf} (Jones et al.)	P _{wf} (ECLIPSE)	(STB/D)	
	0.00142	1321.315	1319.3362	600	
	0.00052	1304.639	1303.9633	800	
	0.00018	1288.007	1288.2430	1000	
0.06120	0.00063	1271.319	1272.1156	1200	
0.00159	0.00075	1254.575	1255.5183	1400	
	0.00048	1237.775	1238.3712	1600	
	0.00024	1220.919	1220.6233	1800	
	0.00068	1204.007	1203.1838	2000	

CHAPTER V RESULTS AND DISCUSSIONS

In this chapter, the results of all studied about IPR correlations and their limitations are illustrated and discussed in order to evaluate the accuracy and reliability of each IPR correlations.

5.1 Evaluation of IPR correlations

In this study, 150 cases were initially generated by trial version of JMP software as discussed in Section 4.2. Eight test points for flow rate varying from 600 to 2000 STB/D were simulated for each case. However, there are 45 cases that cannot be completed by ECLIPSE100 simulation software because of non-linear equation convergence failure. As a result, only 105 cases that were successfully run from ECLIPSE100 are used to analyze for the performance of five IPR correlations. The evaluated results of five IPR correlations in term of Mean Absolute Percentage Error (MAPE) and standard deviation of MAPE are determined and analyzed. In addition, the limitation and finding from each IPR correlation will be discussed.

The result of evaluation of five correlations in term of Mean Absolute Percentage Error (MAPE) is based on eight designed test points tabulated in Table 5.1. It is important to note that Jones et al. correlation has the limitation that it does not guarantee a negative value of the coefficient B, the turbulent flow condition. Thus, only 56 cases can be analyzed for Jones et al. while 105 cases can be used in the other four correlations.

RUN ID.	Mean Absolute Percentage Errors (%)					
	Vogel	Fetkovich	Sukarno and Wisnogroho	Klins and Majcher	Jones et al.	
R001	0.074352	0.062632	0.592036	0.117145	0.061385	
R002	0.164661	0.04032	0.783312	0.307753	0.061175	
R003	0.073508	0.068446	0.678352	0.204653	0.077425	

Table 5.1 Summary of MAPE for all cases of five IPRs.

RUN ID.	Mean Absolute Percentage Errors (%)					
	Vogel	Fetkovich	Sukarno and Wisnogroho	Klins and Majcher	Jones et al.	
R004	0.160638	0.038859	0.710018	0.229584	0.057188	
R005	0.101523	0.05621	0.612158	0.1363	0.060367	
R006	0.187143	0.040089	0.78708	0.310687	0.070926	
R007	0.103282	0.056133	0.616943	0.140202	0.077774	
R008	0.343752	0.011375	1.070753	0.615988	0.079102	
R009	1.14296	0.220884	2.378083	2.19535	0.1118	
R010	1.14296	0.220884	2.378083	2.19535	0.1118	
R011	0.086183	0.063454	0.596529	0.122287	0.063958	
R012	0.136235	0.03505	0.617983	0.149902		
R013	0.189102	0.031482	0.736549	0.255942		
R026	0.225544	0.049238	0.855068	0.390156	0.052696	
R027	1.378214	0.465667	2.752036	2.490851	0.133417	
R028	1.377789	0.634034	2.770635	2.601094	1.007595	
R029	1.129377	0.444089	2.57236	2.351825	0.193665	
R030	0.256544	0.067775	0.910813	0.441147	0.055363	
R031	0.256544	0.677749	0.910813	0.441147	0.055363	
R032	0.116731	0.043288	0.65401	0.174467	0.051723	
R033	0.071298	0.562819	0.602164	0.122983	0.053142	
R034	0.066731	0.05641	0.597562	0.118356	0.060873	

Table 5.1 Summary of MAPE for all cases of five IPRs (continued)

RUN ID.	Mean Absolute Percentage Errors (%)					
	Vogel	Fetkovich	Sukarno and Wisnogroho	Klins and Majcher	Jones et al.	
R035	0.120047	0.04555	0.653842	0.169611	0.055427	
R036	0.733194	0.386471	1.754907	1.422409	0.302022	
R037	2.017524	0.812618	4.114235	3.976598	0.203966	
R038	1.082772	0.392511	2.50398	2.248734	0.620144	
R039	1.206057	0.28741	2.578002	2.302746	0.371701	
R040	0.103281	0.010125	0.634334	0.295033	0.025219	
R041	0.063496	0.012473	0.527858	0.069945		
R042	0.075775	3.88583	0.555655	0.122825		
R043	0.062335	2.129307	0.527664	0.076707		
R044	0.070824	0.014796	0.559613	0.138367		
R045	0.060869	4.945416	0.55275	0.136531	0.029934	
R046	0.064868	0.027637	0.511241	0.070293		
R047	0.063826	0.028044	0.509717	0.068557		
R048	0.065387	0.029032	0.511993	0.070293		
R049	0.071368	0.013524	0.552125	0.120411		
R050	0.653184	0.208845	1.688717	3.529585	0.049794	
R051	0.226579	0.173075	1.53897	5.117441	0.254109	
R052	0.1145	0.046252	0.788443	0.744014	0.049859	
R053	0.365891	0.261761	1.370865	3.04994	0.159725	

Table 5.1 Summary of MAPE for all cases of five IPRs (continued)

RUN ID.	Mean Absolute Percentage Errors (%)					
	Vogel	Fetkovich	Sukarno and Wisnogroho	Klins and Majcher	Jones et al.	
R054	4.552801	2.902554	11.57443	22.01135	0.728665	
R056	0.106751	0.043823	0.700386	0.571404	0.025508	
R057	0.37104	0.264176	1.18231	2.099486	0.153889	
R060	7.958771	5.29924	16.94128	25.35941	0.891737	
R061	0.03302	0.030659	0.548304	0.191615	0.032483	
R062	0.113237	0.008758	0.678842	0.431902	0.028517	
R063	0.068449	0.015608	0.561675	0.147126	0.268473	
R064	0.267403	0.027885	0.972573	1.223729	0.049201	
R065	0.058699	3.909159	0.538529	0.10603		
R066	0.059642	0.015069	0.526067	0.007745		
R067	0.115206	0.008966	0.674853	0.41063	0.036834	
R068	0.203282	0.149172	0.885818	1.375632	0.248047	
R069	0.067839	0.04032	0.544921	0.109222		
R070	0.118878	0.015639	0.677272	0.409798	0.019475	
R071	0.077616	0.013195	0.570535	0.155279		
R072	0.092125	0.002922	0.557432	0.121404		
R073	0.086122	0.001276	0.56048	0.139275		
R074	0.123156	0.007143	0.605246	0.199116		
R075	0.10898	0.003983	0.588878	0.178295		

Table 5.1 Summary of MAPE for all cases of five IPRs (continued)

RUN ID.	Mean Absolute Percentage Errors (%)					
	Vogel	Fetkovich	Sukarno and Wisnogroho	Klins and Majcher	Jones et al.	
R076	0.112519	0.006544	0.581222	0.149461		
R077	0.403116	0.030974	0.893461	0.436942		
R078	0.163109	0.007102	0.652344	0.262218		
R079	0.165162	0.007505	0.647971	0.241767		
R080	0.158453	0.006234	0.644597	0.246683		
R081	0.146497	0.014842	0.661678	0.355752		
R082	0.166915	0.012577	0.667479	0.310278		
R083	0.155395	0.016232	0.675609	0.388401		
R084	0.46553	0.061127	1.266395	2.858732	0.067806	
R085	0.15489	0.04946	0.715605	0.611576	0.016395	
R086	0.052827	0.016663	0.585271	0.377566	0.026375	
R087	0.024091	0.023166	0.512985	0.256657	0.020681	
R088	0.146313	0.026126	0.793007	1.194138	0.045164	
R089	0.128349	0.014651	0.660107	0.421196	0.028415	
R090	0.0237	0.022973	0.567626	0.540264	0.123008	
R091	1.77476	0.781808	3.396486	15.62505	0.205221	
R110	4.199226	2.384955	5.089981	10.73884		
R113	6.538017	0.382042	6.163013	17.2623		
R114	8.611883	4.285322	9.24335	17.2623		

Table 5.1 Summary of MAPE for all cases of five IPRs (continued)

RUN ID.	Mean Absolute Percentage Errors (%)								
	Vogel	Fetkovich	Sukarno and Wisnogroho	Klins and Majcher	Jones et al.				
R115	5.508132	4.638391	6.546769	16.71432					
R116	5.71709 1.519441 6.91067		6.91067	20.06518					
R118	7.08146	0.680729	8.40635	14.70986					
R119	5.046005	1.836727	5.957796	10.05798					
R120	5.644991	4.539098	6.649953	14.70986					
R121	9.513165	2.139306	11.43951	15.75678					
R122	5.692993	4.720301	6.759852	10.97715					
R123	4.999288	4.725858	7.046852	20.6729					

Table 5.1 Summary of MAPE for all cases of five IPRs (continued)

Refer to cases that the absolute open flow cannot be determined.

Moreover, scope of study was expanded to check the accuracy and reliability of well performance prediction at 60% of maximum oil production rate (absolute open flow) which is not covered by the eight designed test points. It is important to note that the number of cases study depends on the correlation due to the fact that there are some cases that 60% of maximum oil production rate places within the range of designed test points as illustrated in Table 5.2.

RUN ID.	Absolute Percentage Errors (%)								
	Vogel	Fetkovich	Sukarno and Wisnogroho	Klins and Majcher	Jones et al.				
R001	2.632186384	0.691606684	6.276541837	3.72199	7.07696				
R002	3.302786422	1.811020194	5.100196156	3.62414	0.80955				
R003	2.608447918	1.622888777	4.532291095	3.10111	2.30265				
R004	2.995703943	0.470436061	5.742847902	3.59668	35.31818				
R005	3.058966974	0.156914390	6.757936811	3.94599					
R006	3.076110713	1.263361010	5.100234982	3.49545	2.4036				
R007	3.076969073	0.273740789	6.759200799	3.99828					
R008	2.534535043	1.140035208	3.783324025	2.67531	0.56639				
R009			1.660921973		0.27167				
R010			12.3472265		19.69131				
R011	5.755471454	3.506652213	8.385402259	5.92753	0.56383				
R012	4.124851619	6.489806557	9.254832743	4.96532					
R013	3.623142945	0.797154551	6.227035316	4.08719					
R026	1.5744583	2.419024251	3.709409565	2.34791	6.78917				
R027					0.69008				
R028					2.7234				
R029					1.23912				
R030	2.705144965	2.339132577	4.459098945	3.15935	2.81768				
R031	3.477941529	10.69872286	0.154389314	1.42608	31.82736				

Table 5.2 APE for all cases of five IPRs at 60% absolute open flow rate.

RUN ID.	Absolute Percentage Errors (%)								
	Vogel	Fetkovich	Sukarno and Wisnogroho	Klins and Majcher	Jones et al.				
R032	2.940689485	9.523785759	6.225586779	3.86413					
R033	2.278435188	8.899284933	5.813120741	3.42885	8.67918				
R034									
R035	2.947145409	9.769721461	721461 6.279149474 3.87357						
R036	1.413459654		2.00046629	1.28768	0.44326				
R037					0.35038				
R038					3.90569				
R039					0.37451				
R040	3.242773153	1.345573634	4.552620009	3.53149	10.00067				
R041	4.672441881		13.58638143	5.64826					
R042	3.699468841		9.082934748	4.61524					
R043	4.04721939		11.59801259	4.99179					
R044	2.337326559	0.858791016	7.572036792	3.82936					
R045	2.378135496		7.366016195	3.66225					
R046	5.445387908	23.39118643	13.53795894	5.76448					
R047	4.546395584		13.62436812	5.52647					
R048	4.185855524	9.330656724	11.93921103	5.09887					
R049	2.763797288	1.369440771	8.544533075	4.30217					
R050	5.452289545	0.428398535	2.044393999	14.84513	0.49168				

Table 5.2 APE for all cases of five IPRs at 60% absolute open flow rate (continued)

RUN ID.	Absolute Percentage Errors (%)								
	Vogel	Fetkovich	Sukarno and Wisnogroho	Klins and Majcher	Jones et al.				
R051					1.2837				
R052	2.071982028		4.286670221	2.55099	5.1199				
R053	0.732488823 0.376684142 1.7399728		1.7399728		1.9495				
R054									
R056	2.273513221	1.522931009	4.641710818	2.84705	1.82295				
R057	1.876847083	1.264237697	2.857228001		1.47555				
R061	1.43413837	0.493062531	5.51646377		3.24556				
R062	2.912551603	1.469040678	5.383972154	3.06462	1.23985				
R063	2.028674148	0.745661326	7.22028164	3.76708	3.45896				
R064	1.95205539	0.817900981	3.552235891	1.98392	0.48804				
R065	3.61782765		8.972095779	4.43700					
R066	2.975562185	6.893420147	10.89646859	4.67080					
R067	2.51369172	0.98535532	5.269675533	3.14081	6.11915				
R068	2.483165294	1.742463961	3.611212007	1.55617	4.44184				
R069	2.716918725	15.42423974	8.857428077	4.17925					
R070	3.373436323	1.932816603	5.810392562	3.53717	1.58534				
R071	3.619768446	0.7240661	7.939986836	4.12692					
R072	9.814644583	4.875805199	13.06777266	0.74505					
R073	7.001709107	2.676623678	11.05814727	5.23200					

Table 5.2 APE for all cases of five IPRs at 60% absolute open flow rate (continued)

RUN ID.	Absolute Percentage Errors (%)								
	Vogel	Fetkovich	Sukarno and Wisnogroho	Klins and Majcher	Jones et al.				
R074	7.299086266	2.869364406	10.67329841	5.17869					
R075	7.093698939	2.826971153	10.64832462	5.09046					
R076	76 10.62935731 6.490241298 13.		13.03034397	6.27880					
R077	5.653715704		10.55055977	3.82984					
R078	9.21439694	5.632436566	11.25920333	5.50785					
R079	9.979666848	5.404663087	11.97464513	5.89681					
R080	9.367449488	5.490856154	11.53907859	4.04132					
R081	4.544445469	1.481113314	7.825156222	4.84478					
R082	8.09459503	3.059456944	9.77424406	4.03636					
R083	4.973829351	1.991437763	7.887073028	0.80748					
R084	1.995335099	0.674142033	3.213763921		2.84115				
R085	2.935706329	1.533733906	5.683546893	4.27226	19.2728				
R086	5.744159977	4.610512018	8.03807481	2.70926	6.22014				
R087	1.454616148	0.707108181	4.286351417	4.29401	7.69549				
R088	4.74020842	2.448620192	7.726533467	1.73632					
R089	15.18908219	10.47066408	5.530021129	2.30466	35.75095				
R090	0.177418619	0.291585358	3.769000173	2.75163	6.05766				
R091					0.65313				
R092	1.766603489	0.908591379	3.314278108		2.53437				

Table 5.2 APE for all cases of five IPRs at 60% absolute open flow rate (continued)

RUN ID.	Absolute Percentage Errors (%)								
	Vogel	Fetkovich	Sukarno and Wisnogroho	Klins and Majcher	Jones et al.				
R093			18.49007948	2.10369					
R094	0.883555194	1.015762335	4.150118084	1.91230	2.52474				
R095	1.632142875	632142875 0.807801906 3.8566785		0.27086	4.20989				
R096	1.407629897	0.557997897	2.537650269		2.85282				
R097	5.012653205	1.148301693	9.329373408	5.54428					
R098	9.534998427	5.929254569	10.66088934	4.18785					
R099	4.138156413	1.176083785	8.251467743	4.70458					
R100	6.44229716	2.435830797	9.477772894	4.56988					
R101	5.002930048	1.120144366	9.214344335	4.93729					
R102	5.429268198	1.147787423	10.40611441	3.54012					
R103	4.096153794	2.673152637	6.912013596	5.33707	3.96089				
R104	14.09191918	20.32812457	2.209231936	9.88486					
R105	16.24327515	14.59349299	16.48678215	10.22296					
R106	16.80273352	15.37962155	16.81611768	12.47264					
R107	7.421091131	3.04275366	2.732513452	8.60395					
R108	14.09831311		14.57955974	9.17685					
R109	15.02825737	13.3694597	15.30621409	19.51714					
R110	18.95431966	21.94775151	16.46062767						
R113	16.80911547		16.21517508						

Table 5.2 APE for all cases of five IPRs at 60% absolute open flow rate (continued)

RUN ID.	Absolute Percentage Errors (%)								
	Vogel	Fetkovich	Sukarno and Wisnogroho	Klins and Majcher	Jones et al.				
R114									
R115	16.67318502	19.55071391	15.81744879						
R116	17.30097778	22.04237663							
R118	17.87176568	24.95062752	16.84938232						
R119	17.43796515	22.7307597	16.08524728						
R120	16.97447495		16.84938232						
R122	17.11513202	18.89302245	15.76800587						
R123									

Table 5.2 APE for all cases of five IPRs at 60% absolute open flow rate (continued)

Refer to cases that the bottom hole pressure has reached the lower limit of 14.7 psia

Refer to cases that 60% absolute open flow rate is below 2,000 STB/D

, Chill al ongrodn Hnivedgity

Figure 5.1 MAPE distributions for Vogel's IPR

In this study, the average MAPE of Vogel's IPR from 105 cases is 1.009 % with standard deviation of MAPE about 2.082%. Obtaining from the histogram shown in Figure 5.1, 79.048% of total cases have MAPE less than 1.0 percent.

Based on 105 cases simulation, this study has found that Vogel's IPR provides the best fit IPR when the absolute permeability is 500 mD (average MAPE=0.340%, SD=0.481%) when compared with the other two absolute permeability values (100 and 1000 mD). The average MAPE of Vogel's IPR becomes highest (1.631 %) when the absolute permeability is 1,000 mD and the value tends to be spread out with standard deviation of 2.724% as shown in Figure 5.2.

Due to ECLIPSE100 non-linear equation convergence failure, only a few cases in which the bubble point pressure is 4,712.048 psia and the absolute permeability is 1000 mD can be successfully simulated. Based on the successful cases, we found that the bubble point pressure has significant effect to the curve of IPR and the well performance prediction of Vogel's IPR correlation when the bubble point pressure is higher than 3,000 psia. When we exclude the highest bubble point pressure cases, the average MAPE is lower as the absolute permeability increases since the oil can flow better. The average MAPE becomes 0.185% with standard deviation of 0.250% as absolute permeability is 1,000 mD. As a result, more consideration shall be taken when using Vogel's IPR correlation to predict the well inflow performance for reservoirs containing oil with bubble point pressure higher than 3,000 psia.

Further study about well inflow performance prediction found that when the prediction is made out of the test range, the accuracy and reliability decrease. In this study, the oil rate at 60% of absolute open flow is chosen for evaluation. Figure 5.3 shows that the average Absolute Percentage Error (APE) of prediction of bottomhole pressure at such rate is 5.995% with standard deviation of 5.111% in comparison with average MAPE of 1.009% and 2.082% standard deviation when the predictions are made for eight designed test points. Overall, 82.95% of total cases yield the APE less than 10.0%.

Figure 5.2 Average and standard deviation of MAPE for Vogel's IPR with absolute permeability at 100 mD, 500 mD and 1,000 mD

Figure 5.3 APE distributions for Vogel IPR at 60% of maximum oil production rate (absolute open flow).

5.1.2 Fetkovich's IPR

Figure 5.4 MAPE distributions for Fetkovich's IPR

Resulting from histogram (Figure 5.4), 84.762% of total cases represent MAPE less than 1.0% compared with ECLIPSE100 results. The average MAPE for reservoir with absolute permeability of 1,000 mD is the highest among the three absolute permeability values used in this study. Similar to Vogel's IPR, at absolute permeability of 500 mD, Fetkovich' IPR provides the best matching with ECLIPSE100 results with an average MAPE of 0.408% and a standard deviation of 1.149% as illustrated in Figure 5.5.

Moreover, when excluding the cases of bubble point pressure of 4,712.048 psia, the average MAPE is decreased to 0.347% with standard deviation of 1.085%. As a result, the higher the absolute permeability, the better the accuracy.

For the prediction point which is not covered by the eight designed test points, the APE is poorest than the one for the eight designed test points. Figure 5.6 represents the histogram of Fetkovich's MAPE when the oil production rate is out of range of test points. The results indicate that 80.52% of total cases give the APE less than 10.0%.

Figure 5.6 APE distributions for Fetkovich IPR at 60% of maximum oil production rate (absolute open flow)

5.1.3 Sukarno and Wisnogroho's IPR

The mean absolute percentage error proportion of Sukarno and Wisnogroho's IPR histogram is illustrated in Figure 5.7. As shown, 71.429% of total 105 cases represent MAPE ranging from 0.0 to 1.0 %. The average MAPE of Sukarno and Wisnogroho method is 1.702 % with standard deviation of 2.346%.

The prediction of well inflow performance has the smallest MAPE when the absolute permeability is 500 mD as shown in Figure 5.8. The proposed correlation by Sukarno and Wisnogroho is based on the bubble point pressure between 1,457 psia to 3,149 psia and absolute permeability between 100 mD to 625 mD. When neglecting the cases of bubble point pressure of 4,712.048 psia, the average MAPE is decreased to 0.735% with standard deviation of 0.426%. In this case, the higher the absolute permeability, the better the accuracy can be predicted by Sukarno and Wisnogroho's IPR.

Figure 5.7 MAPE distributions for Sukarno and Wisnogroho's IPR

Figure 5.8 Average and standard deviation of MAPE for Sukarno and Wisnogroho's IPR with absolute permeability at 100 mD, 500 mD and 1,000 mD

In this study, when we use Sukarno and Wisnogroho's correlation to predict the well bottom-hole pressure at 60% of maximum oil rate which is not covered by the eight designed test points, 66.67% of 90 cases represent the APE less than 10.0% as shown in Figure 5.9.

Figure 5.9 APE distribution for Sukarno and Wisnogroho's IPR at 60% of maximum oil production rate (absolute open flow)

5.1.4 Klins and Majcher's IPR

Figure 5.10 shows the distribution of mean absolute percentage error of Klins and Marcher's IPR. As displayed in the histogram, 67.619% of total cases have the MAPE less than 1.0% which is the lowest probability compared with other correlations. The average mean absolute percentage error is 2.849%, and the standard deviation is 5.708%.

Figure 5.10 MAPE distributions for Klins and Majcher's IPR

When grouping the results based on absolute permeability, the best number of MAPE is 0.718% belonging to the representative group of 500 mD. Alike other correlations, cases of bubble point pressure of 4712.048 psia with absolute permeability of 1,000 mD have more error for erroneous of well performance prediction. As a result, MAPE and standard deviation of 1,000 mD cases are high as shown in Figure 5.11.

In fact, Klins and Majcher obtained the equation from bubble point pressure ranging between 1,000 psia to 4,000 psia. Neglecting cases with bubble point pressure of 4,712.048 psia, the value of average MAPE and standard deviation when absolute permeability is 1,000 mD becomes 0.319% and 0.484, respectively.

As shown in Figure 5.12, the prediction of well inflow performance at 60% of maximum flow rate which is not covered by the eight designed test points provides very good prediction. 94.74% of the cases have APE lower than 10.0%.

Figure 5.12 APE distributions for Klins and Majcher's IPR at 60% of maximum oil production rate (absolute open flow)

5.3.5 Jones et al.'s IPR

For Jones et al.'s IPR, we have found that it does not guarantee a negative value of the coefficient B, the turbulent flow condition. Thus, only 56 cases can be analyzed for Jones et al. From histogram (Figure 5.13), 100.00% of total cases provides MAPE less than 1%.

In addition, when the absolute permeability is higher, the better well inflow performance can be predicted as illustrated in Figure 5.14. Moreover, when the prediction is evaluated for the point which is not covered by the eight designed test points, the correlation still provides good accuracy as 86.96% of total cases have APE less than 10.0% as displayed in Figure 5.15.

Figure 5.13 MAPE distributions for Jones et al.'s IPR

Figure 5.14 Average and standard deviation of MAPE for Jones et al.'s IPR with absolute permeability at 100 mD, 500 mD and 1,000 mD

Figure 5.15 APE distributions for Jones et al.'s IPR at 60% of maximum oil production rate (absolute open flow)

5.2 Performance comparison of five IPR correlations

In this thesis, the accuracy and reliability of each IPR corrections are evaluation by comparing the between the simulated pressures (ECLIPSE100) and the calculated pressures for the five correlations. The study focuses on the accurate prediction of the eight designed test points and at a 60% maximum oil production rate which is not covered by the eight designed test points in an average for various reservoir conditions. The result of this study will help petroleum engineers to be able to choses appropriate IPR correlation to predict the well inflow performance at the starting point when there is insufficient well data.

This paper also studies the influence of absolute permeability to the accuracy of well inflow performance prediction of five correlations.

5.2.1 Overall comparison

The average and standard deviation of Mean Absolute Percentage Error (MAPE) between the simulated pressures (ECLIPSE100) and the calculated pressures for the five correlations are represented in Table 5.3. When considering only 56 cases that can be evaluated using five correlations, Jones *et. al.* gives the lowest average MAPE and standard deviation of 0.136% and 0.177%, respectively. Fetkovich is the second best while Vogel, Sukarno and Wisnogroho, and Klins and Majcher follow in less accurate order.

However, when considering 105 cases, 0.666% average MAPE and 1.427% standard deviation of Fetkovich correlation tends to do a better job of predicting well performance when compared with other IPR correlations excluding Jones *et. al.* As a matter of fact, the average MAPE of Fetkovich correlation is almost 1.5 times that of Vogel's method. Similar to the analysis for 56 cases, Fetkovich, Vogel, Sukarno and Wisnogroho, and Klins and Majcher provide the same trend from good to poor accuracy and reliability in that order. Overall, Vogel, Sukarno and Wisnogroho and Klins average MAPE below 3% in the cases examined.

Table 5.4 shows that Klins and Majcher correlation provides the best prediction of well inflow performance when the evaluation point is at 60% of maximum oil production rate. While Fetkovich, Jones et al., Vogel, and Sukarno and Wisnogroho correlations provide the Absolute Percentage Error (APE) and standard deviation of APE in the range of 5.5% to 8.3% and 4.4% to 8.6%, respectively.

	Vogel		Fetkovich		Sukarn Wisnog	o and groho	Klins Majo	and cher	Jones	et al.
		Number of Cases Study								
	105	56	105	56	105	56	105	56	105	56
Average										
MAPE	1.009	0.584	0.666	0.383	1.847	1.346	2.849	2.189	-	0.136
(%)										
STD	2.082	1.243	1.427	1.013	2.777	1.618	5.708	4.761	-	0.177

Table 5.3 Summary performance prediction on eight designed test points.

	Vogel	Fetkovich	Sukarno and Wisnogroho	Klins and Majcher	Jones et al.
			Number of Cases S	Study	
	88	76	90	76	46
Average APE (%)	5.995	5.425	8.299	4.558	5.786
STD	5.111	6.781	4.476	2.965	8.684

Table 5.4 Summary of performance prediction at 60% absolute open flow rate

5.2.2 Comparison based absolute permeability

In this thesis, the cases studied include variation in absolute permeability in addition to other fluid and rock properties as discussed in Chapter IV. The permeability is categorized as low, medium, and high permeability which are 100 mD, 500 mD and 1,000 mD, respectively.

Considering low permeability condition of 100 mD, there are a total of 21 cases. Jones et al. provides the best fit to ECLIPSE100 result with 0.159% average MAPE and standard deviation of 0.232%. The second best is Fetkovich correlation with average MAPE of 0.496% while Vogel, Sukarno and Wisnogroho, and Klins and Majcher correlations are in less accurate as illustrated in Figure 5.16.

When the absolute permeability increases to 500 mD, Jones et al. still gives the best well inflow performance prediction with the average MAPE of 0.159% based on 22 cases in total. For the other four correlations, the total number of cases is 38. As mentioned before, we cannot find Jones et al.'s IPR for all cases as the coefficient B is nonnegative. Comparing among the four correlations, Figure 5.17 shows that Vogel's IPR correlation yields the most accurate and prediction with 0.34% MAPE and 0.481% standard deviation. Fetkovich, Klins and Majcher, and Sukarno and Wisnogroho provide less accurate well performance prediction as shown in Figure 5.17.

Figure 5.16 Average and standard deviation of MAPE for five's IPR with absolute permeability at 100 mD.

Figure 5.17 Average and standard deviation of MAPE for five's IPR with absolute permeability at 500 mD.

Figure 5.18 Average and standard deviation of MAPE for five's IPR with absolute permeability at 1000 mD.

As the absolute permeability is increased to 1,000 mD, there is significant impact to the well inflow performance prediction. From Figure 5.18, although Jones et al. provides the least MAPE and standard deviation of MAPE but these values from 13 cases while average and standard deviation of MAPE for other correlations come from 46 cases. It is important to note that Klins and Majcher correlation provides the least accurate when the absolute permeability is equal to 1,000 mD. Fetkovich gives the best prediction and yields average MAPE of 0.957% with standard deviation of 1.658%.

When neglecting the cases with bubble point pressure equal to 4,712 psia, 11 cases of high absolute permeability are excluded. Table 5.5 shows that the four correlations which are Vogel, Fetkovich, Sukarno and Wisnogroho, and Klins and Majcher correlations have a significant improvement of well inflow performance prediction. Comparing to previous analysis of 46 cases, Klins and Majcher correlation provides the best improvement at about 8.8 times less for average MAPE and 13.8 times less for standard deviation. Vogel correlation is the second in term of improvement of well inflow prediction while Fetkovich and Sukarno and Wisnogroho and also significantly improved.

Figure 5.19 Average and standard deviation of MAPE for five's IPR with absolute permeability at 1000 mD when excluding cases with the bubble point pressure of 4,712 psia.

	All cases of 1,000 mD		Neglecting the cases with Pb of 4,712 psia	
2	46 cas	es	35 cases	
IPR correlations	MAPE %	STD %	MAPE %	STD %
Vogel	1.631	2.724	0.1854	0.25
Fetkovich	0.957	1.658	0.347	1.084
Sukarno and Wisnogroho	2.303	2.972	0.735	0.426
Klins and Majcher	3.915	6.716	0.319	0.484
Jones et al.	0.0683	0.025	0.068	0.025

Table 5.5 Comparison of performance prediction for high absolute permeability.

In addition to MAPE analysis for eight designed test points, we evaluate the absolute percentage error (APE) at a flow rate that is 60% of absolute open flow. Considering low permeability condition of 100 mD, Jones et al. provides the least fit to ECLIPSE100 result with 6.045% average APE and standard deviation of 8.830% while Fetkovich correlation gives the best fit with average APE of 1.841% and standard deviation of 2.625%. The second best is Vogel, followed by Klins and Majcher and Sukarno and Wisnogroho correlations in less accurate order as illustrated in Table 5.6.

IPR correlations	Average APE (%)	STD (%)	Number of cases Studied (Cases)
Vogel	3.146	3.599	16
Fetkovich	1.841	2.625	15
Sukarno and 🎾 Wisnogroho	5.069	3.873	17
Klins and Majcher	3.549	3.716	12
Jones et al.	6.045	8.830	17

Table 5.6 Comparison of performance prediction for low absolute permeability

(60%	absolute	open flow rate)
------	----------	-----------------

When the absolute permeability increases to 500 mD, Jones et al correlation gives the best well inflow performance prediction with the average APE of 4.441% based on 19 cases in total. Although it gives the best average APE, this correlation gives the highest standard deviation of 7.041%. For the other four correlations, the total number of cases is quite similar. As mentioned before, we cannot find Jones et al.'s IPR for all cases as the coefficient *B* is nonnegative. Comparing among the four correlations except Jones et al., Table 5.7 shows that Klins and Majcher's IPR correlation yields the most accurate prediction with 5.074% APE and 3.853% standard deviation. Vogel, Fetkovich, and Sukarno and Wisnogroho provide less accurate well performance prediction as shown in Table 5.7.

IDD correlations	Average APE	STD	Number of cases Studied	
IPR correlations	(%)	(%)	(Cases)	
Vogel	5.494	4.7115	31	
Fetkovich	5.615	5.805	28	
Sukarno and	7 550	4 224	21	
Wisnogroho	7.550	4.224	51	
Klins and Majcher	5.074	3.853	31	
Jones et al.	4.441	7.041	19	

Table 5.7 Comparison of performance prediction for medium absolute permeability(60% absolute open flow rate)

As the absolute permeability is increased to 1,000 mD, there is significant impact to the well inflow performance prediction. From Table 5.8, it is important to note that Klins and Majcher correlation is the most accurate when the absolute permeability is equal to 1,000 mD. Fetkovich gives the second best prediction and yields average APE of 6.892% with standard deviation of 8.249%. Sukarno and Wisnogroho correlation provides the least accurate when the absolute permeability is equal to 1,000 mD. In fact, all correlations except Klins and Majcher tend to provide less accurate when the absolute permeability is 1,000 mD compared to those when the absolute permeability is 500 mD.

 Table 5.8 Comparison of performance prediction for high absolute permeability

 (60% absolute open flow rate)

IPR correlations	Average APE (%)	STD (%)	Number of cases Studied (Cases)
Vogel	7.486	5.44	41
Fetkovich	6.892	8.249	33
Sukarno and Wisnogroho	10.159	4.035	41
Klins and Majcher	4.439	1.139	33
Jones et al.	7.900	11.418	10

When neglecting the cases with bubble point pressure equal to 4,712 psia, the numbers of cases of high absolute permeability are not the same. Table 5.9 shows that three correlations which are Vogel, Fetkovich, and Sukarno and Wisnogroho correlations have a significant improvement of well inflow performance prediction. Comparing to previous analysis of non-neglecting cases, Fetkovich correlation provides the best improvement at about 1.9 times less for average APE and 1.8 times less for standard deviation. Sukarno and Wisnogroho correlation is the second in term of improvement of well inflow prediction while Vogel is about 47% improved. In addition, Klins and Majcher and Jones et al. provide the same values compared as the number of cases are the same.

Table 5.9 Comparison of performance prediction for high absolute permeability when
neglecting the cases with Pb of 4,712.048 psia (60% absolute open flow rate)

	All cases of 1000 mD		Neglecting of	the case 4,712 psi	es with Pb ia	
IPR	Average	STD	Number	Average	STD	Number
correlations	APE (%)	(%)	of cases	APE (%)	(%)	of cases
Vogel	7.486	5.44	41	5.084	2.529	33
Fetkovich	6.892	8.249	33	3.604	4.593	27
Sukarno and						
Wisnogroho	10.159	4.035	41	8.932	3.210	35
Klins and			9	14 2		
Majcher	4.439	1.139	33	4.439	1.139	33
Jones et al.	7.900	11.418	10	7.900	11.418	10

CHAPTER VI CONCLUSIONS AND RECCOMENDATIONS

In this chapter, effect of the well inflow performance prediction for five IPR correlations and result obtained from each correlation comparison with ECLIPSE100 are concluded. Some comments and recommendations which might be benefit for future are also presented.

6.1 Conclusions

The statistical analysis on the accuracy of the well inflow performance prediction based eight designed test points show that Jones et al.'s IPR yields the highest proportion of cases that provide the Mean Absolute Percentage Error lower than 1.0%. This is followed by Fetkovich's IPR (84.76%), Vogel's IPR (79.05%), Sukarno and Wisnogroho's IPR (71.43%) and Klins and Majcher's IPR (67.62%), respectively as shown in Figure 6.1. At 60% of absolute open flow rate, Klins and Majcher's IPR gives the best fit to ECLIPSE100 results as 94.74% of total cases yield the MAPE less than 10% while Jones et al.'s IPR (86.96%) is the second best. This is followed by Vogel's IPR (82.95%), Fetkovich's IPR (80.52%) , and Sukarno and Wisnogroho's IPR which provides the poorest value of Absolute Percentage Error of 66.67% as illustrated in Figure 6.2.

However, the primary concern is the reliability evaluation of the IPR because this study result is based on cases generated by JMP Software for modeling in ECLIPSE100 simulation. In addition, the non-linear convergence error for some cases reduces the number of cases for the highest bubble point pressure at 4,712.048 psia. When excluding cases with bubble point pressure of 4712.048 psia, the most important information emerges from the analysis is that the average of mean absolute percentage error becomes smaller in the highest permeability reservoir (1000 mD). All the methods show a similar decrease in average MAPE when the absolute permeability becomes higher.

From this study, there is no single correlation which is the most suitable for every test. It has been investigated that in one particular case, one IPR correlation will provide the most accurate prediction while it may provide a poor estimate in the next case. From this observation, consideration should be given to use more than one correlation in order to predict of well inflow performance in order to gain a wide range of possible conclusions. The empirical IPR curves are dynamic curves which

change with pressure-rate. Therefore, different IPR curves may be used for different pressure-rate conditions.

Figure 6.1 Probability for 5 IPRs of design test points yield MAPE less than 1.0 %

Figure 6.2 Probability for 5 IPRs as 60% of absolute open flow rate yield APE less than 10.0 %

6.2 Recommendations

- 1. Based on the well inflow performance evaluation method in this study and ECLIPSE100 result analysis, Jones et al. and Fetkovich method tend to be the most reliable. It has been shown that the average MAPE of these methods are less than those for others. Also, both methods provide consistent performance prediction for the entire range of interest.
- 2. As there is no single correlation that provides the most accurate prediction for every reservoir, evaluation should be performed using multiple correlations to estimate well inflow performance to get a rage of predicted values rather than a single value.
- 3. Using *Jones et. al.* correlation may cause a problem in finding the absolute open flow since this correlation does not guarantee the negative value of turbulent flow coefficient *B*.
- 4. Based on study result, at bubble point pressure of 4,712.048 psia, the MAPE and standard deviation are significantly higher (10 to 33 times) from the cases of 3,534 psia. Therefore, more consideration should be taken when the reservoir has the bubble point pressure above 3,534 psia for all correlation.
- 5. The oil production rate selection for well inflow performance testing is a significant parameter associated to the accuracy of IPR correlations. It is suggested that selected test data should be as close as operating conditions.
- 6. A single point at 60% of maximum oil production rate (absolute open flow) which is located beyond the range of eight designed testing points is selected for evaluation of the empirical IPRs in this study. Evaluation of multipoints where located beyond tested points should be investigated to gain more cases for assessment.

REFERENCES

- [1] Vogel, J.V. Inflow Performance Relationships for Solution-Gas Drive Wells. Journal of Petroleum Technology, January 1968.
- [2] Fetkovich, M.J. The Isochronal Testing of Oil Wells. <u>Paper SPE 4529 presented</u> <u>at SPE Annual Fall Meeting, Las Vegas, Nevada</u>, 30 September–3 October 1973.
- [3] Ahmed T. and McKinney P. D. Advanced Reservoir Engineering. <u>Elsevier</u> <u>Inc.</u> 2005, pp 5/342-5/350.
- [4] Jones, L.G., Blount, E.M., and Glaze, O.H. Use of Short Term Multiple Rate Flow Tests to Predict Performance of Wells Having Turbulence. <u>Paper SPE</u> 6133 presented at SPE Annual Technical Conference and Exhibition, <u>New Orleans</u>, 3–6 October 1976.
- [5] Klins, M.A. and Majcher, M.W. Inflow Performance Relationships for Damaged or Improved Wells Producing Under Solution-Gas Drive. <u>Journal of Petroleum</u> <u>Technology</u>, December 1992.
- [6] Sukarno, P. and Wisnogroho, A. Generalized Two-Phase IPR Curve Equation Under Influence of Non-linear Flow Efficiency, <u>Proc., Soc. of Indonesian</u> <u>Petroleum Engineers Production Optimization Intl. Symposium, Bandung,</u> <u>Indonesia, 1995</u>.
- [7] Beggs H. D. Production Optimization Using Nodal Analysis. <u>OGCI and</u> <u>Petroskills Publication, Tulsa, Oklahoma</u>, 2003.
- [8] Somabutr S. Empirical Correlation for Future IPR Curves for Solution-Gas Drive Reservoir. <u>Master thesis, Chulalongkorn University, Thailand,</u> 2005.

APPENDIX

Reservoir model

A reservoir model is constructed using ECLIPSE100 reservoir simulator. The model used in this study is the homogeneous rectangular reservoir. The block centered geometry type consists of Cartesian grid of $25 \times 25 \times 5$ cells, each cell having dimension of 150 ft. x 150 ft. x 20 ft. in the x-, y- and z- directions. The following required data are input in each section of the program.

1. Case Definition

Simulator	Black oil
Model dimension	Number of cells in the x-direction 25
	Number of cells in the y-direction 25
	Number of cells in the z-direction 5
Grid type	Cartesian
Geometry type	Corner Point
Oil-Gas-Water options	Oil and dissolved gas
Solution type	Fully Implicit

2. Reservoir properties

Gird	
Active Grid Block	X (1-25) = 1
	Y (1-25) = 1
	Z (1-5) = 1
X Permeability	100 md (case R001)
Y Permeability	100 md (case R001)
Z Permeability	100 md (case R001)
Porosity	0.18
Grid block sizes	3750 ft. x 3750 ft. x 100 ft.

3. PVT

	Oil density	57.11876	lb/cu.ft
Fluid density at surface condition	Oil density57.12Water density62.42Gas density0.0530Reference pressure (Pref)400Water FVF at Pref1.022Water compressibility3.0984Water viscosity at Pref0.301Water viscosibility3.3877Reference pressure400Rock compressibility1.9428	62.42803	lb/cu.ft
		0.05306378	lb/cu.ft
. 10	Reference pressure (Pref)	4000	psia
Mater DVT preparties	Water FVF at Pref	1.021734	rb/stb
water PVT properties	Water compressibility	3.098498E-6	/psi
- CONTRACTOR	Water viscosity at Pref	0.3013227	ср
	Water viscosibility	3.387726E-6	/psi
Rock properties	Reference pressure	4000	psia
	Rock compressibility	1.942842E-6	psi-1

Live oil PVT properties (dissolved gas)

Rs (Mscf /stb)	Pbub (psia)	FVF (rb /stb)	Visc (cp)
0.020723063	200	1.0777156	4.1887659
	400	1.0702102	4.2790399
-001	600	1.0677203	4.419903
	800	1.0664775	4.6000688
ขุพเลง	1000	1.0657325	4.8143558
Сни аго	1200	1.0652361	5.0601077
01101110	1367.0891	1.0649329	5.2885309
	1600	1.064616	5.6412864
	1800	1.0644094	5.9759137
	2000	1.0642441	6.3399525
	2200	1.0641089	6.7336935
	2400	1.0639962	7.1575367
	2600	1.0639009	7.6119407

	2800	1.0638192	8.0973847
	3000	1.0637484	8.6143387
	3200	1.0636865	9.1632389
	3400	1.0636318	9.7444671
	3600	1.0635832	10.358334
	3800	1.0635398	11.005062
, juli	4000	1.0635006	11.684774
0.047767761	400	1.0898135	3.5048378
	600	1.0842586	3.5750153
	800	1.0814922	3.6728906
	1000	1.0798358	3.7938995
	1200	1.0787329	3.9354321
	1367.0891	1.0780595	4.0682377
	1600	1.0773559	4.2742921
23	1800	1.0768973	4.4699832
	2000	1.0765306	4.6825706
2 M 181	2200	1.0762306	4.9118092
GHULALO	2400	1.0759807	5.1575545
	2600	1.0757692	5.4197247
	2800	1.0755881	5.6982738
	3000	1.0754311	5.9931712
	3200	1.0752937	6.3043857
	3400	1.0751725	6.6318731

	3600	1.0750648	6.975566
	3800	1.0749684	7.3353659
	4000	1.0748817	7.7111357
0.077855561	600	1.1034931	2.9763016
	800	1.0988582	3.0347292
	1000	1.0960873	3.110755
l k	1200	1.0942439	3.2020593
	1367.0891	1.0931189	3.2889556
	1600	1.0919441	3.4250254
	1800	1.0911785	3.5549932
	2000	1.0905664	3.6965623
	2200	1.0900659	3.8493768
	2400	1.089649	4.0131726
	2600	1.0892964	4.1877463
	2800	1.0889942	4.372934
	3000	1.0887323	4.5685949
2 W 161 V	3200	1.0885033	4.7745996
GHULALO	3400	1.0883012	4.99082
	3600	1.0881217	5.2171223
	3800	1.087961	5.4533612
	4000	1.0878164	5.6993746
0.11010723	800	1.1183956	2.5706397
	1000	1.1142762	2.6207458

	1200	1.1115393	2.6829744
	1367.0891	1.10987	2.743273
	1600	1.1081276	2.8388451
	1800	1.1069927	2.9308859
	2000	1.1060856	3.0316154
	2200	1.105344	3.1406611
, j	2400	1.1047263	3.2577331
	2600	1.104204	3.3825988
	2800	1.1037565	3.5150645
	3000	1.1033688	3.654962
	3200	1.1030296	3.802139
	3400	1.1027305	3.9564507
	3600	1.1024646	4.1177545
	3800	1.1022268	4.2859048
	4000	1.1020129	4.4607494
0.14406982	1000	1.1343367	2.2548636
N	1200	1.1305335	2.2986595
CHULALO	1367.0891	1.1282165	2.34204
	1600	1.1257993	2.4118318
	1800	1.1242257	2.4797416
	2000	1.1229683	2.5545239
	2200	1.1219406	2.635817
	2400	1.121085	2.723334

	2600	1.1203614	2.8168414
	2800	1.1197416	2.9161425
	3000	1.1192048	3.0210668
	3200	1.1187352	3.1314609
	3400	1.1183211	3.2471823
	3600	1.1179531	3.3680938
á lí k	3800	1.1176239	3.49406
	4000	1.1173277	3.6249441
0.14406982	1000	1.1343367	2.2548636
	1200	1.1305335	2.2986595
	1367.0891	1.1282165	2.34204
	1600	1.1257993	2.4118318
	1800	1.1242257	2.4797416
	2000	1.1229683	2.5545239
	2200	1.1219406	2.635817
	2400	1.121085	2.723334
A MINI	2600	1.1203614	2.8168414
GHULALO	2800	1.1197416	2.9161425
	3000	1.1192048	3.0210668
	3200	1.1187352	3.1314609
	3400	1.1183211	3.2471823
	3600	1.1179531	3.3680938
	3800	1.1176239	3.49406

	4000	1.1173277	3.6249441
0.1794612	1200	1.1512002	2.0045063
	1367.0891	1.1481195	2.0364696
	1600	1.1449095	2.0888079
	1800	1.1428208	2.1403707
	2000	1.1411526	2.1975816
, like	2200	1.1397895	2.2600977
	2400	1.1386549	2.3276449
	2600	1.1376957	2.3999977
	2800	1.1368741	2.4769663
	3000	1.1361626	2.5583858
	3200	1.1355404	2.6441091
/	3400	1.1349917	2.7340009
	3600	1.1345041	2.8279337
	3800	1.1340681	2.9257836
0.100.0	4000	1.1336758	3.0274284
0.20998149	1367.0891	1.1659361	1.8328817
CHULALO	1600	1.1619629	1.8746507
	1800	1.1593803	1.9162871
	2000	1.1573184	1.962825
	2200	1.155634	2.0139388
	2400	1.1542323	2.0693669
	2600	1.1530476	2.1288935

	2800	1.152033	2.1923363
	3000	1.1511545	2.2595376
	3200	1.1503863	2.3303569
	3400	1.1497089	2.4046664
	3600	1.1491072	2.4823466
	3800	1.148569	2.5632829
, ji k	4000	1.1480849	2.6473639

Dry gas PVT properties (no vaporized oil)

Press (psia)	FVF (rb /Mscf)	Visc (cp)
200	16.139031	0.012698614
400	7.8365288	0.012963851
600	5.0747972	0.013312025
800	3.699668	0.013742158
1000	2.8805023	0.014257622
1200	2.3405564	0.014862592
1367.0891	2.0155692	0.015438783
1600	1.6833814	0.016349297
1800	1.4737623	0.017225844
2000	1.3123598	0.018179489
2200	1.1861407	0.019195604
2400	1.086163	0.02025678
2600	1.0060375	0.021345149
2800	0.94107749	0.022444457

3000	0.88779469	0.023541338
3200	0.84357336	0.024625732
3400	0.80644333	0.025690661
3600	0.77491452	0.026731697
3800	0.74785402	0.027746356
4000	0.72439483	0.028733547

4. SCAL

Water/oil saturation functions

	Sw	Krw	Kro	Pc (psia)
	0.2	0	0.8	0
	0.25	0.000122	0.561866	0
	0.3	0.001951	0.376406	0
0	0.35	0.009877	0.237037	0
1	Sw	Krw	Kro	Pc (psia)
	0.4	0.031215	0.137174	0
1	0.45	0.076208	0.070233	0
U	0.5	0.158025	0.02963	
	0.55	0.29276	0.008779	0
	0.6	0.499436	0.001097	0
	0.65	0.8	0	0
	1	1	0	0

Gas/oil saturation functions

Sg	Krg	Kro	Pc (psia)
0	0	0.8	0
0.025	0	0.717311	0
0.109375	0.001563	0.480542	0
0.19375	0.0125	0.302615	0
0.278125	0.042188	0.175125	0
0.3625	0.1	0.089664	0
0.446875	0.195313	0.037827	0
0.53125	0.3375	0.011208	0
0.615625	0.535938	0.001401	0
0.7	0.8	0	0
0.8	0.8	0	0

5. Initialization

Equilibration data specification

Datum depth	3,034.864 ft
Pressure at datum depth	1,367.089 psia
WOC depth	5,000 ft
GOC depth	3,034.864 ft

6. Schedule

In reservoir simulation model, each well setting is described as follows: Oil vertical production well

Well specification

Well name	TEST_1
Group	0
I location	13
J location	13
Preferred phase	OIL

	Cross flow	No
	Density calculation	SEG
<u>Well a</u>	connection data	
	K upper	4 (case R001)
	K lower	5 (case R001)
	Open/shut flag	OPEN
	Well bore ID	0.5522083 ft.
	Direction	Z
<u>Produ</u>	<u>ction well control</u>	
	Well	TEST_1
	Open/shut flag	OPEN
	Control	LRAT
	Liquid rate	600 stb/day (varying from 600-2000 stb/day)
	BHP target	14.7 psia

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

VITA

Suksan Luangwattanawilai was born in Suphanburi, Thailand on 6 April 1984. He completed his Bachelor Degree in Instrumentation Engineering from the Faculty of Engineering, King Mongkut's Institute of Technology, Ladkrabang in 2007. After graduating, he was hired as a Facilities Engineer at Chevron Thailand Exploration and Production, Ltd. He continued his study in Master's Degree of Petroleum Engineering at Department of Mining and Petroleum Engineering, Chulalongkorn University since 2011.

