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CHAPTER I

INTRODUCTION

1.1 Introduction

Halogenated organic compounds form an important class of intermediates.
They .can ble converted efficiently into other functional groups by simple chemical
transformations. -

| In general, halogenation reactions can be carried out using halogen
compounds such as bromine (Br;), chlorine (Cl;) and iodine '(Iz) in carbon
tetrachloride (CCly) with/ without catalyst. However, these compounds are dangerous
to handle in large scale applications. | \

The halogenation of alkenes are an important organic trahsfonnation and it is
. worthy to note that protection and deprotection of double bonds via halogenation-
| dehalogénation strategy 1s finding increasing more applications in organic synthesis.
A number of protocols are available to achieve the halogenation of alkenes [1].

Recently, the oxidative bromination of cyclohexene and 1-hexene were carried
out using cerium (IV) ammonium nitrate (CAN) and potassium bromide in
dichloromethane and gave 65 % of 1,2-dibromocyclohexane and. 82% of 1,2-
dibromohexane, respectively [1]. :

A mild and efficient method for the bromination of activated aromatic
compounds using LiBr as the bromine source and CAN as the oxidant has been
reported [2]. :

Sodium bromate and potassium bromate are commercially available, they are
very stable solid which can be handled much more easily than liquid bromine or
hypobromous acid solution. Oxidation with bromates results in bromide ion

formation, which can be safely treated or recycled. Bromate salt can oxidize primary

'. alcohols to aldehydes, secoundary alcohols to ketones and under different sets of

‘conditions the oxidation can result in the formation of esters [3].
Oxidative bromination of methylanthranilate using ~sodium perborate
(NaBO3.4H,0) and potassium bromide is recommended as a cheap, safe and

2 conveninent alternative to H,O,/ NaBr [4].



Sodium hypochlorite (NaOCl), a versatile and easily handling oxidizing agent,
can be used in the oxidation of alkenes, alcohols, aldehydes, amines and thiol,
thioether as well as a reagent for N-chlorination, oxidative coupling and _degratioh
reactions [5]. Usually sodium hypochlorite is used as oxidizing agent for oxidation
reaction with high yield of product, under mild condition, inexpensive and safe.

In spite of the variety of reagents available for oxidative halogenation, lack of
selectivity and unwanted side reactions are the major problemé. Recently, oxidative
halogenation of aromatic compounds using sodium hypochlorite and sodium bromide
in acetic acid is repbrted as a novel method [6]. o ) .

This research work, vthverefore, would like to apply this novel method in the

oxidative halogenation reaction of alkenes.
1.2 Objectives and scope of the research
1.2.1  Objectives
1. To study the new chemical process for alkene. oxidative
halogenation using sodium hypochlorite with/ without sodium bromide.
2. To investigate the effect of 1) solvents 2) ratio of substrate,
sodium hypochlorite and sodium bromide on oxidative halogenation reaction. |

1.2.2 Sceopes of research

1. Literature survey of relevent research works

2. Oxidative halogenation of:

a. 1-hexene
b. 1, 5-hexadiene
c. cyclohexene

d. methylmethacrylate



3. Invesigation on the effects of the following parameters: -

a. solvent
b. ratio of substrate and sodium hypochlorite
C. ratio of substrate and sodium bromide

4. Discussion and conclusion.



 CHAPTER II

THEORY AND LITERATURE REVIEW

2.1 Addition to multiple carbon-carbon bonds |7}

The characteristic reaction of alkenes are the addition of halogen, hydrogen
halide, sulphuric acid, hypohalous acid, ozone, salts of heavy metals and other
reagents, oxidation and polymerization reactions.

Basxcally, there are four ways in which addition to a double bond may take

E place Three of these are two-step process, with the initial aftack by an electrophile,

nucleophile or a free radical to give an intermediate followed by a second step
consisting of the combination of the resulting intermediate with a negative species, a
positive species or a neutral entity. In the fourth type of mechanism, attack at the two

sides of the double bond is simutaneous: Which of the four mechénism is operating in |
any given case is determined of by the nature of substrate, réagent, and reaction
conditions. As the n-electron of the n-bond shield the molecule, the alkenes will not
be expected to be attacked by a nucleophile, unless the doubly bdnd carbon atoms are
linked to electron withdrawing groups because of the replusive forces operating
between the negatively charged n-electron cloud and the ne‘igative chafge on a
nucleophile. Therefore the addition to carbon-carbon double bond are mostly

electrophilic in nature.

2.2 Stepwise ele_ctrophilic addition to H,C=CH),
. ‘:

A vparticularly significant observation concerning the mechanism of
electrophﬂic_ addition to double bond is that they proceed in the dark and in the
presence of free radical absorbers and are accelerated that addition by the presence of
small amounts of moisture. This suggests that addition to fhe double bond is
~ proceeded by its polarization, the shifting of the n-electron pair towards one of the

“ carbon atoms: N \




c=—C¢ B c==C

\\ / \ ) /  \.
VAN SN
The mechanism of these addition reactions is therefore polar. When any
molecular, X-Y, adds to a double bond, the reaction may take plaée in two ways : .
(i) Two parts of the molecule, X and Y, may add simultaneously through

the formation of a four-centred transition state :

\

AN e [\ S T AN e
c—¢ — Cc—=C = o —0C

VAN L./ B, AR AN
X-=--Y X Y,

X——Y \

Transition state

(i)  The addition of X-Y may be stepwise. The first step is the attack of the
electrophilic' part of the addenum (molecule being added) to give an intermediate

- carbonium ion (1), which has two courses to proceed {
(a)  Addition of the nucleophilic part of the addenum, or

(b)  Loss of a proton, leading to a substitution reaction..
\

The overall stepwise reaction can be represented as,

N E
{&) +Nu J‘*—-J}—————H
o addition T ‘
+ 1
A s} Nu
/c:c\ — /CFQ**H \
Y ‘
| (b) -H? N L
%)) substition /C%C\

Most of the polar reaction do not seem to be simple f(;ur centred one-step

- processes [as (i)] for two important resons. Firstly, both the new bonds on the same

sidé-.of the double bond and hence produce a cis-adduct. How&ver, there is ample

eviencc to show that the reagents and to give trans-addition products. |
\

2.3 Kinetics of electrophilic addition reactions

' <
The addition of molecules like X;, HX efc. to an unsaturated compound in

usual solvents, like water, alcohol or aqueous acetic acid is gene\rally a second order
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reaction. In acetic acid, the addition of bromine takes place as a third order reaction.
The effect of the structure of alkene on the rate of such a third order reaction is the
same as on the second order reaction. Thus the third order i'\bromination differs
insignificantly in mechanism from the second-order reaction.

It has been confirmed by measuring the relative rates of addition of iodine and
interhalogen compounds like iodine bromide, iodine chloride and bromine chloride in
acetic acid solution (all of which are third order reactions), that 11\1 the first step of the
reaction an electrophilic attacks the alkene. As only a few of the collisions between
the electrophilic and the neutral molecule result in the formation of a halogen-carbon
bond, this step is the slowest one and therefore is rate determinin\g. As the rate of the
overall addition reaction is dependent upon the rate of this first step, let us examine
the factors ;governing the rate of this step. \

Electrophilic attack on a double bond depends upon the avail ability of an
electron pair in the m-orbital. If this n-electron density is somewhat diluted either
through resonance or by inductive effect of a group linked to the alkene double bond,
the rate of the addition reactions will be govemed by the pature, the electron
withdrawing or repelling properties of the R, Ry, R; and Ry groups on the alkene
RijR,C=CR3R4. This is illustrated by considering the rates of ad,&iition of bromine to
different alkenes in CH,Cl, solution at -78°C, as shown in Table 2.1

Table 2.1 Relative rate of addition of bromine to alkenes

Alkene Realtive rate
CH,=CH, 1.0
(CH3),C=C(CHs), 14.0 \
(CH3),C=CHCH; 10.4
(CH3),C=CH, 5.53 \
CeHsCH=CH, 3.35 A
CH,CH=CH, 2.03 ;‘
CH;CH=CHCOOH 0.26 -
CH,=CHBr 0.04

CH;=CHCOOH 003




2.4 Direction and sterrochemistry of addition reactions
:\
The configuration of the addition product can reasonably be ascertained by
the consideration of three predictions:. | \

(1)  The geometrical orientation of the two aﬁded substituents to
each other and the rest of the molecule,

2) The choice as to which of the two doul;ly bond carbons is
ultimaiely bonded to the positive part of the addendum and which to the nucleéphﬂic
part of the addendum in unsymmetrical double bonds, and \

(3)  Which side of the double bond is attacked by the electrophile.

As the six atomic nuclei involved in a double bond of an alkene are all
co-planar and the m-orbital is perpendicular to this plane on both the sides, the
approach of the electrophile is also expected to be perpendicula{ to the plane of the

-alkene. The empty orbital of the electrophile comes in for bonding by overlapping

‘v_f-:_."v,with the m-orbital. The species formed by this intial overlap is called a m-complex

(this may or may not be the actual intermediate) and may be represented as:

i

&

N

.- The n-complex or the three-membered ring intermediate is now roughtly
above. the ‘original plane of alkene and it must be opened by the attack of a
nucleophile from below that plane. This amounts to an addition product with the
nucleophile oriented in trans-position to the electrophilic atof;ix and therefore the

overall mechanism is trans-addition, which can be represented as:

\




E
R R R R
! o o R1\C/ \C/Rs 1'\c—c|:/ N
Ry R / N
R; R4 R2 Ly R4
Nu

E E
R4 Ry R‘\ |/R3
c—¢C
Ry R4 R/ [ g
Nu 2 Nu 4

A)

The overall charge in hybridization is form sp’ to sp3\for both the carbon
atoms of the double ‘bond and the resulting addition product is in the staggered
conformation (A). One question still remains unanswered, i.e.i,‘ which of the two
doubly bond carbons is chosen for attack of the nucleophile after the formation of the
n-complex. This may be decided by considering the bond-breaki-hg in the n-complex
(three-membered ring intermediate) as occurring at the carbon, which yields the most
stable carbonium ion, followed by a direct nucleophilic attack from below. The
transition state, therefore, has a lot of carbonium ion charactor and so the route via
more stable carbonium ion (i.e., that having lower energy) ,-;is the energetically

preferred one. A

2.5 Oxidation reaction [8]

The practice and theory of oxidation processes have been developing over
almost two centuries, and the scope of the subject is now extrémely wide. Organic
oxidation is briefly definable as loss of hydrogen or gain of oxygen by the substrate. It
is applicable to virtually every type of carbon compound, and it variously takes the
form of an addition, elimination, substitution, fission, coupling, or rearrangement
process. Similarly, there is great diversity in the nature and behaviour of the oxidants
employed in organic chemistry. They include some organic species as well as a very
wide range of inorganic species. One-electron or two-electron transfer steps may be
discerned in the oxidation-reduction process, and it often results \in gain of hydrogen

or loss of oxygen by the oxidant. 7
.



_ In cases under consideration, oxidation-reduction most commonly occurs
between an organic and an inorganic compound in a solven, and often in the presence
of additional reagents or catalysts. An adequate understanding of such reactions -
requires knowledge of the parts played by all components of the system. Accordingly,
oxidation providees one of the main areas in chemistry .where the traditional
separation of organic from inorganic topics 1s most rapidly disapp\earing.

The range of organic oxidation method is continually enlarged by the
introduction, often for specific types of reaction, of _compopnds not previously
.. exploited for the purpose.I Whereas, for example, the use of permanganat_e and
chromic acid was established during the 19" century, and the appéarance of éelenium
dioxide and periodate occurred in recent decades, the presém -review includes

reference to ruthenium- tetroxide, thallium(IIl) salts, palladium(Il) salts, carbonium

- ions, and other oxidants, which have much more recently attracted attention. The

scope of organic oxidation methods is also extendable by the use of particular
_techniques, exerhpliﬁed in this review. by photoactivation, ‘\heterogeneous and
homogeneous catalysis, and electrolytic procedure.

~ Inthe présent survey of oxidation methods, subdivisions have been made,
as follows, in accordance with the different types of oxidants empioyed

1. Oxygen, and related reagents containing oxygen-oxygen bonds, i.e.,
ozone, and inorganic and organic peroxidic compotmds

2. Some non-metallic elements, oxides, and oxyanions, from positions
neighbouring oxygen(Group V, VI, and VII) in the periodic table.

3. Salts, complexes, oxides, and oxyanions of transition and poét—
transition metals in their higher oxidation states, In the same section
mentien 15 made of some catalytic and electrolytic processes of
oxidative type, which occur on metal surfaces. | |

4. Organic compounds capable of acting oxidatively, either by hydrogen

\
abstraction or by oxygen-donation.
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2.6 Sodium hypochloerite {9]

Sodium hypochlorite, a versatile and easily handled oxidizing agent, cari
oxidize alcohols, aldehydes, electron deficient alkenes, amines, and others. It is
commercially available as aqueous solutions with 5.25-12.5% available chlorine (w/v)
(0.74-1.75 M). Concentration is expressed in % available chlorine, since half of
chlorine in bleach is present as NaCl. The pH of commercial bleach is typically 11-
12.5, and it may be adjusted and buffered. The.equilfbrium con;position of aqueous
solutions of NaOCl is pH-dependent (eqs1 and 2) and so pH cor‘gtrol can be a critical
consideration in many oxidation and chlorination reaction. Unaer strongiy alkaline
condition (pH>12), OCl" is the predominant form of positive chlorine. Because
~ hypochlorite ion is insoluble in organic solvent, phase transfer catalysts are needed at
this pH to effect oxidation reaction in biphasic media. In- general,
tetraalkylammonium salts have been the phase transfer catalysts of choice for such
applications. Below pH 11, the equilibrium amount of HOCI becomes significant, and
- this form of positive chlorine is soluble in polar organic solvent;such as CH,Cl,. No
phase transfer catalysts is necessary to effect oxidation of su‘;ﬁstrates or catalysts
_ dissolved in the organic phase of biphasic reaction in the pH range 10-11. Below pH
=3 10, molecular chlorine becomes a significant component of aqueéus bleach solutions,

and the reactivity of these solutions can be attributed to that of Cl,.

Clo + CI + H,0 =—= C, + 2008 (1)
ClO+ O ===  HOCl + OH (2

\

© 2.7 Literature reviews
\

Oxidation reactions are widely used in the synthesis because intermediates
are important reactants for the functionalization of compounds. Sodium hypochlorite,
‘a commodity chemical has gained a lot of attention in oxidation and halogenation
reactions. It is simple, effective, cheap and easily available. Therefore, a lot of

approaches have been reported on various reactions, which are listed as the following.
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In 1977, Kuhn, D.G. et al. [10] used sodium hypochlorite (NaOCl) and
tetrabutylammonium hydrogen sulfate in chloroform in the oxidation of phenanthrene
for 24 hours. They used the mole ratio of substrate to NaOCl as high as 1:30. The

oxidation of phenanthrene gave phenanthrene oxide in 90% yie'ld.:_‘

Qio NaOC} / BuyN'HSO, 7 CHCl,

RT/24h

90 %
¢

In 1980, Guilmet, E. et al. [11] used sodium hypochlorite (NaOCI), m-
tetraphenylporphyrinatomanganese acetate (Mn(TPP)Oac), benzYldimethyltetradecyi
ammonium chloride (R{N'CI) and H,O in dichloromethane for voxid_izing styrene at

- room-temperature for 3 hours. They used mole ratio of substrate to NaOCl as 1:1.75.
"-___':j;' :'_{ The epoxidation of styrene gave styrene oxide in 80 %yield. | |

Q

- NaOCV Ma(TPPYOAS/ RN'CT
. e b,
Ph CH,Cly/ Hy0 Ph

8U%

In 1984, Meunier, B. et, al. [12] used sodium hypochlorite, m-tetrapheny!

- porphyrinatomanganese acetate(Mn(TPP)Oac), benzyldimethyltetradecylammonium
chloride(BDTAC) and pyridine in dichloromethane for oxidizing norbomene for 4
hours They used mole ratio of substrate to NaOCl as 1: 1.75. The oxidation of

norbomene gave norbornene oxide in 50% yield.

Lb NaOC! / Mn(TPP)OAc / py. Aﬁ
BDTAC /CH,Cl,/RT/4h %
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In the same year, Poorter, B.D. et al. [13] used spdium hypochlorite
(NaOClI), meso-tetra (chlorophenyl)porphyrinatomanganese com:;‘)lvex (Mn(TFPP)CI),
benzyldimethyltetradecylammoniumchloride (BDTAC) and pyridinein dichloro
methane for oxidizing 1-octene at room-temperature for 3 hours. 'l\"hey used mole ratio
of substrate to NaOCl as 1:2.5. The epoxidation of 1-octene gave‘ 1-octene oxide in 21
%yield. - N

NaOCV Mn(TPP)CY BDTAC \
/{\//\/\\/ - /\/\/\<]

CH,ChL/ py o .

In 1989, Jones, R.G. et al. [14] used sodium hypochlorite (NaOCI),
benzyltriethylammonium chloride and conc. HCI in chlorg_i:or;n/ dichloromethane
mixture for oxidizing 4-methyistyrene at argon atmosphere for 1 hour. They used
| - mole ratio of substrate to NaOCl as 1:5. The Chlorination of 4-mf_e,thy1styrene gave 4-
methylstyrene chloride in 80 %yield. |

. — 4
NaOCV Cat./ conc.HC‘L O
H,C solvent B.C

3

_ In 1990, Coe, P.L. et al. [15] used sodium hypochlorite (NaOCl),
- acetonitrile (CH3CN), and H,O in the oxidation of 1—triﬂu9remethylnonaﬂuoro
cyclohex-1-ene at 50°C for 1 hour. They used mole ratio substrate to NaOCl as 1:2.
The epoxidation of 1-trifluoromethyinonafluorocyclohex-1-ene gave 1-trifluoro

inethylnonaﬂuoro-l, 2- epoxycyclohexane in 97.5 Y%yield.
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CF3
NaOCl/ CHLCN
—_—

H0

97.5%

' In 1996, Chiavetto, L. B. et al. [16] used sodium hypodhlorite NaOCl), m-
tetraphenylporphyrinatomangnese(Mn(TPP)) and 4-methylbenzyldimethylhexadecyl
ammoniumchloride (BDHAC) in the oxidation of isosafrole in- dichloromethane at
room temperature. They used mole ratio of substrate to NaOCl as 1: 4. The oxidation

N

of isosafrol gave isosafrol oxide in 33% yield.

\
CH, O CHy

/ NaOC! / Mn(TPP) / py.
o BDHAC / CH,Cl, / RT ¥ .

-0 -0
33%

In 1999, Lygo, B. et al. [17] used sodium hypochlorite (NaOCl), N-
anthracenylmethylcinchoninium chloride and dichloromethane\?in the - oxidation of
chalcone ét 25°C for 48 hours. They used mole ratio of substrate to NaOCl as 1:2. The
epoxidation of chalcone gave trans-2, 3-epoxy-1, 3-diphenylpropan-1-one in 71 %

yield.

L

0 ' o
/\) J\ NaOCV/ cat. Y .
B mamaa SEREES N
Pr Ph Ph Ph

CH,Cl,

Nn%

In the same year, Barhate, N.B. et al. [18§] used\'" hydrochloric acid,
hydrogen peroxide and carbontetrachloride (CCly) in the bromination of cyclohexene -
at room-temperature for 2 hours. They used mole ratio of substrate to HyO; as 1:2,

The bromination of cyclohexene gave vic-dichlorocyclohexane in'75 % yield.
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| .
HCi/H,0, ¢
CCl 4 g _
75% '

In the same year, Hardas, N.R. et, al. [19] used bromine (Bry) in
carbontetrachloride (CCly) in bromination of 1-octene at 0°C for 2 mins. They used
mole ratio of substrate to Br, as 1:2. The bromination of l-octe_ne gave 1, 2-

dibromooctane. | N

Br

b /\/(\//\;)_

Bry
£l

NN

\
In 2002, Kapuch, N. [6] used sodium nypochionte (NaOCl), sodium
_brom1de (NaBr), glacial acetic acid and isooctane in the bromination of diphenyl ether

at room-temperature for 2 hours. The mole ratio of substrate to NaOC! was 1:16. The

bromination of diphenyl ether gave 4, 4’-dibromodiphenyl ether in 94 %yield.

,\_

O.
j NaOCU/ NaBr / AcOH ‘ o @
1sooctan(, Br / 4 \/ Br

94 %



CHAPTER 111
EXPERIMENTAL

3.1 General methods

Thin layer chromatrography (TLC) was performed on aluminium sheets
precoacted with silica gel (Merck kieselgel 60 Fysq) and substances were detected
using iodine vapour. The FT-IR spectra were recorded on a Nicolet Fourier
Transformed Infrared Spectrophotometer model Impact 410. The 'H-NMR and
BC.NMR spectra were obtained with a Bruker model ACF200 spectrometer,
which operated at 200.13 MHz for 'H and 50.32 MHz for °C nuclei. In all cases,
samples were dissolved in deuterated chloroform and chemic_al shifts were
recorded using a residual chloroform signal as an internal féference except

indication of other deuterated solvents.

3.2 Chemicals

Methyl methacrylate, sodium hypochlorite, cyclohexene, acetic acid, 1-
hexene, 1, 5-hexadiene were purchased from Merck. Sodium bromide was
obtained from BDH. Standard analytical grade reagents were used without further

purification.

33 Oxidative. halogenation of 1-hexene

1.) Effect of mole ratio of substrate and sodium bromide

~

1.1)  Oxidative halogenation of 1-hexene using 1/8 mole ratio of substrate and
sodium hypochlorite (mixture 1H) '
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cl OH
NaQCl W
NN e W + N
ACOH cl Cl

Glacial acetic acid (6 ml) was added into a 50 ml round bottom flask
containing 1-hexene (0.42g, Smmol). Then, sodium hypochlorite (18.72 ml, 2M)
was added very slowly using a dropping-funnel into the mixture {and stirred for 3
hours at room temperature. The mixture was neutralised with 3M sodium -
hydroxide. The two phases were separated using a separaﬁng—ﬁ;énel, then the oil
product was extracted with 15 ml of hexane (3x5 ml) and washed 4-5 times with
water. The combined organic layer was dried over sodium sulfate anhydrous and
- filtered. Hexane was removed by evaporation and the product ‘was obtained as
colorless liquid (0.19g, 45%) with R¢ 0.57 (ethyl acetate: hexane (5:95)).

Characteristic data for mixture 1H: "H-NMR spectrum (CDCl, (ppm),
200MHz): 1.00 (3H, t), 1.50-2.10 (6H, m), 3.80 (2H, m), 4.10 (IH m); PC-NMR
spectrum (CDCls, (ppm), S0MHz): 13.9, 22.1, 27.1, 34.7, 48.2,\61.2 (C, Cs Hpp
Cly), 13.9, 22.1, 27.1, 34.7, 48.2, 72.8 (C, CeH;30Cl); IR spectrum (NaCl cell
(cm™)): 2865 (C-H-streching), 683 (C-Cl-streching); GC-MS chromatogram
(m/z): 137 (tr: 10.58 min; CeHj30Cl), 155 (tr: 16.62 min; C¢H130CI). Figures A
1-7. \

1.2)  Oxidative halogenation of 1-hexene using 1/2.5 mole ratio of substrate and

~ sodium bromide (mixture 2H)

Br

/\/\/)_'\

- AcOH Br

-/ NaOCl /NaBr
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Glacial acetic acid (6 ml) was added into a 50 mi round bottom flask
containing sodium bromide (1.29g, 12.5mmol) and 1-hexene (0.42 g, Smmol).
Then, sodium hypochlorite (18.72 ml, 2M) was added very \slowly using a
dropping-funnel into the mixture and stirred for 3 hours. The mixture was
neutralised with 3M sodium hydroxide. The two phases were Séparated using a
separating-funnel, then the product was extracted with 15 ml of hexane (3x5 ml)
and washed 4-5 times with water. The combined organic layer was dried over
sodium sulfate anhydrous and filtered. Hexane was removed by evaporation and
the product was obtained as a colorless liquid (0.25 g, 59%) with R¢ 0.47 (ethyl
acetate: hexane (5:95)).

Characteristic data for mixture 2H: "H-NMR spectrun; (CDCls, (ppm),
200MHz): 0.98 (3H, t), 1.3-2.2 (6H, m), 3.60-3.82 (2H, m), 4.22 (1H, m); *C-
NMR spectrum (CDCls, (ppm), SOMHz): 13.9, 21.9, 28.9, 35.7, 36.4, 53.1 (C, Cs
Hi; Bry); IR spectrum (NaCl cell (cm™)): 2916 (C-H-strechi}xg), 574 (C-Br-
streching), 647 (C-Cl-streching); GC-MS chromatogram (m/z): 244 ( tz: 10.73
min;, C¢H1,Bry). Figures A 8-12. \

\
1.3)  Oxidative halogenation of 1-hexene using 1/5 mole ratio of substrate and

sodium bromide (mixture 3H) 1

NaOCl / NaBr il
W —_— W AN
AcCOH Br

The same procedure as in the preparation of mixture 2H was followed,

except sodium bromide {2.85 g, 25 mmol) was included in the reaction mixture.
\

The product was obtained as a colorless liquid (0.32 g, 72%) with R¢ 0.45 (ethyl

acetate: hexane (5:95)).
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'Characteristic data for mixture 3H: "H-NMR spectrum (CDCl;, (ppm),
200MHz): 0.98 (3H, s), 1.12-2.24 (6H, m), 3.4-3.8 (2H, m), 4.02-4.23 (1H, m),
4.81-5.12 (1H, m), BC-NMR spectrum. (CDCl1s, (ppm), SOMHZ): 13.9, 21.9,
28.8,35.7,36.4, 53.1 (C, Cs H;2 Bry); IR spectrum (NaCl cell (cm'l)): 2952 (CH-
streching), 575 (C-Br-streching), 645 (C-Cl-streching), GC-M_S“ chromatogram
(m/z): 244 (tg: 10.72 min; CsHy,Bry). Figures A 13-17. " |

~

\

1.4)- Oxidative halogenation of 1-hexene using 1/10 mole ratio of substrate and

sodium bromide (mixture 4H)
B
/\/\/ NaQCl/ NaBr /\/\/r
G e _
AcOH

Br -

The same procedure as in the preparation of mixture 2H was followed,
except sodium bromide (1.29 g, 12.5 mmol) was substituted with 5.7g of 50 mmol
sodium bromide. The product was obtained as a colorless quuifd (0.36 g, 85%)
with R¢0.38 (ethyl: acetate (5:95)). '

Characteristic data for mixture 4H: "H-NMR spec:tmn;~ (CDClL, (ppm),
200MHz): 0.98 (3H, m), 1.26-2.24 (6H, m), 3.5-3.82 (2H, m), 4._22-4.35 (1H, m);
PC-NMR spectrum (CDCl;, (ppm), SOMHz): 13.9, 21.9, 28.9,'35.7, 36.4, 53.1
(C, CsHj; Bry); IR spectrum (NaCl cell (cm™)): 2915 (CH-streching), 572 (C-Br-
streching), 645 (C-Cl-streching); GC-MS chromatogram (m/z)!. 244 (tg: 10.73

* min; C¢Hy,Bry). Figures A 18-22.

2.) Effect of co-solvents

\

2.1 Oxidative halogenation of 1-hexene using 1/8 mole ratio of substrate and

~sodium hypochlorite (mixture SH)
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NN NaOCl /\/\r/' /\A/
AcOH/ isooctane

The same procedure as in the preparation of mixture l\H was followed,
~except that isooctane (8ml) was added into the solution. After u;ual workup, the
product was obtained as a colorle.ss_ liquid (0.26 g, 62%) wifh_Rf Ov.46 (ethyl
acetate: hexane (5:95)). \

Characteristic data for mixture SH: "H-NMR spectrum .(_CDC13, {ppm),
200MHz): 0.78 (3H, m), 0.92-1.85 (6H, m), 3.01-3.42 (2H, m), 3.64-3.82 (1H, d),
4.62 (1H, s); *C-NMR spectrum (CDCls, (ppm), S0MHz): 13.9, 22.1, 29.7, 31.3,
482, 61.2 (C, Cs Hpp Cly), 139, 221, 29.7, 347, 45.7, 72.8 (C, CsH;OCl); IR
spectrum (NaCl cell (cm™)): 2916 (C-H-streching), 647 (C-Cl-streching); GC-
MS chromatogram (m/z): 137 ( tg: 10.59 min; C¢H;;OCl), 155_\_"( tr: 16.61 min;
CeHyuCly). Figures A 23-28. \' |

N\

2.2 Oxidative halogenation of 1-hexene using 1/5 mole ratio. of substrate and

sodium bromide (mixture 6H) _ N
Br OH
NaOCl/ NaBr |
B oI /\/\
AcOH/ isooctane

Br N Br

. _ The same procedure as in the preparation of mixturé 2H was followed,

‘ exbept sodium bromide (2.58 g, 25 mmol) was included in the r\eacﬁon mixture.
-' The product was obtained as a colorless licuid (.30 g, 7 1%) wﬁh Rf 0.45 (ethyl

' aéeji_ate: hexane (5 :95)); |
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Characteristic data for mixture 6H: "H-NMR spectrum (CDCls, (ppm),
200MHz):0.89 (3H, m), 1.09-2.22 (6H, m), 3.33-3.95 (2H, m), 4.19 (1H, m); *C-
NMR spectrum (CDCls, (ppm), SOMHz): 13.9, 21.9, 28.9, 31.5, 42.0, 72.8 (C, Cs
Hiz OCl), 13.9, 21.9, 28.9, 35.7, 36.5, 53.1(C, Cs Hi2 Bry); IR épmtrum (NaCl
cell (cm™)): 2923 (C-H-streching), 581 (C-Br-streching), 654 {C-Cl-streching),
GC-MS chromatogram (m/z): 244 ( tg: 10.71 min; C¢HppBrp), 181 ( tg: 16.31
min; CsH;;0Br). Figures A29-34. N

:\
2.3 Oxidative halogenation of 1-hexene using 1/10 mole ratio of substrate and
sodium bromide (mixture 7H)

NaOCl/ NaBr
AcOH/ isooctane |

The same procedure as in the preparation of mixture 2H was followed,
except sodium bromide (5.7 g, 50 mmol) was included in the reaction mixture.
The product was obtained as a colorless liquid (0.37 g, 88%) w1th R 0.45 (ethyl
acetate: hexane (5:95)).

Characteristic data for mixture 7H: "H-NMR spectrum (CDCl;, (ppm),
200MHz): 0.98 (3H, m), 1.24-2.23 (6H, m), 3.62-3.94 (2H, d), 4.18 (1H,s); Be-
NMR spectrum (CDCls, (ppm), 50MHz): 13.9, 21.9, 28.9, 31.5, 47.8,76.6 (C, Cs
Hy; OCl), 13.9, 21.9, 28.9, 35.7, 36.5, 53.1 (C, C¢ H;; Bry); IR spectrum (NaCl
cell (cm™)): 2959 (C-H-streching), 574 (C-Br-streching), 645 (C-Cl-streching);
GC-MS chromatogram (m/z): 244 ( tz: 10.72 min;, C¢H;Brp), 181 ( tg: 16.31
min; C¢H;30Br). Figures A 35-40.
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- 2.4 Oxidative halogenation of 1-bexene using 1/8 mole ratio of substrate and
sodium hypochlorite (mixture 8H)

/W NaOCl /\/\/ /\/\/‘
AcOH/ hexane

The same procedure as in the preparation of mixture SH was followed,
except 8 ml of isooctane was substituted with 15 ml of hexane. The colorless oil
of mixture 8H (0.25 g, 59%) was obtained with Re 0.56 (cthyl acetate: hexane
(5:95)). o

Characteristic data for mixture $H: 'H-NMR spectrun;l\ (CDCls, (ppm),
200MHz): 0.84 (3H, m), 0.92-1.86 (6H, m), 3.19-3.62 (2H, 2), 3.84 (1H, s), 4.74
(1H, s); PC-NMR spectrum (CDCls, (ppm), SOMHz): 13.9, 22.1, 27.9, 312,
- 482,612 (C, Cs Hip Cly), 13.9, 22.1, 29.7, 34.7, 45.7, 72.3 (C, CsH30Ch); IR
Spectrum (NaCl cell (em™)); 2862 (C-H-streching), 618 (C-Cl-streching); GC-
MS chromatogram (m/z). 137 (tg: 10.57 min; C6H;30C1), 155 (tg: 16.61 min;
CeHi2Cly). Figures A 41-47. '

- 2.5 Oxidative halogenation of I-hexene using 1/5 mole ratio Of substrate and

sodium bromide (mixture 9H)

Br
NaQCl/ NaBr
' AcOH/ hexane ’

Br

The same procedure as in the preparation of mixture 6H was followed,
except 8 ml of isooctane was substituted with 15 ml of hexane. The colorless oil
of mixture 9H (0.31 g, 76%) was obtained with Re 0.48 (ethyl acetate: hexane
(5:95)).

N
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Characteristic data for mixture 9H: "H-NMR spectrum (CDCls, (ppm),

200MHz): 0.97 (3H, m), 1.24-2.31 (6H, m), 3.62-3.95 (2H, m), 4.35 (1H, m); °C-

NMR spectrum (CDCls, (ppm), SOMHz): 13.9, 21.9, 28.9, 35.7,:36.5, 53.1 (C, Cs
Hpz Bry); IR spectrum (NaCl cell-(cm'l)): 2930 (C-H-streching), 581 (C-Br-
streching), 647 (C-Cl-streching); GC-MS chromatogram (m/z): 244 ( tz: 10.74

min; CsHy,Bry). Figures A 48-52. v

\

- 2.6 Oxidative halogenation of 1-hexene using 1/10 mole ratio of substrate and
sodium bromide (mixture 10H)

© Br
PPy P NaOCl/ NaBr N
AcOH/ hexane 'Br"‘:
\
_ The same procedure as in the preparation of mixture 7H was followed,
~except 8 ml of isooctane was substituted by 15 with of hexane. The colorless oil of
mixture 10H (0.28 g, 69%) was obtained with Rf 0.46 (ethyl kacetate: hexane

(5:95)).

Characteristic data for mixture 10H: 'H-NMR spectrum (CDCls,
(ppm), 200MHz): 1.02 (3H, m) 1.19-2.23 (6H, m), 3.6-3.94 (2H, m), 4.26 (14,

" m); C-NMR spectrum (CDCls;, (ppm), SOMHz): 13.9, 21.9; 28.9, 35.7, 36.5,

53.1 (C, Cs Hpy Bry); IR spectrum (NaCl cell (cm™)): 2923 (C-H-streching), 589
(C-Br-streching), 661 (C-Cl-streching), GC-MS chromatogram (m/z): 244 ( tx:
1074 min; C¢H,;Br,). Figures A53-57.

2.) Oxidative halogenation of cyclohexene

- 1.) Effect of mole ratio of substrate and sodium bromide

1.1 Oxidative halogenation of cyclohexene using 1/8 mole ratio of substrate and

sodium hypochlorite (mixture 1C)
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\\Cl \\Ci
‘ NaOCl/ NaBr -
AcOH

Glacial acetic acid {8 ml) was added into a 50 ml found bottom containing
cyclohexene (0.82 g, 10 mmol). Then, sodium hypochlorite (37.44 ml, 2M) was
- added very slowly using a dropping-funnel into the mixture and stirred for 3 hours
o at room-temperature. The mixture was neutralised with 3M sozlium hydroxide.
The two phases were separated using a separating-funnel, then the oil product was
extracted with 5 ml of hexane (3x5 ml) and washed 4-5 times ‘with water. The
combined organic layer was dried over sodium sulfate anhydrous and filtered.
" Hexane was removed by evaporation and the product was obtainied as a colorless
liquid (0.36 g, 43%) with R¢ 0.38 (ethyl acetate: hexane (5:95)).

Characteristic data for mixture 1C: "H-NMR spectrum\ (CDCl, (ppm),
QOOMHZ): 1.23-2.46 (8H, m), 3.65-3.84 (2H, m), 2.1 (1H, m), BC-NMR
spectrum (CDCl;, (ppm), 50MHz): 23.3, 34.9, 60.8 (C, Cs Hyo Cly), 21.1, 23.3,
- 24.6, 30.8, 60.8, 75.8 (C, CsH;,0OCl); IR spectrum (NaCl cell (;:m'l)): 2952 (C-

'H-strechmg), 618 (C-Cl-streching); GC-MS chromatogram (m/z). 153 (tr: 9.34
min;, C¢H,¢Cly), 135 (tg: 11.82 min; C¢H;;OCl). Figures B 1-7.

AN

1.2 Oxidative halogenation of cyclohexene using 1/2.5 mole ratio of substrate and
sodium bromide (mixture 2C) e

NBr ci
NaOC}/ NaBr ) S NBT
e - + +
ACOH | '
Br Br OH
N
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Glacial acetic acid (8 ml) was added into 50 ml round bottom flask
containing sodium bromide (2.58 g, 25 mmol) and of cyéloheﬁgene (0.82 g, 10
mmol). Then, sodium hypochlorite (37.44 mi, 2M) was added very slowly usinga
dropping-funnel into the mixture and stirred for 3 hours. The mixture was |
neutralised with 3M sodium hydroxide. The two phases were s\eparat_ed using a
separating-funnel, then the oil product was extracted with 5 ml of hexane (3x5 ml)
and washed 4-5 times with water. The combined organic _layexi"was dried over
sodium sulfate anhydrous and filtered. Hexane was removed by evaporation and

" the product was obtained as a colorless liquid (0.42 g, 53%) w1t\h R¢ 0.42 (ethyl
acetate: hexane (5:95)). :

Characteristic data for mixture 2C: "H-NMR spectmni\ (CDCls, (ppm),
200MHz): 1.18-2.54 (8H, m), 4.18 (2H, s), 4.3 (2H, m), 2.1 (1H, m); "C-NMR

~spectrum (CDCl;, (ppm), 5S0MHz): 22.4, 32.0, 55.2 (C, CsHioBry), 224, 233,
321, 32.3, 55.2, 63.2 (C, C¢ Hyo BrCl), 22.4, 23.4, 31.0, 32.0, 55.2, 76.0 (C,
CeH,10Br); IR spectrum (NaCl cell (cm™)): 2938 (C-H-streching), 509 (C-Br-
streching), 603 (C-Cl-streching); GC-MS chromatogram (m/z): 198 (tz: 10.75

' inin; CeH10BrCl), 242 (tr: 12.12 min; C¢HioBr1y), 179 (tr: 21.01 min,; CeH1,0Br).
Figures B 8-13. ' h

\
1.3 Oxidative halogenation of cyclohexene using 1/5 mole ratio of substrate and

sodium bromide (mixture 3C) N
~ \\Bl’ | - . |
( | NaOCl/ NaBr d“ . S SBr
— + .
ACOH ‘\/g :
. Br Br , - TOH
N\

v The same procedure as in the preparation of mixture 2\C was followed,

_except sodium bromide (5.15g of 50 mmol) was included in the reaction mixture.

T he product wés obtained as a colorless liquid (0.37 g,' 90%) with R¢0.39 (ethyl
acetate: hexane (5: 95)). 0



25

Characteristic data for mixture 3C: "H-NMR sp_ecttunf (CDCl3, (ppm),
*. 200MHz): 1.22-2.64 (8H, m), 4.20 (2H, m), 4.48 (2H, s), 2.1 (1H, m); “C-NMR
~ . spectrum (CDCl;, (ppm), 50MHz): 22.4, 32.0, 55.2 (C, CeHioBry), 22.4, 23.3,
320, 32.1, 552, 63.0 (C, CHiBICl), 22.4, 234, 310, 320, 552, 760 (C,
CsH;10Br); IR spectrum (NaCl cell (cm‘l)): 2930 (C-H-streching); 545 (C-Br-
streching), 690 (C-Cl-streching); GC-MS chromatogram (m/z)? 198 (ig: 10.75
min; CeHioBrCl), 242 (tx: 12.12 min; CeHioBry), 179 (tr: 12.96 min; CsH;;OBr).
Figures B14-19. N

1.4 Oxidative halogenation of cyclohexene using 1/10 mole ratio of substrate and
sodium bromide (mixture 4C)

\\\Br ‘
NaOCH/ NaBr _
ACOH \

The same procedure as in the preparation of mixture 2C was followed,
except sodium bromide (10.30g of 100 mmol) was included in the reaction
mixture. The product was obtained as 2 colorless liquid (0.35 g, 86%) with R; 0.42
(ethyl acetate: hexane (5:95)).

-~ Characteristic data for mixture 4C: "H-NMR spectrum (CDCl, (ppm),
zoom);1.32-2.53 (8H, m), 4.46 (2H, s); PC-NMR spectrum (CDCls, (ppm),
50MHz): 22.4, 32.0, 55.2 (C, CsHioBr,); IR spectrum (NaCl cell (cm™)): 2948
(CH-streching), 582 (C-Br-streching), 705 (C-Cl-streching). F igur,es'B 20-22.

3.) Oxidative halogenation of methylmethacrylate (MMA)

1.) Effect of mele ratio of substrate and sodium bromide

1.1 Oxidative halogenation of MMA using 1/8 mole ratio of substrate and sodium
hypochlorite (mixture 1M) '
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CH; CHs

CH3
0 NaOCi/NaBr 0 HO\A o
e I
AcOH cl 3
(6] o] : 0

Glacial acetic acid (8 ml) was added into 50 ml roux;d bottom flask
contalmng MMA (1.00 g, 10 mmol). Then, sodium hypochlonte (37.44 ml, 2M)
was added very slowly using a dropping-funnel into the mixture and stirred for 3
hours at room-temperature. The mixture was neutralised with 3M sodium
hydroxide. The two phases were separated using a separating-funnel, then the oil
product was extracted with 5 ml of hexane (3x5 ml) and washed 4-5 times with
water. The combined organic layer was dried over sodium sulfat\\e anhydrous and
filtered Hexane was removed by evaporation and the product was obtained as a
colorless liquid (0.68 g, 68%) with R¢0.35 (ethyl acetate: hexane (20:80)).

Characteristic data for mixture 1M: 'H-NMR spéctrum (CDCls,
(ppm), 200MHz): 1.87-2.25 (3H, m), 3.62-3.95 (3H, m), 4.19 2H, m), 2.1 (1H,
m); BC-NMR spectrum (CDCls, (ppm), S0MHz): 21.0, 50.5, 5\2.8, 654, 165.1
(C, CsHz0,Cly), 19.2, 50.2, 65.7, 75.2, 169.1 (C, CsHsO5Cl); IR spectrum (NaCl
cell (cm™)): 2945 (C-H-streching), 640 (C-Cl-streching); GC-MS chromatogram
(m/z); 153 (tg:10.20 min; CsHoO3Cl), 171 (tr: 16.65 min; Cng_Ozclz). Figures
C1-6.

1.2 Oxidation of MMA using 1/2.5 mole ratio of substrate and sodium bromide
(mixture 2M) ‘

CHs CHs

O. NaOCi/NaBr
/\g e ACO MO CHy
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Glacial acetic acid (8 ml) was added into 50 ml round bottom flask
containing sodium bromidvev(2.58 g, 25 mmol) and MMA (1.0\0 g, 10 mmol).
Then, sodium hypéchio_rite (37.44 ml, 2M) was added very ‘slowiy using a
dropping-funnel into the .mix_ture- and . stirred for 3 hours. The mixture was
neutralised with 3M sodium hydroxidé.-_”[he two phases were separated using a
separating-funnel, then the oil prodﬁct was extracted with 5 ml of hexane (3x5 ml)
and washed 4-5 times with water. The combined organic layer was dried over
sodium sulfate anhydrous and filtered. Hexane was removed by. evaporation and
the product was obtained as a colorless liquid (0.72 g, 72%) wi’?h R 0.38 (ethyl
acetate: hexane (20: 80)). :

Characteristic data for mixture 2M: 'H-NMR spectrum (CDCly, .

(ppm), 200MHz):1.82-2.14 (3H, m), 3.52-3.71 (3H, m), 4.32 (2H, 1); *C-NMR

' spectrum (CDCls, (ppm), SOMHz): 26.4, 38.1, 50.1, 53.5, 169.1 (C, CsHgO,Br);

IR spectrum (NaCl cell (cm™)): 2952 (C-H-streching), 523 (C-B\r-strechjng), 610

(C-Cl-streching); GC-MS chromatogram (m/z): 260 (fz: 10.52 min,
CsHsO,Br,). Figures C 7-11. |

N

1.3 Oxidative halogenation of MMA using 1/5 mole ratio of substrate and sodium
bromide (mixture 3M)

" CH3 CH3 \
. 0 8r
~_.  NaOC|/NaBr o
o A{ CHs — B cH,
AcOH d S
9 B - 7

The same procedure as in the preparation of mixture 2191 was followed,
except sodium bromide (5.15 g of 50 mmol) was included in the reaction mixture.
The product was obtained as a colorless liquid (0.48 g, 96%) with R¢0.37 (ethyl
acetate: hexane (20:80)).



28

Characteristic data for mixture 3M: H-NMR spectrum (CDCl,,
“(ppm), 200MHz):1.94-2.10 (3H, m), 3.72-3.89 (3H, m), 4.2 (2H, 1), *C-NMR
spectrum (CDCls, (ppm), 50MHz): 26.4, 38.1, 50.1, 53.5, 169.1 \(C, CsHgO,Bny);
IR spectrum (NaCl cell (cm™)): 2960 (C-H-streching), 545 (C-Bf-streching), 647
(C-Cl-streching), GC-MS éhromatogram (w/z): 260 (fR: 10.50 min,

CsHgO,Bry). Figures C12-16.

1.4 Oxidative halogenation of MMA using 1/10 mole ratio of substrate and

sodium bromide (mixture 4M)

CH3 CHj
0 NaOCl/ NaBr Br 0
/ﬁ/ ~ CHs e 4 \CH s
AcOH r
O 0

'The same procedure as in the preparation of mixture 2M was followed,
except sodium bromide (10.30g of 100 mmol) was included in the reaction
: mixture. The product was obtained as a colorless liquid (0.48 g, 96%) with R;0.37
(ethyl acetate: hexane (20:80)).
\
~ Characteristic data for mixture 4M: 'H-NMR spectrum (CDC;,
(ppm), 200MHz): 1.92-2.23 (3H, m), 3.81-3.92 (3H, m), 4.22 (2H, d}; BC.NMR
spectrum (CDCI;, (ppm), 50MHz): 26.4, 38.1, 50.1, 53.5, 169.2 (C, CsHgO,Br);
IR spectrum (NaCl cell (cm™)): 2950 (C-H-streching), 562 (C-Br-streching), 648
(C-Cl-streching); GC-MS chromatogram (m/z): 260 (tz: 10.49 n\lin; CsHgOyBr).
Figures C17-21,

. P
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4.) Oxidative halogenation of 1, 5-hexadiene
1.) Effect of mole ratio of substrate and sodium bromide

1.1 Oxidative halogenation of 1, 5-hexadiene using 1/8 mole r%tio of substrate
and sodium hypochlorite (mixture 1HD)

cl c a
/\/\// MR /\ \/\(/ v 7 \/\/ |
AcCH Cl . Ct 3 Cl

Glacial acetic acid (8 mi) was added into a 50 mi round bottom flask and
1,5-hexadiene (0.82 g, 10 mmol). Then sodium hypochlorite (37.\44 ml, 2M) was
added veiy slowly using a dropping-funnel into the mixture and stirred for 3 hours
v'a_t'_;.room-temperature. The mixture was neutralised with 3M sodium hydroxide.
The two phases were separated using a separating-funnel, then the oil product was
extracted with 5 ml of hexane (3x5 ml) and washed 4-5 times{with water. The
combined organic layer was dried over sodium sulfate anhydrdus and filtered.
Hexane was removed by evaporation and the product was obtained as a colorless
liquid (0.61g, 75%) with R¢ 0.45 (ethyl acetate: hexane (20:80)).

Characteristic data for mixture 1HD: 'H-NMR spectrum (CDCIQ,.
(ppm), 200MHz): 1.52-2.38 (4H, m), 3.42-3.95 (4H, m), 3.98-4.21 (2H, m); Be.-
NMR spectrum (CDCl;, (ppm), SOMHz): 31.7, 31.7, 47.8, 47.8,59.8, 59.8 (C, Cs
Hjp Cl4), IR spectrum (NaCl cell (em™)): 2923 (C-H-streching), 632 (C-Cl-
streching); GC-MS chromatogram (m/z): 224 (tx: 14.62 min; CeHiCLy, 153
(tR:16.11 min; CeH,oCl, ). Figures D1-5.
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1.2 Oxidative halogenation of 1,5-hexadiene using 1/2.5 mole ratio of substrate
and sodium bromide (mixture 2HD) '

Br Br . By
_ NaOCl/NaBr .
~ ACOH F( ~ L
Br _

Glac1a1 acetic acid (8 ml) was added into a 50 ml rou\nd bottom ﬂask
contalmng sodium bromide (2.58 g, 25 mmol) to and 1, 5-hexadiene (0. 82 g,
~ 10mmol). Then, sodium hypochlorite (37.44 ml, 2M) was added very slowly
using a droppmg -funnel into the mixture and stirred for 3 hours. The mixture was
neutralised with 3M sodium hydroxide. The two phases were separated using a
separating-funnel, then the oil product was extracted with 15 ml of hexane (3x5
: ml) and washed 4-5 times with water. The combined organic layer was dried over
sodium sulfate anhydrous and filtered. Hexane was removed by evaporation and
the product was obtained as a colorless liquid (0.52 g, 63%) with R 0.38 (ethyl
- acetate: hexane (20:80)). \

Characteristic data for mixture 2HD: 1H--NIWR-spiéctr*um (CDCl,

. (ppm), 200MHz): (H, CsH1Brz) 1.76-2.75 (4H, m), 3.41-4.0 (4H, m), 4.0-4.4 (2H,

m); C-NMR spectrum (CDCls, (ppm), 50MHz): 33.5, 33.5, 35.7, 35.7, 51.5,
51.5 (C,Cs Hio Bry); IR spectrum (NaCl cell (cm™)): 2925 (C-H-streching), 582
(C-Br-streching), 648 (C-Cl-streching); GC-MS chromatogra@. (m/z): 242 (tx:
+.17.84 min; CsHioBr,), 402 (tr: 18.91 min; CoHgBrs). Figures Dé-i‘O.

1.3 Oxidative halogenation of 1,5-hexadiene using 1/5 mole ratio of substrate and

- sodium bromide (mixture 3HD)

\

PN /\/\/
= _ ACOH

Br
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1
\

The same procedure as in the preparation of mixture 2_Hi) was followed,
except sodium bromide (5.15 g, 50 mmol) was included in the reaction mixture.
The product was obtained as a colorless liquid (0.34 g, 82%) with R¢ 0.38 (ethyl
acetate: hexane (20:80)). |

Characteristic data for mixture 3HD: '"H-NMR spéc_trum (CDCl3,
L (ppm), 200MHz):1.82-2.61 (4H, m), 3.48-4.01 (4H, m), 4.05-4.23 (2H, m); °C-
NMR spectrum (CDCL, (ppm), 50MHz): 33.5, 33.5, 35.8, 35.8, §1.6, 51.6 (C, Cs
Hi Bry); IR spectrum (NaCl cell (cm™)): 2924 (C-H-streching), 581 (C-Br-
. streching), 647 (C-Ci-streching); GC-MS chromatogram (m/z);" 402 (tz: 18.91
" min; CellsBry), 242 (tx: 17.84 min; CeHyoBry). Figures D11-15.

1.4 Oxidative halogenation of 1,5-hexadiene using 1/10 mole ratio of substrate
and sodium bromide (mixture 4HD)

Br Br

Br
NaOCi/ NaBr
/\/\/ = /v\\/ + W\/
i AwH lBr Ar Br

The same procedure as in the preparation of mixture 2HD was followed,
except sodium bromide (10.30 g 100 mmol) was included in the reaction mixture.
+ The product was obfained as a colorless liquid (0.64 g, 80%) with R¢ 0.36 (ethyl
':'a:cetate: hexéne (20:80)). '

Characteristic data for mixture 4HD: 1H~N1\{R‘ spéctrum (CDCls,
(ppm), 200MHz): 1.82-2.70 (4H, m), 3.41-4.05 (4H, m), 4.02-4.41 2H, m) ; “C-
NMR spectrum (CDCls, (ppm), 50MHz): 33.5, 33.5, 35.7, 35.7, 51.5, 51.5 (C, Cs
Hio Brz); IR spectrum (NaCl cell (em™)): 2930 (C-H-streching), 585 (C-Br-
streching), 649 (C-Cl-streching); GC-MS chromatogram (/z): 402 (1z: 18.93
‘in; CsHoBry), 242 (tr: 17.83 min; CsHyoBry). Figures D16-20.
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S. Characterization of reaction products:

The reaction products were characterized using the follow spectroscopic
- techniques |
I.- Fourier-Transform Infrared Spectrophotometer (FT-IR)"
2. 'Hand *C Nuclear Magnetic Resonénce spectrometer (NMR)
3. Gas Chromatography-Mass specﬁometer (GC-MS)

Gas chromatrogragh-mass spectrometer was used to identify and
quantitatively determination of the mixture. The GC-MS was performed
using DBS capillary column. The general condition can be summarized as
follows: i '
Column : DBS5 MS (30m.)

Injeétion - split 1:50 250°C

Carrier :Heat 24 cm’/min

Oven  :60°C for 3 min
60°C-220°C at 10°C/min
220°C for 5 min



CHAPTER IV

RESULT AND DISCUSTION

AN

The main purpose of this research is focused on the oxidative halogenation of
aikene in order to avoid handling chlorine gas and liquid bromine. Sodium
hypochlorite under acetic acid condition was studied and utilized for the halogenation
process. The reagent is innovative, safe and easy to use. N

The idea of this reagent come from the fact that NaOCl generates Cl, in acidic
- medium. Thus NaOCl in glacial acetic acid should be able to generate available and
controllable chlorine [6]. ’

Many organjé compounds can dissolve very well in glacial acetic acid.
| Therefore, glacial acetic acid has the dual purposes as acidity adjustment and solvent
as well.

Reaction of gaseous chlorine or HOCl with bromide ion g\enerates bromine in
. which bromine in glacial acetic acid is a known reagent for bromination, both addition

and electrophilic aromatic substitution. Therefore, appropriate amount of bromide ion

“. could determine the products outcome whether they are dichlorocompounds, dibromo

compounds or the mixture thereof. Thus the ratio of substrate, NaOCl and NaBr
should be varied in order to gain more insight about reaction conditions.

It is known from the previous report [6] that solvent has certain effect on the
| course of the reaction. Therefore, isooctane and hexane are used as co-solvent for this
- oxidative halogenation reaction.

As a model compound, 1-hexene was selected as a sﬁbstrate for suitable
conditions. Thereafter, these reaction conditions were appliec; to 1,5-hexadiene,
cyclohexene and methylmethacrylate. Thus some clues on substrate variation should

. :\‘

‘be realized.
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The proposed mechanism for oxidative halogenation of alkene is shown as the

following:
 The machanism of chlorination [20]

NaOCl —> Na' + OCl
ocr + H _, HOCl
HOCI + H — CI' + H,0
| cr

R-CH=CH, + ¢l —> R-HC—CH,

+
d cl

30

|
R—C—CH, + Nu —» R-CH-CH,-N
H

. The machanism of bromination [21]

NaBr ——% Na* + Br

HOCI + CH;COOH + Brr — BrCl + H;0 + CH;COO
Ch + Br __, BiCl + CI

BrCl + Brf ——» Br, + CI

Br, + HLO —* H'Br + HOBr

HOBr + H* — > BrOH,"

BrOH,Y 5 Br + H;0

4+

Br

R-CH=CH, + Br —» R-HC—CH,

+
Br Br
R—C-——CH, + ]:]:1 —_— R-éH-CHz—Nu v
H .
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4,1 OxidatiVe_ halogenation of 1-hexene
Oxidative halogenation of 1-hexene was expected to give dihalohexane
derivatives. Under various conditions, halogenation products of 1-hexene are shown

in Table 4.1 and Figure 4.1.

Table 4.1 Oxidative halogenation of 1-hexene

Mole ratio % composition
Entry Solvent uniden
substate | NaOCl | NaBr | A B'| C D :
i ‘ tified
IH | no extra solvent 1 8 0 E 31 29 - 40
| 2H | no extra solvent 1 8 25 | 94 - - 6
“[73H | noextrasolvent | 1 g 5 9% | - | - | - 10
4H | no extra solvent 1 8 10 | 100 - - - -
SH isooctane I g | 0 T10 [ 70 [ - | 20
6H isooctane L 8 5 46 -] - 54 -
TH 1sooctane 1 8 10 79 -l - 21 -
8H hexane 1 8 0 - 20 . 52 - 28
S9H hexane 1 8 5 100 - - - -
10H hexane 1 8 10 90 BT - | 10




Halogenation products of 1-hexene derivatives are shown in figure 4.1

\/‘Br \/\[/(‘:l
’ Br C1 .
dibromohexane (A) dichiorohexane (B)
OH : OH
' Cl Bt
2-chloro-1-hexanol(C) 2-bromo-1-hexanol (D)

Figure 4.1 The structures of hexane derivatives

From Table 4.1, reaction of 1-hexene with NaOCl! in glacial acetic acid gave

~ adichloroalkane or a dibromoalkane.

It was found that co-solvents did not show any significant improvement of the

in case of solubility problem of substrate a co-solvent could be used. .

"
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exclusively 1, 2-dichlorohexane (entry 1H). On the other hand, the same reaction in
the presence of excess NaBr, 1,2-dibromohexane was exclusively obtained (entry
4H). Increasing ratio of substrate: NaBr from 1:1 to 1.5 gave, as éxpected, a mixture
‘of halohexanol (entry 6H). Therefore, synthetic appijcatioxi:. of this oxidative

- halogenation would be useful by controlling the reaction conditiqh to get exclusively

product yield. Therefore co-solvent could be eliminated from this reaction. However,



Table 4.2 Simple normalization-integrator of GC-MS in the group of cyclohexene

derivatives
Mixture tg (min) - Molecular weight Product
H 10.58 137 Chlorohexanol
16.62 155 Dichlorohexane
2H 10.73 244 Dibromohexane
3H 10.72 244 Dibromohexane
-4H . 10.73 244 Dibromohexane
s 10.59 137 Chlorohexanol
16.61 155 Dichlorohexane
sH 10.71 244 Dibromohexane
16.31 181 Bromohexanol
- 10.72 244 Dibromohexane
16.31 181 Bromohexane
- 10.57 137 Chlorohexanol
16.61 155 Dichlorohexane
S9H 10.74 244 Dibromohexane
10H 10.’7 4 244 Dibromohexane

Mechanism of this oxidative halogenation could be proposed as the
formation of halonium ion in the intermediate step with subsequent undergoes
nucleophilic substitution with nucleophilic (CI' or Br or AcQ") to yield the

corresponding products as shown in Figure 4.2.

AN 2 /\/\M\ B, /\A/
ot ‘ G
©

Figure 4.2 Mechanism of halogenation
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The comparison of this method with that using potassium bromide (KBr) and

cerium (IV) ammonium nitrate (CAN) method [1] is shown in Table 4.3,

. Table 4.3 Comparisoh of the oxidative bromination of 1-hexene using NaOCl/ NaBrv _

and KBr/ CAN
\
Method NaOCl/ NaBr KBr/ CAN
Temperature Room-Temperature Room-Temperature
Reaction times 3 hours 20 min
Solvent none isooctane dichloromethane
“Br” ratio 10 10 2
Yield 90 79 82

* . 4.2 Oxidative halogenation of cyclohexene

 In case of cyclohexene, the products are tabulated in Tabl_e_ 4.4 and Figure 4.3.

Basically, the relevant dihalocompounds were obtained similar to those of 1-hexene

" substrate. However, in case of cyclohexene, the stereochemistry was applied. It was

found that the reaction products were frans-dihalocompounds which agree well with

the halonium intermediate mechanism.

.~ Table 4.4 Oxidative halogenation of cyclohexene derivatives

Bty Mole ratio - % compositign |
substrate | NaOCl | NaBr | E F G H I | unidentified
1C 1 8 0 6 - - 70 | - 24
:2C 1 8 2.5 - 58 29 - 11 -
3C 1 8 | 5 | - |57 151 - |19 :
4C 1 8 10 - o | - ] ; -
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Halogenation products of cyclohexane derivatives are shown in figure 4.3

: &8 DB
Q\Cl v Br ‘\\\Br
dichlorocyclohexane (E} dibromocyclohexane (F) O\
R NE YOH
' O\ @ : bmmocyolohexm.?oi @
Br H .'

(&}

bromochlorocyclohexane (G)  chlorocyclohexanol (H)
AY

Figure 4.3 The structure of cyclohexane derivatives

From Table 4.4, reaction of cyclohexene with NaOCl in glacial acetic acid

gave exclusively 1, 2-dichlorocyclohexane and chlorocyclohexanol (entry 1C). On the

“ other hand, the same reaction in the presence of excess NaBr, 1,2-dibromohexane was

~ exclusively obtained (entry 4C). Increasing ratio of substrate: NaBr from 1:1 to 1:5
gave, as expected, a mixture of halocyclohexanol and dihalocyclohexane(entry 2C

- and 3C). Therefore, synthetic application of this oxidative halogenation would be
useful by controlling the reaction condition to get exclusively a\dichioroalkane ora
dibromoalkane.

Table 4.5 Simple normalization-integrator of GC-MS in the group of cyclohexene )

derivatives .
Mixture tr (min) Molecular weight Products
c 9.34 153 Dichlorocyc%Ohexane
11.82 - 135 Chlorocyclohexanol
10.75 198 Bromochlorocyclohexane
2C 12.12 242 Dibromocyclohexane
21.01 179 | Bromocyclohexanol
| 10.75 198 Bromochlorocyclohexane
- .3C 12.12 242 Dibromocyclohexane
| 12.96 179 | Bromocyclohexanol
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The comparison of this methbd with that using potassium bromide (KBr) in
cerium (IV) ammonium nitrate (CAN) method [1] and hydrobromic acid (HBr) in
hydrogenperoxide (H,0;) method [18] is shown in Table 4.6. \

Table 4.6 Comparison of the oxidative bromination of cyclohexené using NaOCl/

NaBr and other methods
Method NaQOCl/ NaBr HBr/ H,0, [18] KBr/ CAN/H,O [1]
Temperature Room-temperature 0°C ~ Room-temperature
Reaction times 3 hour 2 hour 20 min
Catalyst none none CAN
Solvent none CCls "CH,Cl,
“Br” ratio 10 2 2
Yield 94 86 65

4.3 Oxidative halogenation of methy! methacrylate (MMA)

A

To see the effect of electron withdrawing group on the double bond, the

unsaturated ester, methylmethacrylate was used as a substrate. The results are shown
in Table 4.7 and Figure 4.4.

" Table 4.7 Oxidative halogenation of MMA derivatives

Emry | Mole ratio % composition
substrate | NaOCl | NaBr J K L unidentified
T [ 1 | 8 0 2 : 88 X
oM i 8 25 | - 62 - 38
3M 1 8 5 - 61 - 39
4M 1 8 10 - 87 < 13
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Halogenation products of methylmethacrylate derivatives are shown in figure

4.4. | |
CH3 ?HS )
Cl\/ 0 Br s) \
W CH, Br H/ CH,
o Y 7_
® ® \
CH3
HO 0
. e . N
a ] s N
0
w

N
Figure 4.4 The structures of MMA derivatives
From Table 4.7, reaction of methylmethacrylate with NaOC! in glacial acetic
acid gave exclusively 1, 2-dichlorocompound and chlorohydrincompound (entry 1M).

On the other hand, the same reaction in the presence of excess NaBr, 1,2-

dibromocompound was exclusively obtained (entry 4M).

Table 4.8 Simple normalization-integrator of GC-MS in the group of MMA

derivatives
Mixture tg (min) Molecular weight P;gducts
M ' 10.20 153 CsHy0O4Cl
16.65 : 171 CsHg0,Cly
2M 10.52 - 260 C5}\1302Br2
3M 10.50 - 260 CsHgO,Br;
Ve [ 1049 260 CsHsO0:Br;
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4.4 Oxidative halogenation of 1, S-hexadiene

To see the effect of diene, 1, 5-hexadiene was used as a substrate. The results

are tabulated in Table 4.9 and in Figure 4.6.

Table 4.9 Oxidative halogenation of 1, 5-hexadiene

Entry Mole ratio % composiﬁon

: substrate | NaOCl | NaBr | M N O P | unidentified
1HD 1 8 0 - 37 - 48 15
2HD 1 8 2.5 31 - 40 - 29
3HD 1 8 5 56 AL RGN 13
4HD 1 8 10 25 - 23 - 2

\\

Halogenation products of 1, 5-hexadiene derivatives are shown in figure 4.5.

N

Br Br i al
BI' Br Cl C{
1, 2, 5, 6-tetrabromohexane (M) 1,2,5, 6-tetrachlorohexane’(N)
?r Ci
/\/Y /\\ \/\/’
Br Ci \
1, 2-dibromohexene (O) 1, 2-dichlorchexene (P)

N
Figure 4.5 The structures of 1, 5-hexadiene and its derivatives
N
From Table 4.9, reaction of 1, 5-hexadiene with NaOC] in glacial acetic acid
gave exclusively 1, 2, 5, 6-tetrachlorohexane and 1, 2-dichlorohexene (entry 1HD).
On the other hand, the same reaction in the presence of excess NaBr, 1, 2, 3, 6-

tetrabromohexane and 1,2-dibromohexene were exclusively obtained (entry 4HD).
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Table 4.10 Simple normalization-integrator of GC-MS in the group of 1, 5-hexadiene

derivatives
Mixture tg (min) Molecular weight Products

{HD 14.63 224 1, 2, 5, 6-tetrachlorohexane

16.17 153 1, 2-dichlorohexene
' 17.84 242 1, 2-dibromohexene

2HD
18.91 402 1, 2, 5, 6-tetrabromohexane
17.84 242 1, 2-dibromohexene

3HD \
18.93 402 1, 2, §, 6-tetrabromohexane
17.83 242 1, 2-dibromohexene

4HD 1
18.93 402 1,2, 5, 6-tetrabromohexane

The reaction mechanism was proposed below:

Br

Br-Br & T
NN — AR \<\B+ = //(\/\J
e Br
e Br l Br
/

Br. Br

Figure 4,6 Mechanism of tetrabromoalkane
N
It was interesting to compare this halogenation method using 1, 5-hexadiene
with other relevant methods as shown in Table 4.11 [18]. Under our reaction

condition, the yield of dibromocompound was quite high.
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Table 4.11 Comparison of bromination of dialkenes using NaOCl/ NaBr with other

methods

HBr/ H;0, [18]

Method NaOCl)/ NaBr
Substrate 1,5-hexadiene Z,7-1,5-cyclooctadiene
Solvent none MeOH : CCly
Temperature Room-Temperature 0°C 0°C
Reaction times 3 hour 2 hour _ 2 hour
“Br” amount 5 2 N 2
Yield 57 26 84

4.5 The effect of mole ratio of 1-hexene and sodium bromide

The oxidative halogenation of 1-hexene producing dibromohexane as a model

product was studied. Various mole ratios of 1-hexene and sodium bromide such as

1:1, 1:25, 1.5, 1:10 were studied using mole ratio of l-hexene and sodium

hypochlorite at 1:8. % Yield of hexane derivatives is shown in Table 4.12.

Tabile 4.12 The % yield of 1-hexene derivatives

Mole ratio % yield of dibromohexane
1:8:2.5 100
1:8:5 9O ,
1:8:10 94

AN

From the result above, the mole ratio of 1-hexene: NaOCl: NaBr at 1:_8:2.5

gave exclusive dibromohexane.




CHAPTER V

CONCLUSION

Sodium hypochlorite in acetic acid was utilized for the halogenation process.
The reagent is safe and easy to use. _ .

This research using 1-hexene, 1, S5-hexadiene, cyclohexene and methyl
methacrylate as substrates using sodium hypochlorite, sodium bromide and glacial
acetic acid combination as reactant | |

The oxidative halogenation of 1-hexene using mole ratio of substrate, sodium
hypochlorite and sodium bromide as 1:8:10 and reaction times for 3 hours gave 90 %
dibromohexane. If sodium bromide was omitted, 12% dichlorohexané was obtained.
However, a mixture of product was obtained if the mole ratio of reactant is between
1:8:0 - 1:8:10, .

The oxidative halogenation of 1-hexene producing dibromohexane as a model
product was studied. Various mole ratios of 1-hexene and sodium bromide such as
1:2.5, 15, 1:10 were studied using mole ratio of 1-hexene and sodium hypochlorite as
1:8. The mole ratio of 1-hexene: NaOClL NaBr at 1:8: 10 gave exclusively
dibromohexane. However, at lower ratio of bromide, other .products such as
dichlorohexane and bromohexanol formed as well.

- It was found that co-solvents did not show any significant improvement of the
product yield. Therefore co-solvent could be eliminated from this reaction. However,

in case of solubility problem of substrate a co-solvent such as hexane and isooctane
" could be used. | '

The oxidative halogenation of 1, S-hexadiene using mole ratio of substrate,
sodium hypochlorite and sodium bromide at 1:8:10 and reaction times for 3 hours
gave 76 %1, 2, 5, 6, tetrabromohexane.

The oxidative halogenation of cyclohexene using mole ratio of substrate,
sodlum hypochlorite and sodium bromide at 1:8:10 and reaction times for 3 hours
gave 94 % dibromocyclohexane.

The oxidative halogenation of methylmethacrylate using mole ratio of
“substrate, sodium hypochlorite and sedium bromide at 1:8:10 and reaction times for 3

hours gave 87% dibromoderivative. N
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From this study, it could be concluded that oxidative halogenation of alkene
using a mixture of sodium hypochlorite, acetic acid and sodium bromide is
synthetically useful.-___]jh_e products could be obtained in good yield. The products
could be dichloroalkér@_e,_;d_ibromoalkane or the mixtu_ré_ of chlorobromoalkane
depends on the amount of bromide use. For synthetic applicati;ons_,'more than 5-fold

excess of bromide gave exclusively the dibromoalkane.

Suggestion for future work

Various types of alkenes should be explored in order to determine the

generality of this reaction.
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Figure A3 The?C-NMR spectrum of mixture 1H
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Figure A20 The “C-NMR spectrum of mixture 4H
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Figure A24 The "H-NMR spectrum of mixture 5H
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Figure A36 The "H-NMR spectrum of mixture 7H
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Figure A42 The 'H-NMR spectra of mixture 8H
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Figure B3 The C-NMR spectrum of mixture 1C
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Figure C9 The C-NMR spectrum of mixture 2M
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Figure D14 The mass spectrum of mixture 2HD at tg= 18.91 min
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Figure D15 The FTIR spectrum of mixture 3HD

Figure D16 The 'H-NMR spectrum of mixture 3HD
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Figure D19 The mass spectrum of mixture 3HD at tg= 17.84 min
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Figure D17 The mass spectrum of mixture 3HD at tg= 17.90 min
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Figure D23 The mass spectrum of mixture 4HD at tg= 17.84 min
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Figure D24vThe mass spectrum of mixture 4HD at tg= 17.90 min
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Figure D25 The mass spectrum of mixture 4HD at tg= 18.93 min
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