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ณัฐรวี จันทรานิกูร : ความแข็งแรงดัดขวางสองแกนของเซอร์โคเนียคอร์ที่ใช้วีเนียร์ต่าง
ผู้ผลิต .  (BIAXIAL FLEXURAL STRENGTH OF ZIRCONIA-BASED CERAMIC CORE 
WITH VARIOUS VENEER MANUFACTURERS) อ.ที่ปรึกษาวิทยานิพนธ์หลัก: ผศ. 
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The aim of this study is to evaluate the biaxial flexural strength (BFS) of 
zirconia-based ceramic when used with veneering porcelains from the same and 
different manufacturers. Zirconia core material (Katana) and five veneering 
porcelains (Cerabien ZR, Lava Ceram, Cercon Ceram Kiss, IPS e.max Ceram and VITA 
VM9) were selected. The bilayered disc specimens (diameter: 12.50 mm, thickness: 
1.50 mm) were prepared  following ISO standard 6872:2008 by the same person for 
each pairing into five groups of veneering porcelains (n = 12), using the 
powder/liquid layering technique (core 0.75 mm, veneer 0.75 mm). After 20,000 
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CHAPTER I 
INTRODUCTION 

Background and Rationale 

The rising popularity of zirconia-based restoration is due to the potential for 

excellent esthetic, biocompatibility, non-cytotoxicity, long-term stability, lack of 

metal and reliable strength.[1-10] The widely used of dental zirconia is mostly in the 

form of yttria tetragonal zirconia polycrystal (Y-TZP). This is because of its 

transformation toughening property that tetragonal phase transforms to monoclinic 

phase in excellent proportion by adding certainly amount of stabilizing oxides, 

yttrium oxide (Y2O3).[5] However, the clinical studies have shown problems of 

veneering porcelain chipping to occur.[11] The study of Swain found that high rates of 

veneering porcelain chipping in all ceramic restorations might be due to residual 

stresses from a coefficient of thermal expansion (CTE) mismatch, tempering 

associated with rapid cooling and improper thickness of veneering porcelain. These 

parameters should be considered to prevent the chipping of the veneering 

porcelain.[12]  

Most manufacturers recommend using zirconia core together with veneering 

porcelain from the same manufacturer for the best result. However, a survey 

conducted in Bangkok showed that most dental laboratories do not use zirconia core 

and veneering porcelain from the same manufacturer as recommended. Many 

studies about matching zirconia core with different veneering porcelains have found 

bond strength to be significantly different. Fazi et al. compared microtensile bond 

strength (MTBS) between groups of bilayered zirconia/veneer specimens. They found 

that Lava veneering with Lava Ceram from the same manufacturer had the lowest 
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MTBS which was significantly lower than veneering with VITA VM9 and Creation ZI 

from different manufacturers.[13] In 2006, Aboushelib et al. investigated MTBS 

between a zirconia material of Cercon base and seven various commercial veneer 

porcelains. They found that MTBS of Cercon base veneering with Cercon Ceram S 

from the same manufacturer was significantly lower than that with Nobel Rondo and 

Lava Ceram from others.[14] Furthermore, the study of Blatz et al. investigated the 

effect of thermocycling on the bond strength of different veneering porcelains to 

zirconia core material and found that thermocycling might affect the bond strengths 

of some veneering porcelain.[15] Ozkurt et al. investigated the shear bond strength 

(SBS) of three veneering porcelains to four types of zirconia cores (Zirkonzahn, 

Cercon, Lava and DC-Zirkon) and three types of veneering porcelains. It was found 

that the bonding of manufacturer-recommended veneering porcelain to zirconia core 

differed according to zirconia type and veneering porcelain.[16]  

These controversial studies provided the rationale to question the necessity 

of pairing zirconia cores with veneering porcelains from the same manufacturers and 

investigate their effects on the strength of bilayered zirconia/veneering porcelain in 

dental restoration. 

 

Objective 

The aim of the study is to evaluate the BFS of zirconia-based ceramic (Y-TZP) 

when used with veneering porcelains from the same and different manufacturers. 
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Hypothesis 

 Null Hypothesis (H0):  
At the 95% confidence level, the BFS in the group that has zirconia core 

paired with the veneering porcelain of the same manufacturer will not be 

significantly different from the BFS in the group that has zirconia core paired with the 

veneering porcelains of a different manufacturer. 

 Alternative Hypothesis (H1):  

At the 95% confidence level, the BFS in the group that has zirconia core 

paired with the veneering porcelain of the same manufacturer will be significantly 

different from the BFS in the group that has zirconia core paired with the veneering 

porcelains of a different manufacturer. 

 

Scope of the Research 

 This research was an experimental study that compared the BFS of a 

bilayered specimen made from zirconia core (Katana, Kuraray Noritake Dental Inc., 

Japan) paired with the veneering porcelain from the same manufacturer (Cerabien 

ZR, Kuraray Noritake Dental Inc., Japan) to the BFS of bilayered specimens from other 

groups those were made from the same zirconia core paired with four other 

commercial veneering porcelains: Lava Ceram (3M ESPE, USA), Cercon Ceram Kiss 

(Degudent GmbH, Hanau-Wolfgang, Germany), IPS e.max Ceram (Ivoclar Vivadent AG, 

Schaan, Liechtenstein) and VITA VM9 (VITA Zahnfabrik H. Rauter GmbH & Co. KG, Bad 

Sackingen, Germany). There were 12 specimens in each group. 
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Research Assumption 

 All of the specimens in this study were prepared by an expert ceramist using 

the recommendations provided by the manufacturers. The BFS tests were conducted 

by a trained professional and measured using the same equipment throughout the 

study. 

 

Research Limitation  

This research is a laboratory experimental study that cannot completely 

imitate certain factors of a true oral environment. Such factors include temperature, 

moisture, quantity and direction of the force in the BFS testing. In addition, due to 

the shape of zirconia core and veneering porcelain, the preparation, finishing and 

polishing procedures of the specimens differ from the procedures in fixed restoration. 
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Conceptual Framework 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Conceptual framework 
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Key Words 

Biaxial flexural strength  
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Expected Benefits and Applications 

 The research would support the decision to pair the zirconia core with the 

suitable veneering porcelain and plans for further study to support the results. 
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Duration 

 

Table 1. Duration of the Study  

 2013 2014 

Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul 

Review 
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Research 
design 

            

Write proposal             

Present 
proposal 

            

Prepare 
specimen 

            

Thermocycling             

BFS test             

Data collection             

Data analysis             

Data 
discussion 

            

Write full paper             

Thesis defense             



CHAPTER II 

LITERATURE REVIEW 

 

Zirconia in Dentistry 

 Zirconia was identified as a metal dioxide in the reaction product obtained 

after heating some gems by Martin Heinrich Klaproth, the German chemist, in 1789. It 

was developed as a biomaterial in the late sixties and introduced to manufacture 

ball heads for Total Hip Replacement (THR). In the early stages of the development, 

several solid solutions (ZrO2-MgO, ZrO2-CaO, ZrO2-Y2O3 and more) were tested for 

biomedical applications. But in the following years, the primary focus appeared to be 

on Y-TZP. Nowadays, Y-TZP is used widely as a promising dental ceramic due to its 

excellent biocompatibility and splendid mechanical properties.[17-20]  

 Zirconia or zirconium dioxide (ZrO2), an inert white polycrystalline oxide of 

zirconium, is a transition metal with the highest mechanical properties ever reported 

for any dental ceramic; boiling point at 4,300 ºC, melting point at 2,715 ºC, high 

density (5.68 g/cm3) and low in thermal conduction.[17, 18] Zirconia displays a different 

crystal structure at different temperatures without changing in chemistry, with three 

crystalline forms depending on the temperature: monoclinic at room temperature, 

tetragonal at the temperature in the range of 1,170 - 2,370 ºC and cubic at 2,370 ºC. 

While cooling down, a reversal transformation (T-M) occurs with a volume expansion 

of 4 – 5 % inducing high compressive stress in the material, rather like the martensitic 

transformation in stainless steel.[18, 19, 21-23]  
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Figure 2. Phase transformation of the zirconia 

The compressive stress stops the formation of cracks in the zirconia when it 

occurs within a suitable extent by acting on the surfaces of the crack and hindering 

its propagation, called “Phase transformation toughening” that is responsible for its 

high mechanical properties. To stabilize the transformation, adding stabilizing oxide in 

a suitable proportion lets the zirconia has polymorphs at the room temperature, 

called “Partially stabilized zirconia” or “PSZ”. When the whole material is 

constituted of tetragonal grains, it is called “Tetragonal zirconia polycrystal” or 

“TZP” which displayed as the best properties for dental applications if stabilized 

with yttrium oxide (Y2O3). Yttria tetragonal zirconia polycrystal, Y-TZP, is a fully 

tetragonal fine-grained zirconia ceramic material made of 100% small metastable 

tetragonal grains after adding approximately 2 – 3 mol% of Y2O3 as a stabilizer.[18] 

 The mechanical properties of zirconia were proved to be higher than all 

other dental ceramics. Fracture toughness is in the range of 5 – 6.27 MPam1/2 [5, 17, 24-

26] or 9 – 10 MN/m3/2.[27] It has a flexural strength of 840 – 1,470 MPa [5, 17, 24-28] and a 

compressive strength of 2000 MPa.[18] It also has an average load-bearing capacity of 

2,200 – 3,500 N in crowns[29] and 2,000 – 2,200 N in bridge restorations.[30] All studies 

demonstrated that zirconia yields higher fracture loads than other ceramics in dental 

restorations.[18, 28]  
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Biaxial Flexural Strength of Zirconia-based Ceramics    

 In 2004, Guazzato et al. investigated the uniaxial flexural strength, fracture 

toughness and microstructure of nine all-ceramic materials. They found that DC-

Zirkon, fully sintered Y-TZP, had the highest flexural strength and fracture toughness 

(840 MPa, 7.4 MPam1/2) compared to experimental Y-PSZ (680 MPa, 5.5 MPam1/2), In-

Ceram Zirconia slip (630 MPa, 4.8 MPam1/2) and In-Ceram Zirconia dry-pressed (476 

MPa, 4.9 MPam1/2). Scanning electron microscopy (SEM) and X-ray diffraction analysis 

(XRD) confirmed the correlation between phase transformation toughening and the 

higher strength of the zirconia.[31] It was similar to the finding from the study 

conducted by Papanagiotou et al. evaluating the effects of Low-temperature 

degradation (LTD) on the flexural strength of Y-TZP (Vita In-Ceram YZ blocks). They 

found that LTD within the limitations of the study had no significant negative effects 

on the flexural strength tested by the three-point bending method, ranging from 

796.7 to 950.2 MPa.[25]  

 Zirconia copings for crown or bridge frameworks require the application of 

veneering porcelain for excellent esthetic. White studied on the strength of layered 

zirconia (Lava System Frame with Lava Ceram) and porcelain beams using three-point 

flexural testing. The specimens were prepared in five groups of various core-veneer 

ratios (1:0, 1:1, 1:3, 3:1 and 0:1), then tested by loading on the side of the zirconia 

core or veneering porcelain. The results of the study showed that the material on 

the tensile loaded side, lower layer, was responsible for the strength of the whole 

specimen. When the zirconia core was a loaded side, the modulus of rupture rose to 

636 – 786 MPa. It was high compared to the strength when loaded on the side of 

veneering porcelain (77 – 85 MPa) and higher in the group that the zirconia core was 
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thicker.[32] Similar to the study conducted by Salimee and Thammawasi, the flexural 

strength with BFS test (piston-on-three-ball) following ISO standard 6872:1995 and 

the mode of fracture on bilayered zirconia-based ceramics (Cercon system) were 

determined. There were five prepared groups of different core-veneer ratio such as 

1:0, 2:1, 1:1, 1:2 and 0:1. From BFS testing, they reported that the core thickness 

should be more than a half of the whole thickness to strengthen the restoration, and 

the failures were found interfacially between the core and veneer.[5]  

 Piston-on-three-ball test has been selected by the International Organization 

for Standardization to establish ISO 6872 for the evaluation of the BFS of dental 

ceramics and it was claimed to be more reliable than the three-point flexure test 

and piston-on-ring test, because the forces used are not the direct loading and it is 

less sensitive to the undetectable defects in the material.[33] Consistent with 

Anusavice and Fischer, the flexural strength value obtained with a four-point flexural 

strength test is generally lower because the probability of having a surface crack 

between the two loading pistons is higher than in the small area beneath the loading 

pistons of a three-point flexure test. In the BFS test, the load is applied in the center 

of the specimen. Defects at the edges, which always lead to an early failure, are less 

effective. Anyways, the probability of finding a crack in the area of the loading piston 

is higher than in the three-point flexure test because the loaded area is larger.[34, 35] 

Huang and Hsueh performed finite element analyses (FEA), to simulate both piston-

on-three-ball and piston-on-ring tests. Different degrees of the friction between the 

specimen supporting surface and the loading fixture were considered. The results of 

the FEA demonstrated how the friction between the specimen supporting surface 

and the loading fixture affects the BFS evaluation in piston-on-ring and piston-on-
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three-ball tests. It is critical to have frictionless contact between the disc and the 

supporting ring when evaluating the BFS by piston-on-ring tests. Otherwise, the 

application of the approximate formula, which was derived for piston-on-ring, to 

piston-on-three-ball is even better than piston-on-ring. This is true not only for 

monolayered discs but also multilayered discs.[36] It could be concluded that the BFS 

test is the most appropriate test for investigating the flexural strength because the 

specimen preparation is easy, but when a scientific approach is intended, the four-

point flexure test should be preferred. 

 

Figure 3. Biaxial flexural strength test (piston on three ball) [37] 

 

Guazzato and Swain compared the BFS, reliability, and the fracture modes of 

bilayered discs made of two core materials (In-Ceram Alumina and In-Ceram 

Zirconia), both veneered with conventional feldspathic porcelain (Vita Alpha). FEA 

was used to estimate the maximum tensile stress at fracture and SEM was used to 

identify the initial crack and characterize the fracture mode. The test showed that all 

specimens with the core material on the bottom surface were significantly stronger 
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and more reliable than those with the veneering porcelain on the bottom. The 

material that underwent tensile stress dictated the strength, reliability, and fracture 

mode of the specimens.[38] In the same year, they investigated the BFS, reliability and 

the mode of fracture of bilayered zirconia/veneer discs. Eighty specimens were 

prepared into four groups by Y-TZP core and conventional dental porcelain as 

follows: monolithic porcelains, monolithic core material, bilayered specimens with 

the porcelain on top and bilayered specimens with core material on top. The BFS 

test and FEA were used to estimate the maximum tensile stress at fracture. SEM was 

used to identify the initial crack and characterize the fracture mode. Monolithic cores 

and bilayered specimens with the core material on the bottom were statistically 

significantly stronger than monolithic porcelains and bilayered specimens with the 

porcelain on the bottom. The study indicated that the material on the bottom 

surface dictated the strength, reliability and fracture mode of the specimens.[24] This 

corresponded to the study by Lawn et al. in 2001. They used Hertzian contact tests 

on flat models of monolayer, bilayer, and trilayer ceramic-based structures to 

represent important aspects of crown response in oral functions, providing useful 

relationships for predicting critical occlusal loads to induce lifetime-threatening 

fracture. It was demonstrated that radial cracking from the lower core is the 

dominant failure mode of the layered ceramic-based restoration. For strengthening 

whole all ceramic restorations, a strong core material such as Y-TZP should be the 

first choice.[39] 
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Veneering Porcelains for Zirconia 

 In 2008, Fischer compared the flexural strengths of veneering porcelains for 

zirconia with veneering porcelains for metal using three flexure tests: three-point 

flexure test, biaxial flexural strength test and four-point flexure test. Ten veneering 

porcelains for zirconia and three veneering porcelains for metal were tested. Three-

point flexural strength values of veneering porcelains for zirconia were similar to 

those of veneering porcelains for metal. The four-point flexure test showed the 

highest discrimination among all three tests between the different ceramic 

materials.[35]  

 

The Matching of Zirconia with Veneering Porcelain and the Associated Problems  

Zirconia coping for crowns and bridges requires the application of veneering 

porcelain to achieve the favorable esthetics. The high rates of clinical failures of 

zirconia-based restorations are attributed to debonding and veneering porcelain 

chipping.[18] Swain found the three major factors influencing the chipping of veneering 

porcelains on all ceramic dental restorations. There were CTE mismatch, tempering 

associated with rapid cooling and the thickness of the veneering porcelains which 

might raise the residual stress.[12]  

De Kler et al. investigated the influence of CTE mismatch and fatigue loading 

on phase changes in porcelain veneered Y-TZP zirconia discs. They hypothesized that 

a mismatch in CTE between the veneering porcelain and the zirconia core causing 

phase transformation of tetragonal to monoclinic in the zirconia core at the interface 

boundary when exposed to fatigue loading, resulting in fracture at the interface 
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boundary. Zirconia discs were veneered with three veneering porcelains differing in 

CTE. BFS test, FEA and XRD were used to measure and found that the sintered 

tetragonal structures were converted to monoclinic phase up to a depth of 27 µm 

after airborne abrasion, and reversed back to tetragonal phase after veneering with 

porcelain. Fatigue loading did not cause any conversion from tetragonal phase to 

monoclinic phase even with the highest possible CTE mismatch stress.[40] In 

accordance with Saito study that investigated the relationship between CTE and SBS 

of veneering porcelain to zirconia cores. Three core materials: Katana zirconia, casting 

gold alloy (Degudent U) and feldspathic porcelain (Cerabien ZR) were chosen as the 

bonding substrates. Five veneering porcelains (Cerabien ZR, Cercon Ceram Kiss, IPS 

e.max Ceram, Vintage ZR and VITA VM9) were fired to Katana zirconia, and Super 

Porcelain AAA was veneered on Degudent U. Cerabien ZR was veneered on Cerabien 

ZR discs to evaluate the strength of the veneering porcelain. Super Porcelain AAA 

and Cerabien ZR were applied to Katana zirconia and Degudent U, respectively, to 

investigate the effect of CTE mismatch on the bond strength of the veneer to 

zirconia core material. SBS tests were done after 24 hours of water storage. They 

found that strong discrepancies in CTE between veneering porcelains and zirconia 

cores significantly affect their bond strength. The SBS of feldspathic porcelain to the 

Katana zirconia was comparable to feldspathic porcelain to gold alloy and depends 

on the strength of the veneering porcelain.[41]  

Aktas et al. evaluated the adhesion of zirconia cores with their corresponding 

veneering porcelains, having different CTE, when zirconia cores were colored at green 

stage. Two zirconia cores (ICE Zirconia and Prettau Zirconia) were randomly divided 

into two groups in their green stage, half of them were colored with coloring liquid. 
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Three different veneering porcelains (ICE ceramics, GC Initial and IPS e.max Ceram) 

with different CTE were fired on both groups of zirconia cores. Specimens of high 

noble alloys (Esteticor Plus) veneered with veneering porcelain (VM13) acted as the 

control group. SBS test was conducted. From the results of the study, neither the 

zirconia core material nor coloring significantly affected the results, but the veneering 

porcelains with different CTE. The control groups, metal-ceramic, exhibited 

significantly higher SBS values than all other tested groups, zirconia-veneer.[42]  

Komine et al.[43] investigated the effect of cooling rate on SBS of veneering 

porcelains to a zirconia core material and found that mechanical retention and 

bonding of the veneering porcelain to the core material are the key factors in the 

successful performance of bilayered zirconia/veneer restorations. Initial cracks were 

generated by mismatches of CTE between the core materials and veneering 

porcelains, firing shrinkage of the porcelain, improper fabrication during grinding or 

other machining, undesirable heating and cooling rates. They referred to Tuccillo and 

Neilsen’s study[44] suggesting that the rate of firing temperature of the veneering 

porcelain might be related to the shear stresses that are sufficient to affect the bond 

strength between the core and veneer. They fabricated forty-eight pre-sintered 

Katana zirconia discs and then divided them into three groups, veneered by Cerabien 

ZR, IPS e.max Ceram and Super Porcelain AAA (veneering porcelain for gold alloy 

used as a control for this study). Every group was separated into two subgroups 

according to cooling rate (0ºC or 4ºC). The results showed that the SBS significantly 

differed by cooling time in Katana zirconia with Super Porcelain AAA and Katana 

zirconia with IPS e.max Ceram. However, SBS values of Katana zirconia with Cerabien 

ZR did not significantly differ by cooling time. After SBS was tested, the failure mode 
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of Katana with Super Porcelain AAA with rapid cooling was defined combined 

between adhesive and cohesive failure, and the failure mode of Katana with Super 

Porcelain AAA with slow cooling was spontaneous debonding. The findings of the 

study suggested that when applying IPS e.max Ceram to the Katana zirconia, slow 

cooling was recommended. The cooling rate may affect the shear bond strength 

differently on each veneering porcelain from different manufacturers.  

The zirconia/veneer interfacial bond strength is influenced by many factors. 

The mechanisms include chemical bonding, mechanical fitting, and shear stress 

based on the difference in the CTE between the Y-TZP core and the veneering 

porcelain. The factors which influence the bond strength include surface roughness, 

heat treatment of the Y-TZP and the use of the liner. The veneering porcelain should 

have a CTE lower than the core material. The zirconia cores have a CTE ranging from 

9 to 11 µm/mK while veneering porcelains can have CTE values ranging from 7 to 13 

µm/mK.[18] 

 

Zirconia Core and Veneering Porcelain from the Different Manufacturers  

 Fazi et al. compared MTBS between groups of bilayered zirconia/veneer 

specimens. The disc specimens were prepared from Lava, the only selected zirconia 

core, and veneered with veneering porcelains from three different manufacturers 

(Lava Ceram, VITA VM9 and Creation ZI) using conventional layering techniques. After 

cutting the disc into microbars, MTBS were measured. The lowest MTBS was Lava 

with Lava Ceram (14.76 MPa) from the same manufacturer and it was significantly 

lower than the other two (Lava with VITA VM9 obtained 23.52 MPa and Lava with 
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Creation ZI obtained 18.35 MPa). Failures were found to be mainly interfacial 

between the zirconia cores and veneering porcelains in all tested groups.[13] In 2006, 

Aboushelib et al. investigated MTBS in a zirconia substrate (Cercon base) veneering 

with seven various commercial veneer ceramics, and also evaluated the effect of 

optionally applying liner material between the core and veneer. The chosen 

veneering porcelains were Cercon Ceram S, Cercon Ceram Express, Nobel Rondo 

Dentine, Nobel Rondo Shoulder, Lava Ceram Dentin, Sakura Interaction and 

Experimental Pressable. The MTBS tests were done and it was found that liner 

application for Nobel Rondo Dentin and Cercon Ceram Express significantly 

weakened the bond strength of zirconia/veneer, but significantly improved the bond 

strength for Sakura Interaction. For the others, there were no significant differences 

between the groups with or without the liner application. These described results 

lead to the recommendation of the application of liner for some materials only. 

From the test, MTBS of Cercon base with Cercon Ceram S were significantly lower 

than Cercon base with Nobel Rondo and Lava Ceram.[14]  

Blatz et al. evaluated and investigated the effect of thermocycling on the 

bond strength of different veneering porcelains (Cerabien ZR, GC Initial and Lava 

Ceram) to zirconia core material (Lava). It was found that significantly different SBS 

values (Cerabien ZR > GC Initial > Lava Ceram). Bond strength were not affected by 

thermocycling, except for Cerabien ZR, which had significantly higher SBS after 

thermocycling.[15]  

Ozkurt et al. investigated the SBS of veneering porcelains to zirconia, four 

types of zirconia cores (Zirkonzahn, Cercon, Lava and DC-Zirkon) and three types of 

veneering porcelains (IPS e.max Ceram, VITA VM9 and manufacturer-recommended 
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veneering porcelains) were selected. SBS test was conducted and fracture surface 

analysis was performed to determine the failure modes. DC-Zirkon showed the 

highest SBS (40.49 ± 8.43 MPa), followed by Lava (27.11 ± 2.72 MPa), Zirkonzahn 

(24.46 ± 3.72 MPa) and Cercon (20.19 ± 5.12 MPa). DC-Zirkon and Lava with 

manufacturer-recommended veneering porcelains had significantly higher SBS, as 

compared to IPS e.max Ceram and VITA VM9. On the other hand, Cercon and 

Zirconzahn did not show any significant differences in bond strength among three 

veneering porcelains. Surface analysis of the fracture surfaces revealed that the 

predominant failure modes between zirconia core and the veneering porcelain were 

combined and adhesive failures. No cohesive failures were observed. Concluded 

from the results, the bonding of manufacturer-recommended veneering porcelain to 

the zirconia core differed according to zirconia type, but it was not a decisive factor. 

Since VITA VM9 veneering porcelain resulted in combined failures with three types of 

zirconia materials. Zirconia/veneer bond strength is sensitive to the type of veneering 

porcelain used and zirconia core. It was due to the different structural characteristics 

of the veneering porcelains tested, in terms of composition, strength, CTE or firing 

shrinkage. On the other hand, the different surface characteristics of the zirconia core 

materials, in terms of grain size, shape, composition, density and hardness, also 

affected the bond strength of the final structure.[16] Aboushelib et al. studied on the 

effect of zirconia type on its bond strength with different veneering porcelains. Five 

zirconia cores (Cercon white and yellow, Lava white and yellow, and Procera 

zirconia) were treated on their surfaces with three techniques (CAD/CAM milled 

surface, airborne-particle abrasion and liner application), and then veneered with two 

veneering porcelains (Noble Rondo and Cercon Ceram Express). After disc-shaped 
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specimens were cut into microbar, the MTBS test was conducted and they found 

that the type of the zirconia core had a significant effect on the bond strength. 

Pigmented zirconia cores were statistical significantly weaker compared to the white 

ones. SEM confirmed the changed structure of the pigmented that reduced their 

bond to veneering porcelains. Suitable surface treatment was conducted on a 

veneering surface of the zirconia core, airborne-particle abrasion for white zirconia 

core and liner application for pigmented zirconia core, before veneering with the 

veneering porcelains.[45] 

The results of the reviewed studies raised the question about the necessity of 

matching the zirconia core with the same manufacturer’s veneering porcelain.  

 



CHAPTER III 

MATERIALS AND METHODS 

 

Target Population 

 Zirconia-based ceramics with veneer porcelain 

 

Sample Group 

 Bilayered disc specimens with diameter 12.50 ± 0.05 mm, core thickness 

0.075 ± 0.005 mm and veneer thickness 0.075± 0.005 mm  

 

Materials 

1. Zirconia core (Katana, Kuraray Noritake Dental Inc., Japan) 

2. Veneering porcelains and modeling liquids 

a. Cerabien ZR and CZR forming liquid (Kuraray Noritake Dental Inc., 

Japan) 

b. Lava Ceram and Lava modeling liquid (3M ESPE, USA) 

c. Cercon Ceram Kiss and Ducera liquid form (Degudent GmbH, Hanau-

Wolfgang, Germany) 

d. IPS e.max Ceram and IPS e.max Ceram Build-up allround (Ivoclar 

Vivadent AG, Schaan, Liechtenstein) 
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e. VITA VM9 and VITA modeling liquid (VITA Zahnfabrik H. Rauter GmbH & 

Co. KG, Bad Sackingen, Germany) 

3. Crack finder (VITA In-ceram testing liquid, VITA Zahnfabrik H. Rauter GmbH & 

Co. KG, Bad Sackingen, Germany) 
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Table 2. Materials used in this study 

Materials Products Manufacturers Lot Type 

Zirconia 
core 

Katana zirconia Kuraray Noritake Dental 
Inc., Japan 

DDMDG non-sintered 
zirconia 

 

 

 

Veneering 
porcelains 

and 

Modeling 
liquids 

Cerabien ZR and 

CZR forming 
liquid 

Kuraray Noritake Dental 
Inc., Japan 

054260, 

DDYSA 

feldspatic 

Lava Ceram and 

Lava modeling 
liquid 

3M ESPE, USA 8646A, 

1184E 

feldspatic 

Cercon Ceram 
Kiss and 

Ducera liquid 
form 

Degudent GmbH, 
Hanau-Wolfgang, 

Germany 

112882, 

77677 

feldspatic 

IPS e.max Ceram 
and 

IPS e.max Ceram 
Build-up allround 

Ivoclar Vivadent AG, 
Schaan, Liechtenstein 

S28033, 

S19195 

nano-
fluorapatite 

VITA VM9 and 

VITA modeling 
liquid 

VITA Zahnfabrik H. 
Rauter GmbH & Co. KG, 

Bad Sackingen, 
Germany 

20370, 

33851 

feldspatic 

Crack 
finder 

VITA In-ceram 
testing liquid 

VITA Zahnfabrik H. 
Rauter GmbH & Co. KG, 

Bad Sackingen, 
Germany 

63523 - 
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Equipment 

1. Low speed cutting machine (IsoMet® 1000 Precision Saw, Buehler, USA) 

2. Porcelain furnace (Programat P300, Ivoclar Vivadent AG, Schaan, 

Liechtenstein) 

3. Ultrasonic cleaner (Bransonic model 5210, Branson, USA) 

4. Sand blasting machine (Vario basic 230 V, Renfert GmbH, Germany) 

5. Thermo cycling unit (King Mongkut’s University of Technology Thonburi, 

Thailand) 

6. Universal testing machine (Servo hydraulic system model 8872, Instron, 

England) 

7. Piston on three balls; Ball 3 mm diameter, Support circle 10 mm diameter  

8. Vibrator (Wassermann KV-36, Wassermann, Germany) 

9. 3D milling machine (S3 Master, Schick GmbH, Germany) 

10. Digital vernier caliper; least count 0.01 mm (Digimatic Vernier, Mitutoyo, 

Japan) 

11. Wet abrasive papers no. 360, 600, 800 and 1,000 

12. Porcelain kit; glass slab, brush 

13. Weight pendulum; 5 kg 
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Specimen Preparation 

Katana zirconia core and five veneering porcelains; Cerabien ZR, Lava Ceram, 

Cercon Ceram Kiss, IPS e.max Ceram and VITA VM9 were selected in this study. The 

specimens were designed for bilayered zirconia/veneer discs (diameter 12.50 mm, 

core thickness 0.75 mm and veneer thickness 0.75 mm), as shown in Figure 4 and 

prepared into five groups according to the manufacturers’ recommendations (n = 

12). 

 

 

Figure 4. The design of the bilayered disc specimen 

 

Core Preparation 

 The Katana zirconia block was cut into an oversize disc shape. Raw cores 

were sintered according to the manufacturer’s program, then finished and polished 

with wet abrasive papers Nos. 360, 600, 800 and 1,000 respectively. The digital 

vernier caliper was used to measure the diameter (12.50 ± 0.05 mm) and thickness of 

the cores for 0.75 ± 0.005 mm. The VITA In-ceram testing liquid was used to find the 

crack line. Any core that had a crack line must be excluded. Sandblasting with 

Diameter 12.50 ± 0.05 mm 

Thickness C 0.75 ± 0.005 mm 

Thickness V 0.75 ± 0.005 mm 
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aluminum oxide powder (110µm at 3.5 psi) was done at a distance of 10 mm from 

the tip to the side that was in contact with the veneer porcelain, at 45 º to the flat 

surface. Then the cores were ultrasonically cleaned in acetone solution for 15 

minutes to clean and remove residual greasy substance.   

 

 

Figure 5. Katana zirconia block was cut and a circle of 16 mm diameter was 

drawn on the block. 
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Figure 6. The zirconia block was trimmed into a cylindrical-shape using the 3D 

milling machine. 

 

 

Figure 7. The core was cut into 1 mm-thick disc using the Isomet cutting 

machine. 
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Figure 8. The core was sintered following the manufacturer instruction. 

 

 

Figure 9. (a) Cracks were detected using VITA In-ceram Testing Liquid. (b) The 

zirconia disc was painted with permanent marker on the veneering side. (c) The 

painted side of the disc was sandblasted until color was disappeared. (d) The 

disc was ultrasonically cleaned in acetone solution for 15 minutes. 

a b 

c d 
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Figure 10. The prepared Katana zirconia cores 

 

Veneer Preparation 

After blotted, veneering porcelains were prepared on the cores with 

powder/liquid layering technique in the enlarged silicone mold to compensate the 

shrinkage and sintered according to manufacturer’s program. Sintered specimens 

were finished, polished and measured for the final thickness of 12.50 ± 0.05 mm. 

Crack test was done again to confirm crack after veneer sintering. Then, the 

specimens were thermocycled for 20,000 cycles of alternating temperature between 

55 ºC for 30 seconds and 5 ºC for 30 seconds. 
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Figure 11. (a) The silicone mold was applied with the separating media. (b) The 

core was put into the mold. 

 

Figure 12. (a) The core was veneered with each veneering porcelain using 

powder/liquid layering technique. (b) The veneer-core was gently vibrated and 

blotted dry to remove excess liquid. (c) A 5 kg weight pendulum loaded on the 

veneering porcelain.  

a b 

a b 

c 
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Figure 13. The veneering core was removed from the silicone mold. 

 

 

Figure 14. The veneering porcelain was sintered following the manufacturer 

guideline. 
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Figure 15. The bilayered zirconia/veneer specimens were thermocycled for 

20,000 cycles at 5 ºC for 30 seconds and 55 ºC for 30 seconds. 

 

 

Figure 16. The bilayered zirconia/veneer specimens 
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Biaxial Flexural Strength Test 

The BFS were measured using the piston on three balls, tested on a universal 

testing machine (Servo hydraulic system model 8872, Instron, England) following ISO 

standard 6872:2008[46] as shown in Figure 17. The test was carried out at a 0.5 

mm/min crosshead speed until failure by placing a thin plastic sheet (thickness 0.05 

mm) in between to distribute the load and minimize the stress concentration. The 

load at fracture was recorded and then calculated for BFS by the formula for two 

layer discs.[47, 48] Shown in Figure 18. 

 

 

Figure 17. Biaxial flexural strength test was conducted on the bilayered 

zirconia/veneer specimen using the universal testing machine following ISO 

standard 6872:2008. 
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Figure 18. The formulation of biaxial flexural strength for two layer disc 
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Data Collection and Statistical Analysis 

The mean and SD of BFS data were collected for each group. The statistical 

analysis was performed using one-way ANOVA and Tukey post hoc multiple 

comparison tests (α = 0.05) using SPSS version 17.0 (SPSS Inc., Chicago, USA). 
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CHAPTER IV  

RESULTS 

 

The results of the BFS test were shown in Table 3, 4 and Figure 19. The 

statistical analysis showed that Katana with Cercon Ceram Kiss had significantly the 

highest BFS, followed by Katana with Lava Ceram. The BFS results of Katana with 

Cerabien ZR, IPS e.max Ceram and VITA VM9 were not significantly different but they 

were significantly lower than the previous two groups. 

 

Table 3. Recorded maximum load (N) and biaxial flexural strength (MPa)   

Specimen 
Group I (CZR) Group II (LV) Group III (CC) Group IV (EM) Group V (VT) 

Max. 
Load 
(N) 

BFS 
(MPa) 

Max. 
Load 
(N) 

BFS 
(MPa) 

Max. 
Load 
(N) 

BFS 
(MPa) 

Max. 
Load 
(N) 

BFS 
(MPa) 

Max. 
Load 
(N) 

BFS 
(MPa) 

1 1073.72 586.87 1148.57 615.25 1202.06 699.04 775.61 387.61 749.10 434.25 

2 874.39 477.92 1273.78 682.32 1276.71 742.45 975.26 487.38 823.74 477.51 

3 850.36 464.79 1150.32 616.18 1312.28 763.14 1025.03 512.25 932.13 540.35 

4 999.06 546.06 1223.61 655.44 1176.03 683.90 849.81 424.69 795.74 461.28 

5 924.51 505.31 1074.24 575.43 1076.91 626.26 924.24 461.88 649.78 376.67 

6 1024.22 559.81 1200.40 643.01 1299.99 755.99 1124.53 561.98 722.73 418.96 

7 999.90 546.52 1050.36 562.64 1125.83 654.71 1025.44 512.46 714.48 414.18 

8 673.02 367.86 975.48 522.53 1101.80 640.73 1149.17 574.29 1031.67 598.05 

9 924.17 505.13 1223.05 655.14 1450.90 843.75 949.21 474.36 835.00 484.04 

10 775.40 423.81 1223.61 655.44 1076.60 626.08 872.83 436.19 980.19 568.21 

11 730.48 399.26 764.06 409.28 1276.96 742.60 1214.23 606.80 928.10 538.01 

12 899.08 491.42 1190.95 637.95 1190.95 692.58 1047.37 523.42 850.78 493.19 

Max. 1073.72 586.87 1273.78 682.32 1450.90 843.75 1214.23 606.80 1031.67 598.05 

Min. 673.02 367.86 764.06 409.28 1076.60 626.08 775.61 387.61 649.78 376.67 

Mean 895.69 489.56 1124.87 602.55 1213.92 705.94 994.39 496.94 834.45 483.72 

SD 122.57 67.00 142.45 76.30 113.31 65.89 129.62 64.78 116.22 67.37 
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Table 4. Mean ± SD and statistical analysis of biaxial flexural strength 

a, b and c showed the homogeneous subsets of group with Tukey HSD. 

Groups of BFS test in the study n BFS (Mean ± SD, MPa) 

1. Katana with Cerabien ZR : (CZR) 

(Kuraray Noritake Dental Inc., Japan) 

12 489.56 ± 67.00 a 

2. Katana with Lava Ceram : (LV) 

(3M ESPE, USA) 

12 602.55 ± 76.31 b 

3. Katana with Cercon Ceram Kiss : (CC) 

(Degudent GmbH, Hanau-Wolfgang, Germany) 

12 705.94 ± 65.89 c 

4. Katana with IPS e.max Ceram : (EM) 

(Ivoclar Vivadent AG, Schaan, Liechtenstein) 

12 496.94 ± 64.78 a 

5. Katana with VITA VM9 : (VT) 

(VITA Zahnfabrik H. Rauter GmbH & Co. KG, Bad Sackingen, Germany) 

12 483.72 ± 67.37 a 

 

 

 

Figure 19. The results of the study, mean ± SD of biaxial flexural strength (MPa)   
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CHAPTER V 

DISCUSSION AND CONCLUSION 

 

Discussion 

The BFS test, piston-on-three-ball, was used in this study because it is more 

reliable to reduce the sensitivity to undetectable defects in the material at the 

loaded position.[33] In the BFS test, the load is applied in the center of the specimen 

indirectly, so defects at the edges which always generate early failure are less likely 

to influence the outcome.[34] In addition, the BFS test is the most appropriate 

because of its ease of use, so the errors would be fewer than for other tests 

involving greater difficulty.[35]  

In this study, we specified the core-veneer ratio as 1:1 (core thickness: 0.75 

mm / veneer thickness: 0.75 mm), and put the side of the core material down as the 

lower side while conducting the test. In the BFS test of zirconia-based ceramic, 

Salimee and Thammawasi found that the zirconia core should be at least a half of 

the whole thickness of the restorations and the fractures mostly start at the 

zirconia/veneer interface.[5] In addition, many studies showed that the bottom layer 

of bilayered all-ceramic restorations were tensile stress zones and determined the 

overall strength of the restoration.[24, 32, 39]  

The result of this study showed that the BFS could be significantly divided 

into three groups. Cercon Ceram Kiss provided the highest BFS, followed by Lava 

Ceram, while the lowest BFS was found in Cerabien ZR, IPS e.max Ceram and VITA 

VM9. Notably, Cerabien ZR, which was recommended for use with Katana zirconia 
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from the same manufacturer, showed the lowest BFS. Concerning the the strength 

calculated by Young modulus as shown in the Table 5, Young modulus of IPS e.max 

Ceram is the closest to the Katana zirconia’s, followed by Lava Ceram, Cerabien ZR, 

VITA VM9 and Cercon Ceram Kiss. This was not correlate to the results of our study 

that the strength from Cercon Ceram Kiss group was the highest, followed by Lava 

Ceram group and the lowest strengths were from the groups of Cerabien ZR, IPS 

e.max Ceram and VITA VM9. It could be assumed that the unpredictable results may 

cause by CTE, the ability of bonding between zirconia core and veneering porcelains, 

etc. 

Table 5. Young modulus of the materials used in our study  

(Based on the manufacturer' scientific data) 

Materials Young modulus (GPa) 

Katana zirconia 205 

Cerabien ZR 76 

Lava Ceram 80 

Cercon Ceram Kiss 65 

IPS e.max Ceram 95 

VITA VM9 65.52 

 

 According to the study of Swain, the high rates of veneering porcelain 

chipping on all-ceramic restorations might be due to residual stress from a CTE 

mismatch.[8] We found that among the veneering porcelain used in this study, the 
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CTE of Cerabien ZR and VITA VM9 were the most different from the Katana zirconia 

core. This might be one of the reasons explaining the obtained result.  

 

Table 6. Coefficient of thermal expansion of materials used in this study  

(Based on the manufacturer scientific data) 

Materials Coefficient of thermal expansion 

(50-500°C10-6K-1) 

Katana zirconia 10.1 

Cerabien ZR 9.1 

Lava Ceram 10.0 

Cercon Ceram Kiss 9.6 

IPS e.max Ceram 9.5 ± 0.25 

VITA VM9 9.1 ± 0.1 

 

Saito et al. also found that strong discrepancies in CTE between veneering 

porcelains and zirconia cores significantly affect their bond strength.[41] Aktas et al. 

evaluated the adhesion of zirconia cores with their corresponding veneering 

porcelains, having different CTE, when zirconia cores were colored at green stage. 

From the finding, neither the zirconia core material nor coloring significantly affected 

the results, but the veneering porcelains with different CTE significantly affected.[42] 

From these study, CTE mismatch should be considered as an important factor 

causing the porcelain chipping in zirconia-based restoration. However, the study of  

De Kler et al. investigated the CTE mismatch and fatigue loading, they found that a 
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mismatch in CTE between the veneer and the zirconia core caused a conversion 

from tetragonal to monoclinic phase up to a depth of 27µm after airborne abrasion, 

and reversed back to tetragonal phase after veneering with veneering porcelain. The 

results showed the changes of the zirconia after airborne abrasion.[40]  

Surface treatments of the zirconia core, such as airborne abrasion or liner 

application, were proved to have effects on the bond strength between the zirconia 

core and veneering porcelain. From the study of Aboushelib et al., they evaluated 

the effect of liner application and found that applying the liner material might 

affected the bond strength and failure modes depended on materials used. 

Moreover, sandblasting was recommended to improve the bond of the veneering 

porcelain to zirconia with liner.[14]  From the other study of Aboushelib et al  on the 

effect of zirconia type on the bond strength with different veneering porcelains, they 

found the controversial results about the effect of liner application and airborne 

abrasion on the bond strength between zirconia and veneer, depending on zirconia 

type. They suggested to apply the liner for the pigmented zirconia type, while the 

airborne abrasion was recommended for non-pigmented zirconia.[45] This is the 

reason for using airborne abrasion as a surface treatment on veneering side of the 

zirconia core in our study, instead of liner application. Moreover, sandblasting is 

conducted as a routine in the laboratory process for increasing the surface roughness 

and removing the deposits on the zirconia surface before veneering with the 

veneering porcelain. However, the studies on the surface treatment of the zirconia 

core were not in the same way. Many studies claimed that sandblasting or liner 

applying on the zirconia core decreased the bond strength to the veneering 

porcelain[49-51] while the results from other studies showed that sandblasting[51, 52] or 
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liner application[45] improved the bond strength of the zirconia/veneer specimens. 

Furthermore, some studies resulted in no significant difference on the 

zirconia/veneer bond strength of the liner application[50] or sandblasting.[53] From 

these results, more studies about the suitable surface treatment of the zirconia core 

before veneering with the porcelain should be further investigate.     

Moreover, there might have been other factors influencing these findings such 

as the sintering frequency, sintering temperature, tempering associated with rapid 

cooling of the veneering porcelains[12] and other factors affecting the bond between 

the zirconia core and the veneering porcelain. Mechanical retention and bonding of 

the veneering porcelain to the core material are the key factors in the successful 

performance of bilayered core-veneer restorations. Initial cracks were generated by 

mismatches of CTE between the core materials and veneering porcelains, firing 

shrinkage of the porcelain, improper fabrication during grinding or other machining, 

undesirable heating and cooling rates.[43] Komine et al. investigated the effect of 

cooling rate (0 s and 4 s) on SBS of three veneering porcelains (Cerabien ZR, IPS 

e.max Ceram and Super Porcelain AAA) to Katana zirconia. They found that the 

cooling rate may affect the SBS differently on each veneering porcelain from 

different manufacturers. The SBS significantly differed by cooling time in Katana 

zirconia with Super Porcelain AAA and with IPS e.max Ceram, but not with Cerabien 

ZR. They suggested that when applying IPS e.max Ceram to a Katana zirconia, slow 

cooling was recommended.[43] The study of Tuccillo and Neilsen suggesting that the 

rate of firing temperature of the veneering porcelain might be related to shear 

stresses that are sufficient to affect the bond strength between the core and veneer. 

[44] In addition, Saito et al. also studied about the relationship between CTE and SBS 
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of various veneering porcelains to Katana zirconia and Degudent U casting gold alloy. 

They found that Cercon Ceram Kiss and IPS e.max Ceram had significantly lower SBS 

than the Cerabien ZR group, and no significant differences were found between 

Vintage ZR, VITA VM9 and Cerabien ZR. The SBS of veneering porcelains to the 

zirconia core depended on their strength.[41] 

Ozkurt et al. investigated the SBS of veneering porcelains to zirconia and 

found that the bonding of manufacturer-recommended veneering porcelain to 

zirconia core differed according to zirconia type, but it was not a decisive factor. It 

seem to indicate that core-veneer bond strength is sensitive to a multitude of 

interacting variable, type of veneering porcelain used and the type of the zirconia 

core. It was due to the different structural characteristics of the veneers tested, in 

terms of composition, strength, CTE or firing shrinkage. On the other hand, the 

different surface characteristics of the zirconia core materials, in terms of grain size, 

shape, composition, density and hardness, also affected the bond strength of the 

final structure.[16] Moreover, Aboushelib et al. also investigated the effect of zirconia 

type on its bond strength with different veneer porcelain. They found that the type 

of zirconia core had a significant effect on the bond strength. Pigmented zirconia 

cores were significantly weaker compared to the white ones. SEM confirmed the 

changed structure of the pigmented that reduced their bond to veneer porcelains.[45] 

In this study, we performed thermocycling 20,000 cycles to imitate the 

condition of oral function for 2 years.[54] Since the effects of mechanical and thermal 

environment in oral cavity were concerned.[55, 56] The rapid variations of thermal, 

chemical and physical in the oral cavity may stimulate growth of the cracks within 

and eventually fail the dental ceramics.[37, 54, 57-60] Therefore, Thermocycling is 
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important for investigating the mechanical properties of ceramics as same as the 

mechanical tests that are tended to simulating the conditions of the masticatory 

function by inducing alternate tensile or compressive stresses in the specimens.[37, 61, 

62] Thermocycling was designed for producing alternative stresses at the interface 

between different materials based on temperature changes.[63] The CTE mismatch of 

the used materials causes an adhesive failures under temperature variations.[64, 65] 

From these studies, the thermocycling might reduce the strength of the dental 

porcelains. However, Blatz et al. investigated the effect of thermocycling on the 

bond strength of different veneering porcelains (Cerabien ZR, GC Initial and Lava 

Ceram) to Lava zirconia. It was found that SBS were significantly different (Cerabien 

ZR > GC Initial > Lava Ceram). Bond strength were not affects by thermocycling, 

except for Cerabien ZR, which had significantly higher SBS after thermocycling.[15] 

Concerning the pattern of failure, most of the specimen failed from adhesive 

failure between core and veneering porcelain. From the observation during the BFS 

test, we found that the veneering porcelain was crushed into pieces before the 

failure of zirconia core, as shown in Figure 20. We also found that the greater the 

number of specimen fragments counted, the higher the BFS value that was recorded 

which consistent with the study of Salimee and Thammawasi.[5]  

 

Figure 20. The biaxial flexural strength tested specimens from each group. 

(a) CC (b) LV (c) EM (d) CZR (e) VT  

a b 

c d e 
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Conclusion 

Katana with Cercon Ceram Kiss had the highest BFS, followed by Katana with 

Lava Ceram while the BFS of Katana with Cerabien ZR, IPS e.max Ceram and VITA 

VM9 were not significantly different but they were lower than the previous two 

groups. 

Zirconia core and veneering porcelain from the same manufacturer did not 

show good results in terms of BFS. It might not be necessary to match the zirconia 

core with the same manufacturer’s veneering porcelain as recommended. Matching 

of veneering porcelain to zirconia core should take into consideration many other 

influential factors, such as CTE, firing temperature, tempering associated with rapid 

cooling, the thickness of the veneering porcelain, etc., all of which differ individually 

from each manufacturer. The dental laboratories should concern the factors above 

to choose the proper veneering porcelain for the zirconia core material and trial 

matching would be beneficial. 
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Table 7. Mechanical properties of material used in the study  

(Based on manufacturer’s recommendation) 

Materials Flexural 
strength 

(MPa) 

Young modulus 

(GPa) 

Firing 
temperature 

(ºC) 

Katana zirconia 1,200 205 1,350 

Cerabien ZR 69 76 930 

Lava Ceram 85 80 810 

Cercon Ceram Kiss 84 65 830 

IPS e.max Ceram 73.2 95 750 

VITA VM9 ~100 65.52 910 
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Figure 21. Katana zirconia firing program 

(Based on manufacturer’s recommendation) 
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Table 8. Firing schedules for all veneering porcelains  

 (Based on manufacturers’ recommendations) 

Veneering 
porcelains 

(Dentin) 

Dry out 
time 

(min.) 

Low 
temperature 

(ºC) 

Heat 
rate 

(ºC/min.) 

Hold 
time 

(min.) 

High 
temperature 

(ºC) 

Cool 
time 

(min.) 

Cerabien ZR 7 600 45 1 940 4 

Lava Ceram 6 450 45 1 810 0 

Cercon Ceram Kiss 6 300 55 1 - 2 830 0 

IPS e.max Ceram 4 403 40 1 750 0 

VITA VM9 6 500 55 1 910 0 
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