สภาพไหวสะเทือนของแผ่นดินบริเวณภาคเหนือตอนกลางประเทศไทยจากข้อมูลการไหวสะเทือน ช่วงปี ๒๕๔๒-๒๕๕๓ ของโครงข่ายสถานีตรวจวัดแผ่นดินไหวแก่งเสือเต้น

บทคัดย่อและแฟ้มข้อมูลฉบับเต็มของวิทยานิพนธ์ตั้งแต่ปีการศึกษา 2554 ที่ให้บริการในคลังปัญญาจุฬาฯ (CUIR) เป็นแฟ้มข้อมูลของนิสิตเจ้าของวิทยานิพนธ์ ที่ส่งผ่านทางบัณฑิตวิทยาลัย

The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository (CUIR) are the thesis authors' files submitted through the University Graduate School.

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาธรณีวิทยา ภาควิชาธรณีวิทยา คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2557 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย SEISMICITY OF CENTRAL NORTHERN THAILAND FROM 1999-2010 SEISMIC DATA OF THE KAENG SUA TEN SEISMOGRAPHIC NETWORK

Mrs. Watana Khamkom

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science Program in Geology Department of Geology Faculty of Science Chulalongkorn University Academic Year 2014 Copyright of Chulalongkorn University

Thesis Title	SEISMICITY OF CENTRAL NORTHERN THAILAND
	FROM 1999-2010 SEISMIC DATA OF THE KAENG
	SUA TEN SEISMOGRAPHIC NETWORK
Ву	Mrs. Watana Khamkom
Field of Study	Geology
Thesis Advisor	Associate Professor Punya Charusiri, Ph.D.
Thesis Co-Advisor	Thanu Harnpattanapanich, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

_____Dean of the Faculty of Science

(Professor Supot Hannongbua, Dr.rer.nat.)

THESIS COMMITTEE _____Chairman (Assistant Professor Santi Pailoplee, Ph.D.)

_____Thesis Advisor

(Associate Professor Punya Charusiri, Ph.D.)

Thesis Co-Advisor

(Thanu Harnpattanapanich, Ph.D.)

.....Examiner

(Thanop Thitimakorn, Ph.D.)

_____External Examiner

(Assistant Professor Passakorn Pananont, Ph.D.)

วัฒนา คำคม : สภาพไหวสะเทือนของแผ่นดินบริเวณภาคเหนือตอนกลางประเทศไทยจาก ข้อมูลการไหวสะเทือนช่วงปี ๒๕๔๒-๒๕๕๓ ของโครงข่ายสถานีตรวจวัดแผ่นดินไหวแก่ง เสือเต้น (SEISMICITY OF CENTRAL NORTHERN THAILAND FROM 1999-2010 SEISMIC DATA OF THE KAENG SUA TEN SEISMOGRAPHIC NETWORK) อ.ที่ปรึกษา วิทยานิพนธ์หลัก: รศ. ดร.ปัญญา จารุศิริ, อ.ที่ปรึกษาวิทยานิพนธ์ร่วม: ดร. ธนู หาญพัฒน พานิชย์, 185 หน้า.

การวิจัยนี้เป็นการศึกษาลักษณะของแผ่นดินไหวที่เกิดขึ้นในพื้นที่ภาคเหนือตอนกลาง ประเทศไทย จากข้อมูลการไหวสะเทือนที่บันทึกได้จากสถานีตรวจวัดแผ่นดินไหวโครงข่ายแก่งเสือ เต้น กรมชลประทาน ด้วยการกำหนดตำแหน่งใหม่ โดยพิจารณาจากเวลาที่คลื่นปฐมภูมิและคลื่นทุติย ภูมิเดินทางมาถึง และวิธีโครงข่ายสามเหลี่ยม และการคำนวณเวลาเกิดแผ่นดินไหว 128 เหตุการณ์ ตั้งแต่ขนาด 2.2-6.2ML ในช่วง พ.ศ.2542 ถึง พ.ศ.2553

ผลการศึกษาพบว่าแผ่นดินไหวที่เกิดขึ้นในพื้นที่เป็นแผ่นดินไหวเล็กที่มีขนาดน้อยกว่า 4.9 ตามมาตราริกเตอร์ และเป็นแผ่นดินไหวตื้นที่มีความลึกของจุดศูนย์เกิดแผ่นดินไหวตั้งแต่ 0-61 กิโลเมตร ลักษณะการกระจายตัวของจุดเหนือศูนย์เกิดแผ่นดินไหวส่วนใหญ่ที่มีขนาดตั้งแต่ 3-4.9 เมื่อพิจารณาเฉพาะที่อยู่ห่างจากสถานีตรวจวัด 50 กิโลเมตร พบว่ามีความสัมพันธ์กับรอยเลื่อนมีพลัง ของกลุ่มรอยเลื่อนภาคเหนือของประเทศไทย แต่บางส่วนพบว่าไม่สัมพันธ์กับรอยเลื่อนที่มีรอยแตก ปรากฏอยู่ที่ผิว และถูกพิจารณาว่าเป็นแผ่นดินไหวพื้นฐาน โดยเฉพาะแผ่นดินไหวที่มีขนาดเล็กกว่า 3 และอยู่ลึกน้อยกว่า 10 กิโลเมตร ผลการศึกษาสรุปว่าบริเวณที่มีอันตรายจากแผ่นดินไหวมากที่สุด เป็นบริเวณที่อยู่ระหว่างละติจูด 18.75°-19.75°N และ ลองจิจูด 98.75°-99.75°E โดยอาศัย ความสัมพันธ์ของ Gutenberg-Richter Law ค่า b มีค่าเท่ากับ 0.59 ซึ่งน้อยกว่างานที่มีการศึกษา เมื่อก่อน จากการเปรียบเทียบข้อมูลจุดเหนือศูนย์เกิดแผ่นดินไหวที่ได้จากโครงข่ายแก่งเสือเต้น หลังจากกำหนดตำแหน่งใหม่แล้วกับข้อมูลก่อนการกำหนดตำแหน่ง และจากข้อมูลของกรม อุตุนิยมวิทยา พบว่ามีความแตกต่างกันทั้งตำแหน่งและขนาดของแผ่นดินไหว โดยตำแหน่งหลังการ กำหนดตำแหน่งใหม่ มีความสัมพันธ์กับรอยเลื่อนมีพลังมากกว่า

ภาควิชา	ธรณีวิทยา	ลายมือชื่อนิสิต
สาขาวิชา	ธรณีวิทยา	ลายมือชื่อ อ.ที่ปรึกษาหลัก
ปีการศึกษา	2557	ลายมือชื่อ อ.ที่ปรึกษาร่วม

~ ~ ~

5372536623 : MAJOR GEOLOGY

KEYWORDS: SEISMICITY / TRIANGULATION METHOD / ACTIVE FAULTS

WATANA KHAMKOM: SEISMICITY OF CENTRAL NORTHERN THAILAND FROM 1999-2010 SEISMIC DATA OF THE KAENG SUA TEN SEISMOGRAPHIC NETWORK. ADVISOR: ASSOC. PROF. PUNYA CHARUSIRI, Ph.D., CO-ADVISOR: THANU HARNPATTANAPANICH, Ph.D., 185 pp.

This thesis studies the characteristics of present-day earthquakes in northern Thailand from instrumental data recorded at the Kaeng Sua Ten seismographic network, Royal Irrigation Department, by relocating the earthquake location from event primary and secondary waves arriving times and the Triangulation method, from origin time of 128 earthquakes during the year 1999 to 2010.

The result of this study confirms that the earthquakes in the study area consist of small earthquake less than 4.9 on Richter magnitude scale and are shallow earthquakes with depth ranges from 0-61 kilometer. The earthquakes mostly have the magnitudes of 3-4.9. When considering those within 50 kilometers of the network center, it is found that the distribution of the earthquakes location is clearly and significantly associated with the fault zones of northern Thailand. However, some of the smaller than magnitude 3 and shallower than 10 kilometers which can be considered to be the back-ground earthquake did not relate to any lineament on the ground surface. The study also can be concluded that the highest seismic risk area is covered by latitude 18.75° -19.75 $^{\circ}$ N and longitude 98.75° -99.75 $^{\circ}$ E, based on Gutenberg-Richter relationship where the b-value is 0.59 which is smaller than the previously reported. The newly located epicenter of the Kaeng Sua Ten seismographic network's when compared to the previously located data and with those of Thai Meteorological Department are different both in the epicenter location and the magnitude. The newly located epicenters correlate better to the existing active fault locations.

Department:	Geology	Student's Signature
Field of Study:	Geology	Advisor's Signature
Academic Year:	2014	Co-Advisor's Signature

ACKNOWLEDGEMENTS

The author wishes to express her profound and sincere appreciation to her advisor, Associate Professor Punya Charusiri, and the thesis co-advisor, Mr.Thanu Harnpattanapanich, for their enthusiastic support, continuous guidance and invaluable advice throughout the period of this study.

Sincere thanks and appreciation are extended to the Thai Meteorological Department (TMD), the Department of Mineral Resources (DMR) and the Royal Thai Navy (RTN) for supporting data.

Thanks are also extended to Mr.Lertwiroj Kowattana the Director General of the Royal Irrigation Department (RID), Mr.Satit Maneepai director of Office of Engineering Topographical and Geotechnical Survey, RID and Mr.Pakorn Phetcharaburanin the director of Engineering Geology Division for providing permission suggestions in her graduate study.

Special thanks extend to Mr.Prawat Tiensiri, Mr.Uthai Hongjaisi, Mr. Songchai Suwuntuntula, Mr.Worapoj Nathapintu and Mr.Chin Changpookwong for their helps in collecting seismic data. The author would like to thank Mr.Preecha Saithong, Mr.Kitti Khaowiset, Ms.Wannaporn Panyawai, Ms.Pailin Muangsri and Mr.Anusorn Thongsoi for their helps in using computer software for analyst.

Finally, a very special thanks to her family for continuous spirit and emotional supports throughout the program. No amount of her gratitude to them would be sufficient. Last, but not least, her dearest daughter, Ms.Chaichan Khamkom, thank you again for her help and being a proofreader. Her responses make her work a better one.

CONTENTS

Page

THAI ABSTRACTiv	/
ENGLISH ABSTRACT	/
ACKNOWLEDGEMENTSv	ï
CONTENTSvi	i
LIST OF TABLES	×
LIST OF FIGURES	i
CHAPTER I INTRODUCTION	L
1.1 General Information	L
1.2 Objective	2
1.3 Study Area	2
1.4 Methodology	1
1.4.1 Planning and Preparation	1
1.4.2 Interpreting Seismograms	1
1.4.3 Re-locating Earthquakes	1
1.4.4 Comparison of Data from before and after Re-locating	1
1.4.5 Discussion and Conclusion	1
1.5 Research output	5
1.6 A Brief Guide to the Thesis ϵ	5
CHAPTER II LITERATURE REVIEWS 8	3
2.1 Seismology and Earthquake	3
2.1.1 Locating Earthquakes15	5
2.1.2 Measuring Magnitudes21	L

Page

2.1.3 Intensity of Earthquakes	23
2.1.4 The Gutenberg-Richter Recurrence Law	25
2.1.5 Acceleration of Ground Shaking	26
2.2 Earthquakes Study in Northern Thailand and Other Areas	
CHAPTER III INTERPRETING SEISMOGRAMS	
3.1 The KST Seismographic Network	
3.1.1 Seismograph Stations	
3.1.1.1 The MYOA and the MYOM Stations	
3.1.1.2 The KAEW Station	
3.1.1.3 The MONT Station	
3.1.1.4 The HTUM Station	
3.1.2 Types of Instruments	
3.1.2.1 Seismograph	
3.1.2.2 Accelerograph	
3.2 Seismograms of the KST Network	
3.3 Seismograms of the KST's Epicenters	61
CHAPTER IV RE-LOCATING EARTHQUAKES	97
4.1 Analyzing Magnitude and Epicenter and Depth	97
4.2 Calculating Origin Time	118
4.3 Results of Analysis Magnitude and Epicenter and Depth and Origin Time	e 120
4.3.1 Earthquakes Catalogue and Epicentral Map of the KST	120
4.3.2 Frequency and Magnitude Relations (b-value)	126
4.4 Analyzing Ground-motion Parameters	129

Page

4.4.1 Peak Ground Acceleration12	<u>29</u>
4.4.2 Duration of Motion13	31
4.4.3 Frequency Content13	32
4.5 Results of Ground Motion Parameters Analysis13	34
CHAPTER V COMPARISON OF DATA FROM BEFORE AND AFTER RE-LOCATING	37
5.1 Epicenter of Earthquakes before and after Re-locating	37
5.2 Frequency and Magnitude Relation (b-value) before and after re-locating 14	19
5.3 Relationship of Earthquakes with Geological Structures	51
5.4 Correlation of the KST's Epicenters with the TMD15	56
CHAPTER VI DISCUSSION	54
6.1 Characteristics of Seismicity in Northern Thailand	54
6.2 Frequency and Magnitude Distribution	58
CHAPTER VII CONCLUSIONS AND RECOMMENDATIONS	70
REFERENCES	73
VITA	35

LIST OF TABLES

Table 2.1. Abridged Modified Mercalli Intensity Scale. Note: The mean maximum
acceleration and velocity values for the wave motion are for firm
ground but vary greatly depending on type of earthquake source.
(Bolt, 1999)
Table 3. 1 The information of the seismograph stations and types of instrumentsof this study
Table 3. 2 Description of seismograms and accelerograms and grade of data of this study. 44
Table 3. 3 Details of the 20 strong ground-motion earthquakes of this study
Table 3. 4 Examples of the detailed summary table of the KST's seismograms,and grades of data
Table 3.5 The 181 KST's epicenters during the year 1999 to 2010 of this study
Table 3. 6 The 118 KST's epicenters of well-located earthquakes after screening79
Table 3. 7 The 10 new well-located earthquakes after interpreting seismograms 86
Table 4. 1 Logarithms of the amplitude (in millimeters) which the standard
torsion seismometer (To = 0.8, V = 2,800, h = 0.8) should register a
shock registered at Δ = 100 kilometers with an amplitude 0.01
millimeters (1 micron) (RID, 2000)100
Table 4. 2. Ranger seismometer model SS-1 of this study (RID, 2000)
Table 4. 3 The 128 well-located earthquakes during the year 1999 to 2010 after re-locating in this study
Table 4. 4. Earthquake Numbers in Northern Thailand, during the year 1999 to
2010

Table 4. 5. The PGA and frequency content of 20 strong ground-motion	
earthquakes at the MYOA station during the year 1999 to 2010 in this	
study	135
Table 5. 1. The KST's epicenters before and after re-locating	139
Table 5. 2. Earthquake Numbers in Northern Thailand, during the year 1999 to2010 before re-locating	150
Table 5. 3. Earthquake Numbers in Northern Thailand, during the year 1999 to2010 after re-locating.	151
Table 5. 4. Details of the TMD's seismic stations all part of Thailand	157
Table 5. 5. Correlation of the KST's epicenters with the TMD	158
Table 5. 6. Details of the TMD's epicenters with magnitude greater than 4 during the year 1978 to 1998	161
Table 6. 1. Recurrence intervals for earthquakes in the KST project (WCFS, 1996).	169

LIST OF FIGURES

Figure 1. 1	. Epicentral map during the year 1999 to 2010 of the KST seismographic network of this study.	3
Figure 1. 2	. Flow chart showing the methodology used in this study	5
Figure 2. 1	. Diagram illustrating the form of ground motion nears the ground surface in four types of earthquake waves (http://geo.cornel.edu/)	9
Figure 2. 2	. An Image of the world's plates and their boundaries (http://www.usgs.gov/).	. 10
Figure 2. 3	. Map of the major tectonic plates with arrows showing directions of movement. Amounts of movement are shown in centimeters per year (Abbott, 2004).	. 10
Figure 2. 4	. Type of faults (http://www.geosci.usyd.edu.au/)	. 11
Figure 2.5	. The point on the fault that first ruptures is the focus. The point on the Earth's surface directly above the focus is the epicenter (http://www.sci.tsu.ac.th)	. 12
Figure 2. 6	. Seismometer recording horizontal and vertical ground -motion (http://www.yorku.ca/)	. 13
Figure 2. 7	. A typical seismogram (http://samjshah.com/)	. 14
Figure 2.8	. Using the amplitude to derive the magnitude of the earthquake, and the distance from the earthquake to the station (Bolt, 1978)	. 16
Figure 2. 9	. The point where the three circles intersect is the epicenter of the earthquake. This technique is called triangulation	
	(https://sites.google.com).	. 17
Figure 2. 1	0. A simplified model of the crust showing the most important crustal phases observed at local and regional distances (Bormann, 2012)	. 18

Figure 2. 11. Principle of epicenter estimation by using the "circle and chord"	
method. S – station sites and d – distance of the event determined	
for each station (Bormann, 2012).	20
Figure 2. 12. Comparison of frequency magnitude and energy release	
(http://www.iris.edu/).	21
Figure 2. 13. Reading amplitudes. a) Reading the amplitude A from the base line	
and the period T from two peaks b) Reading the amplitude peak to	
peak (2A) (Havskov & Ottemoller, 2008).	23
Figure 2. 14. Isoseismal map showing the distribution of Modified Mercalli	
intensities for the 1958 Lituya Bay, Alaska earthquake M7.9	
(http://www.usgs.gov/)	24
Figure 2. 15. (a) Gutenberg-Richter recurrence law, showing meaning of a and b	
parameters; and (b) application of Gutenberg-Richter law to	
worldwide seismicity data (Esteva, 1970)	26
Figure 2. 16. Seismic source zones of Burma, Thailand and Indochina (Nutalaya et	
al., 1985). Noted that seismic source zones were recognized only in	
the Northern and western parts of Thailand	31
Figure 2, 17. Map showing active and suspected active faults in Thailand	
(Hinthong, 1997).	33
Figure 2. 18. Schematic focal mechanisms of Thailand and adjacent regions	34
Figure 2. 19. Late Cenozoic faults and historical seismicity (1362 to 1996) of the	
Northern Basin and Range seismotectonic province. Figure modified	
from (Bott et al., 1997; C.H. Fenton et al., 1997)	37
Figure 2. 20. Isoseismal Map of a) Nam Pat in Uttaradit earthquake on June 5,	
2005, and b) Lampang earthquake on June 29, 2005, and c) Mae Suai	
in Chiang Rai earthquake on December 7, 2005 (Harnpattanapanich,	
2006a, 2006b, 2006c)	38

Figure 3. 1. Th	ne instruments types of the KST seismographic network	41
Figure 3. 2. Th du	ne number of seismograms from each stations and the total number uring the year 1999 to 2010 of this study	42
Figure 3. 3. Th th M us	ne method used to retrieve seismic data from (a) accelerometer of ne MYOA station and (b) seismometer of the MYOM, the KAEW, the NONT and the HTUM stations of the KST seismographic network by sing KMI QuickTalk/Look program	43
Figure 3. 4. (a) 10 de) Seismogram of Amphoe Wiang Sa, Nan earthquake on September 0, 2009, M2.4, source-to-site HTUM 22.86 km, Azimuth 157.5433 egree	46
Figure 3. 5. (a) to fre) Seismogram of Laos earthquake on October 1, 2009, M3.7, source- p-site HTUM 255.3 km, Azimuth 127.7872 degree. (b) PSD and typical equencies of seismic wave	47
Figure 3. 6. (a) sc ty) Seismogram of Myanmar earthquake on September 11, 2009, M5.7, ource-to-site HTUM 291 km, Azimuth 277.8767 degree. (b) PSD and vpical frequencies of seismic wave	48
Figure 3. 7. (a) 20 (b) Seismogram of Southern Sumatra earthquake on September 30, 009, M7.6, source-to-site HTUM 2,187 km, Azimuth 181.5158 degree.)) PSD and typical frequencies of seismic wave	49
Figure 3. 8. (a) M PS) Seismogram of Samoa Islands earthquake on September 29, 2009, 18.0, source-to-site HTUM 10,300 km, Azimuth 108.8628 degree. (b) SD and typical frequencies of seismic wave	50
Figure 3. 9. (a) at) Seismogram of Local noise with 50Hz spike on September 13, 2009 t MONT station (b) PSD and typical frequencies of Local noise	51
Figure 3. 10. (a	a) Seismogram of Human noise on September 12, 2009 source-to- te MONT 2.0 m (b) PSD and typical frequencies of Human noise	52
Figure 3. 11. (a M	(a) Seismogram of Car noise on September 12, 2009 source-to-site IONT 3.0 m (b) PSD and typical frequencies of Car noise	53

Figure 3. 12. (a) Seismogram of High Frequency noise + 50Hz spike on September
30, 2009 at MONT station (b) PSD and typical frequencies of High
Frequency noise
Figure 3. 13. (a) Seismogram of explosion on July 12, 2009 source-to-site KKWN
2.0 km, Azimuth 108.8628 degree at MONT station (b) PSD and typical
frequencies of explosion noise55
Figure 3. 14. The number of natural earthquakes and noise signal during the year
1999 to 2010.from the KST seismographic network
Figure 3. 15. The number of seismograms of natural earthquakes from each
station and total after separating by interpreting seismogram
Figure 3. 16. The numbers of events and grade of data and total
Figure 3. 17. The number of well-located earthquakes during the year of 1999 to
2010
Figure 3. 18. The number of strong ground-motion earthquakes during the year of
1999 to 2010
Figure 3. 19. Number of earthquakes and magnitude of the KST's epicenters
before screening61
Figure 3. 20. Typical of seismogram which can read the arrival time of P- and S-
wave (P: primary wave and S: secondary wave)71
Figure 3. 21. Typical seismogram of teleseismic earthquake
Figure 3. 22. Typical of seismogram which can read the arrival time of P-wave
only72
Figure 3. 23. Typical of seismogram which can read the arrival time of S-wave
only73
Figure 3. 24. Typical seismogram of long period wave73

Figure 3. 25. Seismograms of earthquake on May 22, 1999 which the HTUM, the	
MYO, and the KAEW stations can read the arrival time of P-and S-	
Wave	74
Figure 3. 26. Seismograms of teleseismic earthquake on December 26, 2004	75
Figure 3. 27. Seismograms of earthquake on February 27, 2000 which the KAEW	
and the HTUM stations cannot read the arrival time of S-wave, and	
the MONT station cannot read the arrival time of P-wave	76
Figure 3. 28. Seismograms of long period earthquake on March 4, 2000	77
Figure 3. 29. Number of earthquakes and magnitude of the KST's epicenters after	
screening.	78
Figure 3. 30. Seismograms of well-located earthquake on June 29, 1999 from	
seismograph at the KAEW, the MONT and the MYOM stations	87
Figure 3. 31. Seismograms of well-located earthquake on July 15, 1999 from	
seismograph at the KAEW, the HTUM and the MONT stations	88
Figure 3. 32. Seismograms of well-located earthquake on August 10, 1999 which	
can read the arrival time of P and S-wave from 3 stations (the MONT,	
the KAEW, and the HTUM)	89
Figure 3. 33. Seismograms of well-located earthquake on November 6, 2001	
which can read the arrival time of P and S-wave from 3 stations (the	
MONT, the MYOM, and the KAEW)	90
Figure 3. 34. Seismograms of well-located earthquake on July 2, 2002 which can	
read the arrival time of P and S-wave from 3 stations (the KAEW, the	
HTUM, and the MONT)	91
Figure 3. 35. Seismograms of well-located earthquake on March 15, 2003 which	
can read the arrival time of P and S-wave from 3 stations (the KAEW,	
the MONT, and the MYOM)	92

Figure 3. 36. Seismograms of well-located earthquake on August 6, 2006 which
can read the arrival time of P and S-wave from 3 stations (the MONT,
the MYOM, and the HTUM)93
Figure 3. 37. Seismograms of well-located earthquake on April 23, 2007 which can
read the arrival time of P and S-wave from 4 stations (the KAEW, the
MONT, the MYOM, and the HTUM)
Figure 3. 38. Seismograms of well-located earthquake on July 14, 2007 which can
read the arrival time of P and S-wave from 4 stations (the KAEW, the
HTUM, and the MONT)95
Figure 3. 39. Seismograms of well-located earthquake on June 20, 2009 which can
read the arrival time of P and S-wave from 3 stations (the KAEW, the
MONT, and the HTUM)96
Figure 4. 1. Details of P and S-times, and time difference, and amplitude peak to
peak (V p-p), and frequency (f) of an earthquake on December 7, at
the KAEW station 2005 (file name AJ051)102
Figure 4. 2. The Microsoft Excel which using to analyze Magnitude and Epicenter
and Depth in this study107
Figure 4. 3. The arrival time of P-wave at the KAEW station is 20.145 sec
Figure 4. 4. The arrival time of S-wave at the KAEW station is 29.500 sec108
Figure 4. 5. The maximum amplitude of peak to peak at the KAEW station, Vp-p is 109
Figure 4. 6. The period of maximum amplitude at the KAEW station, T1 = 34.615
sec, T2 = 34.755 sec109
Figure 4. 7. The analysis of the results from KAEW station, earthquake magnitude
is 3.2, and epicentral distance is 75 km
Figure 4. 8. Epicentral map of earthquake on December 7, 2005 from the KAEW
station. Note; epicenter is a point on the radius of 75 km (pink circle),
but the location and direction were not clear

Figure 4. 9. The arrival time of P-wave at the MONT station is 18.825 sec111
Figure 4. 10. The arrival time of S-wave at the MONT station is 35.045 sec111
Figure 4. 11. The maximum amplitude of peak to peak at the MONT station, Vp-p is 0.0084907 V
Figure 4. 12. The period of maximum amplitude at the MONT station, T1 = 39.370 sec, T2 = 39.575 sec
Figure 4. 13. The analysis of the results from MONT station, earthquake magnitude is 4.1, and epicentral distance from. source-to-site is 130 km
Figure 4. 14. Epicentral map of earthquake on December 7, 2005 from the KAEW and the MONT stations. Note; epicenter is one of the two points on the ray intersects the 75 km radius (pink circle) of 130 km (red circle)113
Figure 4. 15. The arrival time of P-wave at the HTUM station is 0.520 sec
Figure 4. 16. The arrival time of S-wave at the HTUM station is 18.730 sec114
Figure 4. 17. The maximum amplitude of peak to peak at the HTUM station, Vp-p is 0.0041568 V
Figure 4. 18. The period of maximum amplitude at the HTUM station, T1 = 1.550 sec, T2 = 1.770 sec
Figure 4. 19. The analysis of the results from HTUM station, earthquake magnitude is 3.9, and epicentral distance from. source-to-site is 146 km
Figure 4. 20. Epicentral map of earthquake on December 7, 2005 from the KAEW, the MONT and the HTUM stations. Note; epicenter is the point of intersection of the radius 75 km (pink circle), 130 km (red crcle) and 146 km radius (green circle)
-

Figure 4. 21. The results of analyzing earthquake on December 7, 2005 of the
KAEW, the MONT and the HTUM stations; average magnitude M3.8,
latitude 19.73N, longitude 99.54E, and depth 8 km117
Figure 4. 22. An example of using Microsoft Excel program to calculate the origin
time of an earthquake on December 7, 2005. Note: each station has
time difference not more than 2 seconds119
Figure 4. 23. Epicentral map of 128 well-located earthquakes during the year
1999 to 2010 after re-locating124
Figure 4. 24. Number of earthquakes and magnitude of the total 128 events in
this study, and the only 99 events in the study area
Figure 4. 25. Number of earthquakes and depth of 99 events in the study area 125
Figure 4. 26. The Gutenberg-Richter law for the northern Thailand seismicity
period of 1999 to 2010, and for 1 year average the b value is 0.59128
Figure 4. 27. Reading the PGA = 0.003858g at 03:23:39.755 UTC in north-south
direction of Amphoe Ngao-Song border earthquake on March 2, 2008,
M3.10 and source-to-site the MYOA station 15 km.
Figure 4. 28. Reading the PGA = 0.000557g at 01:08:43:825 UTC in north-south
direction of Sumatra Indonesia earthquake on December 26, 2004,
M9.1 and source-to-site the MYOA station >1,500 km
Figure 4. 29. Bracketed duration obtained graphically from the accelerogram
based on the threshold acceleration of 0.05g
Figure 4. 30. The PSD and frequency content of Amphoe Ngao-Song earthquake
on March 2, 2008, M3.10 and source-to-site the MYOA station 15 km133
Figure 4. 31. The PSD and frequency content of Sumatra Indonesia earthquake on
December 26, 2004, M9.1 and source-to-site the MYOA station >1,500
km133

Figure 5. 1. Number of earthquakes and magnitude before and after re-locating.....141

Figure 5. 2. Epicentral map before and after re-locating of this study
Figure 5. 3. DEM map shows the epicenters before and after re-locating with magnitudes 2-3.9 near the proposed KST dam in Phrae and the epicenters on June 9, 2005 with M2.34 and source-to-site the MYOA and the MYOM stations 15 km
Figure 5. 4. DEM map shows the epicenters before and after re-locating with magnitudes 3-5.9 near the Mae Kuang dam in Chiang Mai143
Figure 5. 5. DEM map shows the epicenters before and after re- locating with magnitudes 3-5.9 in Amphoe Doi Sa ket and Amphoe Phrao, Chiang Mai
Figure 5. 6. DEM map shows the epicenters before and after re-locating with magnitudes 2-4.9 in Amphoe Phan and Amphoe Pa Daet, Chiang Rai144
Figure 5. 7. Location of an earthquake with a magnitude of 5.0 on July 2, 2002 (a) before re-locating; Amphoe Mae Suai Changwat Chiang Rai (b) after re-
Figure 5. 8. Location of an earthquake with a magnitude of 3.9 on July 3 2002 (a) before re-locating; Amphoe Kun Tan Changwat Chiang Rai (b) after re- locating; Northern Laos, based on data of KST network
Figure 5. 9. Location of an earthquake with a magnitude of 4.4 on September 18 2003 (a) before re-locating; Myanmar (b) after re-locating; Northern Laos, based on data of KST network
Figure 5. 10. Location of an earthquake with a magnitude of 3.9 on March 14 2004 (a) before re-locating; Amphoe Mae Chan Changwat Chiang Rai (b) after re-locating; Northern Laos, based on data of KST network 148
Figure 5. 11. Northern Thailand seismicity during the year 1999 to 2010 before re- locating, b-value = 0.52
Figure 5. 12. Northern Thailand seismicity during the year 1999 to 2010 after re- locating, b-value = 0.59

Figure 5. 13. Assemblage of landforms associated with active tectonic strike – slip faulting (Keller & Pinter, 1996)
Figure 5. 14. Epicenters of earthquake on June 9, 2005, before (green triangle) and after (yellow triangle) re-locating, plotting in Google map. Note: epicenter after re-locating on fault scarp
Figure 5. 15. Epicenters of earthquake on October 16, 2007, before (green triangle) and after (yellow triangle) re-locating, plotting in Google map. Note: epicenter after re-locating on fault scarp
Figure 5. 16. Topographic map shows the epicenters of earthquakes after re- locating (yellow circles and squares) near the Mae Kuang dam site. Note: epicenters associated with and closely to mapped fault155
Figure 5. 17. Epicenters of the KST before (green square) and after (yellow square) re-locating and the TMD's epicenter (purple square) of earthquake on December 12, 2006, plotting in Google map. They are all difference in magnitudes and locations of earthquakes
Figure 5. 18. Correlation of the KST's epicenters (yellow) of this study to the TMD's epicenters (purple) during the year 1978 to 1998
Figure 5. 19. Correlation of the KST's epicenters (yellow) of this study to the TMD's epicenters (purple) during the year 1978 to 1998 and the M6.3 (red star) earthquake on May 5, 2014
Figure 6. 1. Epicentral map shows the area of high seismic hazard between Lat 18.75-19.75 Long 98.75-99.75 estimated from present and historical seismicity
Figure 6. 2. Northern Thailand seismicity during the year 1999 to 2010 and for 1 year average b-value = 0.59

CHAPTER I

INTRODUCTION

1.1 General Information

Earthquake is a natural phenomenon which cannot be controlled and cannot predict when and where it will occur. The earthquake has low probability of occurrence but is highly damaging hazard as it can cause many casualties and destroy properties. For examples, the earthquake on December 26, 2004 with magnitude 9.1Mw along the northern Sumatra, Indonesia, caused more than 200,000 casualties in 14 countries.

For Thailand, from historical records, annals, stone inscription and chronicles stated that it has experienced the effects from moderate earthquakes to major earthquakes for many times, which caused damages to many regions within the country especially in the north and the west, for examples, the earthquakes on April 22, 1983 at the edge of Sri Nakarind dam in Kanchanaburi with magnitude 5.9, the earthquake on September 11, 1994 with magnitude 5.1 at Amphoe Mae Suai in Chiang Rai, the earthquake on December 13, 2006 with magnitude 5.1 at Amphoe Mae-Rim in Chiang Mai. Besides there are still earthquakes that have the epicenters around neighboring countries but the motions also effect Thailand, for examples, the earthquake on May 16, 2007 with magnitude 6.3 in the Democratic Republic of Laos, which is 110 km far from Chiang Rai to the northeast, the citizens in the upper north and in Bangkok could widely notice the motion of the earthquake. And for the latest one; the earthquake on May 5, 2014 with magnitude 6.3 in Mae Lao, Chiang Rai which caused great damage to more than 10,000 citizens households. Every time there is an earthquake in Thailand, there are always questions about the stability and safety of dams. Significant dams of the Royal Irrigation Department (RID) in northern Thailand are the Mae Suai dam, the Mae Kuang dam, the Mae Ngad dam, and also the Kaeng Sua Ten (KST) dam which hasn't been constructed since there are problems concerning earthquake. The dam is still under monitoring for earthquake, with the setup of a local seismographic network to monitor the earthquake in the area of 150 km around the location of the KST dam since 1999 until present. However, the characteristic of data analysis is still manual, has no standard uniform and lack continuity in data analysis, this makes it impossible to explain the characteristics of the earthquakes those had occurred in northern Thailand, thus give an disadvantage to perform the environmental impact assessment from the earthquake on the RID's dam. For this reason this research is expected to study the earthquakes collected from the instruments from the KST seismographic network during the year 1999 to 2010. The work included the review of the precision and accuracy of analyses, by using the same data, analysis procedure, and assisting analysis programs, but emphases on earthquake origin time calculation, and comparison of analysis with the Thai Meteorological Department (TMD) data, and the relation of earthquakes with geological structures is added.

1.2 Objective

The main purpose of this thesis is to study the characteristics of present-day earthquakes in northern Thailand during the year 1999 to 2010 from instrumental data recorded at the KST seismographic network. The main knowledge and techniques used for this study include interpreting seismogram, analyzing magnitudeepicenter-depth, calculating origin time, analyzing ground motion parameters, and correlating the results of this study to the TMD data and the existing geological structures maps. Results of thesis are to fulfill the following goals;

- 1. Identify characteristics of earthquakes before and after re-locating,
- 2. Explanation of relationship between frequency and magnitude (b-value) before and after re-locating,
- 3. Scoping the area of high seismic hazard in the study area.

1.3 Study Area

The study area is located in the northern region of Thailand between the latitude 17-20.50N and longitude 98.5-101.50E (Figure 1.1), and covered the area around the KST seismographic network and the proposed KST dam in Phrae.

Figure 1. 1. Epicentral map during the year 1999 to 2010 of the KST seismographic network of this study.

1.4 Methodology

The methodology of this research can be listed into 5 steps (Figure 1.2) as following:

1.4.1 Planning and Preparation

The first step involves collecting data for supporting further steps of study. This data is composed of reviewing literatures for pervious work, collecting earthquake epicenters and seismograms, selecting topographic maps and satellite imageries, and other related technical and nontechnical documents.

1.4.2 Interpreting Seismograms

Interpreting all of seismograms from the seismograph stations of the KST network during the year 1999 to 2010 for classifying natural earthquakes and noise signal, and for re-checking the well-located earthquakes to locate epicenters, and interpreting seismograms of the KST's epicenters for screening of only well-located earthquakes to re-locate.

1.4.3 Re-locating Earthquakes

Analyzing magnitude and epicenter and depth by using triangulation (circle and cord) method and studying the arrival time of Primary (P) and Secondary (S) waves of at least 3 stations. Analyzing peak ground acceleration, duration of motion, and frequency content.

1.4.4 Comparison of Data from before and after Re-locating

Identify epicenter of earthquakes before and after re-locating, and frequency and magnitude relation (b-value) before and after re-locating, and relationship of earthquakes with geological structures, and correlation of the KST's epicenters with the TMD.

1.4.5 Discussion and Conclusion

Discussion related to the results from characteristics of seismicity before and after re-locating, and frequency-magnitude distribution (b-value) along with the existing previous works, for examples, the magnitudes and epicenter and depth, and relationship of earthquakes with geological structures, and characteristics of strong ground-motion earthquakes from ground motion parameters.

Figure 1. 2. Flow chart showing the methodology used in this study.

1.5 Research output

The main output of this study is;

- 1. Characteristics of seismicity before and after re-locating.
- Frequency-magnitude distribution (b-value) before and after relocating.
- 3. The earthquake catalogue during the year 1999 to 2010 after relocating of the KST seismographic network and seismicity map at a scale1:2,500,000.

1.6 A Brief Guide to the Thesis

This thesis provides an emphasis on seismicity of central northern Thailand in succession of Chapters as following:

<u>Chapter I</u> mentions about an introduction, objective, study area, methodology and research output to the research project.

<u>Chapter II</u> notifies the seismology and earthquakes, seismic wave, locating earthquakes, origin time of earthquakes, measuring magnitudes, intensity of earthquakes, the Gutenberg-Richter Recurrence Law, acceleration of ground shaking, earthquakes study in northern Thailand and other areas.

<u>Chapter III</u> is the part of interpreting seismograms of the KST's epicenters for screening of only well-located earthquakes to re-locate, and classifying natural earthquakes and noise signal of all seismograms during the year 1999 to 2010 for rechecking the remaining well-located earthquakes to locate epicenters.

<u>Chapter IV</u> is the part of re-locating earthquakes which consist of analyzing magnitude and epicenter and depth, calculating origin time, and analyzing ground motion parameters.

<u>Chapter V</u> is the part of comparison of data from before and after relocating, epicenter of earthquakes before and after relocating, relationship of earthquakes with geological structures, and correlation of the KST's epicenters with the TMD.

<u>Chapter VI</u> is the part of discussion of characteristics of seismicity before and after re-locating, frequency-magnitude distribution (b-value). <u>Chapter VII</u> is the conclusion deduced from the result of study project research. The clearly-defined characteristics of seismicity in northern Thailand during the year 1999 to 2010 and the seismicity map at a scale 1:2,500,000 form the main output of this study.

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

CHAPTER II

LITERATURE REVIEWS

2.1 Seismology and Earthquake

Seismology is the study of earthquakes and seismic waves that move through and around the earth. A seismologist is a scientist who studies earthquakes and seismic waves. Seismicity refers to the geographic and historical distribution of earthquakes and the frequency or magnitude of earthquake activity in a given area which seismic activity refers to the phenomenon of earthquake activity or the occurrence of artificially produced earth tremors. Earthquake is ground shaking and radiated seismic energy caused most commonly by sudden slip on a fault, volcanic or magmatic activity, or any other sudden stress changes in the earthquakes in the Earth.

Seismic waves are the waves of energy caused by the sudden breaking of rock within the earth or an explosion. They are the energy that travels through the earth and is recorded on seismographs. There are several different kinds of seismic waves, and they all move in different ways. The two main types of waves are body waves and surface waves. Body waves can travel through the earth's inner layers, but surface waves can only move along the surface of the planet like ripples on water. Earthquakes radiate seismic energy as both body and surface waves (Figure 2.1).

Body waves, emitted by an earthquake, which travelling through the interior of the earth, arrive before the surface waves. These waves are of a higher frequency than surface waves. The first kind of body wave is the P wave or primary wave. This is the fastest kind of seismic wave and consequently the first to arrive at a seismic station. The P wave can move through solid rock and fluids, like water or the liquid layers of the earth. It pushes and pulls the rock it moves through just like sound waves push and pull the air. P waves are also known as compression waves, because of the pushing and pulling they do. Particles subjected to a P wave move in the same direction that the wave is moving in, which is the direction that the energy is traveling in, and is sometimes called the direction of wave propagation. The second type of body wave is the S wave or secondary wave, which is the second wave that is observed in an earthquake. An S wave is slower than a P wave and can only move through solid rock, not through any liquid medium. It is this property of S waves that led seismologists to conclude that the Earth's outer core is a liquid. S waves move rock particles up and down, or side-to-side perpendicular to the direction that the wave is traveling in (the direction of wave propagation).

Figure 2. 1. Diagram illustrating the form of ground motion nears the ground surface in four types of earthquake waves (http://geo.cornel.edu/).

Travelling only through the crust, surface waves are of a lower frequency than body waves, and are easily distinguished on a seismogram as a result. Though they arrive after body waves, it is surface waves that are almost entirely responsible for the damage and destruction associated with earthquakes. Earthquakes occur all the time all over the world, both along plate edges and along faults. Most earthquakes occur along the edge of the oceanic and continental plates. The earth's crust (the outer layer of the planet) is made up of several pieces, called plates (Figure 2.2). The plates under the oceans are called oceanic plates and the rest are continental plates. The plates are moved around by the motion of a deeper part of the earth (the mantle) that lies underneath the crust. These plates are always bumping into each other, pulling away from each other, or past each other. The plates usually move (Figure 2.3) at about the same speed that finger nails grow. Earthquakes usually occur where two plates are running into each other or sliding past each other.

Figure 2. 2. An Image of the world's plates and their boundaries

(http://www.usgs.gov/).

Figure 2. 3. Map of the major tectonic plates with arrows showing directions of movement. Amounts of movement are shown in centimeters per year (Abbott, 2004).

Earthquakes can also occur far from the edges of plates, along faults (Figure 2.4). Faults are cracks in the earth crust where sections of a plate (or two plates) are moving in different directions. Faults are caused by all that bumping and sliding the plates do. They are more common near the edges of the plates. Earthquakes occur when a fault ruptures and stored energy is released as seismic waves.

Figure 2. 4. Type of faults (http://www.geosci.usyd.edu.au/)

Normal faults are the cracks where one block of rock is sliding downward and away from another block of rock. These faults usually occur in areas where a plate is very slowly splitting apart or where two plates are pulling away from each other. A normal fault is defined by the hanging wall moving down relative to the footwall, which is moving up.

Reverse faults are cracks formed where one plate is pushing into another plate. They also occur where a plate is folding up because it is being compressed by another plate pushing against it. At these faults, one block of rock is sliding underneath another block or one block is being pushed up over the other. A reverse fault is defined by the hanging wall moving up relative to the footwall, which is moving down.

Strike-slip faults are the cracks between two plates that are sliding past each other. Strike-slip faults occur when the displacement is horizontal and parallel to the trend or strike of the fault. This type of fault trends to be very large and linear consisting of several parallel fractures. Strike-slip faults extend through the lithosphere and have motion between two plates is transformed faults. Earthquakes are usually caused when rock underground suddenly breaks along a fault. This sudden release of energy causes the seismic waves that make the ground shake. When two blocks of rock or two plates are rubbing against each other, they stick a little. They do not just slide smoothly; the rocks catch on each other. The rocks are still pushing against each other, but not moving. After a while, the rocks break because of all the pressure that is built up. When the rocks break, the earthquake occurs. During the earthquake and afterward, the plates or blocks of rock start moving, and they continue to move until they get stuck again. The spot underground where the rock breaks is called the focus of the earthquake. The place right above the focus (on top of the ground) is called the epicenter of the earthquake (Figure 2.5).

Figure 2. 5. The point on the fault that first ruptures is the focus. The point on the Earth's surface directly above the focus is the epicenter (http://www.sci.tsu.ac.th).

Earthquake-like seismic waves can also cause by explosions underground. The largest underground explosions, from tests of nuclear warheads (bombs), can create seismic waves very much like large earthquakes. This fact has been exploited as a means to enforce the global nuclear test ban, because no nuclear warhead can be detonated on earth without producing such seismic waves.

Seismologists study earthquakes by going out and looking at the damage caused by the earthquakes and by using seismographs. A seismograph is an instrument that records the shaking of the earth's surface caused by seismic waves. The term seismometer is also used to refer to the same device, and the two terms are often used interchangeably. The first seismograph was invented in 132 A.D. by the Chinese astronomer and mathematician Chang Heng. Most seismographs today are electronic, but a basic seismograph is made of a drum with paper on it (Figure 2.6), a bar or spring with a hinge at one or both ends, a weight, and a pen. The one end of the bar or spring is bolted to a pole or metal box that is bolted to the ground. The weight is put on the other end of the bar and the pen is stuck to the weight. The drum with paper on it presses against the pen and turns constantly. When there is an earthquake, everything in the seismograph moves except the weight with the pen on it. As the drum and paper shake next to the pen, the pen makes squiggly lines on the paper, creating a record of the earthquake called a seismogram.

Figure 2. 6. Seismometer recording horizontal and vertical ground -motion (http://www.yorku.ca/).

By studying the seismogram, the seismologist can tell how far away the earthquake was and how strong it was. This record does not tell the seismologist exactly where the epicenter was, just that the earthquake happened so many miles or kilometers away from that seismograph. To find the exact epicenter, it needs to know what at least two other seismographs in other parts of the country or world recorded.

When look at a seismogram (Figure 2.7), there will be wiggly lines all across it. These are all the seismic waves that the seismograph has recorded. Most of these waves were so small that nobody felt them. These tiny microseisms can be caused by heavy traffic near the seismograph, waves hitting a beach, the wind, and any number of other ordinary things that cause some shaking of the seismograph. There may also be some little dots or marks evenly spaced along the paper. These are marks for every minute that the drum of the seismograph has been turning. How far apart these minute marks are will depend on kind of seismograph.

Figure 2. 7. A typical seismogram (http://samjshah.com/).

The P wave will be the first wiggle that is bigger than the rest of the little ones (the microseisms). Because P waves are the fastest seismic waves, they will usually be the first ones that a seismograph records. The next set of seismic waves on a seismogram will be the S waves. These are usually bigger than the P waves. The surface waves (Love and Rayleigh waves) are the other, often larger, waves marked on the seismogram. They have a lower frequency, which means that waves (the lines; the ups-and-downs) are more spread out. Surface waves travel a little slower than S waves (which, in turn, are slower than P waves) so they tend to arrive at the seismograph just after the S waves. For shallow earthquakes (earthquakes with a focus near the surface of the earth), the surface waves may be the largest waves recorded by the seismograph. Often they are the only waves recorded a long distance from medium-sized earthquakes.

2.1.1 Locating Earthquakes

In general to figure out just where that earthquake happened, it needs to look at a seismogram and need to know what at least two other seismographs recorded for the same earthquake. It will also need a map of the world, a ruler, a pencil, and a compass for drawing circles on the map.

Procedure for finding the distance to the epicenter and the earthquake's magnitude (Figure 2.8)

Step 1. Measure the distance between the first P wave and the first S wave. In this case, the first P and S waves are 24 seconds apart.

Step 2. Find the point for 24 seconds on the left side of the chart and mark that point. According to the chart, this earthquake's epicenter was 215 kilometers away.

Step 3. Measure the amplitude of the strongest wave. The amplitude is the height (on paper) of the strongest wave. On this seismogram, the amplitude is 23 millimeters. Find 23 millimeters on the right side of the chart and mark that point.

Step 4. Place a ruler (or straight edge) on the chart between the points one marked for the distance to the epicenter and the amplitude. The point where the ruler crosses the middle line on the chart marks the magnitude (strength) of the earthquake. This earthquake had a magnitude of 5.0.

Figure 2. 8. Using the amplitude to derive the magnitude of the earthquake, and the distance from the earthquake to the station (Bolt, 1978).

Procedure for finding the distance to the epicenter (Figure 2.9).

Step 1. Check the scale on the map. It should look something like a piece of a ruler. All maps are different. On the map, one centimeter could be equal to 100 kilometers or something like that.

Step 2. Figure out how long the distance to the epicenter (in centimeters) is on the map. For example, say the map has a scale where one centimeter is equal to 100 kilometers. If the epicenter of the earthquake is 215 kilometers away, that equals 2.15 centimeters on the map.

Step 3. Using the compass, draw a circle with a radius equal to the number that came up with in Step #2 (the radius is the distance from the

center of a circle to its edge). The center of the circle will be the location of the seismograph. The epicenter of the earthquake is somewhere on the edge of that circle.

Step 4. Do the same thing for the distance to the epicenter that the other seismograms recorded (with the location of those seismographs at the center of their circles). All of the circles should overlap. The point where all of the circles overlap is the approximate epicenter of the earthquake.

Figure 2. 9. The point where the three circles intersect is the epicenter of the earthquake. This technique is called triangulation (https://sites.google.com).

Havskov and Ottemoller (2008) described that the earthquake location is defined by the earthquake hypocenter and the origin time. The hypocenter is the physical location, usually longitude, latitude and depth below the surface. The epicenter is the projection of the earthquake location on the Earth's surface. The epicentral distance is the distance from the epicenter to the station along the surface of the earth. Generally, the distance can be obtained from the difference in arrival time of two phases, usually P and S, and the distance can be calculated as

$$\Delta = (t_s - t_p) \frac{\forall p \forall s}{\forall p - \forall s}$$
(2.1)

where t_p and t_s are the P and S-arrival times (s) respectively, v_p and v_s are the P and S velocities respectively and Δ is the epicentral distance (km).

The equation (2.1) is applicable for the travel-time difference between Sg and Pg, i.e., the direct crustal phases of S and P, respectively (Figure 2.10). They are first onsets of the P-and S-wave groups of local events only for distance up to about 100-250 km, depending on crustal thickness and source depth.

Figure 2. 10. A simplified model of the crust showing the most important crustal phases observed at local and regional distances (Bormann, 2012).

The basic method for determining the epicenter of local or regional seismic sources by hand, using the triangulation (circle and chord) method.

Procedures for finding the epicenter from the triangulation method are as following:

1. First, identify the seismic phases of earthquakes;

2. If no local travel-time curves are available, a first rough estimate of the hypocenter distance d or of the epicentral distance (both in km) may be found using the following "rules-of-thumb"

$$d = t(Sg - Pg) \times 8$$
 (2.2)

Which t as the travel-time difference in seconds between the respective seismic phases. These rules are approximations for a single layer crust with an average Pg-wave velocity of 5.9 km/s and a sub-Moho velocity of 8 km/s and a velocity ratio $V_s/V_p = \sqrt{3}$;

3. Draw circles with a compass around each station Si, which is marked on a distance-true map projection, with the radius di determined from the records of each station;

4. The circles will usually cross at two points, not one point (the thought epicenter) thus forming an area of overlap (Figure 2.11, shaded area) within which the epicenter most probably lies;

5. Usually, it is assumed, that the best estimate of the epicenter position is the center of gravity of this shaded area of overlap. The best estimate of the epicenter is found by drawing so-called "chords", i.e., straight lines connecting the two crossing points of each pair of circles. The crossing point (or smaller area of overlap) of the chords should be the best estimate of the epicenter (Figure 2.11).

Figure 2. 11. Principle of epicenter estimation by using the "circle and chord" method. S – station sites and d – distance of the event determined for each station (Bormann, 2012).

The location of earthquake can be located when at least 3 seismic stations are available, a simple manual location can be made from drawing circles with the center at the station locations and the radii equal to the epicentral distances calculated from the S-P times.

The origin time or the actual time that the earthquake occurred at the source can be defined by the formula;

$$O_{time} = P - [(S - P) \times 1.37]$$
 (2.3)

When

- $O_{time} \quad \mbox{is the occurrence time for the earthquake.}$
- P is the arrival time of the primary wave.
- S is the arrival time of the secondary wave.
- 1.37 is the constant value if Poisson's ratio is equal to 0.25 (Richter, 1958)

2.1.2 Measuring Magnitudes

Magnitude is an estimation of the energy release or the size of an earthquake. The estimates are generally calculated from the amplitude of wave energy on a seismograph adjusting for the magnification of the seismograph and the distance of the seismograph station from the earthquake. The first magnitude scale was defined by (Richter, 1935) for Southern California. The Richter magnitude is calculated from the amplitude of the largest seismic wave recorded for the earthquake, no matter what type of wave was the strongest. The Richter magnitudes are based on a logarithmic scale (base 10). What this means is that for each whole number one go up on the Richter scale, the amplitude of the ground motion recorded by a seismograph goes up ten times. Using this scale, a magnitude M5 earthquake would result in ten times the level of ground shaking as a magnitude M4 earthquake (and 32 times as much energy would be released). Most of the earthquakes that occur each year are magnitude M2.5 or less, too small to be felt by most people (Figure 2.12). The Richter magnitude scale can be used to describe earthquakes so small that they are expressed in negative numbers. The scale also has no upper limit, so it can describe earthquakes of unimaginable and (so far) inexperienced intensity, such as magnitude 10.0 and beyond.

จหาลงกรณ์มหาวิทยาลัย

Figure 2. 12. Comparison of frequency magnitude and energy release (http://www.iris.edu/).

Although Richter originally proposed this way of measuring an earthquake's size, which only used a certain type of seismograph and measured shallow earthquakes in Southern California. Scientists have now made other magnitude scales, all calibrated to Richter's original method, to use a variety of seismographs and measure the depths of earthquakes of all sizes. All other magnitude scales are related to this scale. The local magnitude M₁ is defined as shown in equation (2.4)

$$M_{\rm L} = \log(A) - Q_{\rm d}(\Delta) \tag{2.4}$$

Where A is the maximum amplitude on a Wood-Anderson seismograph (which measures displacement for f >1.25 Hz) $Q_d(\Delta)$ is a distance correction function

Several magnitude scales use maximum amplitude and often the corresponding period. There are two ways of doing this;

a) Read the amplitude from the base line and the period from two peaks. However this might be difficult, at least when done manually, due to the location of the base line.

b) Read the maximum peak to peak amplitude and divide by 2. This is the most common practice and the simplest to do both manually and automatically. The period can be read either from two peaks or as half the period from the two extremes.

Figure 2. 13. Reading amplitudes. a) Reading the amplitude A from the base line and the period T from two peaks b) Reading the amplitude peak to peak (2A) (Havskov & Ottemoller, 2008).

2.1.3 Intensity of Earthquakes

Another way to measure the strength of an earthquake is to use the Mercalli scale. Invented by Giuseppe Mercalli in 1902, this scale uses the observations of the people who experienced the earthquake to estimate its intensity. The <u>Mercalli scale</u> is not considered as scientific as the Richter scale, though. Some witnesses of the earthquake might exaggerate just how bad things were during the earthquake and one may not find two witnesses who agree on what happened; everybody will say something different. The amount of damage caused by the earthquake may not accurately record how strong it was either.

Although numerous intensity scales have been developed over the last several hundred years to evaluate the effects of earthquakes, the one currently used in the United States is the Modified Mercalli Intensity (MMI) Scale. It was developed in 1931 by the American seismologists Harry Wood and Frank Neumann. This scale, composed of 12 increasing levels of intensity that range from imperceptible shaking to catastrophic destruction, is designated by Roman numerals. It does not have a mathematical basis; instead it is an arbitrary ranking based on observed effects.

The MMI value assigned to a specific site after an earthquake has a more meaningful measure of severity to the nonscientist than the magnitude because intensity refers to the effects actually experienced at that place. The maximum observed intensity generally occurs near the epicenter (Figure 2.14). The lower numbers of the intensity scale generally deal with the manner in which the earthquake is felt by people. The higher numbers of the scale are based on observed structural damage.

Figure 2. 14. Isoseismal map showing the distribution of Modified Mercalli intensities for the 1958 Lituya Bay, Alaska earthquake M7.9 (http://www.usgs.gov/).

The first main earthquake hazard (danger) is the effect of ground shaking. Buildings can be damaged by the shaking itself or by the ground beneath them settling to a different level than it was before the earthquake (subsidence). The second main earthquake hazard is ground displacement (ground movement) along a fault. The third main hazard is flooding as an earthquake can rupture (break) dams or levees along a river. The fourth main earthquake hazard is fire. However most of the hazards to people come from man-made structures themselves and the shaking they receive from the earthquake. The real dangers to people are being crushed in a collapsing building, drowning in a flood caused by a broken dam or levee, getting buried under a landslide, or being burned in a fire.

2.1.4 The Gutenberg-Richter Recurrence Law

In order to analyze seismic hazard of an areas, it is necessary to evaluate the frequencies of earthquakes that occur in that specific area, this can be calculated from the Gutenberg-Richter Recurrence Law (Gutenberg & Richter, 1944), which is the study of the numbers of the opportunity of earthquakes with different magnitudes occurrences within the specific area. The resulting Gutenberg-Richter law for earthquake recurrence was expressed as

$$\log \lambda_{\rm m} = a - bm \qquad (2.5)$$

where λ_m is the mean annual rate of exceedance of magnitude m, 10^a is the mean yearly number of earthquakes of magnitude greater than or equal to zero,

b (the *b* value) describes the relative likelihood of large and small earthquakes.

The Gutenberg-Richter law is illustrated schematically in Figure 2.15a. As the *b* value increases, the number of larger magnitude earthquakes decrease compared to those of smaller magnitudes. The Gutenberg-Richter law is not restricted to the use of magnitude as a descriptor of earthquake size; epicentral intensity has also been used. Worldwide recurrence data are shown in Figure 2.15b.

The Gutenberg-Richter law described a pattern in the seismic data that related the number of earthquakes in a given area (or around the entire world) over a fixed period of time to the magnitude of those earthquakes. As it turns out, when Gutenberg-Richter plots are made for various data sets all over the world, most end up having a *b* value very close to 1, usually slightly less. This basic relation seems to be a universal property of seismicity.

Figure 2. 15. (a) Gutenberg-Richter recurrence law, showing meaning of a and b parameters; and (b) application of Gutenberg-Richter law to worldwide seismicity data (Esteva, 1970).

2.1.5 Acceleration of Ground Shaking

(Bolt, 1999) described ground acceleration as another measure of size of earthquakes. The notion of acceleration is of key importance when trying to measure any type of varying motion such as strong ground shaking. The strong-motion seismographs have been specially designed to record the high-amplitude shaking of the ground. The records obtained can be directly read as acceleration, velocity, or displacement of the ground. Strong-motion seismographs are designed to record the strongest shaking and thus tell us about the felt and damaging motion near the source of the shaking. It is useful to scale acceleration against a value with which everyone is familiar. The magnitude of accelerations when stated in physical terms often expressed as a centimeter per second per second, or cm/sec². This base reference is the acceleration due to gravity; that is, the acceleration with which a ball falls if released at rest in vacuum (to eliminate wind resistance), and will call this acceleration 1.0g. Although acceleration of seismic motion is important, a full understanding of vibratory effects also requires an understanding of the velocity and

displacement of the ground and such wave properties as frequency. In earthquakes, the values of ground acceleration, velocity, and displacement vary a great deal, depending on the frequency of the wave motion. High-frequency waves (higher frequencies than 10 hertz) tend to have high amplitudes of acceleration but small amplitudes of displacement, compared with long-period waves, which have small accelerations and relatively large velocities and displacement. Although peak or maximum, acceleration values are important, another point to recognize is that the damage to structures may be occurring throughout the entire period of strong ground shaking. Indeed, the overall damage may be more closely correlated to the total duration of the strong motion than to any particular peak on the record. For this reason, the second parameter of importance in acceleration records is the duration of strong shaking. A useful measure of duration is called the bracketed duration. This is the duration of shaking above certain threshold acceleration value, commonly taken to be 0.05g (Bolt, 1969) and is defined as the time between the first and last peaks of motion that exceed this threshold value. Studies indicate that damage is often attributable to the speed of the back-and-forth motion of the foundation rather than to its peak acceleration. Consequently, in general, the higher the seismic intensity, the higher the average velocity of the shaking. Nevertheless, the mean accelerations have much bearing on the forces affecting a structure (Table 2.1).

(Bolt, 1969) proposed bracketed duration, the duration at a particular frequency is the elapse time between the first and last acceleration excursion greater than a given level (0.05g). Due to duration of strong seismic shaking is a sensitive function of wave frequency, amplitude threshold, and Richter magnitude. The magnitude dependence arises from the finite geometry of fault rupture. Frequency dependence enters through the exponential attenuation law for rock; for larger earthquakes (greater fault breakage), duration of higher frequency (>1 Hz) horizontal wave with amplitudes above 0.05g ground acceleration is unlikely to exceed 35 to 40 sec. Lack of precise definition has led to exaggerated estimates of duration for some

Table 2.1. Abridged Modified Mercalli Intensity Scale. Note: The mean maximum acceleration and velocity values for the wave motion are for firm ground

but vary greatly depending on type of earthquake source. (Bolt, 1999).

		Average peak	
Average peak	intensity value	acceleration	
velocity		(g is gravity = 9.80	
(centimeter per	and description	meter per second	
second)		squared)	
	I. Not felt except by a very few under especially favorable circumstances. (I Rossi-Forel scale)		
	II. Felt by only a few persons at rest, especially on upper floors of buildings; delicately		
	suspended object may swing. (I to II Rossi-Forel scale)		
	III. Felt quite noticeably indoors, especially on upper floors of buildings, but many people do		
	not recognize it as an earthquake; standing motor cars may rock slightly; vibrations like		
1 - 2	passing of a truck; duration estimated. (III Rossi-Forel scale) IV. During the day felt indoors by many, outdoors by few; at night some awakened; dishes,	0.015g - 0.02g	
	windows, doors disturbed; walls make cracking sound; sensation like heavy truck striking		
	building; standing motor cars rocked noticeably. (IV to V Rossi-Forel scale)		
2 - 5	V. Felt by nearly everyone, many awakened; some dishes, windows, etc., broken; a few	0.03g - 0.04g	
	instances of cracked plaster; unstable objects overturned; disturbances of trees, piles, and		
	other tall objects sometimes noticed; pendulum clocks may stop. (V to VI Rossi-Forel scale)		
5 - 8	VI. Felt by all, many frightened and run outdoors; some heavy furniture moved; a few	0.06g - 0.07g	
	instances of fallen plaster or damaged chimneys; damage slight. (VI to VII Rossi-Forel scale)		
8 - 12	VII. Everybody runs outdoors; damage negligible in buildings of good design and construction;	0.10g - 0.15g	
	slight to moderate in well-built ordinary structures; considerable damage in poorly built or		
	badly designed structures; some chimneys broken; noticed by persons driving motor cars.		
	(VIII Rossi-Forel scale)		
20 - 30	\ensuremath{VIII} . Damage slight in specially designed structures; considerable in ordinary substantial	0.25g - 0.30g	
	buildings, with partial collapse, great in poorly built structures; panel walls thrown out of		
	frame structures; fall of chimneys, factory stacks, columns, monuments, walls; heavy		
	furniture overturned; sand and mud ejected in small amount; changes in well water;		
	person driving motor car disturbed. (VIII+ to IX Rossi-Forel scale)		
45 - 55	IX. Damage considerable in specially designed structures; well-designed frame structures	0.5g - 0.55g	
	thrown out of plumb; great in substantial building, with partial collapse; buildings shifted		
	off foundations; ground cracked conspicuously; underground pipes broken. (IX+ Rossi-		
More than 60	X. Some well-built wooden structures destroyed; most masonry and frame structures	More than 0.60g	
	destroyed with foundations; ground badly cracked; rails bent; landslides considerable from		
	river banks and steep slopes; shifted sand and mud; water splashed over banks. (X Rossi-		
	XI. Few, if any (masonry) structures remain standing; bridges destroyed; broad fissures in		
	ground; underground pipelines completely out of service; earth slumps and land slips in		
	soft ground; rails bent greatly.		
	XII. Damage total; practically all works of construction are damaged greatly or destroyed;		
	waves seen on ground surface; lines of sight and level are distorted; objects thrown into		
	the air.		

design purposes. Filtered records of ground acceleration yield a table for "bracketed duration" as a function of magnitude and source-to-site distance.

(Kramer, 1996) stated that the dynamic response of compliant objects, be they buildings, bridge, slopes, or soil deposits, is very sensitive to the frequency at which they are loaded. Earthquakes produce complicated loading with components of motion that span a board range of frequencies. The frequency content describes how the amplitude of ground motion is distributed among different frequencies. Since the frequency content of an earthquake motion will strongly influence the effects of that motion, characterization of the motion cannot be complete without consideration of its frequency content. The frequency content of a ground motion can also be described by a power spectrum or power spectral density function. The power spectral density function can also be used to estimate the statistical properties of a ground motion and to compute stochastic response using random vibration techniques (Clough & Penzien, 1975; Vermarcke, 1976; Yang, 1986); Power spectral density (PSD) function shows the strength of the variations (energy) as a function of frequency. In other words, it shows at which frequencies variations are strong and at which frequencies variations are weak.

2.2 Earthquakes Study in Northern Thailand and Other Areas

Earthquake in Northern Thailand have been recognized for long time since the past historical period until present day but these earthquakes are just small to moderate levels. Although in this region great earthquakes have not been recorded, most of strong earthquakes have been reported frequently in Myanmar Andaman-Sumatra belt.

In an attempt to understand characteristics of earthquake ground motion of central northern Thailand in this research study, the results of related documents and papers from previous studies are necessary. They are listed below.

(Gutenberg & Ritchter, 1954) reported that there are two earthquake epicenters with M6 in Lao PDR, in December 22, 1925 and February 12, 1934.

(Bolt & Miller, 1971) studied seismicity of northern and central California during the period of 1965 to 1969. The results of this study found nine of the largest earthquakes with magnitudes 5-6.

(Nutalaya, Sodsri, & Arnold, 1985) studied the seismology of Thailand and structure framework of the Chao Phaya Basin and seismotectonic source zones are subsequently delineated. The seismic source zones in mainland Southeast Asia can be separated into twelve zones. Zones F and G on the west and the north are located within Thailand, respectively (Figure 2.16). The area of this study is situated in the zone G (Northern Thailand).

(Siribhakdi, 1986) studied seismogenic in Thailand and periphery and reported earthquakes in Thailand throughout her past 1,500 year history. Many of the earthquakes found have closed relation with four major faults including the Three Pagoda, the Si Sawat, the Moei-Uthai-Thani, and the Mae Hong Son-Mae Sariang Faults. He mentioned that the earthquakes in Thailand are associated with tectonism, interpreted to be related to subduction and spreading ridge in the Andaman Sea. Furthermore, the most seismicity area in Thailand is located in the west, and the present day seismicity might be related to the opening activities of Cenozoic basins.

(Hinthong, 1991) investigated the role of tectonic setting in earthquake events in Thailand. He reported that earthquakes in Thailand are closely related to two seismic source zones, Zone F of the Tenasserim Range and Zone G of the Northern Thailand (Nutalaya et al., 1985). The faults within zone F are interpreted to be more active than those of zone G which are inferred to be possibly potentially active faults.

(WCFS, 1996) estimated earthquake recurrence in northern Thailand (the project region of the KST dam site). The b-value of 0.92 ± 0.12 appears reasonable based on comparison with other estimates. The estimated recurrence for the project region suggests that M6 and grater earthquakes occur once every 56 years on average although the uncertainty in this return period is large.

Figure 2. 16. Seismic source zones of Burma, Thailand and Indochina (Nutalaya et al., 1985). Noted that seismic source zones were recognized only in the Northern and western parts of Thailand.

(Charusiri, Daorerk, & Supajanya, 1996) applied several remote sensing techniques to study geological structures related to earthquakes in Thailand and neighboring countries. The results are useful in determining the seismic source zones to indicate the earthquake-prone areas and proposed a new seismotectonic (or seismic-source) map.

(Hinthong, 1997) studied the project entitled "Study of Active Faults in Thailand". According to various authors, three approaches to define active faults can be distinguished and applied, as general definition, engineering definition, and regulatory definition. Those three applications of definitions were discussed, based primarily on its original definition which was proposed in the context of a two-fold classification of dead and alive or active faults, and with respect to their potential for recurrence of displacement or offset. Based upon available data, and with the exclusion of the tentatively inactive and inactive classification, fault activity can be classified as three classes namely, active, potentially active, and tentatively active. Basically, there are three major criteria for recognition of active faults viz, geologic, historic, and seismologic criteria (Figure 2.17).

(Bott et al., 1997) mentioned that northern Thailand is similar to the Basin and Range province in the western United States of America in term of earthquake processes and tectonics. In northern Thailand, seismicity is diffusely distributed, of low to moderate levels, is generally not associated with known faults with surficial expression, and is probably confined to the upper 15 to 20 km of the crust, similar to the Basin and Range province. However, the largest known earthquake in the north has not exceeded magnitude 6.5Ml compared to the Basin and Range province in which record on paleoseismic investigation indicated maximum capable earthquake is about magnitude 6.75Mw and greater. The result based on focal mechanisms reveals that both regions have been formed by undergoing E-W extension resulting in active normal and oblique-slip faulting (Figure 2.18).

Figure 2. 17. Map showing active and suspected active faults in Thailand (Hinthong, 1997).

Figure 2. 18. Schematic focal mechanisms of Thailand and adjacent regions (Bott et al., 1997).

(C.H. Fenton, Charusiri, Hinthong, Lumjuan, & Mangkonkarn, 1997) studied on late Quaternary faulting in northern Thailand. Several tectonic geomorphological features, which indicate recent movements, had been observed along seven faults. These faults are the Phrae, the Phrae basin, the Long, the Nam Pat and the Phayao faults. The recurrence intervals of these faults range from thousand to tens of thousands years. These faults are capable to generate earthquakes equal or greater than magnitude 7Mw.

(Hongjatsee, 1999) investigated the major faults and seismic hazard in northern Thailand. Based on tectonic morphology of faults, such as stream offsets, triangular facets, and canyon shapes, the high slip rates of the Mae Chan and Wang Nua faults are given as 0.1-3.7 and 0.8-3.5 mm/yr, respectively. The Thoen and Phrae faults were assigned a low slip rates, in the range of about 0.01-0.1 mm/yr.

(Kosuwan, Saithong, A., Takashima, & Charusiri, 1999) applied remote-sensing, field investigation, dating data to evaluate paleoseismology of the Mae Chan Fault in the northern most part of Thailand. Based on dating result, fault movements gave rise to earthquake of about 92,000, 67,000, 48,000, 25,000 and 1,600 years in age. The 1,600 years ago event probably caused a characteristic earthquake with a magnitude greater than magnitude7Mw.

(Charusiri et al., 2001) published the map of seismically active belts (SAB) including active fault zones in Thailand. They classified the fault zone into 3 groups based mainly on the plenty TL dates of fault activities; active, potentially active, and tentatively active. Three new fault zones were proposed in this map; The Pua and Payao Faults in the north and the Tha Kheak Fault in the northeast. Note that, the Mae Hong Son Fault Zone in this map and the Mae Sariang Fault Zone proposed previously is identical.

(Rhodes, Perez, Lamjuan, & Kosuwan, 2002) studied kinematics of the Mae Kuang Fault and evidences from satellite images and aerial photographs. They suggested that the Mae Kuang fault accommodates the transfer of extension between Chiang Mai basin and Wiang

Pa Pao basin which is sinistral offset between 400 and 700 m and the slip rate must be between 0.175 and 0.7 mm/yr.

(Udchachon, 2002) investigated the neotectonics of the Phrae basin with integration of data from remote-sensing interpretation, field investigation, seismic profiles, and focal mechanism data. He estimated that the southeastern segment of the Phrae fault system is a potentially active fault with maximum slip-rate of 0.06 mm/yr. This evidence is consistent with the study on contemporary stress axis orientation in this area which reveals a roughly east-west trend and north-south trend of extensional and compressional axes, respectively.

(C. H. Fenton, Charusiri, & Wood, 2003) conducted the investigation of recent paleoseismic and identified a number of active faults in Northern and Western Thailand. Mae Chan fault and the Three Pagodas fault zones are determined as strike-slip faults, with slip rates 0.1-0.3 mm/yr and damage earthquake of magnitude 7.5. In the northern part of Thailand, six major faults show sense of movements as slip-rates between 0.5-2.0 mm/yr in normal-oblique fault, and damage earthquake about magnitude 7 (Figure 2.19).

(Charusiri et al., 2006) studied paleoearthquake along Mae Yom Fault Zone from the evidences of remote-sensing interpretation, field investigation, and GPR profiles. The appearances of sharp lineaments are well observed and they indicate the oblique-left-lateral sense of movement. The slip-rate of fault movement is 0.14-0.8 mm/yr and paleoearthquake magnitude using surface rupture length is magnitude 6.3-6.7 Mw.

(Harnpattanapanich, 2006a, 2006b, 2006c) studied macroseismic of a) Nam Pat in Uttaradit earthquake on June 5, 2005, and b) Lampang earthquake on June 29, 2005 and c) Mae Suai in Chiang Rai earthquake on December 7, 2005. The intensity (isoseismal line) with the most severe (meizoseismal area) is consistent with the orientation of the main structure and along faults in the study area (Figure 2.20).

(Khaowiset, 2007) studied neotectonics along the Pua Fault in Nan. Based on remote-sensing and thermoluminescence dating , the Pua Fault is north-south trending, oblique-slip fault with a total length of about 130 km. The slip rate of this fault segment is estimated as 0.3 mm/yr and maximum paleoearthquake of magnitude 6.79 Mw.

Figure 2. 19. Late Cenozoic faults and historical seismicity (1362 to 1996) of the Northern Basin and Range seismotectonic province. Figure modified from (Bott et al., 1997; C.H. Fenton et al., 1997).

Figure 2. 20. Isoseismal Map of a) Nam Pat in Uttaradit earthquake on June 5, 2005, and b) Lampang earthquake on June 29, 2005, and c) Mae Suai in Chiang Rai earthquake on December 7, 2005 (Harnpattanapanich, 2006a, 2006b, 2006c).

(Khamkom, 2014) studied peak ground acceleration, peak ground velocity, duration of motion, and frequency content of main shock with magnitude 6.3 and aftershocks with magnitude 5-6 and magnitude 4-5 for the purpose to describe the characteristics of strong ground motion and to evaluate the seismic hazard of the Mae Suai dam by using more than one ground motion parameters since using of only peak ground acceleration is unable to describe clearly. The peak ground acceleration at the Mae Suai dam site of main shock with magnitude 6.3 on May 5, 2014 is 0.33 g in the East-West component which is the highest value from the instrumental data that have been recorded in Thailand. The earthquakes that affected the Mae Suai dam based on the PGA and bracketed duration (usually 0.05g) were earthquakes with magnitudes about 3.8 and greater.

CHAPTER III

INTERPRETING SEISMOGRAMS

In this step all of seismograms which were collected from the KST seismographic network was screening, and classifying for only the completed one that will be used in re-locating process and epicenter determination in the next step.

3.1 The KST Seismographic Network

The KST seismographic network of the RID was established with the objective for studying, observing, and recording local earthquakes, and the earthquakes that may occur from reservoir triggered seismicity (RTS) in the area of 150 km from the KST dam which is a construction project for enclosing the Mae Yom River around latitude 18.646N and longitude 100.168E with the location far from Phrae to the North about 50 km. The KST seismographic network comprised of the followings;

3.1.1 Seismograph Stations

3.1.1.1 The MYOA and the MYOM Stations

The MYOA and the MYOM stations were located in the area of Mae Yom National Park in Amphoe Song, Phrae and on the left side of the Mae Yom River which far from the proposed KST dam site about 3.5 km, between latitude 18.62N and longitude 100.16E at the elevation +200 m (MSL).

3.1.1.2 The KAEW Station

The KAEW station was located in the north of the proposed KST dam site in the area of Doi Kiew Kaew, Amphoe Chun in Pa-Yao between latitude 19.40N and longitude 100.10E, at the elevation +630 m (MSL).

3.1.1.3 The MONT Station

The MONT station was located in the west of the proposed KST dam site in the area of Mon Talai Non, Amphoe Ngao in Lumpang between latitude 18.70N and longitude 100.00E, at the elevation +370 m (MSL).

3.1.1.4 The HTUM Station

The HTUM station was located in the east of the proposed KST dam site in the area of Kao Huai Tum, Amphoe Baan Luang in Nan between latitude 18.87N and longitude 100.50E, at the elevation +750 m (MSL).

3.1.2 Types of Instruments

The instruments used at the KST seismographic network were manufactured by Kinemetrics.Inc in USA, which composed of 2 instruments; seismograph and accelerograph.

3.1.2.1 Seismograph

A seismograph, or seismometer, is an instrument used to detect and record earthquakes. Generally, it consists of a mass attached to a fixed base. During an earthquake, the base moves and the mass does not. The motion of the base with respect to the mass is commonly transformed into an electrical voltage. The electrical voltage is recorded on paper, magnetic tape, or another recording medium. This record is proportional to the motion of the seismometer mass relative to the earth, but it can be mathematically converted to a record of the absolute motion of the ground (<u>http://earthquake.usgs.gov/learn/glossary</u>).

The seismograph was designed to be set in the 4 seismic stations; the MYOM, the KAEW, the MONT, and the HTUM stations around the KST dam site and also covered the reservoir area of the KST dam (Figure 1.1). Each of the station will be set with 1 seismograph comprised of the K2 recorder and the SS-1 uniaxial short period sensor (Table 3.1), which can be set both vertically and horizontally, but for the KSTSN the seismographs will be set vertically to record the seismic data which are perpendicular to the Earth's surface.

3.1.2.2 Accelerograph

An accelerograph is a seismograph whose output is proportion to ground acceleration (in comparison to the usual seismograph whose output is proportional to ground velocity). Accelerographs are typically used as instruments designed to record very strong ground motion useful in engineering design; seismographs commonly record off scale in these circumstances. Normally, strong motion instruments do not record unless triggered by strong ground motion (Noson, Qamar, & Thorsen, 1988). The accelerograph was designed to be set at the MYOA station around the proposed KST dam site (Figure 1.1), which comprised of the ETNA recorder and the FBA-2g sensor (Table 3.1).

Table 3. 1 The information of the seismograph stations and types of instruments of this study.

	Station Name	Latitude (N)	Longitude (E)	Elevation (m, MSL)	Recording				_	
Location					Туре	Recorder Model	Serial No.	Sensor Model	Serial No.	Operation Date
Mae Yom National Park	MYOA	18.63	100.16	200	Accelerograph Triaxial	ETNA	1474	FBA-2g	47336	1999-Present
Amphoe Song in Phrae	MYOM	18.62	100.16	200	Seismograph Uniaxial	К2	1141	SS-1 Velocity	3014	1999-Present
Doi Kiew Kaew Amphoe Chun in Phayao	KAEW	19.40	100.10	630	Seismograph Uniaxial	К2	1139	SS-1 Velocity	3013	1999-Present
Doi Mon Talai Non Amphoe Ngao in Lampang	MONT	18.70	100.00	370	Seismograph Uniaxial	К2	1138	SS-1 Velocity	3012	1999-Present
Khao Ban Huai Tum Amphoe Ban Luang in Nan	HTUM	18.87	100.50	750	Seismograph Uniaxial	К2	1140	SS-1 Velocity	2787	1999-Present

Figure 3. 1. The instruments types of the KST seismographic network.

3.2 Seismograms of the KST Network

The seismograms during the year 1999 to 2010 used in this study were collected from the KST seismographic network of the RID. There were 11,510 seismograms which can be categorized by stations; the HTUM for 901 seismograms, the KAEW for 697 seismograms, the MONT for 2,076 seismograms, the MYOM for 6,571 seismograms, and the MYOA for 1,265 seismograms (Figure 3.2). Typically, to collect seismograms (seismic data) of the KST network must go to collect the recorded data from seismograph stations in the field every month, by connecting the PC or laptop to the Kinemetrics Altus recorder via an RS 232 cable and using the KMI QuickTalk software to transfer files between the recorder and the PC (Figure 3.3).

Figure 3. 2. The number of seismograms from each stations and the total number during the year 1999 to 2010 of this study.

Figure 3. 3. The method used to retrieve seismic data from (a) accelerometer of the MYOA station and (b) seismometer of the MYOM, the KAEW, the MONT and the HTUM stations of the KST seismographic network by using KMI QuickTalk/Look program.

The data storage of recorded data is split into individual stations - year – month, to make it easier to analyze the data and prepare a report. In the first step, it is necessary to study the waveform (interpreting seismograms) of recoded data. The task was performed by using KMI QuickLook, and KMI Power Spectral Density program to separate natural earthquakes signal from noises signals based on the characteristics of typical frequencies from different seismic sources, and then to classify grade of natural earthquakes from the arrival time of P- and S-waves by using the criteria for considering from Table 3.2, and the natural earthquakes seismograms which used in locating epicenter and make a report of the KST network are the grade A1 only.

Table 3. 2 Description of seismograms and accelerograms and grade of data of this study.

Grade/File No.	Description
A1	seismogram of 3 stations which can read the arrival time of primary and secondary wave, and used to
A2	seismogram of 3 stations which can read the arrival time of primary or secondary wave
B1	seismogram of 2 stations which can read the arrival time of primary and secondary wave
B2	seismogram of 2 stations which can read the arrival time of primary or secondary wave
C1	seismogram of 1 station which can read the arrival time of primary and secondary wave
C2	seismogram of 1 station which can read the arrival time of primary or secondary wave
SMA	accelerogram of strong ground-motion earthquakes
Red	seismogram of natural earthquakes which can read the arrival time of primary and secondary wave
Green	seismogram of natural earthquakes which can read the arrival time of primary or secondary wave
Blue	accelerogram of strong ground-motion earthquakes which used to calculate the peak ground acceleration
Black	seismogram and accelerogram of noise signal

(Bolt, 1999) stated that a seismogram appear to be no more than a complicated series of wavy lines, but from these lines a seismologist can determine the hypocenter location, magnitude, and source properties of an earthquake. Although experience is essential in interpreting seismograms, the first step in understanding the lines is to remember the following principles. First, earthquake waves consist predominantly of three types - P and S waves, which travel through the Earth, and a third type, surface waves, which travel around the Earth. Second,

the arrival of seismic wave produces certain telltale changes on the seismogram trace. The trace is written more slowly or rapidly than just before; there is also an increase in amplitude; and the wave rhythm (frequency) changes. Third, from past experience with similar patterns, the reader of the seismogram can identify the pattern of arrivals of the various phases.

Due to signals that are commonly visible on seismographs may not be the one that caused by earthquakes or it may be caused by other seismic sources that is not an earthquake, such as explosions. These signals are often referred to as noise and come from many possible sources. Noise on the seismograph record can significantly affect the ability to detect or recognize an earthquake signal. The factors that affect the characteristics of the seismogram consist of earthquake epicenter to station distance, earthquake magnitude, earthquake depth, earthquake mechanism, propagation path, instrument response, noise level, seismograph sensitivity and gain, and site response. Earthquake seismograms can usually be recognized by fairly distinctive characteristics that result from the effects of the source, propagation path and seismograph response. Many of these distinctive characteristics are visible on the seismograms. With some experience, it is generally fairly easy to recognize earthquake or explosion seismic sources from background noise or other noise sources. The well-known noise sources are wind, trucks, machinery, walking, electronic, spikes, and dropout. Some example of interpreting natural earthquakes and noise signal with typical frequencies are shown in Figure 3.4-Figure 3.13.

Figure 3. 4. (a) Seismogram of Amphoe Wiang Sa, Nan earthquake on September 10, 2009, M2.4, source-to-site HTUM 22.86 km, Azimuth 157.5433 degree(b) PSD and typical frequencies of seismic wave.

Figure 3. 5. (a) Seismogram of Laos earthquake on October 1, 2009, M3.7, source-tosite HTUM 255.3 km, Azimuth 127.7872 degree. (b) PSD and typical frequencies of seismic wave.

Figure 3. 6. (a) Seismogram of Myanmar earthquake on September 11, 2009, M5.7, source-to-site HTUM 291 km, Azimuth 277.8767 degree. (b) PSD and typical frequencies of seismic wave.

Figure 3. 7. (a) Seismogram of Southern Sumatra earthquake on September 30, 2009, M7.6, source-to-site HTUM 2,187 km, Azimuth 181.5158 degree. (b) PSD and typical frequencies of seismic wave.

Figure 3. 8. (a) Seismogram of Samoa Islands earthquake on September 29, 2009, M8.0, source-to-site HTUM 10,300 km, Azimuth 108.8628 degree. (b) PSD and typical frequencies of seismic wave.

Figure 3. 9. (a) Seismogram of Local noise with 50Hz spike on September 13, 2009 at MONT station (b) PSD and typical frequencies of Local noise.

Figure 3. 10. (a) Seismogram of Human noise on September 12, 2009 source-to-site MONT 2.0 m (b) PSD and typical frequencies of Human noise.

Figure 3. 11. (a) Seismogram of Car noise on September 12, 2009 source-to-site MONT 3.0 m (b) PSD and typical frequencies of Car noise.

Figure 3. 12. (a) Seismogram of High Frequency noise + 50Hz spike on September 30, 2009 at MONT station (b) PSD and typical frequencies of High Frequency noise.

Figure 3. 13. (a) Seismogram of explosion on July 12, 2009 source-to-site KKWN 2.0 km, Azimuth 108.8628 degree at MONT station (b) PSD and typical frequencies of explosion noise.

After separating of 11,510 seismograms, there were 2,321 seismograms from natural earthquakes (or 20 %) and 9,095 seismograms from noise (or 80 %) (Figure 3.14) which can be categorize natural earthquakes seismograms by stations; the HTUM for 481 seismograms, the KAEW for 616 seismograms, the MONT for 806 seismograms, the MYOM for 398 seismograms, and the MYOA for 20 seismograms (Figure 3.15). The grade of natural earthquakes seismograms can be classified according to the description in Table 3.2 as follow; A1 for 128 events, A2 for 193 events, B1 for 85 events, B2 for 202 events, C1 for 290 events, C2 for 321 events, and SMA for 20 events (Figure 3.16). The natural earthquakes seismograms of the grade A1 or well-located earthquakes of 128 events can be classified according to year; in 1999 for 6 events, in 2000 for 2 events, in 2001 for 2 events, in 2002 for 9 events, in 2003 for 5 events, in 2004 for 6 events, in 2005 for 13 events, in 2006 for 14 events, in 2007 for 39 events, in 2008 for 9 events, in 2009 for 18 events, and in 2010 for 5 events (Figure 3.17). The strong ground-motion earthquakes or the grade of SMA of 20 events can be classified according to year; in 1999 for 2 events, in 2002 for 2 events, in 2003 for 1 events, in 2004 for 8 events, in 2006 for 2 events, in 2007 for 2 events, in 2008 for 1 event, and in 2009 for 1 event (Figure 3.18 and Table 3.). The details of 11,510 seismograms of the KST network with 5 seismograph stations are summarized in the table include date, time, file name, grade of seismogram and events in the example shown in Table 3.4.

Figure 3. 16. The numbers of events and grade of data and total.

Figure 3. 17. The number of well-located earthquakes during the year of 1999 to 2010.

Figure 3. 18. The number of strong ground-motion earthquakes during the year of 1999 to 2010.

		Starting Time	<i></i>					
No	Date	(UTC)	Station	File name	Lat	Long	М	Region
1	10-Aug-1999	23:14:37	MYOA	AK026	18.950	100.040	3.10	Amphoe Mueang, Phayao
2	19-Nov-1999	23:21:49	MYOA	AO006	19.790	100.110	2.90	Amphoe Phaya Meng Rai,
3	26-Apr-2002	20:31:54	MYOA	BJ003	18.910	99.080	4.48	Amphoe San Sai, Chiang Mai
4	2-Jul-2002	03:54:31	MYOA	BM004	19.610	99.380	4.97	Amphoe Mae Suai, Chiang Rai
5	7-Sep-2002	06:11:33	MYOA	BN008	18.580	100.300	3.50	Amphoe Song, Phrae
6	21-Sep-2003	18:18:14	MYOA	BR009	19.900	95.730	6.60	Myanmar
7	26-Dec-2004	01:08:28	MYOA	BZ012	3.316	95.854	9.10	Sumatra Island, Indonesia
8	26-Dec-2004	01:9:30	MYOA	BZ013	3.316	95.854	9.10	Sumatra Island, Indonesia
9	26-Dec-2004	01:11:11	MYOA	BZ014	3.316	95.854	9.10	Sumatra Island, Indonesia
10	26-Dec-2004	01:11:36	MYOA	BZ015	3.316	95.854	9.10	Sumatra Island, Indonesia
11	26-Dec-2004	01:13:05	MYOA	BZ016	3.316	95.854	9.10	Sumatra Island, Indonesia
12	26-Dec-2004	01:13:43	MYOA	BZ017	3.316	95.854	9.10	Sumatra Island, Indonesia
13	26-Dec-2004	01:14:34	MYOA	BZ018	3.316	95.854	9.10	Sumatra Island, Indonesia
14	26-Dec-2004	01:31:12	MYOA	BZ019	21.630	103.300	6.60	Myanmar
15	18-Oct-2006	12:01:01	MYOA	CS011	18.945	100.116	3.23	Amphoe Dok Kam Tai, Phayao
16	12-Dec-2006	17:02:44	MYOA	CT012	18.934	99.245	4.70	Amphoe Doi Saket, Chiang Mai
17	16-May-2007	08:56:34	MYOA	CZ004	20.646	101.445	6.13	Laos
18	19-Jun-2007	05:06:36	MYOA	DA006	18.931	99.178	4.40	Amphoe Doi Saket, Chiang Mai
19	2-Mar-2008	03:22:59	MYOA	DI009	18.707	100.088	3.13	Amphoe Ngao, Lampang
20	1-Jun-2009	12:43:53	MYOA	DZ003	18.815	100.578	3.12	Amphoe Ban Luang, Nan

Table 3. 3 Details of the 20 strong ground-motion earthquakes of this study.

HILU Section MAIN Section		grade	es of da	ta.									
Date File No. Start Time (UTC) File No.		HTUN	1 Station	KAEW	/ Station	MONT	Station	MYON	1 Station	MYOA	Station		
1-M-2002 2-M-2002 6005 3:54:04 Add12 3:54:00 8:00 3:54:01 4:10 5-0012 10:51:09 17:55:16 H21:16 17:55:24 Att	Date	File No.	Start Time (UTC)	File No.	Start Time (UTC)	File No.	Start Time (UTC)	File No.	Start Time (UTC)	File No.	Start Time (UTC)	Grade	
104/2002 55549 55404 6001 55404 85404 85410 8003 55410 8004 61 6000 60349 A013 50144 12115 6053 1.5 A1 A1 6000 15519 A013 50154 1215 6053 1.5 4.5 A1 5000 15519 A013 17544 1217 51552 6103 61754 1.5 A1 6100 6457 1.5 6403 6455 1.5 4.5 1.5 4.5 1.5 4.5 1.5 4.5 1.5 4.5 1.5 4.5 1.5 4.5 1.5 4.5 1.5 4.5 1.5 4.5 1.5 4.5 1.5 4.5 1.5	1-Jul-2002												-
Econ Econ EconSolution </td <td>2-Jul-2002</td> <td>EG005</td> <td>3:54:04</td> <td>AG012</td> <td>3:54:00</td> <td>HZ114</td> <td>3:54:10</td> <td>GK013</td> <td>3:54:10</td> <td>BM004</td> <td>3:54:31</td> <td>A1</td> <td></td>	2-Jul-2002	EG005	3:54:04	AG012	3:54:00	HZ114	3:54:10	GK013	3:54:10	BM004	3:54:31	A1	
E607 E094 E094 E09 E0 E0 E0		EG006	5:01:39	AG013	5:01:46							B1	
6000 175510 6005 175510 175510 175520 111442 175520 111442 175520 111442 175520 111442 175520 1111442 175520 1111442 175520 1111442 175520 1111442 175520 1111442 175520 1111442 175520 1111442 175520 1111442 175520 1111442 175520 1111442 175520 1111442 111114320 11111430 11111442 1111442 1111442		EG007	8:03:49	AG014	8:03:54	HZ115	8:03:53					A1	
2000 1755.19 A0015 1755.14 1755.24 0.015 1755.4								GK014	8:57:09				
3-Jul-2002 6509 0.1748 A6016 0.1744 H2117 0.1753 GK017 7.25.14 K6019 4.402 4-Jul-2002 K6017 1333.56 K K6019 4.3926 K6019 4.3926 5-Jul-2002 K6017 1333.56 K K K6020 11.1442 K K K 8-Jul-2002 K K6019 5.50.19 H2118 5.50.18 K		EG008	17:55:19	AG015	17:55:16	HZ116	17:55:24	GK015	17:55:24			A1	
4.Jul-202 K0017 133.56 K018 8.45.3 6.Jul-202 K0017 133.56 K018 8.95.5 6.Jul-202 K0017 133.56 K018 8.95.5 6.Jul-202 K0017 133.56 K018 8.95.5 9.Jul-2020 K018 S.50.19 K218 S.50.10 11.42.5 10.Jul-2020 K019 11.55 S.50.37 K218 S.50.19 K218 13.Jul-2020 K019 11.659 K218 S.50.19 K218 S.50.19 K218 13.Jul-2021 K019 11.659 K218 S.50.19 K218 <t< td=""><td>3-Jul-2002</td><td>EG009</td><td>0:17:48</td><td>AG016</td><td>0:17:44</td><td>HZ117</td><td>0:17:53</td><td>GK016</td><td>0:17:54</td><td></td><td></td><td>A1</td><td></td></t<>	3-Jul-2002	EG009	0:17:48	AG016	0:17:44	HZ117	0:17:53	GK016	0:17:54			A1	
4.04/2020								GK017	7:25:14				
4-Jul-202								GK018	8:45:53				
S-Jul-202 A017 13336	4-Jul-2002							GK019	4:39:06				
6-14-2020 -	5-Jul-2002			AG017	13:33:56							C1	
7.3μ2020 9.3μ2020 11.442 9.3μ2020 60020 11.442 9.3μ20202 8.36018 550.19 8.211 550.37 5.5 13.3μ20202 8.6018 5.50.19 8.211 5.50.37 5.5 5.5 13.3μ20202 11.659 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 13.3μ20202 11.659 5.5	6-Jul-2002												
θ-Jul-202	7-Jul-2002												
9-μμ2020 -	8-Jul-2002							GK020	11:14:42				
10-4u-2020 4.0018 5.50.19 H218 5.50.18 - <	9-Jul-2002												
11-Jui-2002 A6018 550:19 H2118 550:10 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	10-Jul-2002												
12-Jul-2002 A6018 5:50.19 H2118 5:50.18	11-Jul-2002												
13-Jul-2002 E010 1:6.59 C2 14-Jul-2002 E010 1:6.59 C4 14-Jul-2002 E010 1:6.59 C4 15-Jul-2002 E010 1:6.59 C4 C402 29:3:36 C4 16-Jul-2002 E010 29:3:36 G100 29:3:36 Sinterestricttricttricttricttricttricttricttric	12-Jul-2002			AG018	5:50:19	HZ118	5:50:18					B1	
13-Jul-2002 16030 11:65.9 56010 11:65.9 56020 57:720 57:720 57:720 15-Jul-2002 5.5.5.5 5.5.5.5 5.5.5.5 57:720						HZ119	5:50:37					C2	
14.jul.2002 16.501 1:16.59 5 5 6 9.27.20 5 5 6 0 9.33.36 5 5 6 0.002 9.34.34 5 5 6 0.002 9.34.34 5 6 0.002 9.34.34 6 0 9.25.75 6 0001 9.25.27 6 0001 9.25.27 6 0001 10.00.29 6 0.00.32 6 0.00.32 6 0.00.32 6 0.00.32 10.00.29 10.00.32 10.00.32 10.00.32 10.00.32 10.00.33 10.00.32 10.00.33 10.00.32 10.00.33 10.0	13-Jul-2002												
15-Jul-2002 6K021 9.27.20 9.31.36 16-Jul-2002 9.33.43 6L001 9.33.43 16-Jul-2002 10.00.29 8000 9.52.27 16-Jul-2002 10.00.29 8000 9.58.26 17-Jul-2002 10.00.29 8000 9.50.27 17-Jul-2002 10.00.29 8000 10.00.29 18-Jul-2002 10.00.20 10.00.29 8000 10.13.3 16-Jul-2002 10.00.20 10.00.29 8000 10.13.3 16-Jul-2002 6601 9.51.55 AG019 9.51.02 10.02 9.51.54 10.03.3 18-Jul-2002 6601 9.51.53 AG019 9.51.53 10.02 9.51.54 10.13.3 19-Jul-2002 6601 9.51.54 AG020 15.53.15 10.00 15.53.15 10.20 19-Jul-2002 66013 18.40.29 14.000 15.40.15 10.20 12.20 20-Jul-2002 66014 2.49.40 AG024 2.49.41 10.00 2.4	14-Jul-2002	EG010	1:16:59									C2	
GL01 9.33.36	15-Jul-2002							GK021	9:27:20				
6L002 9:34:3 6M00 9:52:7 6M00 9:52:4 8M00 9:52:6 8M00 10:00-2 8M00 9:51:6 8M00 10:02:39 11:4-Jul-2002 E6011 9:51:55 AG01 9:51:51 AG02 15:53:45 42 8G02 15:53:15 IA005 5:40:14 5:54:15 42 919-Jul-2002 E6013 18:40:29 IA007 18:40:20 12:49:45 42 20-Jul-2002 E6014 2:49:46 AG02 5:40:35 14007 12:49:45 41 21-Jul-2002 E6014 2:49:46 2:49:41 1609 2:49:45								GL001	9:33:36				
GM001 9:52:27 BM005 9:58:26 BM005 9:58:26 BN001 10:00:29 BN002 10:00:29 BN002 10:00:29 16-JuL-2002 F 10:00:29 17-JuL-2002 F 10:00:29 18-JuL-2002 F 10:00:29 18-JuL-2002 F F 18-JuL-2002 F F 18-JuL-2002 F F 18-JuL-2002 F F 18-JuL-2002 F 551:55 18-JuL-2002 F F 18-JuL-2002 F F 19-JuL-2002 F AG021 15:53:15 AG02 15:53:15 IA004 15:53:24 F F AG022 5:40:05 IA005 5:40:14 F F 19-JuL-2002 I8:40:29 IA007 18:40:20 F F B2 20-JuL-2002 I8:40:29 IA007 18:40:20 F F A1 21-JuL-2002 EG014 2:49:46 AG024								GL002	9:34:43				
16-Jul-2002 553:26 BM005 9:58:26 16-Jul-2002 00:00:29 BN002 10:00:29 17-Jul-2002 53:26 10:00:29 10:01:33 18-Jul-2002 EG011 9:51:55 AG019 9:51:02 1A003 9:51:11 GM005 9:51:54 - A2 18-Jul-2002 EG011 9:51:55 AG019 9:51:35 IA003 9:51:11 GM005 9:51:54 - A2 19-Jul-2002 EG012 15:54:12 AG021 15:53:15 IA005 5:40:14 - E0 22 22 19-Jul-2002 EG013 18:40:29 IA005 5:40:16 - IA006 15:54:15 - IA2 19-Jul-2002 EG013 18:40:29 IA005 5:40:56 5:40:16 - - IA2 20-Jul-2002 EG014 22:49:40 AG022 5:40:55 IA006 5:40:56 - IA2 20-Jul-2002 EG014 22:49:40 AG022 22:49:41 AG002 22:49:51 GM007 22:49:52 IA1 22-J								GM001	9:52:27				
BN001 10:00:29 BN002 10:04:32 16-Jul-2002 S004 10:07:00 BN04 10:13:33 16-Jul-2002 S0011 9:51:55 AG019 9:51:02 10:02:9 10:02:9 18-Jul-2002 EG011 9:51:55 AG019 9:51:02 10:03 9:51:11 GM005 9:51:54 A2 18-Jul-2002 EG012 15:54:12 AG021 15:53:15 IA004 15:53:24 IA005 9:51:15 A2 19-Jul-2002 EG012 15:54:12 AG021 15:53:46 IA005 5:40:16 ISI:54:15 ISI:24 A2 19-Jul-2002 AG021 15:53:45 IA005 5:40:16 ISI:54:15 ISI:24 A2 20-Jul-2002 AG023 5:40:55 IA006 5:40:16 ISI:24 ISI:24 ISI:24 ISI:24 ISI:24 20-Jul-2002 EG013 18:40:29 IA007 18:40:29 ISI:24 IA0 ISI:24 ISI:24 IA1 21-Jul-2002 EG014 22:49:44 AG025 ISI:31:1 IA0019 ISI:34:1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>BM005</td><td>9:58:26</td><td></td><td></td></t<>										BM005	9:58:26		
16-Jul-2002 10:04:32 16-Jul-2002 10:01:03 17-Jul-2002 10:01:05 18-Jul-2002 10:51:55 18-Jul-2002 10:51:51 19-Jul-2002 10:51:54:12 19-Jul-2002 15:53:15 19-Jul-2002 10:61:3 19-Jul-2002 15:54:12 19-Jul-2002 16:60:3 18:40:29 16:40:35 10:30 18:40:29 10:00 18:40:29 10:00 18:40:29 10:00 18:40:11 10:00 18:40:12 10:01 18:40:29 10:02 10:01 20-Jul-2002 10:01 21-Jul-2002 10:01 22-Jul-2002 10:01 10:02 10:01 10:02 10:01 10:02 10:01 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>BN001</td><td>10:00:29</td><td></td><td></td></t<>										BN001	10:00:29		
16-Jul-2002 IMADIA 10:07:00 BN04 10:13:33 16-Jul-2002 IMADIA 5:30:47 IMADIA IMA										BN002	10:04:32		
16-Jul-2002 Image: Second								GM004	10:07:00	BN004	10:13:33		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16-Jul-2002					IA001	5:30:47						
18-Jul-2002 EG011 9:51:55 AG019 9:51:02 IA003 9:51:11 GM005 9:51:54 A2 AG020 15:53:15 IA004 15:53:24 B2 EG012 15:54:12 AG021 15:53:46 GM006 15:54:15 A2 19-Jul-2002 AG022 5:40:05 IA005 5:40:14 B2 B2 AG023 5:40:35 IA006 5:40:54 B2 B2 B2 AG023 5:40:05 IA005 5:40:54 B2 B2 AG023 5:40:35 IA006 5:40:54 B2 B2 EG013 18:40:29 IA007 18:40:20 B2 B2 IA008 18:40:41 C2 C2 C2 C2 C2 20-Jul-2002 EG014 22:49:46 AG024 22:49:41 IA09 22:49:51 GM007 22:49:52 A1 22-Jul-2002 EG014 22:49:46 AG024 22:49:41 IA09 15:53:14 GM009 1:37:45 B1 C22-Jul-2002 EG014 22:49:46 IA	17-Jul-2002					IA002	1:02:39						
A6020 15:53:15 IA004 15:53:24 B2 EG012 15:54:12 AG021 15:53:46 GM006 15:54:15 A2 19-Jul-2002 AG022 5:40:05 IA005 5:40:14 B2 AG023 5:40:35 IA006 5:40:14 B2 EG013 18:40:29 IA007 18:40:20 B2 20-Jul-2002 EG014 22:49:46 AG024 22:49:51 GM007 22:49:52 A1 22-Jul-2002 EG014 22:49:46 AG024 22:49:41 IA009 22:49:51 GM007 22:49:52 A1 22-Jul-2002 EG014 22:49:46 AG024 21:49:41 IA09 22:49:51 GM007 22:49:52 A1 22-Jul-2002 EG014 22:49:46 IA010 1:53:14 GM009 1:37:45 B1 GM010 2:44:06 EG010 2:44:06 EG010	18-Jul-2002	EG011	9:51:55	AG019	9:51:02	IA003	9:51:11	GM005	9:51:54			A2	
EG012 15:54:12 AG021 15:53:46 GM006 15:54:15 A2 19-Jul-2002 AG022 5:40:05 IA005 5:40:14 B2 AG023 5:40:35 IA006 5:40:54 B2 EG013 18:40:29 IA007 18:40:20 B2 20-Jul-2002 IA007 18:40:21 C2 21-Jul-2002 EG014 22:49:46 AG024 22:49:41 IA009 22:49:51 GM007 22:49:52 A1 22-Jul-2002 EG014 22:49:46 AG025 1:53:11 IA010 1:53:14 EGN009 1:37:45 B1 GM010 2:44:06 IA006 1:53:14 IA010 1:53:14 IA010 I:53:14 IA010 I:53:14 IA010 I:53:14 IA010 I:53:14 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII				AG020	15:53:15	IA004	15:53:24					B2	
19-Jul-2002 AG022 5:40:05 IA005 5:40:14 B2 AG023 5:40:35 IA006 5:40:54 B2 AG023 5:40:35 IA006 5:40:54 B2 EG013 18:40:29 IA007 18:40:20 B2 20-Jul-2002 IA008 18:40:41 C2 21-Jul-2002 EG014 22:49:46 AG024 22:49:41 IA009 22:49:51 GM007 22:49:52 A1 22-Jul-2002 IA002 1:53:11 IA010 1:53:14 GM009 1:37:45 B1 GM010 2:44:06 IA006 1:53:14 IA010 I:53:14 IA010 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		EG012	15:54:12	AG021	15:53:46			GM006	15:54:15			A2	
AG023 5:40:35 1A006 5:40:54 B2 EG013 18:40:29 IA007 18:40:20 B2 IA008 18:40:41 C2 20-Jul-2002 EG014 22:49:46 AG024 22:49:51 GM007 22:49:52 A1 22-Jul-2002 EG014 22:49:46 AG024 22:49:41 IA009 22:49:51 GM007 22:49:52 A1 22-Jul-2002 EG014 22:49:46 AG025 1:53:11 IA010 1:53:14 GM008 22:50:10 C1 22-Jul-2002 EG014 22:49:62 IA005 1:53:14 EG010 1:53:14 EG010 2:44:06	19-Jul-2002			AG022	5:40:05	IA005	5:40:14					B2	
E6013 18:40:29 18:40:20 82 IA008 18:40:41 C2 20-Jul-2002 21-Jul-2002 EG014 22:49:46 AG024 22:49:41 IA009 22:49:51 GM007 22:49:52 A1 22-Jul-2002 EG014 22:49:46 AG024 22:49:41 IA009 22:49:51 GM007 22:49:52 A1 22-Jul-2002 EG014 22:49:46 IA009 1:53:14 GM009 1:37:45 B1 GM010 2:44:06 EGM010 2:44:06 EGM010 2:44:06 EGM010				AG023	5:40:35	1A006	5:40:54					B2	
20-Jul-2002 21-Jul-2002 EG014 22:49:46 AG024 22:49:41 IA009 22:49:51 GM007 22:49:52 A1 22-Jul-2002 EG014 22:49:46 AG024 22:49:41 IA009 22:49:51 GM007 22:49:52 A1 22-Jul-2002 GM009 1:37:45 Image: Control or Con		EG013	18:40:29			1A007	18:40:20					B2	
21-Jul-2002 EG014 22:49:46 AG024 22:49:41 IA009 22:49:51 GM007 22:49:52 A1 GM008 22:50:10 C1 22-Jul-2002 GM009 1:37:45 AG025 1:53:11 IA010 1:53:14 B1 GM010 2:44:06 23-Jul-2002	20-101-2002					1AUU8	10:40:41					C2	
22-Jul-2002 22-47-51 60007 22-47-51 60007 22-47-51 61 22-Jul-2002 GM009 1:37:45 B1 GM010 2:44:06	20-Jul-2002	FC014	22-10-16	46024	22.10.11	14000	22-00-51	GM007	22.00.52			۵1	
22-Jul-2002 GM009 1:37:45 AG025 1:53:11 IA010 1:53:14 B1 GM010 2:44:06 23-Jul-2002	21-JUC-2002	20014	∠∠.4 7 :40	AGV24	22:47:41	1AUUY	22:47:01	GM002	22.47:02			C1	
AG025 1:53:11 IA010 1:53:14 B1 GM010 2:44:06 23-Jul-2002	22- Jul-2002							GM000	1-37-45			C1	
GM010 2:44:06 23-Jul-2002	22 JUC2002			AG025	1:53:11	IA010	1:53:14	310009	1.31.43			B1	
23-Jul-2002								GM010	2:44:06			2.	
	23-Jul-2002												

Table 3. 4 Examples of the detailed summary table of the KST's seismograms, and

3.3 Seismograms of the KST's Epicenters

The KST's epicenters during the year 1999 to 2010 which collected from the RID consist of 181 events (Figure 1.1, Figure 3.19 and Table 3.5). Before re-locating earthquakes, interpreting seismogram is needed first in order to screening off the only well-located earthquake events that can read out the arrival time of P and S-wave (Figure 3.20) from at least 3 seismic stations (Figure 3.25). In this study the KMI QuickLook program which belongs to the Kinemetrics.Inc, is used to display the event files of seismograms, which then can be used to study waveform, and to read the arrival time of P and S-wave. In each earthquake events from No 1 to 181 already have the details of date and time, name of seismic stations, and file name of seismograms has been provided, which is used in the interpreting work in this step. Example of typical seismograms which was used for screening waveform are shown in Figure 3.20-Figure 3.28.

Figure 3. 19. Number of earthquakes and magnitude of the KST's epicenters before screening.

							5			,
		Start	Time ((UTC)			Loc	ation		
No	Date	hr	min	sec	Station	File name -	Lat	Long	м	Region
		15	23	31	MYOM	BY080				
1	22-May-1999	15	23	33	KAEW	AX010	18.900	100.200	2.0	Amphoe Chiang Muan, Phayao
		15	23	33 16	HIUM	CZ006				
2	27-May-1999	14	16	17	MONT	CI106	18 900	98 500	42	Amphoe Mae Chaem-Sa Moeng, Chiang Mai
-	21 May 1999	14	16	21	MYOM	CB001	10.700	20.500	7.2	Amphoe Mae endern od Moerig, ending Mar
		23	14	30	MONT	CI185				
3	10-Aug-1999	23	14	33	KAEW	AY011	18.950	100.040	3.1	Amphoe Mueang, Phayao
		23	14	34	HTUM	CZ015				
		23	19	31	MONT	CP001				
4	15-Aug-1999	23	19	35	KAEW	AY015	18.900	100.00	5.9	Amphoe Ngao, Lampang
		23	19	36	MYOM	IW018				
		23	19	51 24	HIUM	FW001				
5	23-Aug-1000	9	19	12		EW/006	20 180	100 540	4.0	1 205
5	23-Aug-1999	9	19	45	MONT	CO006	20.100	100.340	4.0	Laos
		23	21	46	MONT	ES011				
6	19-Nov-1999	23	21	47	MYOM	OX002	19.790	100.110	2.9	Amphoe Phaya Meng Rai, Chiang Rai
		23	21	57	KAEW	BC002				
		17	22	56	KAEW	BG001				
7	27-Feb-2000	17	23	5	HTUM	MK003	23.040	94.270	4.9	Myanmar
		17	23	13	MONT	KH003				
•	2 14 2000	22	16	13	HIUM	NU001	10.010	100 100	2.4	American Cana Dhara
8	5-Mar-2000	22	16	14		ALIZO	18.810	100.180	2.0	Amphoe Song, Phrae
		8	57	13	HTUM	NI 1001				
9	7-Mar-2000	8	57	18	KAEW	BV001	19.800	101.100	3.3	Laos
-		8	57	27	MONT	NP002	17.000	101.100	5.5	2405
		13	13	50	нтим	NU014				
10	13-Apr-2000	13	13	56	KAEW	BV006	19.310	100.480	3.0	Amphoe Pong, Phayao
		13	14	6	MONT	NP029				
		4	4	13	MYOM	AL255				
11	4-May-2000	4	4	20	MONT	OG004	17.423	101.500	4.2	Amphoe Phu Ruea, Loei
		4	27	24	HTUM	NU022				
10	27 May 2000	22	33	20	KAEW	WK001	10.022	100 200	2.0	Amphoo Chiang Muan Bhavao
12	27-May-2000	22	33	40		SV001	19.022	100.200	2.9	Amphoe Chiang Muan, Phayao
		19	41	16	MONT	OW004				
13	28-May-2000	19	41	19	MYOM	AL285	18.767	100.300	3.5	Amphoe Song, Phrae
		19	41	44	HTUM	SV002				
		7	35	45	KAEW	KN001				
14	28-Jun-2000	7	35	55	MONT	RF001	18.910	100.180	2.9	Amphoe Chiang Muan, Phayao
		7	36	26	MYOM	AL336				
4.5	< 1	7	33	45	MYOM	AL413	40.070	400.070		
15	6-Aug-2000	7	22	45	MONT	GF001 PM002	18.970	100.270	5.1	Amphoe Chiang Muan, Phayao
		19	19	45 50	KAFW	1/001				
16	19-Aug-2000	19	20	26	MONT	RM006	18.290	100.680	3.5	Amphoe Na Noi, Nan
		19	20	27	HTUM	TZ003				
		11	44	24	KAEW	MZ002				
17	5-Sep-2000	11	44	28	MONT	RO001	19.150	100.050	3.2	Amphoe Dok Kham Tai, Phayao
		11	44	36	MYOM	AM031				
		4	3	20	KAEW	HU002				
18	4-Jan-2001	4	3	33	MONT	UL012	21.400	98.600	5.2	Myanmar
		4 1	د 2	33 26	MYOM	00004 40071 2				
		4 17	52	55	HTUM	UO007				
		17	52	56	KAEW	KG001			_	
19	13-Jan-2001	17	52	57	MONT	UL015	19.230	100.130	3.5	Amphoe Chun, Phayao
		17	52	58	MYOM	AO076				
		19	33	26	MYOM	AS046				
20	13-Feb-2001	19	33	27	MONT	UL036	17.220	100.080	4.2	Amphoe Phi Chai, Uttaradit
		19	33	30	HTUM	UQ002				
		14	22	15	KAEW	ZU001-2				
21	26-Feb-2001	14	22	15	HIUM	UQ006-7	19.170	100.200	3.0	Amphoe Pong, Phayao
		14	22	∠1 21		ASU62				
		14	4	21 14	MYOM	FI045				
22	7-May-2001	1	4	15	HTUM	AL004	18.310	100.440	3.3	Amphoe Rong Kwang, Phrae
		1	4	18	MONT	WZ002				

Table 3.5 The 181 KST's epicenters during the year 1999 to 2010 of this study.

Na	Data	Start	Time ((UTC)	Chatlan	5 10	Loca	ation		Destau
NO	Date	hr	min	sec	Station	File name -	Lat	Long	м	Region
		13	17	36	HTUM	AL020				
23	3-101-2001	13	17	37	MONT	XA096	18 890	100 180	29	Amphoe Chiang Muan Phayao
23	5 54(2001	13	17	39	MYOM	EJ071	10.070	100.100	2.7	suproc chang maan, rhayao
		13	17	39	KAEW	TP001				
24	19-Jan-2002	22	14	52 56	MONT	ANU12-3 HY006	19 300	100 080	34	Amphoe Dok Kham Tai, Phayao
24	19 5411 2002	22	14	57	MYOM	GI129	17.500	100.000	5.4	
		11	49	33	MONT	HZ073				
25	25-Apr-2002	11	49	42	MYOM	GI315	18.910	99.080	3.6	Amphoe San Sai, Chiang Mai
		11	49	52	HTUM	AO009				
		20	31	37	MONT	HZ076	10.010			
26	26-Apr-2002	20	31 31	40 47	HTUM	GI316 AO011	18.910	99.080	4.5	Amphoe San Sai, Chiang Mai
		6	35	54	нтим	EF004				
07	24 Mar 2002	6	35	58	KAEW	HI001	00.110	00.000	27	American Museum Chiene Dei
21	24-May-2002	6	36	21	MYOM	GI340	20.110	99.880	5.1	Amphoe Mueang, Chiang Rai
		6	36	23	MONT	HZ083				
		17	25	21	KAEW	AG009				
28	28-Jun-2002	17	25	22	MYOM	GK011	20.010	100.080	4.7	King Amphoe Wiang Chiang Rung, Chiang Rai
		17	25	26	MONT	HZ112				
		3	54	0	KAEW	AG012				
29	2-Jul-2002	3	54	4	HTUM	EG005	19 610	99 380	5.0	Amphoe Mae Suai, Chiang Bai
27	2 94(2002	3	54	11	MYOM	GK013	17.010	<i>))</i> .500	5.0	
		3	54 17	10	MONT	HZ114				
		0	17	44 48	HTUM	AG016 FG009				
30	3-Jul-2002	0	17	53	MONT	HZ117	19.810	100.280	3.7	Amphoe Khun Tan, Chiang Rai
		0	17	54	MYOM	GK016				
		22	49	41	KAEW	AG024				
31	21-Jul-2002	22	49	46	HTUM	EG014	19.920	100.900	4.1	Laos
		22	49	51	MONT	IA009				
		22	50 12	10 35	HTUM	GM008 FG017				
		11	12	37	MONT	IB001				
32	19-Aug-2002	11	12	37	KAEW	AG030	19.040	100.200	3.5	Amphoe Pong, Phayao
		11	12	40	MYOM	GM016				
		11	19	47	HTUM	EG018				
33	19-Aug-2002	11	19	48	MONT	IB002	19.010	100.200	3.4	Amphoe Chiang Muan, Phayao
		11	19	49 52	MYOM	GM017				
		6	11	29	MYOM	GM035				
24	7 5 00 2002	6	11	31	HTUM	EH003	10 500	100 200	2 5	Amphon Song Dhang
54	7-3ep-2002	6	11	32	MONT	IR001	10.560	100.500	5.5	Amphoe song, Phrae
		6	11	58	KAEW	AG033				
25	12 5 cm 2002	22	31	4	MYOM	GM038	10.050	00 170	27	Amphoo Dhroo Chiang Mai
55	15-3ep-2002	22	30	28	HTUM	EH004	19.050	99.170	5.1	Amphoe Fillao, Chiang Mai
		14	27	36	KAEW	AG039				
36	25-Sep-2002	14	27	41	MONT	LF001	10 300	00 / 00	36	Amphoe Wiang Pa Pao, Chiang Rai
50	23-366-2002	14	27	44	MYOM	GM084	19.390	<i>y</i> y . 4 00	5.0	Amphoe Wang Fa Fao, Chiang ha
		14	27	47	HTUM	EI001				
37	24-Oct-2002	21	56	45 52	KAEW	GM200 AG042	19.060	100 130	3.0	Amphoe Pong Phavao
51	24 000 2002	21	56	50	HTUM	EI006	17.000	100.150	5.0	, anphoe i ong, i nayao
		5	21	10	MONT	OE001				
38	6-Nov-2002	5	21	12	MYOM	GM221	18.670	99.980	2.9	Amphoe Ngao, Lampang
		5	21	29	HTUM	EI009				
		5	1	24	KAEW	AG044				
39	17-Nov-2002	5 5	1	∠⊃ 28	MYOM	GM248	18.940	100.300	3.9	Amphoe Chiang Muan, Phayao
		5	1	28	MONT	OX003				
		5	5	40	MONT	QQ001-2				
40	6-Dec-2002	5	6	28	KAEW	AG047	18 450	99.600	40	Amphoe Mueang, Lampang
	0 200 2002	5	6	36	MYOM	GM261	-0. 100			
		5	6	48	HTUM	EI015				
		13 13	47 47	10	MONT	RM002				
41	18-Dec-2002	13	47	15	MYOM	GM287	19.390	98.800	4.9	Amphoe Chiang Dao, Chiang Mai
		13	47	19	HTUM	EI016				

Table 3.5 The 181 KST's epicenters during the year 1999 to 2010 of this study (cont.).

	5.1	Start	Time (UTC)	C 1 1 1	F 1	Loca	ation		
No	Date	hr	min	sec	Station	File name -	Lat	Long	м	Region
		7	14	20	KAEW	AG058				
42	29-Jan-2003	7	14	32	MONT	UM001	19.760	100.600	3.9	Laos
		10	22	35 36	MYOM	GN042 GN088				
43	20-Feb-2003	10	22	36	MONT	VO037	19.650	100.280	3.6	Amphoe Thoeng, Chiang Rai
		10	23	5	KAEW	AG060				
44	23-Aug-2003	8	57 57	38 28	MYOM	GQ045	18 577	00 211	35	Amphoe Mueang Lamphup
	25 / 43 2005	8	57	23	MONT	EN001	10.511	<i>))</i> .244	5.5	
45	18-Sen-2003	11 11	4 4	15 26	KAEW	AG080 EV001	20 547	100 057	45	Myanmar
	10 500 2005	11	4	28	MYOM	GQ096	20.341	100.051	4.5	inguinnui
		12	31	21	KAEW	AG094				
46	16-Oct-2003	12	31	44 46	MYOM	GR035	19.157	101.300	3.9	Laos
		12	23	40 27	MYOM	GR077				
47	30-Oct-2003	15	23	17	KAEW	AG096	-	-	5.7	
		15	23	47	HTUM	ON001				
48	23-Nov-2003	15	8	20 25	HTUM	ON002	20.480	101.350	4.5	Laos
		15	8	32	MYOM	GR096				
10	7	20	22	22	KAEW	AG103	40.070	00 (00		
49	7-Dec-2003	20	22	50 3	MYOM HTUM	GR165 ON005	19.060	99.630	3.6	Amphoe Wang Nuea, Lampang
		5	49	35	KAEW	AG114				
50	14-Mar-2004	5	49	39	HTUM	OW001	20.174	100.000	3.9	Amphoe Mae Chan, Chiang Rai
		5	49 49	44 44	MYOM	GR299-300				
		4	5	26	KAEW	AG117				
51	27-Mar-2004	4	5	33	MONT	ME009	19 720	99 800	37	Amphoe Phan, Chiang Bai
51	21 1141 2001	4	5	36	MYOM	GR324	17.120	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5	
		4 14	39	8	MYOM	GR605				
52	25- Jul-2004	14	39	10	MONT	MT007	18 950	99 900	3.8	Amphoe Ngao, Lampang
52	25 54(2004	14	39	15	KAEW	AG123	10.750	<i>,,,,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5.0	
		14	39 54	6	HTUM	OX003 OX007				
52	17 Aug 2004	18	54	7	MONT	MT010	17 220	100 650	4.1	Amphoo Chat Trakan Phitsanulok
55	17-Aug-2004	18	54	20	MYOM	GR632	17.520	100.050	4.1	Amphoe Chat Trakan, Philisanulok
		18 1	54 31	46 56	MONT	AG125 MT015				
54	11-Sep-2004	1	32	18	MYOM	GR651	18.810	98.800	3.6	Amphoe Hang Dong, Chiang Mai
		1	32	18	KAEW	AG126				
		20 20	56 56	41 54	KAEW	AG135 MV011				
55	13-Dec-2004	20	57	27	HTUM	PB001	19.308	99.149	3.9	Amphoe Phrao, Chiang Mai
		20	57	33	MYOM	GR908				
		1	2	28 37	MYOM KAFW	GR946 AG136				
56	26-Dec-2004	1	2	22	MONT	MV014	3.300	95.940	9.0	Sumatra Islands, Indonesia
		1	2	34	HTUM	PB002				
		1	30 30	20 10	MYOM	GR953				
57	26-Dec-2004	1	30	16	MONT	MV022	21.630	103.300	6.6	Myanmar
		1	30	19	HTUM	PB006				
59	26 Dec 2004	7	13	14 20	KAEW	AG148	10.004	00 500	2.1	Amphoo Wiang Pa Pao, Chiang Pai
50	20-Dec-2004	7	13	20	MYOM	GR957	19.094	99.000	J.4	Amphoe wang ra rao, Chiang ha
		23	55	9	KAEW	AG157				
59	30-Dec-2004	23	55	10		MV053	20.940	97.750	6.4	Myanmar
		23 23	55 55	23	MYOM	GR965				
		6	29	7	MONT	MV055				
60	1-Jan-2005	6	29	12	MYOM	GR969	18.210	99.631	3.4	Amphoe Mae Tha, Lampang
		ь 16	29 31	16 19	KAEW	AG160				
61	25-Jan-2005	16	31	32	MONT	MV063	22.520	100.740	4.9	Myanmar
		16	31	29	HTUM	PE001				

Table 3.5 The 181 KST's epicenters during the year 1999 to 2010 of this study (cont.).

		Start	Time (UTC)	a		Loca	ation		
No	Date	hr	min	sec	Station	File name -	Lat	Long	м	Region
		12	27	56	нтим	PE003		-		
62	5-Feb-2005	12	27	58	MONT	MV068	18.623	100.417	3.3	Amphoe Wiang Sa, Nan
		12	28	1	KAEW	AG166				
		10	48	56	HTUM	PF001				
63	2-Mar-2005	10	48 48	51 59	MONT	GR1170 MX004	18.858	100.900	3.7	King Amphoe Phu Phiang-Santi Suk, Nan
		10	49	2	KAEW	AG171				
		16	13	25	MONT	MX011				
64	28-Mar-2005	16	13	26	MYOM	GR1205	2 074	07 013	87	Sumatra Islands Indonesia
04	20 Mar 2005	16	13	30	HTUM	PF004	2.014	71.015	0.1	
		16	13	35	KAEW	AG176				
65	1-Apr-2005	7	18	15	MONT	AG 185 MY 001	19 398	99 399	37	Amphoe Wiang Pa Pao, Chiang Rai
05	17,012005	7	18	23	HTUM	PF017	17.570	//.3//	5.1	suproc wang rarao, chang har
		17	22	12	KAEW	AG186				
66	2-Apr-2005	17	22	24	MONT	MY002	19.450	99.341	3.6	Amphoe Wiang Pa Pao, Chiang Rai
		17	23	7	HTUM	PF018				
47	10 4 - 2005	10	33	35	HTUM	PF019	10 406	100.004	2 5	Amphoo Chup Bhayao
07	10-Apr-2005	10	33	38	MYOM	GR1243	19.490	100.094	5.5	Amphoe Chun, Phayao
		23	1	39	MYOM	GU029				
68	4-Jun-2005	23	1	40	нтим	PF031	17.817	100.706	3.8	Amphoe Nam Pat, Uttaradit
		23	1	41	MONT	NA013				
		21	7	40	MYOM	GU036				
69	9-Jun-2005	21	7	42	MONT	NB002	18.544	100.259	2.4	Amphoe Song, Phrae
		0	7 38	48 41	MONT	NC002				
		0	38	43	MYOM	GU126				
70	29-Jun-2005	0	38	51	нтим	PF033	18.815	99.500	3.1	Amphoe Mueang Pan, Lampang
		0	39	5	KAEW	AJ001				
		15	45	8	MONT	NC005				
71	24-Jul-2005	15	45	12	MYOM	GU215	7.900	92.100	7.2	Nicobar Islands, India Region
		15	45 45	13		AJ002 PG001				-
		9	34	33	MONT	NI015				
		9	34	36	MYOM	GU591				
72	4-Dec-2005	9	34	38	KAEW	AJ022	18.770	99.000	4.2	Amphoe Mueang, Chiang Mai
		9	34	43	HTUM	QK004-5				
		9	0	52	KAEW	AJ051				
73	7-Dec-2005	9	1	2	MONT	NI017 OK006-7	19.720	99.500	3.6	Amphoe Mae Suai, Chiang Rai
		9	1	24	MYOM	GU605				
		6	48	22	KAEW	AJ053				
74	15 Dec 2005	6	48	34	MONT	NI018	10.450	100 200	4.1	Amphoo Chiang Kham Phayao
74	13-Dec-2005	6	48	35	HTUM	QL002	19.450	100.500	4.1	Amphoe Chiang Kham, Phayao
		6	48	36	MYOM	GU639				
75	15-Dec-2005	23	13	1/1	MONT	AJ055	10/100	00 000	3.0	Amphoe Phan Chiang Rai
15	13-Dec-2005	23	13	27	HTUM	QL003	17.470	<i>yy.y</i> 00	5.0	Amphoe Finan, Chiang Nai
		2	13	30	KAEW	AJ057				
76	16-Dec-2005	2	13	41	MONT	NI020	19 490	99 830	36	Amphoe Phan Chiang Bai
10	10 Dec 2005	2	13	43	MYOM	GU640	17.470	77.050	5.0	suprocer nun, enung nur
		2	13	45	HTUM	QL005				
		2	15	24 36	MONT	NI021				
77	16-Dec-2005	2	15	38	MYOM	GU641	19.490	99.930	3.7	Amphoe Pa Daed, Chiang Rai
		2	13	37	HTUM	QL006				
		10	59	1	KAEW	AJ065				
78	17-Dec-2005	10	59	27	HTUM	QJ007	19.610	100.150	3.2	Amphoe Thoeng, Chiang Rai
		10	59 17	33	MONT	NIU22				
		11	41 48	30	MONT	NI023				
79	17-Dec-2005	11	48	4	MYOM	GU672	19.460	100.000	3.3	Amphoe Pa Daed, Chiang Rai
		11	48	5	нтим	QL008				
		13	42	25	KAEW	AJ081				
80	24-Jan-2006	13	42	33	MONT	NI036	20.890	98.460	5.5	Myanmar
		13 14	42	38	HTUM	QL014				
81	1-Feb-2006	16	3	8		OL019	20.534	99,849	42	Myanmar
		16	3	13	MONT	NI039				

Table 3.5 The 181 KST's epicenters during the year 1999 to 2010 of this study (cont.).

	5.1	Start	Time (UTC)	C L U		Loca	ation		
NO	Date	hr	min	sec	Station	File name -	Lat	Long	м	Region
		0	32	43	KAEW	AJ092				
82	3-Feb-2006	0	32 32	50 55	HTUM	QL021	20.190	100.969	3.8	Laos
		16	54	2	KAEW	AJ094				
83	15-Feb-2006	16	54	5	MONT	NI044	19.134	100.207	3.4	Amphoe Pong, Phayao
		16	54 22	6 47	MYOM	GV147				
84	20-Feb-2006	18	33	47 51	MONT	NI045	19.138	100.221	2.8	Amphoe Pong, Phayao
		18	33	51	MYOM	GV156				
05	40.0.1.0007	15	35	7	KAEW	AK005		400 457		
85	13-Oct-2006	15 15	35 35	21 35	HTUM	NY003 UF001	20.229	100.157	3.1	King Amphoe Doi Luang, Chiang Rai
		12	0	35	MONT	NY005				
86	18-Oct-2006	12	0	37	MYOM	HD143	18.945	100.116	3.2	Amphoe Dok Kham Tai, Phayao
		12	0	39 20	HTUM	UF002				
		12	58	31	KAEW	AK008 AK007				
87	21-Oct-2006	1	58	39	HTUM	UF003	20 325	100 846	12	1.305
01	21 000 2000	1	58	42	MONT	NY006	20.525	100.040	4.2	2005
		1	58 38	44 32	KAFW	HD144 AK013				
00	16 Nov 2006	18	38	44	MONT	NY013	10 540	00.000	27	Amphoo Do Dood Chiong Doi
00	10-1100-2006	18	38	46	HTUM	UG002	19.540	99.999	5.1	Amphoe Fa Daeo, Chiang Nai
		18	38	47	MYOM	HE021				
		19	32	38	MYOM	HE036				
89	26-Nov-2006	19	32	41	MONT	NZ001	19.069	101.239	3.8	Amphoe Bo Kluea, Nan
		19	32	41	KAEW	AK014				
90	1-Dec-2006	4	1	12 17	MYOM	NZ002 HE037	19 033	99 806	3.0	Amphoe Ngao, Lampang
20	1 Dec 2000	4	2	24	KAEW	AK015	17.055	<i>у</i> 	5.0	
		17	2	6	MONT	NZ006				
91	12-Dec-2006	17	2	8	KAEW	AK016	18.934	99.245	4.7	Amphoe Doi Saket, Chiang Mai
		17	2	9 14	HTUM	UG007				
		17	2	6	MONT	NZ006				
92	12-Dec-2006	17	4	45	KAEW	AK017	19.009	99.644	3.0	Amphoe Wang Nuea, Lampang
		17	4 10	48 15	MYOM	NB002				
93	12-Dec-2006	19	49	30	KAEW	AK019	18.965	99.189	3.8	Amphoe Doi Saket, Chiang Mai
		19	49	42	HTUM	UG008				
04	12 Dec 2007	22	21	33	MONT	NZ012	10.000	00 144	2.6	American Dei Salutt, Chiana Mai
94	12-Dec-2006	22	21	30 2	HTUM	UG009	19.008	99.144	3.0	Amprice Doi Saket, Chiang Mai
		5	48	41	MONT	NZ014				
95	13-Dec-2006	5	48	56	KAEW	AK022	18.899	99.256	3.9	Amphoe Doi Saket, Chiang Mai
		5 11	48 48	58 56	MYOM	NO001 0A008				
96	23-Dec-2006	11	49	13	KAEW	AK025	18.880	99.638	3.2	Amphoe Chae Hom, Lampang
		11	49	15	MYOM	VW001				
07	21 Jan 2007	11	33	30 25	HTUM	UH003	10 9/1	00.956	2.0	Mucana Chiana Pai
91	21-341-2007	11	33	37	MONT	OB003	17.041	99.000	J. 9	Nucearity, Childrig hai
		22	29	37	MONT	OB007				
98	25-Jan-2007	22	29	43	KAEW	AK032	18.824	99.387	3.2	Amphoe Mueang Pan, Lampang
		8	29 52	44 23	HTUM	UI001				
99	18-Feb-2007	8	52	25	MYOM	YB006	18.555	100.582	3.1	Amphoe Wiaeng Sa, Nan
		8	52	28	MONT	OB013				
		8	5	36 37	KAEW	AK035 OB014				
100	20-Feb-2007	8	5	38	MYOM	YB007	19.047	100.031	3.2	Amphoe Mueang, Phayao
		8	5	39	HTUM	UI002				
		6	17	31	KAEW	AK045				
101	22-Apr-2007	о 6	17	59 42	MYOM	YB139	19.427	99.838	4.0	Amphoe Pa Daed, Chiang Rai
		6	17	43	HTUM	UJ004				
		6	17	31	KAEW	AK045				
102	22-Apr-2007	6	17 17	39 42	MONT	OD009	19.413	99.562	3.6	Amphoe Wiaeng Pa Pao, Chiang Rai
		6	17	43	HTUM	UJ004				

Table 3.5 The 181 KST's epicenters during the year 1999 to 2010 of this study (cont.).

	5.1	Start	Time (UTC)	C 1 U 1		Loca	ation		
NO	Date	hr	min	sec	Station	File name -	Lat	Long	м	Region
		14	28	33	KAEW	AK051				
103	15-May-2007	14	28	37	HTUM	UJ009	20.489	100.579	4.7	Laos
		14 14	28	54 56	MONT	OE002 YC005				
		8	55	58	KAEW	AK052(1)				
104	16-May-2007	8	56	4	HTUM	UJ010(1)	20.646	101 445	61	1.305
104	10-May-2007	8	56	8	MONT	OE003(1)	20.040	101.445	0.1	
		8	56	8	MYOM	YC007(1)				
		8	56	4	HTUM	UJ010(2)				
105	16-May-2007	8	56	8	MONT	OE003(2)	20.108	99.986	4.9	Amphoe Mae Chan, Chiang Rai
		8	56	8	MYOM	YC007(2)				
		8	55	58	KAEW	AK052(3)				
106	16-May-2007	8	56	4	HTUM	UJ010(3)	20.294	100.525	4.3	Thai-Laos Border
		8	56	8	MYOM	YC007(3)				
		9	7	36	KAEW	AK054				
107	16-May-2007	9	7	41	HTUM	UJ011	20 102	101 512	42	Laos
10.	10 110 2001	9	7	45	MONT	OE005	20.102	101.012		
		9	/ 8	48 23	MYOM	YC008				
		9	9	54	KAEW	AK055				
108	16-May-2007	9	10	29	нтим	UJ012	20.421	101.440	3.9	Laos
		9	10	32	MONT	OE006				
		9	13	14	KAEW	AK056				
109	16-May-2007	9	13	19 25	MONT	OF007	20.361	100.962	4.0	Laos
		9	13	54	MYOM	YC010				
		9	16	52	KAEW	AK059				
110	16-May-2007	9	17	2	MONT	OE008	20.504	100.805	3.9	Laos
		9	17	3	HTUM	UJ014				
111	16-May-2007	9	28 28	8 26	HTUM	AK062	20 317	99 936	43	Amphoe Chiang San, Chiang Rai
	10 110 2001	9	28	41	MONT	OE011	20.011	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
		9	30	49	KAEW	AK063				
112	16-May-2007	9	31	1	MONT	OE012	20.234	100.611	3.8	Laos
	-	9	31	19	HTUM	UJ016				
		10	4	23	KAEW	AK066				
112	16 Mar 2007	10	4	30	нтим	UJ018	21.002	100 514	4.0	1
115	16-May-2007	10	4	35	MONT	OE013	21.005	100.514	4.0	Laos
		10	5	9	MYOM	YC012				
		10	15	31		AK067				
114	16-May-2007	10	15	42	MONT	OE014	20.666	100.934	4.0	Laos
		10	16	10	MYOM	YC013				
		10	25	49	KAEW	AK068				
115	16-May-2007	10	25	55	HTUM	UJ020	20.581	101.070	4.1	Laos
		10	15	47	KAEW	AK069				
116	16 May 2007	11	15	53	нтим	UJ021	20.420	101 107	4.2	1.000
110	10-May-2007	11	15	57	MONT	OE016	20.420	101.197	4.2	Laos
		11	15	59	MYOM	YC014				
117	16-May-2007	11	35 35	3 9	HTUM	AK071	20 5 3 3	100 822	39	Laos
	10 110 2001	11	35	15	MONT	OE017	20.000	100.022	5.7	2005
		11	43	42	KAEW	AK072				
118	16-May-2007	11	43	48	HTUM	UJ023	20.716	101.214	4.1	Laos
		11	43 12	51 57	MONT	OE018				
		13	45 17	56	KAEW	AK074				
110	16 May 2007	13	18	2	нтим	UJ024	20 5 40	101 051	45	Loor
119	10-1VIdy-2007	13	18	6	MONT	OE019	20.540	101.051	4.5	Laus
		13	18	8	MYOM	YC016				
		15 15	22 22	17 59	MONT	OF020				
120	16-May-2007	15	23	13	HTUM	UJ026	20.424	101.436	3.8	Laos
		15	23	25	MYOM	YC017				

Table 3.5 The 181 KST's epicenters during the year 1999 to 2010 of this study (cont.).

		Start	Time (UTC)	a		Loca	ation		
NO	Date	hr	min	sec	Station	File name -	Lat	Long	м	Region
		17	8	43	KAEW	AK078				
121	16-May-2007	17	8	48	HTUM	UJ027	20 309	101 364	41	Laos
	10	17	8	53	MONT	OE021	20.007	101.001		2005
		1/	8 25	55 32	KAEW	YC018 AK081				
		3	25	39	HTUM	UJ029				
122	17-May-2007	3	25	43	MONT	OE023	20.029	101.416	4.1	Laos
		3	26	11	MYOM	YC019				
		0	1	44	KAEW	AK082				
123	18-May-2007	0	1	49 21	MONT	OF024	20.087	101.254	3.9	Laos
		0	2	25	MYOM	YC022				
		1	41	3	KAEW	AK083				
124	18-May-2007	1	41	9	HTUM	UJ031	20.253	100.798	3.9	Laos
		1	41	24	MONT	OE025				
125	18-May-2007	13	5 5	4	HTUM	UJ032	20.612	101.232	4.2	Laos
		13	5	16	MONT	OE026				
		1	21	7	KAEW	AK089				
126	20-May-2007	1	21	14	HTUM	UJ033	20.441	100.812	3.9	Laos
		1	21	32	MONT	OE027				
127	23-May-2007	17	0 6	15 21	HTUM	AK096	20 434	100 781	40	Laos
	20	18	6	26	MONT	OE030	20.15	1000.01		2005
		11	15	4	KAEW	AL001				
128	24-May-2007	11	15	10	HTUM	UK002	20.507	100.666	3.9	Laos
		11	15	17	MONT	OF001				
		17	20	54 0	HTUM	AL007 UK011				
129	7-Jun-2007	17	21	3	MONT	OF006	20.606	100.879	4.7	Laos
		17	21	6	MYOM	YF002				
		5	6	19	MONT	OF008				
130	19-Jun-2007	5	6	21	KAEW	AL010	18.931	99.178	4.4	Amphoe Doi Saket, Chiang Mai
		5 5	0 6	22 29	HTUM	1F008 UK013				
		6	53	54	KAEW	AM001				
131	23- Jun-2007	6	54	7	MONT	OG001	10 620	96 758	10	Myanmar
151	25-5411-2007	6	54	8	HTUM	UL001	19.029	90.150	4.7	Nyama
		6	54	43	MYOM	YG003				
		0 6	57 58	59 24	HTUM	AM002				
132	23-Jun-2007	6	58	29	MONT	OG002	19.698	97.331	4.6	Myanmar
		6	59	4	MYOM	YG004				
		8	17	13	KAEW	AM003				
133	23-Jun-2007	8	17	21	HTUM	UL003	20.887	98.861	5.9	Myanmar
		0 8	17	23	MYOM	YG005-6				
		8	27	44	KAEW	AM004				
134	23- lun-2007	8	27	51	HTUM	UL004	21 461	99 352	58	Myanmar
134	25 5411 2001	8	27	53	MONT	OG004	21.401	//.JJL	5.0	inguinnai
		8 21	28	1	MYOM	YG007 AN005				
135	28-Jul-2007	21	33	56	MONT	OI006	20.576	100.153	4.3	Laos
		21	33	58	нтим	UM003				
		22	42	32	KAEW	AN006				
136	30-Jul-2007	22	42	44	MONT	OI008	19.186	112.033	6.3	
		22	42	49 57		YH028				
		6	+∠ 53	40	KAEW	AN010				
127	6 1	6	53	46	нтим	UM006	20 504	100 01 4	4.4	Laor
151	0-Aug-2007	6	53	52	MONT	OI013	20.501	100.814	4.1	Laus
		6	54	17	MYOM	YH032				
138	6-Aug-2007	8 9	50 50	39 52		ANU11 01014	20 327	100 704	3.8	laos
100	0-rug-2001	8	51	8	HTUM	UM007	20.321	100.704	5.0	2005
		8	53	18	KAEW	AN012				
139	7-Aug-2007	8	53	26	HTUM	UM008	20.490	101.172	4.3	Laos
		8	53	29	MONT	OI015				
		8	53	54	MYOM	1H033				

Table 3.5 The 181 KST's epicenters during the year 1999 to 2010 of this study (cont.).

No. Lat. Lat. <thlat.< th=""> Lat. Lat. L</thlat.<>			Start	Time (UTC)	a		Loc	ation		
	No	Date	hr	min	sec	Station	File name -	Lat	Long	м	Region
140 8 440 15 25 M MONT 00000 20.320 100.411 39 Lass 141 8 449 200 17 9 25 MONT 0.002-3 100.411 39 Lass 141 8 449 200 16 9 38 KAPW AODE 17 9 34 KAPW AODE 100.411 100.400 100.400 18 6 KAPW AODE 100.400 100.700 100.100 100.100 100.100 17 12 10 MTM UNOT 100.000 2.5 Mage 100.100			9	15	18	KAEW	AO001		-		
1 1	140	8-Aug-2007	9	15	25	HTUM	OM009	20.320	100.441	3.9	Laos
141 8 3 3 3 3 4 MON2 100.5 141 6 4.9 1 MAN ADD2 5.918 5.6 141 1 16 3 KAW ADD2 10.941 5.918 5.6 141 16 3 KAW ADD2 10.941 3.8 Tailland Tailland 7 142 19-Aug 2007 7 12 40 MCM VIOT 20.06 20.783 4.1 Lacos Border 143 6-5ep-2007 7 12 50 MCMT<0107			9	15	30 54	MONT	OJ001			•	
14 14 14 14 15 15 15 15 15 14 </td <td></td> <td></td> <td>9 17</td> <td>9</td> <td>24</td> <td>MYOM</td> <td>YI002</td> <td></td> <td></td> <td></td> <td></td>			9 17	9	24	MYOM	YI002				
141 8 9 31 K.KW AOOQ 10.934 95.94 5.6 17 9 31 HCM MOND 1 16 40 18 16 40 MONT CODE 98.75 3.8 Thai-Laos Border 141 17 12 30 KKW AOOD 70.62 3.8 Thai-Laos Border 143 8-Sep-2007 7 12 50 MONT CU07 70.72 36 70 MONT CU07 70.72		0.4 0.007	17	9	25	MONT	OJ002-3	44.004	05 040		
14 14	141	8-Aug-2007	17	9	31	KAEW	AO002	16.934	95.918	5.0	
11 16 6 64 ACOUT 11 16 6 MONT CUIDE 19.815 98.775 8.8 Thai-Laos Border 11 17 12 9 MANT CUIDE 7 12 5 14 6-Sep-2007 7 12 5 MONT CUIDE 7 MUNT MUNT<			17	9	34	HTUM	UN001				
142 19.4ug-2007 11 17 19 19 19.815 98.775 3.8 Thai-Laos Bonder 11 17 19 14 17 19 14 10 11 17 19 14 10			11	16 16	43	KAEW	AO007				
14 17 9 1700 1700 2 16 7 12 4 1700 2 40 1700 16 16 12 2 10000 10000 10000 10000 10000 16 16 10 100 10000 10000 10000 10000 10000 10000 1000000 1000000 1000000 1000000	142	19-Aug-2007	11	17	14	MYOM	YI007	19.815	98.775	3.8	Thai-Laos Border
14 8 7 12 9 KAW 4000 7 12 50 MONT 0107 0107 12 50 7 12 50 MONT 0107 1024 10			11	17	19	HTUM	UN002				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			7	12	39	KAEW	AP001				
1 1 2 3 3 MUN 0007 1 1 2 3 4 MUCM V1025 144 16-0L+207 2 3 5 MUCM V1025 10.661 10.142 2.5 Amphoe Song, Phrae 145 16-0L+207 6 46 4 NUCM 0023 20.512 100.808 4.5 Laos 146 1-Nov-207 19 5 3 NUCM V1006 4.6 Laos 147 2-Dec-207 11 19 4 MONT 0046 4.6 Laos 148 2-Mor-2007 11 19 4 MONT 0046 4.6 Laos 147 2-Dec-207 11 19 4 MONT 0046 1.6.52 100.655 .1 Amphoe Mueans, Nan 147 2-Dec-207 1 17 MONT 00063 3.3 Amphoe Mueans, Nan 148 2-Mar-2008 <td< td=""><td>143</td><td>8-Sep-2007</td><td>7</td><td>12</td><td>44</td><td>HTUM</td><td>UN001</td><td>20.466</td><td>100.783</td><td>4.1</td><td>Laos</td></td<>	143	8-Sep-2007	7	12	44	HTUM	UN001	20.466	100.783	4.1	Laos
144 16-Oct-2007 2 38 54 MTOM V003 HTUM 0703 HTUM UN HTUM 0704 HTUM HT			7	12	50 52	MONT	YI024				
144 16-Ort-2007 2 38 55 MONT QU28 18.661 10.142 2.5 Amphoe Song, Phrae 145 16-Ort-2007 6 46 42 KAEW AV01 Ju29			2	38	47	MYOM	YJ005				
14 3 54 HTUM UP03 6 46 48 HTUM UP04 20.512 10.808 4.5 Loos 145 1	144	16-Oct-2007	2	38	53	MONT	OJ028	18.661	100.142	2.5	Amphoe Song, Phrae
14 16 6 46 42 KAEW Work 1000 14 16-Oct-207 6 46 52 MONT 0/20 2.512 100.808 4.5 Laos 14 1			2	38	54	HTUM	UP003				
145 i - Out- 2007 6 46 52 MONIM 20.512 100.68 4.5 Laos 146 1-Nov-2007 19 5 39 KEW A0004 20.512 100.688 4.5 Laos 146 1-Nov-2007 19 5 42 MONIM V1006 20.234 100.460 4.6 Laos 147 2-Dec-2007 11 19 4 MONIT OU460 18.652 100.655 3.1 Amphoe Mueans, Nan 147 2-Mar-2008 3 22 5 MTUM UC007 Amphoe Mueans, Nan 148 2-Mar-2008 3 22 5 MTUM UC007 Amphoe Mueans, Nan 150 12 44 MONIT OU4027 18.70 100.088 3.1 Amphoe Mueans, Nan 151 16 2 MCM AU011 19.394 96.20 3.2 Amphoe Mueans, Nan 150 12-May-2008 6 30 31			6	46	42	KAEW	AP011				
6 6 5 MYOM YDDS 146 1-Nov-2007 19 5 39 HTUM UP06 19 5 42 MONT UD35 20.234 100.460 4.6 Laos 11 18 57 HTUM UP016 10.655 3.1 Amphoe Mueang, Nan 147 23-Dec-2007 11 19 7 MYOM EF243 3 22 17 MONT OU007 Amphoe Mueang, Nan 148 2-Mar-2008 3 22 15 MYOM AU027 18.707 100.685 3.1 Amphoe Mueang, Nan 149 P-Apr-2008 15 49 5<	145	16-Oct-2007	6	40	40 52	MONT	01029	20.512	100.808	4.5	Laos
146 1-Nov-2007 16 5 38 KEW Amode Upper 16 1-Nov-2007 16 5 39 HTUM UPD6 100.460 4.6 Laos 17 2 2-Der-2007 11 19 4 MOM UPD16 10.055 31 Amphoe Mueang, Nan 18 2-Mar-2008 13 10 7 MTUM UPD16 10.056 31 Amphoe Mueang, Nan 18 2-Mar-2008 15 49 5 NTUM UPD16 10.068 31 Amphoe Mueang, Nan 19 P-Apr-2008 15 49 5 NTUM UPD07 Amphoe Mueang, Nanga Lampang 19 P-Apr-2008 15 49 5 NTUM UPD07 Amphoe Mueang, Nanga Lampang 19 P-Apr-2008 16 30 11 NTUM UPD07 Amphoe Mueang Nuea, Lampang 19 P-Apr-2008 16 30 11 NTUM UPD07 Amphoe Mueang Nuea, Lampang			6	46	54	MYOM	YJ006				
146 1.Nov-2007 19 5 39 HTUM UP006 20.234 100.460 4.6. Lacs 11 15 5 42 MONT U013 Nov-2007 11 15 7 MUM PE104 Nov-2007 11 19 7 MVM F243 Nov-2007 11 19 7 MVM F243 Nov-2007 10.088 3.1 Amphoe Muean, Nan 188 2-Mar-2008 3 22 5 MVM AU027 18.707 100.088 3.1 Amphoe Muean, Nan 149 9-Apr-2008 15 49 5 KAW MVOID 19.394 9.620 3.2 Amphoe Muean, Lampang 150 12-May-2008 6 30 38 KAW AV006 33.371 141.658 A Monto 151 10-Jun-2008 13 71 MVM MONTO OX004 A A A A A A A A			19	5	33	KAEW	AR004				
19 5 42 MONI OUD35 19 5 46 MVM VD16 14 2 10 6 7 HUM UP016 141 19 7 MVCM EF243 10.655 5.1 Amphoe Mueang, Nan 148 2 Mar-2008 3 22 58 MVCM AU207 10.0655 3.1 Amphoe Mueang, Nan 148 2 Mar-2008 3 22 58 MVCM AU001 19.394 99.620 3.2 Amphoe Muean, Lampang 149 9 -Apr-2008 15 49 5 KRW M0001 - - 150 12 -May-2008 6 30 31 HTM U0002 20.652 -May-10 -May-10 151 10-Jun-2008 21 37 28 KAW 14002 20.652 -May-10 - - - - - - - - <td< td=""><td>146</td><td>1-Nov-2007</td><td>19</td><td>5</td><td>39</td><td>HTUM</td><td>UP006</td><td>20.234</td><td>100.460</td><td>4.6</td><td>Laos</td></td<>	146	1-Nov-2007	19	5	39	HTUM	UP006	20.234	100.460	4.6	Laos
11 13 57 HTUM UPD16 147 23-Dec-2007 11 19 7 MONT OU46 18.652 100.655 3.1 Amphoe Mueang, Nan 147 23-Dec-2007 11 19 7 MONT CK016 - 148 2-Mar-2008 3 22 58 MONT OK046 10.088 3.1 Amphoe Ngao, Lampang 149 9-Apr-2008 15 49 5 KAEW AV001 19.394 99.620 3.2 Amphoe Ngao, Lampang 150 12-May-2008 6 30 31 HTUM US005 33.371 -			19	5	42	MONT	V 1018				
147 23-Dec-2007 11 19 4 MONT Olo46 18.652 100.655 3.1 Amphoe Mueang, Nan 18 2-Mar-2008 3 22 17 MONT OK Auge Amphoe Mueang, Nan 149 2-Mar-2008 15 47 44 MONT OMOI Amphoe Mueang, Lampang 149 P-Apr-2008 15 49 22 MONT OMOI Auge Amphoe Muean, Lampang 149 P-Apr-2008 15 49 22 MONT OMOIT Amphoe Muean, Lampang 150 P-Apr-2008 16 30 38 KAEW AV006 Auge Auge 151 10-Jun-2008 21 37 28 KAEW AV006 Auge Auge 152 J-Jul-2008 4 30 MOT OU004 Auge Auge <td></td> <td></td> <td>11</td> <td>18</td> <td>57</td> <td>HTUM</td> <td>UP016</td> <td></td> <td></td> <td></td> <td></td>			11	18	57	HTUM	UP016				
14 19 7 MCOM EF243 148 2 24 74 MONT KONT KONT MONT	147	23-Dec-2007	11	19	4	MONT	OJ046	18.652	100.655	3.1	Amphoe Mueang, Nan
			11	19	7	MYOM	EF243				
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	140	2 Max 2009	3	22	17	MONT	OK016	19 707	100.099	2 1	Amphoo Nato Lampana
	140	2-Mar-2008	3	22	5	HTUM	UO007	10.707	100.088	5.1	Amphoe Ngao, Lampang
149 9-Apr-2008 15 49 5 KAEW AV001 19.394 99.620 3.2 Amphoe Wang Nuea, Lampang 150 15 49 22 MYOM AL011 50007 3.3 Amphoe Wang Nuea, Lampang 150 12-May-2008 6 30 31 HTUM US005 33.371 41.658 8.1 China 151 10-Jun-2008 7 35 17 MOM AV004 AV06 3.3.71 41.658 8.1 China 151 10-Jun-2008 21 37 34 HTUM UU002 20.652 100.794 4.8 Laos 152 1-Jul-2008 9 45 32 MOM AN066 9.45.22 ANOT OC006 153 9-Jul-2008 4 30 11 MYOM AN086 9.45.32 MOM AN086 154 21-Aug-208 4 39 19 HTUM UV003 Maphoe Song, Phrae 155 25-Nov-2008 8 5 MOM AT017 AT017 Amphoe Chiaeng			15	47	44	MONT	OM001				
15 49 22 MOM AL01 150 12-May-2008 6 30 31 HTUM US005 33.371 141.658 8.1 China 150 12-May-2008 6 30 38 KAEW AV006 33.371 141.658 8.1 China 151 10-Jun-2008 21 37 28 KAEW BA002 20.652 100.794 4.8 Laos 152 10-Jun-2008 21 37 34 HTUM U0002 20.652 100.794 4.8 Laos 152 1-Jul-2008 24 5 MONT OC006 4.8 AAD AND66 9 45 32 MYOM AND66 19.420 9.538 3.8 Amphoe Wiaeng Pa Pao, Chiang Rai 153 9-Jul-2008 12 25 36 HTUM U0002 2.135 9.769 6.5 Mapmar-China Border 154 21-Aug-2008 8 10 18	149	9-Apr-2008	15	49	5	KAEW	AY001	19.394	99.620	3.2	Amphoe Wang Nuea, Lampang
			15	49	22	MYOM	AL011				
			6	28	36 31	MONT	OM007				
151 0-Jun-2008 6 30 48 MYOM AY109 151 10-Jun-2008 21 37 28 KAEW BA002 20.652 100.794 4.8 Laos 151 11 37 28 MVOM AN006 AN006 AN006 121 37 34 HTUM U0002 20.652 100.794 4.8 Laos 152 1-Jul-2008 9 45 34 MAVM AN066 Anno6 153 9-Jul-2008 9 45 34 MTVM OU005 Anno6 Anno6 153 9-Jul-2008 4 39 11 MYOM A0083 B.701 10.248 2.2 Amphoe Wiaeng Pao, Chiang Rai 154 9-Jul-2008 4 39 11 MYOM A0083 B.701 10.248 2.2 Amphoe Song, Phrae 155 9-Jul-2008 4 35 MON YO13 2.1.35 99.769 6.5 M	150	12-May-2008	6	30	38	KAEW	AY006	33.371	141.658	8.1	China
			6	30	48	MYOM	AY109				
151 10-Jun-2008 21 37 28 KAEW BA002 20.652 100.794 4.8 Laos 151 10-Jun-2008 21 37 34 HTUM UU002 20.652 100.794 4.8 Laos 152 1-Jul-2008 9 45 24 KAEW BA003 19.420 99.538 3.8 Amphoe Wiaeng Pa Pao, Chiang Rai 153 9-Jul-2008 4 39 11 MYOM AN086 19.70 100.248 2.2 Amphoe Wiaeng Pa Pao, Chiang Rai 153 9-Jul-2008 4 39 11 MYOM AN086 7 7 74 8.7 7 74 8.7 7 74 8.7 7 8.8 7 7 74 8.9 10.000 7 7 74 8.8 8008-7 7 7 74 8.8 8006-7 7 7 74 8.7 7 74 8.7 7 74 8.7 7 74 8.7 7 7 7 7 7 7 7 7 </td <td></td> <td></td> <td>21</td> <td>35</td> <td>17</td> <td>MONT</td> <td>00004</td> <td></td> <td></td> <td></td> <td></td>			21	35	17	MONT	00004				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	151	10-Jun-2008	21	37	28		BA002	20.652	100.794	4.8	Laos
			21	37	39	MYOM	AN006				
152 1-Jul-2008 9 45 24 KAEW BA003 AND66 19.420 19.420 99.538 P.538 3.8 Amphoe Wiseng Pa Pao, Chiang Rai 154 9 45 34 HTUM U0005 Amphoe Wiseng Pa Pao, Chiang Rai 153 9-Jul-2008 4 39 11 MYOM A0008 18.701 100.248 2.2 Amphoe Song, Phrae 154 9-Jul-2008 4 39 19 HTUM UV003 Amphoe Song, Phrae 154 21-Aug-2008 12 25 X5 KAEW B006-7 Amphoe Song, Phrae 154 21-Aug-2008 12 25 NOM AY013 Amphoe Song, Phrae 155 25-Nov-2008 8 10 18 HTUM UY001 20.630 100.277 2.6 Amphoe Chiaeng Muan, Phayao 156 29-Nov-2008 8 6 12 KAEW B604 20.630 100.890 4.0 Laos 157 31-Dec-2008 7 59			9	42	45	MONT	00006				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	152	1-Jul-2008	9	45	24	KAEW	BA003	19.420	99.538	3.8	Amphoe Wiaeng Pa Pao, Chiang Rai
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			9	45	32	MYOM	AN086				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			9 4	45 36	54 22	MONT	OP004				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	153	9-Jul-2008	4	39	11	MYOM	AO008	18.701	100.248	2.2	Amphoe Song, Phrae
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			4	39	19	HTUM	UV003				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			12	25	25	KAEW	BB006-7				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	154	21-Aug-2008	12	25	33 0	MYOM	0V011 AP020	23.135	99.769	6.5	Myanmar-China Border
155 25-Nov-2008 8 10 18 HTUM UY009 18.816 100.277 2.6 Amphoe Chiaeng Muan, Phayao 156 8 10 18 MYOM AT017 AT017 Amphoe Chiaeng Muan, Phayao 156 29-Nov-2008 8 6 12 KAEW BF004 20.630 100.890 4.0 Laos 157 31-Dec-2008 7 59 26 HTUM UY004 18.653 100.650 3.7 Amphoe Mueang, Nan 157 31-Dec-2008 7 59 26 HTUM UZ004 18.653 100.650 3.7 Amphoe Mueang, Nan 158 31-Dec-2008 7 59 55 KAEW BG004 Amphoe Mueang, Nan 158 31-Dec-2008 8 3 36 HTUM UZ005 18.694 100.650 3.7 Amphoe Mueang, Nan 158 31-Dec-2008 8 3 36 HTUM UZ005 18.694 100.642 3.7 Amphoe Mueang, Nan 159 29-Jan-2009 23 53 KAEW			8	5	35	MONT	XY013				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	155	25-Nov-2008	8	10	18	HTUM	UY009	18.816	100.277	2.6	Amphoe Chiaeng Muan, Phayao
8 1 32 MONT XY012 156 29-Nov-2008 8 6 12 KAEW BF004 20.630 100.890 4.0 Laos 156 29-Nov-2008 8 6 12 KAEW BF004 20.630 100.890 4.0 Laos 157 31-Dec-2008 7 59 26 HTUM UZ004 18.653 100.650 3.7 Amphoe Mueang, Nan 158 31-Dec-2008 7 59 26 HTUM UZ004 18.653 100.650 3.7 Amphoe Mueang, Nan 158 31-Dec-2008 8 3 36 HTUM UZ005 18.694 100.642 3.7 Amphoe Mueang, Nan 158 31-Dec-2008 8 3 36 HTUM UZ005 18.694 100.642 3.7 Amphoe Mueang, Nan 159 29-Jan-2009 23 53 FAEW BI002 19.039 100.317 2.8 Amphoe Chiaeng Muan, Phayao			8	10	18	MYOM	AT017				
156 29-Nov-2008 8 6 12 KAEW Broud 20.630 100.890 4.0 Laos 156 29-Nov-2008 8 6 18 HTUM UY010 20.630 100.890 4.0 Laos 157 31-Dec-2008 7 59 26 HTUM UZ004 18.653 100.650 3.7 Amphoe Mueang, Nan 157 31-Dec-2008 7 59 26 HTUM UZ004 18.653 100.650 3.7 Amphoe Mueang, Nan 158 31-Dec-2008 8 3 36 HTUM UZ005 18.694 100.642 3.7 Amphoe Mueang, Nan 158 31-Dec-2008 8 3 36 HTUM UZ005 18.694 100.642 3.7 Amphoe Mueang, Nan 158 31-Dec-2008 8 3 36 HTUM UZ005 18.694 100.642 3.7 Amphoe Mueang, Nan 159 29-Jan-2009 23 53 FX KAEW BI002 19.039 100.317 2.8 Amphoe Chiaeng Muan, Phayao			8	1	32	MONT	XY012				
8 6 29 MYOM AT019 7 54 22 MONT XZ005 157 31-Dec-2008 7 59 26 HTUM UZ004 18.653 100.650 3.7 Amphoe Mueang, Nan 157 31-Dec-2008 7 59 55 KAEW BG004 7 58 32 MONT XZ006 158 31-Dec-2008 8 3 36 HTUM UZ005 18.694 100.642 3.7 Amphoe Mueang, Nan 158 31-Dec-2008 8 3 36 HTUM UZ005 18.694 100.642 3.7 Amphoe Mueang, Nan 159 29-Jan-2009 23 52 MONT AC006 400.317 2.8 Amphoe Chiaeng Muan, Phayao 23 23 58 HTUM VC002 19.039 100.317 2.8 Amphoe Chiaeng Muan, Phayao	156	29-Nov-2008	о 8	6	12	HTUM	UY010	20.630	100.890	4.0	Laos
157 31-Dec-2008 7 54 22 MONT XZ005 157 31-Dec-2008 7 59 26 HTUM UZ004 18.653 100.650 3.7 Amphoe Mueang, Nan 158 31-Dec-2008 8 3 36 HTUM UZ005 18.694 100.642 3.7 Amphoe Mueang, Nan 158 31-Dec-2008 8 3 36 HTUM UZ005 18.694 100.642 3.7 Amphoe Mueang, Nan 158 31-Dec-2008 8 3 36 HTUM UZ005 18.694 100.642 3.7 Amphoe Mueang, Nan 159 29-Jan-2009 23 53 KAEW BI002 19.039 100.317 2.8 Amphoe Chiaeng Muan, Phayao 23 23 58 HTUM VC002 19.039 100.317 2.8 Amphoe Chiaeng Muan, Phayao			8	6	29	MYOM	AT019				
157 31-Dec-2008 7 59 26 HTUM UZ004 18.653 100.650 3.7 Amphoe Mueang, Nan 158 31-Dec-2008 8 32 MONT XZ006 XZ006 X Namphoe Mueang, Nan 158 31-Dec-2008 8 3 36 HTUM UZ005 18.694 100.642 3.7 Amphoe Mueang, Nan 158 31-Dec-2008 8 3 36 HTUM UZ005 18.694 100.642 3.7 Amphoe Mueang, Nan 158 31-Dec-2008 8 4 5 KAEW BG005 100.642 3.7 Amphoe Mueang, Nan 159 29-Jan-2009 23 53 KAEW BI002 19.039 100.317 2.8 Amphoe Chiaeng Muan, Phayao 23 23 58 HTUM VC002 100.317 2.8 Amphoe Chiaeng Muan, Phayao			7	54	22	MONT	XZ005				
158 31-Dec-2008 8 3 36 HTUM VZ005 18.694 100.642 3.7 Amphoe Mueang, Nan 158 31-Dec-2008 8 3 36 HTUM UZ005 18.694 100.642 3.7 Amphoe Mueang, Nan 158 23 23 52 MONT AC006 159 29-Jan-2009 23 23 57 KAEW Bl002 19.039 100.317 2.8 Amphoe Chiaeng Muan, Phayao 23 23 58 HTUM VC002 19.039 100.317 2.8 Amphoe Chiaeng Muan, Phayao	157	31-Dec-2008	7	59	26	HTUM	UZ004	18.653	100.650	3.7	Amphoe Mueang, Nan
158 31-Dec-2008 8 3 36 HTUM UZ005 18.694 100.642 3.7 Amphoe Mueang, Nan 158 31-Dec-2008 8 4 5 KAEW BG005 23 23 52 MONT AC006 159 29-Jan-2009 23 23 57 KAEW BI002 19.039 100.317 2.8 Amphoe Chiaeng Muan, Phayao 23 23 58 HTUM VC002 VC002 VC002			7	59 58	55 32	KAEW	8G004 X7006				
8 4 5 KAEW BG005 23 23 52 MONT AC006 159 29-Jan-2009 23 23 57 KAEW BI002 19.039 100.317 2.8 Amphoe Chiaeng Muan, Phayao 23 23 58 HTUM VC002	158	31-Dec-2008	8	3	36	HTUM	UZ005	18.694	100.642	3.7	Amphoe Mueang, Nan
23 23 52 MONT AC006 159 29-Jan-2009 23 23 57 KAEW BI002 19.039 100.317 2.8 Amphoe Chiaeng Muan, Phayao 23 23 58 HTUM VC002 VC002 VC002			8	4	5	KAEW	BG005				. –
159 29-Jan-2009 23 23 57 KAEW BIOO2 19.039 100.317 2.8 Amphoe Chiaeng Muan, Phayao 23 23 58 HTUM VC002			23	23	52	MONT	AC006				
	159	29-Jan-2009	23 23	23	57 58	KAEW HTUM	BI002 VC002	19.039	100.317	2.8	Amphoe Chiaeng Muan, Phayao

Table 3.5 The 181 KST's epicenters during the year 1999 to 2010 of this study (cont.).

		Start	Time (UTC)	a		Loca	ation		
No	Date	hr	min	sec	Station	File name -	Lat	Long	м	Region
		1	38	35	KAEW	BI003				
160	6-Feb-2009	1	38	59	HTUM	VC005	19.505	99.717	2.8	Amphoe Phan, Chiang Rai
		1	39	3	MONT	AD001				
		7	57	48	KAEW	BL003				
161	22-May-2009	7	57	57	MONT	AZ005	20.294	101.086	4.3	Laos
		7	58 58	25	MYOM	VE015				
		18	50	28	KAEW	BL004				
4.60		18	50	37	MONT	AZ006	00.004	100 171		
102	22-May-2009	18	50	40	HTUM	VE016	20.984	102.471	5.1	Laos
		18	50	42	MYOM	NO011				
		12	43	46	MYOM	NO 015				
163	1-Jun-2009	12	43	49 50		AZ 013 VE 021	18.815	100.578	3.1	Amphoe Ban Luang, Nan
		12	44	6	KAEW	BL 009				
		0	23	14	MYOM	NO017				
164	10-Jun-2009	0	23	15	MONT	AZ015	18.798	100.269	2.7	Amphoe Song, Phrae
		0	23	24	HTUM	VE022				
		0	24	20	MYOM	NO018				
165	10-Jun-2009	0	24	21		AZ016	18.829	100.277	2.7	Amphoe Chiang Muan, Phayao
		0	24	33	KAEW	VL023 BL011				
		19	49	31	MYOM	NP006				
166	18 Jun 2000	19	49	32	MONT	BA004	10 000	100 220	24	Amphon Ching Muss. Dhavan
100	10-Jun-2009	19	49	41	HTUM	VF004	10.090	100.550	2.0	Amphoe Chiang Muan, Phayao
		19	49	44	KAEW	BM005				
		19	56	53	MONT	GU003				
167	10-Aug-2009	19	57	4	KAFW	BW004	14.967	94.629	6.8	Andaman Islands, India Region
		19	57	14	HTUM	VH003				
		17	56	59	MONT	IN004				
168	16-Aug-2009	17	57	1	MYOM	NR011	20.535	100.288	4.2	Loas-Mynmar Border
		17	57	4	HTUM	VH010				
4.00	4.0.1.0000	11	56	31	KAEW	DX001		400.047		
169	1-061-2009	11	56	41	MONT	VI026	20.022	103.047	4.1	Loas
		1	58	30	KAEW	EL001				
470	44.0.1.0000	1	58	38	MONT	JV007	00.005	100.000		
170	14-Oct-2009	1	58	41	HTUM	VL001	20.205	102.039	4.8	Loas
		1	59	11	MYOM	PP001				
474	7 N. 0000	3	55	21	KAEW	FJ001	00.077	404 004		
171	7-NOV-2009	3	55	30 25	HIUM	WK001	20.377	101.304	3.9	Loas
		7	36	45	KAEW	FM002				
470	40.01.0000	7	36	9	MONT	JW001	00 500	100.000		
172	10-Nov-2009	7	36	18	HTUM	WN002	20.590	102.088	4.8	Loas
		7	37	13	MYOM	QR003				
470	40.01.0000	8	2	6	MONT	JW002	00400	404 440		
173	10-NOV-2009	8 8	2	9 18	HTUM	FM003	20.109	101.440	4.3	Loas
		8	40	50	KAEW	FM004				
174	10-Nov-2009	8	41	4	нтим	WN004	20.276	101.413	4.1	Loas
		8	41	2	MONT	JW003				
		7	2	32	KAEW	GJ001				
175	2-Dec-2009	7	2	32	MONT	JW014	19.310	99.203	3.3	Amphoe Phrao, Chiang Mai
		7	2	52		KN001				
		1	11	31	KAFW	HH001				
176	26-Dec-2009	1	11	40	MONT	JX008	20.695	99.665	4.0	Myanmar
		1	12	23	HTUM	YI001				
		13	3	6	KAEW	KC001				
177	9-Mar-2010	13	3	15	MONT	KA004	20.508	99.383	4.2	Myanmar
		13	3	18	MYOM	VP003				
178	26-Jun-2010	2	25 24	52 6	MONT	KC000	20 183	99 524	30	Thai-Myanmar Border
1.0	20 301-2010	2	24	13	HTUM	FT002	20.105	//.JZ7	3.9	
		15	23	25	нтим	GD001				
170	6- Jul-2010	15	23	3	KAEW	OS 001	20.004	99 054	<u>م</u> 1	Thai-Myanmar Border
117	0-54(-2010	15	23	16	MONT	KC001	20.004	22.0J4	7.1	
		15	23	40	MYOM	AH001				

Table 3.5 The 181 KST's epicenters during the year 1999 to 2010 of this study (cont.).

Table 3.5 The 181 KST's epicenters during the year 1999 to 2010 of this study (cont.).

No	Data	Start	Time (UTC)	Station	Eile name	Loca	ation	м	Pagian
NO	Date	hr	min	sec	Station	File name -	Lat	Long	IVI	region
		12	53	14	HTUM	GP001				
180	18-Jul-2010	12	53	18	KAEW	PE001	20.249	100.978	3.8	Loas
		12	53	11	MONT	KD001				
		8	18	46	HTUM	ID001				
101	20 4 2010	8	18	24	KAEW	QU001	10 5 20	00 5 40	2.4	Anaphan Man Suni Chinan Dai
101	29-Aug-2010	8	18	33	MONT	KD009	19.520	99.540	5.4	Amphoe Mae Sual, Chiang Rai
		8	18	50	MYOM	CO001				

Figure 3. 20. Typical of seismogram which can read the arrival time of P- and S-wave (P: primary wave and S: secondary wave).

Figure 3. 21. Typical seismogram of teleseismic earthquake.

Figure 3. 22. Typical of seismogram which can read the arrival time of P-wave only (P: primary wave).

Figure 3. 23. Typical of seismogram which can read the arrival time of S-wave only (S: primary wave).

Figure 3. 24. Typical seismogram of long period wave.

Figure 3. 25. Seismograms of earthquake on May 22, 1999 which the HTUM, the MYO, and the KAEW stations can read the arrival time of P-and S-wave.

Figure 3. 26. Seismograms of teleseismic earthquake on December 26, 2004.

Figure 3. 27. Seismograms of earthquake on February 27, 2000 which the KAEW and the HTUM stations cannot read the arrival time of S-wave, and the MONT station cannot read the arrival time of P-wave.

Figure 3. 28. Seismograms of long period earthquake on March 4, 2000.

After interpreting and screening seismograms of the 181 KST's epicenters, there were 118 events (Figure 3.29 and Table 3.6) of well-posted earthquakes data to be re-locating on the next step.

Figure 3. 29. Number of earthquakes and magnitude of the KST's epicenters after screening.

N.	No. Data		Time ((UTC)	Chatlan	File name	Loca	tion		Region	
NO	Date	hr	min	sec	Station	File name	Lat	Long	м	Region	
		15	23	31	MYOM	BY080					
1	22-May-1999	15 15	23 23	33	KAEW	AX010	18.900	100.200	2.0	Amphoe Chiang Muan, Phayao	
		23	14	30	MONT	CI185					
2	10-Aug-1999	23	14	33	KAEW	AY011	18.950	100.040	3.1	Amphoe Mueang, Phayao	
		23	14	34	HTUM	CZ015					
		23	21	46	MONT	ES011					
3	19-Nov-1999	23	21	47	MYOM	OX002	19.790	100.110	2.9	Amphoe Phaya Meng Rai, Chiang Rai	
		23	21 12	57		BC002					
4	13-Apr-2000	13	13	56	KAFW	BV006	19 310	100 480	3.0	Amphoe Pong Phavao	
•	107.012000	13	14	6	MONT	NP029	17.010	100.100	5.0	, an price i on 5, i hay de	
		11	44	24	KAEW	MZ002					
5	5-Sep-2000	11	44	28	MONT	RO001	19.150	100.050	3.2	Amphoe Dok Kham Tai, Phayao	
		11	44	36	MYOM	AM031					
		1	4	14	MYOM	EI045					
6	7-May-2001	1	4	15	HTUM	AL004	18.310	100.440	3.3	Amphoe Rong Kwang, Phrae	
		20	4	37	MONT	HZ076					
7	26-Apr-2002	20	31	40	MYOM	GI316	18.910	99.080	4.5	Amphoe San Sai, Chiang Mai	
		20	31	47	HTUM	AO011				, , .	
		3	54	0	KAEW	AG012					
8	2-101-2002	3	54	4	HTUM	EG005	19 610	99 380	5.0	Amphoe Mae Suai, Chiang Bai	
0	2 50(2002	3	54	11	MYOM	GK013	17.010	<i>))</i> .500	5.0	Amphoe Mae Saal, chang ha	
		3	54	10	MONT	HZ114					
		0	17	44	KAEW	AG016					
9	3-Jul-2002	0	17	48 53	MONT	EG009	19.810	100.280	3.7	Amphoe Khun Tan, Chiang Rai	
		0	17	54	MYOM	GK016					
		22	49	41	KAEW	AG024					
10	01 14 0000	22	49	46	HTUM	EG014	10.000	100.000		1	
10	21-Jul-2002	22	49	51	MONT	IA009	19.920	100.900	4.1	Laos	
		22	50	10	MYOM	GM008					
		6	11	29	MYOM	GM035					
11	7-Sep-2002	6	11	31	HTUM	EH003	18.580	100.300	3.5	Amphoe Song, Phrae	
		6	11	52 58	KAFW	AG033					
		14	27	36	KAEW	AG039					
10	25 5 2002	14	27	41	MONT	LF001	10.200	00 400	2.4		
12	25-Sep-2002	14	27	44	MYOM	GM084	19.390	99.400	3.0	Amphoe Wiang Pa Pao, Chiang Rai	
		14	27	47	HTUM	EI001					
		5	21	10	MONT	OE001					
13	6-Nov-2002	5	21	12	MYOM	GM221	18.670	99.980	2.9	Amphoe Ngao, Lampang	
		5 13	47	29 10	H I UM	EI009					
		13	47	12	MONT	RM002					
14	18-Dec-2002	13	47	15	MYOM	GM287	19.390	98.800	4.9	Amphoe Chiang Dao, Chiang Mai	
		13	47	19	HTUM	EI016					
		7	14	20	KAEW	AG058					
15	29-Jan-2003	7	14	32	MONT	UM001	19.760	100.600	3.9	Laos	
		7	14	33	MYOM	GN042					
16	23-410-2003	0 8	57	20 28	KAEW	GQ043	18 577	00 211	35	Amphoe Mueang Lamphun	
10	257/452005	8	57	23	MONT	EN001	10.577	<i>)).</i> 244	5.5	, implied macaris, Europhan	
		11	4	15	KAEW	AG080					
17	18-Sep-2003	11	4	26	MONT	FV001	20.547	100.057	4.5	Myanmar	
		11	4	28	MYOM	GQ096					
		15	8	20	KAEW	AG100					
18	23-Nov-2003	15	8	25	HTUM	ON002	20.480	101.350	4.5	Laos	
		15	ა გე	32 35	MYOM	GR096					
		5	49 49	39		OW001					
19	14-Mar-2004	5	49	44	MYOM	GR299-300	20.174	100.000	3.9	Amphoe Mae Chan, Chiang Rai	
		5	49	44	MONT	ME006					
		4	5	26	KAEW	AG117					
20	27-Mar-2004	4	5	33	MONT	ME009	19.720	99.800	3.7	Amphoe Phan, Chiang Rai	
		4	5	36	MYOM	GR324					
		4	5	37	HTUM	OW006					

Table 3. 6 The 118 KST's epicenters of well-located earthquakes after screening.

No	Date	Start	ııme	(01C)	Station	File name	LOC	ation	м	Region
NO	Date	hr	min	sec	5 tation	ine name	Lat	Long	101	hegion
		18	54	6	HTUM	OX007				
21	17-Aug-2004	18	54	7	MONT	MT010	17.320	100.650	4.1	Amphoe Chat Trakan, Phitsanulo
	.,	18	54	20	MYOM	GR632				p -
		18	54	46	KAEW	AG125				
22	11 500 2004	1	22	50 19	MONT	CP651	10 010	00 000	2.6	Amphoo Hong Dong, Chiong Mai
22	11-5ep-2004	1	32	10	KAFW	AG126	10.010	96.600	5.0	Amphoe hang bong, chiang Mai
		1	30	20	MYOM	GR953				
	06 Da - 0004	1	30	10	KAEW	AG143				
23	26-Dec-2004	1	30	16	MONT	MV022	21.630	103.300	6.6	Myanmar
		1	30	19	HTUM	PB006				
		23	55	9	KAEW	AG157				
24	30-Dec-2004	23	55	10	MONT	MV053	20 940	97 750	64	Myapmar
24	50 Dec 2004	23	55	18	HTUM	PB011	20.740	21.150	0.4	Myannan
		23	55	23	MYOM	GR965				
		16	31	19	KAEW	AG160				
25	25-Jan-2005	16	31	32	MONT	MV063	22.520	100.740	4.9	Myanmar
		16	31	29	HIUM	PE001				
26	1-401-2005	7	10	15	MONT	AG105	10 308	00 300	37	Amphoe Wiang Pa Pao, Chiang B
20	1-Api-2005	7	18	23	HTUM	PF017	19.390	JJ.JJJ	5.1	Ampile what year a children ha
		23	1	39	MYOM	GU029				
27	4-Jun-2005	23	1	40	HTUM	PF031	17.817	100.706	3.8	Amphoe Nam Pat. Uttaradit
		23	1	41	MONT	NA013				· · · · · · · · · · · · · · · · · · ·
		21	7	40	муом	GU036				
28	9-Jun-2005	21	7	42	MONT	NB002	18.544	100.259	2.4	Amphoe Song, Phrae
		21	7	48	HTUM	PF032				
		0	38	41	MONT	NC002				
29	29-Jun-2005	0	38	43	MYOM	GU126	18.815	99.500	3.1	Amphoe Mueang Pan, Lampang
27	2, 50.12000	0	38	51	HTUM	PF033	10.015	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5.1	,
		0	39	5	KAEW	AJ001				
		9	34	33	MONT	NI015				
30	4-Dec-2005	9	34	36	MYOM	GU591	18.770	99.000	4.2	Amphoe Mueang, Chiang Mai
		9	34	38		AJ022				
		9	0	52	KAEW	A 1051				
		9	1	2	MONT	NI017				
31	7-Dec-2005	9	1	4	HTUM	OK006-7	19.720	99.500	3.6	Amphoe Mae Suai, Chiang Rai
		9	1	24	MYOM	GU605				
		6	48	22	KAEW	AJ053				
20	15 Dec 2005	6	48	34	MONT	NI018	10.450	100 200	4.1	Amphon Chings Khom Dhours
52	15-Dec-2005	6	48	35	HTUM	QL002	19.450	100.500	4.1	Amphoe chiang kham, Phayao
		6	48	36	MYOM	GU639				
		23	13	0	KAEW	AJ055				
33	15-Dec-2005	23	13	14	MONT	NI019	19.490	99.900	3.0	Amphoe Phan, Chiang Rai
		23	13	27	HTUM	QL003				
		2	13	30	KAEW	AJU57				
34	16-Dec-2005	2	13	41	MUNT		19.490	99.830	3.6	Amphoe Phan, Chiang Rai
		2	12	45	HTUM	01005				
		2	15	24	KAFW	A.1058				
		2	15	36	MONT	NI021				
35	16-Dec-2005	2	15	38	MYOM	GU641	19.490	99.930	3.7	Amphoe Pa Daed, Chiang Rai
		2	13	37	HTUM	QL006				
		10	59	1	KAEW	AJ065				
36	17-Dec-2005	10	59	27	HTUM	QJ007	19.610	100.150	3.2	Amphoe Thoeng, Chiang Rai
		10	59	33	MONT	NI022				
		11	47	50	KAEW	AJ066				
37	17-Dec-2005	11	48	3	MONT	NI023	19 460	100 000	33	Amphoe Pa Daed Chiang Rai
	1 000-2000	11	48	4	MYOM	GU672	17.400	100.000	5.5	, any not a baca, chiang nat
		11	48	5	HTUM	QL008				
		13	42	25	KAEW	AJ081				
38	24-Jan-2006	13	42	33	MONT	NI036	20.890	98.460	5.5	Myanmar
		13	42	38	HTUM	QL014				
20		16	54	2	KAEW	AJ094	10.101	100 007		American David Cl
39	15-Feb-2006	16	54	5	MONT	NI044	19.134	100.207	3.4	Amphoe Pong, Phayao

Table 3.6 The 118 KST's epicenters of well-located earthquakes after screening

NI -	Data	Start	Time	(UTC)	Station	File name	Loca	ation		Region
No	Date	hr	min	sec			Lat	Long	- M	
		18	33	47	KAEW	AJ098				
40	20-Feb-2006	18	33	51	MONT	NI045	19.138	100.221	2.8	Amphoe Pong, Phayao
		18	33	51	MYOM	GV156				
		15	35	7	KAEW	AK005				
41	13-Oct-2006	15	35	21	MONT	NY003	20.229	100.157	3.7	King Amphoe Doi Luang, Chiang Ra
		15	35	35	HTUM	UF001				
		12	0	35	MONT	NY005				
12	18-Oct-2006	12	0	37	MYOM	HD143	18 0/15	100 116	3.2	Amphoe Dok Kham Tai Phavao
42	18-001-2000	12	0	39	HTUM	UF002	10.945	100.110	5.2	Amphoe box khami tai, Fhayao
		12	0	39	KAEW	AK006				
		1	58	31	KAEW	AK007				
13	21-Oct-2006	1	58	39	HTUM	UF003	20 325	100 846	12	1205
45	21-001-2000	1	58	42	MONT	NY006	20.525	100.040	4.2	Laos
		1	58	44	MYOM	HD144				
		18	38	32	KAEW	AK013				
44	16-Nov-2006	18	38	44	MONT	NY013	19 540	00 000	37	Amphoe Pa Daed Chiang Bai
44	10-1100-2000	18	38	46	HTUM	UG002	19.540	,,,,,,	5.1	Amphoe Fa Daed, Chiang hai
		18	38	47	MYOM	HE021				
		19	32	32	HTUM	UG004				
15	26-Nov-2006	19	32	38	MYOM	HE036	10.060	101 230	3.8	Amphoe Bo Klues Nan
45	20-1100-2000	19	32	41	MONT	NZ001	19.009	101.239	5.0	Amphoe bo Ruea, Nam
		19	32	41	KAEW	AK014				
		17	2	6	MONT	NZ006				
46	12-Dec-2006	17	2	8	KAEW	AK016	18 934	99 245	47	Amphoe Doi Saket Chiang Mai
40		17	2	9	MYOM	NB001	10.754)).E43	4.1	Amprice Bor Suket, enturis mur
		17	2	14	HTUM	UG007				
		19	49	15	MONT	NZ011				
47	12-Dec-2006	19	49	30	KAEW	AK019	18.965	99.189	3.8	Amphoe Doi Saket, Chiang Mai
		19	49	42	HTUM	UG008				
		22	21	33	MONT	NZ012				
48	12-Dec-2006	22	21	36	KAEW	AK020	19.008	99.144	3.6	Amphoe Doi Saket, Chiang Mai
		22	22	2	HTUM	UG009				
		5	48	41	MONT	NZ014				
49	13-Dec-2006	5	48	56	KAEW	AK022	18.899	99.256	3.9	Amphoe Doi Saket, Chiang Mai
		5	48	58	MYOM	NO001				
		11	48	56	MONT	OA008				
50	23-Dec-2006	11	49	13	KAEW	AK025	18.880	99.638	3.2	Amphoe Chae Hom, Lampang
		11	49	15	MYOM	VW001				
		22	29	37	MONT	OB007				
51	25-Jan-2007	22	29	43	KAEW	AK032	18.824	99.387	3.2	Amphoe Mueang Pan, Lampang
		22	29	44	MYOM	XY187				
		8	52	23	HTUM	UI001				
52	18-Feb-2007	8	52	25	MYOM	YB006	18.555	100.582	3.1	Amphoe Wiaeng Sa, Nan
		8	52	28	MONT	OB013				
		6	17	31	KAEW	AK045				
53	22-Apr-2007	6	17	39	MONT	OD009	19.427	99.838	4.0	Amphoe Pa Daed. Chiang Rai
	•	6	17	42	MYOM	YB139				
		6	17	43	HTUM	UJ004				
_		14	28	33	KAEW	AK051				
54	15-May-2007	14	28	37	HTUM	UJ009	20.489	100.579	4.7	Laos
	· · ·	14	28	54	MONT	OE002				
		14	28	56	MYOM	YC005				
		8	55	58	KAEW	AK052(1)				
55	16-May-2007	8	56	4	HTUM	UJ010(1)	20.646	101.445	6.1	Laos
	· · ·	8	56	8	MONT	OE003(1)				
		8	56	8	MYOM	YC007(1)				
		9	30	49	KAEW	AK063				
56	16-May-2007	9	31	1	MONT	OE012	20.234	100.611	3.8	Laos
	,	9	31	19	HTUM	UJ016				
		9	31	31	MYOM	YC011				
		10	4	23	KAEW	AK066				
57	16-Mav-2007	10	4	30	HTUM	UJ018	21.003	100.514	4.0	Laos
		10	4	35	MONT	OE013				

Table 3.6 The 118 KST's epicenters of well-located earthquakes after screening

No	Date	Start	Time ((UTC)	Station	File name	Loca	ation	м	Region
NU		hr	min	sec			Lat	Long	101	negion
		10	15	31	KAEW	AK067				
58	16-Mav-2007	10	15	36	HTUM	UJ019	20.666	100.934	4.0	Laos
		10	15	42	MONT	OE014				
		10	16	10	MYOM	YC013				
		10	25	49	KAEW	AK068				
59	16-May-2007	10	25	55	HIUM	0J020	20.581	101.070	4.1	Laos
		10	25	58	MONT	OE015				
		11	15	41 52		AN009		101.197		
60	16-May-2007	11	15	57	MONT	OF016	20.420		4.2	Laos
		11	15	59	MYOM	YC014				
		11	35	3	KAEW	AK071				
61	16-Mav-2007	11	35	9	нтим	UJ022	20.533	100.822	3.9	Laos
		11	35	15	MONT	OE017				
		11	43	42	KAEW	AK072				
		11	43	48	HTUM	UJ023				
62	16-May-2007	11	43	51	MONT	OE018	20.716	101.214	4.1	Laos
		11	43	57	муом	YC015				
		13	17	56	KAEW	AK074				
(2)	16 Mar 2007	13	18	2	HTUM	UJ024	20 540	101 051	4 5	1
00	16-May-2007	13	18	6	MONT	OE019	20.540	101.051	4.5	Laos
		13	18	8	MYOM	YC016				
		17	8	43	KAEW	AK078				
64	16-May-2007	17	8	48	HTUM	UJ027	20 309	101 364	4 1	laos
04	10 May 2001	17	8	53	MONT	OE021	20.507	101.504	4.1	2005
		17	8	55	MYOM	YC018				
	17-May-2007	3	25	32	KAEW	AK081				
65		3	25	39	HTUM	UJ029	20.029	101.416	4.1	Laos
		3	25	43	MONT	OE023				
		3	26	11	MYOM	YC019				
		0	1	44	KAEW	AK082				
66	18-May-2007	0	1	49	HIUM	01030	20.087	101.254	3.9	Laos
		0	2	21		VC022				
		1	41	25	KAEM	10022				
67	18-May-2007	1	41	9	HTUM	11031	20 253	100 798	3.9	laos
01	10-110 - 2001	1	41	24	MONT	OF025	20.255	100.790		Laos
		13	5	4	KAEW	AK087				
68	18-Mav-2007	13	5	11	HTUM	UJ032	20.612	101.232	4.2	Laos
		13	5	16	MONT	OE026				
		1	21	7	KAEW	AK089				
69	20-May-2007	1	21	14	HTUM	UJ033	20.441	100.812	3.9	Laos
		1	21	32	MONT	OE027				
		17	6	15	KAEW	AK096				
70	23-May-2007	17	6	21	HTUM	UJ034	20.434	100.781	4.0	Laos
		18	6	26	MONT	OE030				
		11	15	4	KAEW	AL001				
71	24-May-2007	11	15	10	HTUM	UK002	20.507	100.666	3.9	Laos
		11	15	17	MONT	OF001				
		17	20	54	KAEW	AL007				
72	7-Jun-2007	17	21	0	HTUM	UK011	20.606	100.879	4.7	Laos
-		17	21	3	MONT	OF006				
		17	21	6	MYOM	YF002				
		5	6	19	MONT	OF008				
73	19-Jun-2007	5	6	21	KAEW	ALU10	18.931	99.178	4.4	Amphoe Doi Saket, Chiang Mai
		5	6	22	MYOM	80011				-
		5	6	29	HIUM	UKU13				
		6	55 54	54 7	NALW	AMUU1				
74	23-Jun-2007	0 2	54 E4	/ P			19.629	96.758	4.9	Myanmar
		0	54	0	I I UNI	01001				

Table 3.6 The 118 KST's epicenters of well-located earthquakes after screening (cont.).

	2.4	Start	Time ((UTC)	<i></i>		Location			
No	Date	hr	min	sec	Station	File name	Lat	Long	м	Region
		8	17	13	KAEW	AM003				
75	23-Jun-2007	8 8	17 17	21 23	HTUM MONT	UL003	20.887	98.861	5.9	Myanmar
		8	17	23	MYOM	YG005-6				
		8	27	44	KAEW	AM004				
76	23-Jun-2007	8	27	51	HTUM	UL004	21.461	99.352	5.8	Mvanmar
		8	27	53	MONT	OG004				
		8 21	28 33	1 45	KAFW	AN005				
77	28-Jul-2007	21	33	56	MONT	01006	20.576	100.153	4.3	Laos
		21	33	58	HTUM	UM003				
		6	53	40	KAEW	AN010				
78	6-Aug-2007	6	53	46	HTUM	UM006	20.501	100.814	4.1	Laos
		6	55	17	MYOM	YH032				
		8	50	39	KAEW	AN011				
79	6-Aug-2007	8	50	53	MONT	OI014	20.327	100.704	3.8	Laos
		8	51	8	HTUM	UM007				
		8	53	18	KAEW	AN012				
80	7-Aug-2007	8	53	26	MONT	OI015	20.490	101.172	4.3	Laos
		8	53	34	MYOM	YH033				
		9	15	18	KAEW	AO001				
81	8-Aug-2007	9	15	25	HTUM	OM009	20 320	100 441	30	1.205
01	0-Aug-2007	9	15	30	MONT	OJ001	20.320	100.441	5.9	2003
		9	15	56	MYOM	YI002				
		11	16 16	43	MONT	A0007				
82	19-Aug-2007	11	17	14	MYOM	YI007	19.815	98.775	3.8	Thai-Laos Border
		11	17	19	HTUM	UN002				
		7	12	39	KAEW	AP001				
83	8-Sep-2007	7	12	44	HTUM	UN001	20.466	100.783	4.1	Laos
		7	12	50	MONT	OJ007				
		2	12 38	52 47	MYOM	YI024 YI005				
84	16-Oct-2007	2	38	53	MONT	OJ028	18.661	100.142	2.5	Amphoe Song, Phrae
		2	38	54	HTUM	UP003				
		6	46	42	KAEW	AP011				
85	16-Oct-2007	6	46	48	HTUM	UP004	20.512	100.808	4.5	Laos
		6	46	52	MONT	OJ029				
		0 19	40 5	33	KAFW	AR004				
		19	5	39	HTUM	UP006				
86	1-Nov-2007	19	5	42	MONT	OJ035	20.234	100.460	4.6	Laos
		19	5	46	MYOM	YJ018				
07	02 D 0007	11	18	57	HTUM	UP016	10 (50	100 (55	2.1	
87	23-Dec-2007	11	19	4	MYOM	OJ046 FE243	18.652	100.655	5.1	Amphoe Mueang, Nan
		3	22	17	MONT	OK016				
88	2-Mar-2008	3	22	58	муом	AJ027	18.707	100.088	3.1	Amphoe Ngao, Lampang
		3	23	5	HTUM	UQ007				
		15	47	44	MONT	OM001				
89	9-Apr-2008	15	49	5	KAEW	AY001	19.394	99.620	3.2	Amphoe Wang Nuea, Lampang
		21	35	17	MONT	00004				
		21	37	28	KAEW	BA002				
90	10-Jun-2008	21	37	34	HTUM	UU002	20.652	100.794	4.8	Laos
		21	37	39	MYOM	AN006				
		9	42	45	MONT	00006				
91	1-Jul-2008	9	45 45	24 32	KAEW MYOM	BA003	19.420	99.538	3.8	Amphoe Wiaeng Pa Pao, Chiang Rai
		, 9	45	34	HTUM	UU005				
		4	36	22	MONT	OP004				
92	9-Jul-2008	4	39	11	MYOM	AO008	18.701	100.248	2.2	Amphoe Song, Phrae
		4	39	19	HTUM	UV003				

Table 3.6 The 118 KST's epicenters of well-located earthquakes after screening

No	Date	Start	Time	(UTC)	Station	File name	Loc	ation		Region
NO		hr	min	sec	Station		Lat	Long	- 101	
		8	5	35	MONT	XY013				
93	25-Nov-2008	8	10	18	HTUM	UY009	18.816	100.277	2.6	Amphoe Chiaeng Muan, Phayao
		8	10	18	MYOM	AT017				
		8	1	32	MONT	XY012				
94	29-Nov-2008	8	6	12	KAEW	BF004	20.630	100 890	40	laos
	23 1101 2000	8	6	18	HTUM	UY010	20.050	100.070	4.0	Edos
		8	6	29	MYOM	AT019				
		7	54	22	MONT	XZ005				
95	31-Dec-2008	7	59	26	HTUM	UZ004	18.653	100.650	3.7	Amphoe Mueang, Nan
		7	59	55	KAEW	BG004				
		7	58	32	MONT	XZ006				
96	31-Dec-2008	8	3	36	HTUM	UZ005	18.694	100.642	3.7	Amphoe Mueang, Nan
		8	4	5	KAEW	BG005				
		23	23	52	MONT	AC006				
97	29-Jan-2009	23	23	57	KAEW	BI002	19.039	100.317	2.8	Amphoe Chiaeng Muan, Phayao
		23	23	58	HTUM	VC002				
		1	38	35	KAEW	BI003				
98	6-Feb-2009	1	38	59	HTUM	VC005	19.505	99.717	2.8	Amphoe Phan, Chiang Rai
		1	39	3	MONT	AD001				
		7	57	48	KAEW	BL003				
00	22 May 2000	7	57	57	MONT	AZ005	20.204	101 096	12	laar
99	22-1vidy-2009	7	58	3	HTUM	VE013	20.294	101.000	4.5	Laos
		7	58	25	MYOM	NO010				
		18	50	28	KAEW	BL004				
100	22 14-11 2000	18	50	37	MONT	AZ006	00.004	100 471	F 4	1
100	22-1viay-2009	18	50	40	HTUM	VE016	20.984	102.471	5.1	Laos
		18	50	42	MYOM	NO011				
		12	43	46	MYOM	NO 015				
		12	43	49	MONT	AZ 013				
101	1-Jun-2009	12	43	50	HTUM	VE 021	18.815	100.578	3.1	Amphoe Ban Luang, Nan
		12	44	6	KAEW	BL 009				
		0	23	14	MYOM	NO017				
102	10-Jun-2009	0	23	15	MONT	AZ015	18.798	100.269	2.7	Amphoe Song, Phrae
		0	23	24	HTUM	VE022				1 5
		0	24	20	MYOM	NO018				
		0	24	21	MONT	AZ016				
103	10-Jun-2009	0	24	30	HTUM	VE023	18.829	100.277	2.7	Amphoe Chiang Muan, Phayao
		0	24	33	KAEW	BL011				
		19	49	31	MYOM	NP006				
		19	49	32	MONT	BA004				
104	18-Jun-2009	19	49	41	HTUM	VF004	18.890	100.330	2.6	Amphoe Chiang Muan, Phayao
		19	49	44	KAFW	BM005				
		17	56	59	MONT	IN004				
105	16-Aug-2009	17	57	1	MYOM	NR011	20 535	100 288	4 2	Loas-Mynmar Border
100	-0/145-2009	17	57	4	HTUM	VH010	20.333	100.200	7.4	
		11	56	21	KAEW/	DX001				
106	1-Oc+-2000	11	56	/1		VI026	20 022	103 047	<i>d</i> 1	Loas
100	1-001-2009	11	50	41	MONT	1020	20.022	105.047	4.1	2003
		11	20	20	KAEW	FL001				
		1	20	20		1//007				
107	14-Oct-2009	1	20	58		JV007	20.205	102.039	4.8	Loas
		1	28	41	HIUM					
		1	59	11		FF001				
100	7 No. 0000	3	55	21	KAEW	FJUUI	00 077	101 004	2.0	1
108	(-NOV-2009	3	55	30	HIUM	WK001	20.377	101.304	3.9	LOAS
		3	55	35	MONT	JV036				
		7	36	45	KAEW	FM002				
		7	36	9	MONT	JW001	20.590	102.088	4.8	Loas
109	10-Nov-2009	-		10	HTUM	WN002				·· -
109	10-Nov-2009	7	36	10						
109	10-Nov-2009	7 7	36 37	13	MYOM	QR003				
109	10-Nov-2009	7 7 8	36 37 2	13 6	MYOM MONT	QR003 JW002				
109 110	10-Nov-2009 10-Nov-2009	7 7 8 8	36 37 2 2	18 13 6 9	MYOM MONT KAEW	QR003 JW002 FM003	20.109	101.440	4.3	Loas
109 110	10-Nov-2009 10-Nov-2009	7 7 8 8 8	36 37 2 2 2	13 6 9 18	MYOM MONT KAEW HTUM	QR003 JW002 FM003 WN003	20.109	101.440	4.3	Loas
109 110	10-Nov-2009 10-Nov-2009	7 7 8 8 8 8	36 37 2 2 2 40	13 6 9 18 50	MYOM MONT KAEW HTUM KAEW	QR003 JW002 FM003 WN003 FM004	20.109	101.440	4.3	Loas

Table 3.6. The 118 KST's epicenters of well-located earthquakes after screening

Na	Data	Start Time (UTC)			Station	Filo namo	Loca	ation	м	Perion	
NO	Date	hr	min	sec	Station	File name	Lat	Long	M	Region	
		7	2	32	KAEW	GJ001					
112	2-Dec-2009	7	2	32	MONT	JW014	19.310	99.203	2 2	Amphoo Phrao, Chiang Mai	
112		7	2	52	MYOM	RN001			5.5	Amphoe Phrao, Chiang Mar	
		7	3	7	HTUM	XK001					
		1	11	31	KAEW	HH001					
113	26-Dec-2009	1	11	40	MONT	300XL	20.695	99.665	4.0	Myanmar	
		1	12	23	HTUM	YI001					
		13	3	6	KAEW	KC001					
114	9-Mar-2010	13	3	15	MONT	KA004	20.508	99.383	4.2	Myanmar	
		13	3	18	MYOM	VP003					
		2	23	32	KAEW	OI001					
115	26-Jun-2010	2	24	6	MONT	KC009	20.183	99.524	3.9	Thai-Myanmar Border	
		2	24	13	HTUM	FT002					
		15	23	25	HTUM	GD001	20.004	00.054			
116	6 101 2010	15	23	3	KAEW	OS001			4.1	Thai Murannar Porder	
110	0-Ju(-2010	15	23	16	MONT	KC001	20.004	99.054	4.1	man-myaninar border	
		15	23	40	MYOM	AH001					
		12	53	14	HTUM	GP001					
117	18-Jul-2010	12	53	18	KAEW	PE001	20.249	100.978	3.8	Loas	
		12	53	11	MONT	KD001					
		8	18	46	HTUM	ID001					
110	20 411 2010	8	18	24	KAEW	QU001	10 520	00 540		Amphoo Mao Supi Chiang Pai	
110	29-Aug-2010	8	18	33	MONT	KD009	19.520	99.540	5.4	Amphoe Mae Suai, Chiang Rai	
		8	18	50	MYOM	CO001					

Table 3.6. The 118 KST's epicenters of well-located earthquakes after screening

To re-check the well-posted earthquake events that may remain or missed from the previous analysis work. There were 10 well-located earthquakes which remain in these seismograms list (Table 3.7 and Figure 3.30-Figure 3.39) that need to be re-located for the epicenters. Thus from Table 3.6 and Table 3.7 there were a total of 128 well-located earthquakes that can be used to re-locate epicenters, and 20 strong ground-motion earthquakes (Figure 3.18) that can be used to analyze ground motion parameters in the next step.

 Table 3. 7 The 10 new well-located earthquakes after interpreting seismograms.

 Start Time (UTC)

No	Date	Start	Time	(UTC)	Station	File name —	Loc	ation	- м	Region
		hr	min	sec		U.S.	Lat	Long		3
		6	39	1	MYOM	CP001				
1	29-Jun-1999	6	38	55	KAEW	AY003				
		6	39	9	MONT	CI149				
		17	35	48	KAEW	AY006				
2	15-Jul-1999	17	36	2	MONT	CI175				
		17	36	1	HTUM	CZ010				
		23	15	21	KAEW	AY012				
3	10-Aug-1999	23	15	11	MONT	CI186				
		23	15	15	HTUM	CZ016				
		1	4	18	MONT	WZ002				
		5	36	34	MYOM	GH029				
4	7-Nov-2001	5	36	36	KAEW	VD002				
		5	36	36	MONT	CZ001				
		17	55	16	KAEW	AG015				
5	2-Jul-2002	17	55	24	MONT	HZ116				
		17	55	19	HTUM	EG008				
		4	29	40	MYOM	GO022				
6	15-Mar-2003	4	29	32	KAEW	AG062				
		4	29	37	MONT	WQ001				
		5	15	33	MYOM	HD061				
7	6-Aug-2006	5	15	30	MONT	NW002				
		5	15	42	HTUM	RP002				
		14	16	44	MYOM	YB143				
8	23-Apr-2007	14	16	33	KAEW	AK046				
0	2571012001	14	16	41	MONT	OD010				
		14	16	45	HTUM	UJ005				
		8	29	6	KAEW	AN003				
9	14-Jul-2007	8	29	17	MONT	OH002				
		8	29	12	HTUM	UM001				
		18	5	36	KAEW	BM006				
10	21-Jun-2009	18	5	48	MONT	BA007				
		18	5	57	HTUM	VF005				

Figure 3. 30. Seismograms of well-located earthquake on June 29, 1999 from seismograph at the KAEW, the MONT and the MYOM stations.

Figure 3. 31. Seismograms of well-located earthquake on July 15, 1999 from seismograph at the KAEW, the HTUM and the MONT stations.

Figure 3. 32. Seismograms of well-located earthquake on August 10, 1999 which can read the arrival time of P and S-wave from 3 stations (the MONT, the KAEW, and the HTUM).

Figure 3. 33. Seismograms of well-located earthquake on November 6, 2001 which can read the arrival time of P and S-wave from 3 stations (the MONT, the MYOM, and the KAEW).

Figure 3. 34. Seismograms of well-located earthquake on July 2, 2002 which can read the arrival time of P and S-wave from 3 stations (the KAEW, the HTUM, and the MONT).

Figure 3. 35. Seismograms of well-located earthquake on March 15, 2003 which can read the arrival time of P and S-wave from 3 stations (the KAEW, the MONT, and the MYOM).

Figure 3. 36. Seismograms of well-located earthquake on August 6, 2006 which can read the arrival time of P and S-wave from 3 stations (the MONT, the MYOM, and the HTUM).

Figure 3. 37. Seismograms of well-located earthquake on April 23, 2007 which can read the arrival time of P and S-wave from 4 stations (the KAEW, the MONT, the MYOM, and the HTUM).

Figure 3. 38. Seismograms of well-located earthquake on July 14, 2007 which can read the arrival time of P and S-wave from 4 stations (the KAEW, the HTUM, and the MONT).

Figure 3. 39. Seismograms of well-located earthquake on June 20, 2009 which can read the arrival time of P and S-wave from 3 stations (the KAEW, the MONT, and the HTUM).

CHAPTER IV RE-LOCATING EARTHQUAKES

In this chapter the re-locating earthquake is described. It consists of analyzing magnitude and epicenter and depth, calculating origin time, the results of analyzing magnitude and epicenter and depth and origin time, earthquakes catalogue and epicentral map of the KST, frequency and magnitude relation (b value), analyzing ground motion parameters, and the results of analyzing ground motion parameters.

4.1 Analyzing Magnitude and Epicenter and Depth

Magnitude is an estimation of the energy release or the size of an earthquake. The estimates are calculated from the amplitude of wave energy on a seismograph adjusting for the magnification of the seismograph and the distance of the seismograph station from the earthquake. The first magnitude scale was defined by (Richter, 1935) for Southern California. The Richter magnitude is calculated from the amplitude of the largest seismic wave recorded for the earthquake, no matter what type of wave was the strongest. The Richter magnitudes are based on a logarithmic scale (base 10); meaning that for each whole number goes one unit up on the Richter scale, the amplitude of the ground motion recorded by a seismograph goes ten times up. The formula is:

$$ML = Log \left(\begin{array}{c} A \\ A_o \end{array} \right)$$
(4.1)

Where ML is local magnitude

A is the maximum amplitude on a Wood-Anderson seismograph A_o is the empirical function that depend on the epicentral distance of the stations

The Standard Torsion Seismometer, Ks Ks (magnification) = <u>A</u> (amplitude) D (ground displacement)

$$A = KsD$$
From equation 4.1
$$ML = Log\left(\frac{KsD}{A_o}\right)$$
(4.2)
The Seismometer of Kinemetrics, K2
$$K2 \text{ (magnification)} = \frac{Vp - p/2}{D} \text{ (amplitude)}$$
(ground displacement)

D

=

From equation 4.2 ML =

$$Log \begin{pmatrix} K_{s} \times \frac{Vp - p}{2} \\ \frac{K_{2}}{A_{o}} \end{pmatrix}$$
(4.3)

The magnification of standard torsion seismograph, Ks

Ks =
$$V \times \left(\frac{\omega_n^2}{S^2 + 2h\omega_n S + \omega_n^2} \right)$$

= 2,800 $\left(\frac{(2\pi f_n)^2}{(j\omega_n)^2 + 2xhx2\pi f_n j\omega_n + (2\pi f_n)^2} \right)$
= 2,800 $\left(\frac{(2x\pi x 1.25)^2}{(j\omega_n)^2 + 2x0.8x2\pi x 1.25 j\omega_n + (2\pi x 1.25)^2} \right)$
= 2,800 $\left(\frac{(2x\pi x 1.25)^2}{-\omega_n^2 + (2x\pi x 1.25)^2 + j(2x0.8x2\pi x 1.25x\omega_n)} \right)$
= 2,800 $\left(\frac{(2x\pi x 1.25)^2}{\sqrt{(-\omega_n^2 + (2x\pi x 1.25)^2)^2 + j(2x0.8x2\pi x 1.25x\omega_n)^2}} \right)$
Ks = 2,800 $\left(TF_1 \right)$

The magnification of seismometer of Kinemetrics, K2

$$\begin{array}{lll} \text{K2} & = G_{\text{o}} \times \left(\frac{\text{R}_{\text{x}}}{\text{R}_{\text{x}} + \text{R}_{\text{c}}} \times \Theta \right) \times \left(\frac{\Theta_{\text{n}}^{2}}{\text{S}^{2} + 2h\Theta_{\text{n}}\text{S} + \Theta_{\text{n}}^{2}} \times G_{1} \right) \\ & = G_{\text{L}}\Theta \times \text{TF}_{2} \\ \text{Which; } G_{\text{o}} & = \text{generator constant (v/m/s)} \quad (\text{Table 4.2}) \\ & = \text{amplifier board gain} = 1.00 \\ & G_{\text{L}}\Theta & = \text{displacement sensitivity (v/m)} \\ & f_{\text{n}} & = \text{natural frequency of seismometer K}_{2} \text{ (Table 4.2)} \\ & h & = \text{damping ratio of seismometer K}_{2} \text{ (Table 4.2)} \\ & G_{\text{L}} & = \text{velocity sensitivity} = G_{\text{o}} \times \frac{\text{R}_{x}}{\text{R}_{x} + \text{R}_{c}} \quad (\text{v/m/s}) \\ & \text{TF}_{2} & = \text{transfer function} \\ & = \left(\frac{\left(2 \times \pi \text{xf}_{n}\right)^{2}}{\sqrt{\left(-\Theta^{2} + \left(2 \times \pi \text{xf}_{n}\right)^{2}\right)^{2} + \left(2 \times h \times 2\pi \text{xf}_{n} \times \Theta\right)^{2}} \right) \end{array}$$

From equation 4.3

ML = Log
$$\left(\frac{Vp-p/2 \times 2,800 \times TF_1}{G_L \times \omega \times TF_2 \times A_o} \right)$$
 (4.4)

Table 4. 1 Logarithms of the amplitude (in millimeters) which the standard torsion seismometer (To = 0.8, V = 2,800, h = 0.8) should register a shock registered at Δ = 100 kilometers with an amplitude 0.01 millimeters (1 micron) (RID, 2000).

Δ (km)	Log Ao						
25	-1.90	170	-3.38	315	-4.10	460	-4.64
30	2.10	175	-3.40	320	-4.12	465	-4.66
35	-2.32	180	-3.43	325	-4.15	470	-4.68
40	-2.43	185	-3.45	330	-4.17	475	-4.69
45	-2.54	190	-3.47	335	-4.20	480	-4.70
50	-2.63	195	-3.50	340	-4.22	485	-4.71
55	-2.70	200	-3.53	345	-4.24	490	-4.72
60	-2.77	205	-3.56	350	-4.26	495	-4.73
65	-2.79	210	-3.59	355	-4.28	500	-4.74
70	-2.83	215	-3.62	360	-4.30	505	-4.75
75	-2.87	220	-3.65	365	-4.32	510	-4.76
80	-2.90	225	-3.68	370	-4.34	515	-4.77
85	-2.94	230	-3.70	375	-4.36	520	-4.78
90	-2.96	235	-3.72	380	-4.38	525	-4.79
95	-2.98	240	-3.74	385	-4.40	530	-4.80
100	-3.00	245	-3.77	390	-4.42	535	-4.81
105	-3.03	250	-3.79	395	-4.44	540	-4.82
110	-3.08	255	-3.81	400	-4.46	545	-4.83
115	-3.10	260	-3.83	405	-4.48	550	-4.84
120	-3.12	265	-3.85	410	-4.50	555	-4.85
125	-3.15	270	-3.88	415	-4.51	560	-4.86
130	-3.19	275	-3.92	420	-4.52	565	-4.87
135	-3.21	280	-3.94	425	-4.54	570	-4.88
140	-3.23	285	-3.97	430	-4.56	575	-4.89
145	-3.28	290	-3.98	435	-4.57	580	-4.90
150	-3.29	295	-4.00	440	-4.59	585	-4.91
155	-3.30	300	-4.02	445	-4.61	590	-4.92
160	-3.32	305	-4.05	450	-4.62	595	-4.93
165	-3.35	310	-4.08	455	-4.63	600	-4.94

Seismograph Stations	R _c	R _s	G _o	h	f _n	$G_L = G_o \times \frac{R_x}{R_x}$
	(Ohms)	(Ohms)	(V/m/s)	Damping Ratio	(Hz)	$\kappa_x + \kappa_c$
МҮОМ	5708	5466	343.0	0.7	0.984	167.78
KAEW	5751	4640	341.0	0.7	1.014	152.27
MONT	5730	5466	339.0	0.7	0.965	165.50
HTUM	5911	4754	337.8	1.0	0.988	150.57

Table 4. 2. Ranger seismometer model SS-1 of this study (RID, 2000).

Which R_c

= coil resistance, ohms

- R_x = external damping resistance, ohms
- G_o = open circuit generator constant in volts/meter/second
- H = damping ratio
- f_n = natural frequency of the seismometer in Hertz
- G_L = generator constant

For example, to calculate earthquake magnitude and epicentral distance (source-to-site the KAEW station) of an earthquake on December 7, 2005.

Figure 4. 1. Details of P and S-times, and time difference, and amplitude peak to peak (V p-p), and frequency (f) of an earthquake on December 7, at the KAEW station 2005 (file name AJ051).

The epicentral distance is the distance from the epicenter to the station along the surface of the earth. Generally, the distance can be obtained from the difference in arrival time of two phases, usually P and S, and the distance can be calculated as

$$\Delta = (t_s - t_p) \qquad \frac{V_p V_s}{V_p - V_s}$$
(4.5)

where t_p and $t_s\,$ are the P and S-arrival times (s) respectively, V_p and V_s are the P and S velocities respectively and Δ is the epicentral distance (km).

or
$$\Delta = t(S_g - P_g) \times 8$$
 (4.6)

These rules are approximation for a single layer crust with an average P_g -wave velocity of 5.9 km/s and a sub-Moho velocity of 8 km/s and a velocity ratio $V_s/V_p = \sqrt{3}$ (and Sg-wave velocity will be 3.4 km/m).

From equation 4.5 and P-time = 20.145 s, S-times = 29.500 s (Figure 4.1), and Pg-wave velocity = 5.9 km/s, and and Sg-wave velocity = 3.4 km/s, the epicentral distance of an earthquake on December 7, 2005 to the KAEW station is

$$\Delta = (29.5 - 20.145) \times \frac{(5.9 \times 3.4)}{(5.9 - 3.4)}$$
$$= (29.5 - 20.145) \times \frac{20.06}{2.5}$$
$$= (29.5 - 20.145) \times 8.024$$
$$= 9.355 \times 8.024$$
$$= 75 \text{ km}$$

Magnitude of an earthquake from equation 4.4

ML = Log
$$Vp-p/2 \times 2,800 \times TF_1$$

 $G_L \times \mathbf{\omega} \times TF_2 \times A_0$

Where Vp-p/2 = 0.0077784/2 = 0.0038892 V (Figure 4.1)

$$f = 1/(34.755-34.615) = 7.14 H_{Z} \text{ (Figure 4.1)}$$

$$f_{n} = 1.014 H_{Z} \text{ (Table 4.2)}$$

$$h = 0.7 \text{ (Table 4.2)}$$

$$Log A_{o} = -2.87 \text{ (Table 4.1, where } \Delta = 75 \text{ km}\text{)}$$

$$A_{o} = 1.34 \times 10^{-3} \text{ mm} = 1.34 \times 10^{-6} \text{ m}$$

$$G_{L} = 152.27 \text{ (Table 4.2)}$$

$$\Theta = 2\pi f = 2 \times 22/7 \times 7.14 = 44.88$$

$$TF_{1} = \left(\frac{(2 \times \pi \times 1.25)^{2}}{\sqrt{(-\Theta^{2} + (2 \times \pi \times 1.25)^{2})^{2} + (2 \times 0.8 \times 2\pi \times 1.25 \times \Theta)^{2}}}\right)$$

$$= \frac{(2 \times 22/7 \times 1.25)^2}{(\sqrt{(-44.88)^2 + (2 \times 22/7 \times 1.25)^2 + (2 \times 0.8 \times 2 \times 22/7 \times 1.25 \times 44.88)^2})}$$

$$= \frac{61.73}{(\sqrt{(2,014.21+61.73)^2 + (564.205)^2})}$$

$$= \frac{61.73}{(\sqrt{(2,075.94)^2 + (564.205)^2})}$$

$$= \frac{61.73}{(\sqrt{(4,309,526.884+324,148.036)})}$$

$$= \frac{61.73}{2,152.60}$$

$$= 0.028$$

$$TF_2 = \frac{(2 \times \pi \times f_n)^2}{(\sqrt{(-\omega^2 + (2 \times \pi \times f_n)^2)^2 + (2 \times h \times 2 \times \pi \times f_n \times \omega)^2})}$$

$$= \frac{(2 \times \pi \times 1.014)^2}{(\sqrt{(-\omega^2 + (2 \times \pi \times 1.014)^2)^2 + (2 \times h \times 2 \times \pi \times 1.014 \times 44.88)^2})}$$

$$= \frac{40.624}{(\sqrt{(2014.21+40.624)^2 + (400.473)^2})}$$

$$= \frac{40.624}{(\sqrt{(2014.21+40.624)^2 + (400.473)^2})}$$

$$= \left(\frac{40.624}{2,093.49}\right)$$

= 0.019
ML = Log $\left(\frac{0.0038892 \times 2,800 \times 0.028}{152.27 \times 44.88 \times 0.019 \times 1.34 \times 10^{-6}}\right)$
= Log $\left(\frac{0.305}{0.000174}\right)$
= Log (1,752.873)
ML = 3.3

As the earthquake's magnitude is calculated according to the Richter scale, in case of hand calculation, the procedure would be complex. The KST seismographic network has formulated various calculations on spread sheet programs using the Microsoft Excel, named as the Magnitude and Epicenter and Depth.xls. The software is used to determine the size of the earthquake, and to plot the radial distance between stations, and to identify the location of the earthquake's epicenter which uses the same basic circle and chord or triangulation method. When drawing a circle on the map around seismograph stations with different radial distance, the points of intersection of the three circles are a focus of an earthquake.

Data file of seismic wave can be opened by the KMI QuickLook software. The file consists of 2 parts of data; the header contains details of events include date, start time, latitude and longitude of seismograph, peak amplitude and etc., the second part is digital data which QuickLook uses to plot the seismogram for analyzing parameters and calculating magnitude, epicenter. In this study QuickLook is used to obtain the arrival time of P-and S-wave, and amplitude of maximum peak.

The analysis assistant program named Magnitude and Epicenter and Depth has an easy and convenient principle of usage as same as Microsoft Excel where in Magnitude and Epicenter and Depth analysis can be operated by running Microsoft Excel, then open the file named Magnitude and Epicenter and Depth.xls. After that, fill in the time of arrival of the primary waves in the P- time, time of arrival of the secondary wave in the S-time, voltage peak to peak value in the Vp-p, together with the start time of the highest wave in the T1 and the ending time of the highest wave in the T2 which were read from the seismogram (graph of seismic data) recorded at each station, the start time of the recording in the start-time, and date of earthquakes in the date box. After filling in all data from 3 stations, the program will calculate the value of the Magnitude, Distance, and Frequency of each station. Then consider the Code 1-4, putting the code into the Station code box based on the name of seismograph stations seismic data was recorded. Finally, the program will calculate the average magnitude of the earthquake, latitude, longitude, and depth. The output is in the Average Magnitude, Lat, Long, and Depth boxes. Epicenter map is displayed in the work sheet Name Location 2; showing the location of stations on the map along with the radical detect of seismic waves. Points of intersection of the radii from the 3 rings (the intersection point) is the projection of a point on the earth called the earthquake epicenter, where work sheet 1 and 2 are linked together; making it convenient to consider. In the case where the 3 circles do not intersect, or if the program is unable to calculate the average magnitude of the earthquake, latitude, longitude, and depth, make sure to read the time of arrival of a wave of primary and secondary sources of each station again, until the program allows calculation of Average Magnitude, Lat, Long, Depth, which requires a work sheet 1 with the work sheet 2 into consideration simultaneously. The results from the analysis can be printed out by a printer using the print command in the menu bar as usual.

For this project, the above mentioning task was performed in detailed according to Table 3.2 on 118 events and, as indicated in Table 3.3, on addition of 10 events; in all totals of 128 events. Figure 4.3 to Figure 4.21 show an example of the analysis of the earthquake on December 7, 2005.

	Magnitud	de & Epice	enter & Depth	<u>1</u>	
	Station :	<u>MYOM</u>			
Date(dd/mmm/Yr) :			Start-Time:		
Ampitude (V) :	0.000000	V.	V p-p :		V.
Gain K :	#DIV/0!	_			_
P - time :		sec.			
S - time :		sec.	T ₁ :		s.
	#DIV//01		T ₂ :	#DIV//01	s.
Magnitude (ML) :	#DIV/0!	Richter Scale	Frequency :	#DIV/0!	HZ.
Distance .	0	KIII		0	
	Station :	KAEW			
Date(dd/mmm/Yr) :			Start-Time:		
Ampitude (V) :	0.000000	v .	V p-p :		V.
- Gain K	#DIV/0!	-	-		_
P - time :		sec.			
S-time:		sec.	т. :		s.
	12/2	11/20	т		s
Magnitude (ML) ·	#DIV/01	Richter Scale	Frequency :	#DIV/01	
Distance :	#DIV/0:	km	Ground Velocity	#DIV/0:	
				0	
	Station :	MONT			
Date(dd/mmm/Yr) :		- 1	Start-Time:		_
Ampitude (V) :	0.000000	V.	V p-p :		V.
Gain K :	938.575	O KA			
P - time :		sec.			
S - time :		sec.	Т, :		s.
-					
-	18100		T ₂ :		s.
Magnitude (ML) :	#NUM!	Richter Scale	T ₂ : Frequency :	#DIV/0!	s. Hz.
Magnitude (ML) : Distance :	#NUM! 0	Richter Scale km	T ₂ : Frequency : Ground Velocity	#DIV/0! 8	s. Hz. km/s
Magnitude (ML) : Distance :	#NUM! 0 Station :	Richter Scale km	T ₂ : Frequency : Ground Velocity	#DIV/0! 8	s. Hz. km/s
Magnitude (ML) : Distance : Date(dd/mmm/Yr) :	#NUM! 0 Station :	Richter Scale km <u>HTUM</u>	T ₂ : Frequency : Ground Velocity Start-Time:	#DIV/0! 8	s. Hz. km/s
Magnitude (ML) : Distance : Date(dd/mmm/Yr) : Ampitude (V) :	#NUM! 0 Station : 0.000000	Richter Scale km <u>HTUM</u> V.	T ₂ : Frequency : Ground Velocity Start-Time: V p-p :	#DIV/0! 8	s. Hz. km/s
Magnitude (ML) : Distance : Date(dd/mmm/Yr) : Ampitude (V) : Gain K :	#NUM! 0 Station : 0.000000 920.83521	Richter Scale km <u>HTUM</u> V.	T ₂ : Frequency : Ground Velocity Start-Time: V p-p :	#DIV/0! 8	s. Hz. km/s
Magnitude (ML) : Distance : Date(dd/mmm/Yr) : Ampitude (V) : Gain K : P - time :	#NUM! 0 Station : 0.000000 920.83521	Richter Scale km <u>HTUM</u> V.	T ₂ : Frequency : Ground Velocity Start-Time: V p-p :	#DIV/0! 8	s. Hz. km/s
Magnitude (ML) : Distance : Date(dd/mmm/Yr) : Ampitude (V) : Gain K : P - time : S - time :	#NUM! 0 Station : 0.000000 920.83521	Richter Scale km <u>HTUM</u> V. sec.	T2 : Frequency : Ground Velocity Start-Time: V p-p : NVERSING	#DIV/0! 8	s. Hz. km/s
Magnitude (ML) : Distance : Date(dd/mmm/Yr) : Ampitude (V) : Gain K : P - time : S - time :	#NUM! 0 Station : 0.000000 920.83521	Richter Scale km V. sec. sec.	T2 : Frequency : Ground Velocity Start-Time: V p-p : T1 : T1 :	#DIV/0! 8	s. Hz. km/s
Magnitude (ML) : Distance : Date(dd/mmm/Yr) : Ampitude (V) : Gain K : P - time : S - time : Magnitude (MI) :	#NUM! 0 Station : 0.000000 920.83521	Richter Scale km V. sec. sec.	T ₂ : Frequency : Ground Velocity Start-Time: V p-p : T ₁ : T ₂ : T ₂ :	#DIV/0! 8	s. Hz. km/s
Magnitude (ML) : Distance : Date(dd/mmm/Yr) : Ampitude (V) : Gain K : P - time : S - time : Magnitude (ML) : Distance :	#NUM! 0 Station : 0.000000 920.83521 #NUM! 0	Richter Scale km V. sec. sec. Richter Scale	T ₂ : Frequency : Ground Velocity Start-Time: V p-p : T ₁ : T ₂ : Frequency : Ground Velocity	#DIV/0! 8 #DIV/0!	s. Hz. km/s V.
Magnitude (ML) : Distance : Date(dd/mmm/Yr) : Ampitude (V) : Gain K : P - time : S - time : S - time : Magnitude (ML) : Distance :	#NUM! 0 Station : 0.000000 920.83521 #NUM! 0	Richter Scale km V. sec. sec. Richter Scale km	$T_2 : \begin{bmatrix} Frequency : \\ Frequency : \\ Ground Velocity \end{bmatrix}$ Start-Time: $V p \cdot p : \begin{bmatrix} V \\ p \cdot p \\ T_1 : \\ T_2 : \\ Frequency : \\ Ground Velocity \end{bmatrix}$	#DIV/0! 8 #DIV/0! 8	s. Hz. km/s V. s. s. s. Hz. km/s
Magnitude (ML) : Distance : Date(dd/mmm/Yr) : Ampitude (V) : Gain K : P - time : S - time : S - time : Distance : AVERAGE MAGNIT	#NUM! 0 Station : 0.000000 920.83521 920.83521 4 WUM! 0	Richter Scale km V. sec. sec. Richter Scale km	T2 : Frequency : Ground Velocity Start-Time: V p-p : T1 : T2 : Frequency : Ground Velocity Epicenter LAT	#DIV/0! 8 #DIV/0! 8 #NUM!	s. Hz. km/s V. V. s. s. Hz. km/s
Magnitude (ML) : Distance : Date(dd/mmm/Yr) : Ampitude (V) : Gain K : P - time : S - time : S - time : Magnitude (ML) : Distance : AVERAGE MAGNIT STATION CODE	#NUM! 0 Station : 0.000000 920.83521 #NUM! 0	Richter Scale km V. sec. sec. Richter Scale km #DIV/01	T ₂ : Frequency : Ground Velocity Start-Time: V p-p : T ₁ : T ₂ : Frequency : Ground Velocity Epicenter LAT Epicenter LONG	#DIV/0! 8 #DIV/0! 8 #DIV/0! 8 #NUM! #NUM!	s. Hz. km/s V. V. s. s. Hz. km/s Degree Degree
Magnitude (ML) : Distance : Date(dd/mmm/Yr) : Ampitude (V) : Gain K : P - time : S - time : S - time : Magnitude (ML) : Distance : AVERAGE MAGNIT STATION CODE 3	#NUM! 0 Station : 0.000000 920.83521 #NUM! 0	Richter Scale km V. V. sec. sec. sec. Richter Scale km	T2 : Frequency : Ground Velocity Start-Time: V p-p : T1 : T2 : Frequency : Ground Velocity Epicenter LAT Epicenter LONG Depth	#DIV/0! 8 #DIV/0! 8 #NUM! #NUM! #NUM!	s. Hz. km/s V. S. s. Hz. km/s Degre Degre km
Magnitude (ML) : Distance : Date(dd/mmm/Yr) : Ampitude (V) : Gain K : P - time : S - time : S - time : Magnitude (ML) : Distance : AVERAGE MAGNIT STATION CODE 3	#NUM! 0 Station : 0.000000 920.83521 #NUM! 0	Richter Scale km V. sec. sec. Richter Scale km #DIV/01	T2 : Frequency : Ground Velocity Start-Time: V p-p : T1 : T2 : Frequency : Ground Velocity Epicenter LAT Epicenter LONG Depth	#DIV/0! 8 #DIV/0! 8 #DIV/0! 8 #NUM! #NUM! #NUM! #NUM!	s. Hz. Km/s V. S. S. Hz. Km/s Degre Degre km
Magnitude (ML) : Distance : Date(dd/mmm/Yr) : Ampitude (V) : Gain K : P - time : S - time : S - time : Magnitude (ML) : Distance : AVERAGE MAGNIT STATION CODE 3	#NUM! 0 Station : 0.000000 920.83521 #NUM! 0	Richter Scale km V. sec. sec. Richter Scale km #DIV/0!	T2 : Frequency : Ground Velocity Start-Time: V p-p : T1 : T2 : Frequency : Ground Velocity Epicenter LAT Epicenter LONG Depth	#DIV/0! 8 #DIV/0! 8 #NUM! #NUM! #NUM! #NUM!	s. Hz. km/s V. V. s. s. Hz. km/s Degre Degre km km
Magnitude (ML) : Distance : Date(dd/mmm/Yr) : Ampitude (V) : Gain K : P - time : S - time : S - time : Magnitude (ML) : Distance : AVERAGE MAGNIT STATION CODE 3	#NUM! 0 Station : 0.000000 920.83521 #NUM! 0 UDE	Richter Scale km V. sec. sec. km #DIV/01	T2 : Frequency : Ground Velocity Start-Time: V p-p : T1 : T2 : Frequency : Ground Velocity Epicenter LAT Epicenter LONG Depth	#DIV/0! 8 #DIV/0! 8 #NUM! #NUM! #NUM! #NUM!	s. Hz. km/s V. V. s. s. Hz. km/s Degre Degre km km
Magnitude (ML) : Distance : Date(dd/mmm/Yr) : Ampitude (V) : Gain K : P - time : S - time : S - time : Magnitude (ML) : Distance : AVERAGE MAGNIT STATION CODE 3 Code 1 Code 2	#NUM! 0 Station : 0.000000 920.83521 #NUM! 0 UDE	Richter Scale km V. sec. sec. km #DIV/0I #DIV/0I	T2 : Frequency : Ground Velocity Start-Time: V p-p : T1 : T2 : Frequency : Ground Velocity Epicenter LAT Epicenter LONG Depth	#DIV/0! 8 #DIV/0! 8 #NUM! #NUM! #NUM! #NUM!	s. Hz. km/s V. V. s. s. Hz. km/s Degre Degre km km
Magnitude (ML) : Distance : Date(dd/mmm/Yr) : Ampitude (V) : Gain K : P - time : S - time : S - time : Magnitude (ML) : Distance : AVERAGE MAGNIT STATION CODE 3 Code 1 Code 2 Code 3	#NUM! 0 Station : 0.000000 920.83521 #NUM! 0 UDE	Richter Scale km V. sec. sec. sec. km #DIV/0!	T2 : Frequency : Ground Velocity Start-Time: V p-p : T1 : T2 : Frequency : Ground Velocity Epicenter LAT Epicenter LONG Depth	#DIV/0! 8 #DIV/0! 8 #NUM! #NUM! #NUM! #NUM!	s. Hz. km/s V. s. s. s. Hz. km/s Degre Degre km km

Figure 4. 2. The Microsoft Excel which using to analyze Magnitude and Epicenter and Depth in this study.

Figure 4. 3. The arrival time of P-wave at the KAEW station is 20.145 sec.

Figure 4. 4. The arrival time of S-wave at the KAEW station is 29.500 sec.

Figure 4. 5. The maximum amplitude of peak to peak at the KAEW station, Vp-p is 0.0077784 V.

Figure 4. 7. The analysis of the results from KAEW station, earthquake magnitude is

3.2, and epicentral distance is 75 km.

Figure 4. 8. Epicentral map of earthquake on December 7, 2005 from the KAEW station. Note; epicenter is a point on the radius of 75 km (pink circle), but the location and direction were not clear.

Figure 4. 9. The arrival time of P-wave at the MONT station is 18.825 sec.

Figure 4. 10. The arrival time of S-wave at the MONT station is 35.045 sec.

Figure 4. 11. The maximum amplitude of peak to peak at the MONT station, Vp-p is 0.0084907 V.

Figure 4. 13. The analysis of the results from MONT station, earthquake magnitude is

4.1, and epicentral distance from. source-to-site is 130 km.

Figure 4. 14. Epicentral map of earthquake on December 7, 2005 from the KAEW and the MONT stations. Note; epicenter is one of the two points on the ray intersects the 75 km radius (pink circle) of 130 km (red circle).

Figure 4. 15. The arrival time of P-wave at the HTUM station is 0.520 sec.

Figure 4. 16. The arrival time of S-wave at the HTUM station is 18.730 sec.

Figure 4. 17. The maximum amplitude of peak to peak at the HTUM station, Vp-p is 0.0041568 V.

Figure 4. 18. The period of maximum amplitude at the HTUM station, T1 = 1.550 sec, T2 = 1.770 sec.

Figure 4. 19. The analysis of the results from HTUM station, earthquake magnitude is 3.9, and epicentral distance from. source-to-site is 146 km.

Figure 4. 20. Epicentral map of earthquake on December 7, 2005 from the KAEW, the MONT and the HTUM stations. Note; epicenter is the point of intersection of the radius 75 km (pink circle), 130 km (red crcle) and 146 km radius (green circle).

Figure 4. 21. The results of analyzing earthquake on December 7, 2005 of the KAEW, the MONT and the HTUM stations; average magnitude M3.8, latitude 19.73N, longitude 99.54E, and depth 8 km.

4.2 Calculating Origin Time

Together with re-locating epicenters of the well-located earthquakes the origin time, is calculated for correction and comparison the earthquake events with other organizations such as the TMD. The origin time is the actual time that the earthquake occurred at the source. The origin time can be defined by the formula;

$$O_{time} = P - [(S - P) \times 1.37]$$
 (4.1)

When O_{time} is the occurrence time for the earthquake.

- P is the arrival time of the primary wave.
- S is the arrival time of the secondary wave.
- 1.37 is the constant value if Poisson's ratio is assumed equal to 0.25 (Richter, 1958)

An example of calculation of the origin time of earthquake on December 7, 2005

1. The KAEW station has start time of recorded data at 09:00:52 UTC.

P wave arrival time is 09:01:12.145 UTC (09:00:52 + 20.145 sec)

S wave arrival time is 09:01:21.50 UTC (09:00:52 + 29.50 sec)

$$S-P_{time} = (29.5-20.145) = 9.355 \text{ sec}$$

= 9.355 x 1.37 = 12.81635 sec

Subtract of 12.81635 sec from 09:01:12.145 UTC to give origin time Origin time = 09:01:12.15 UTC - 12.81635 sec = 09:00:59.32865 UTC

2. The MONT station has start time of recorded data at 09:01:02 UTC.

P wave arrival time is 09:01:20.825 UTC (09:01:02 + 18.825 sec)

S wave arrival time is 09:01:37.045 UTC (09:01:02 + 35.045 sec)

 $S-P_{time} = (35.045-18.825) = 16.22 \text{ sec}$

= 16.22 × 1.37 = 22.2214 sec

Subtract of 22.2214 sec from 09:01:20.825 UTC to give origin time Origin time = 09:01.58.62045 UTC.

3. The HTUM station has start time of recorded data at 09:01:23 UTC.

P wave arrival time is 09:01:23.520 UTC (09:01:23 + 0.520 sec)

S wave arrival time is 09:01:41.730 UTC (09:01:23 + 18.730 sec)

 $S-P_{time} = (18.730-0.520) = 18.210 \text{ sec}$

= 18.210 × 1.37 = 24.9477 sec

Subtract of 24.9477 sec from 09:01:23.520 UTC to give origin time Origin time = 09:01:58.5723 UTC.

The average origin time from 3 stations is = (59.32865 + 58.62045 + 58.5723)/3

= 58.84 sec

In this study, Microsoft Excel program is used to assist in the calculation of the origin time (Figure 4.22) which must be considered in conjunction with the Magnitude and Epicenter and Depth. The origin time of the same events when calculate must be fixed the time difference of 3 stations to less than 3 second. If some stations have time difference more than 3 second, the arrival time of P-and Swave of those stations must go back to read again.

Date	7-Dec-05		Amphoe Mae Suai, Chiang Rai											
Start Time	9	0	52			9 0	62			9	0	83		
Station	KAEW				MONT		ยาลัย		HTUM		М			
P-time				20.145	72.145			18.835	80.835				0.520	83.52
S-time				29.500	81.5000			35.045	97.0450				18.730	101.7300
(S-P)				9.355	74.84			16.21	129.68				18.210	145.68
(S-P) x 1.37				12.816	5.63			22.2077	5.90				24.948	5.90
Origin Time				59.33	3.30			58.627	3.39				58.57	3.40
58.84275	Average Origin Time													

Figure 4. 22. An example of using Microsoft Excel program to calculate the origin time of an earthquake on December 7, 2005. Note: each station has time difference not more than 2 seconds.

4.3 Results of Analysis Magnitude and Epicenter and Depth and Origin Time

4.3.1 Earthquakes Catalogue and Epicentral Map of the KST

The results of analyzing 128 well-located earthquakes are date and time of earthquakes occurrence, magnitude, latitude and longitude, depth, and region of earthquakes which summarized in Table 4.1 and display in epicentral map after relocating (Figure 4.23) using ArcGIS program with legend of difference magnitude to facilitate the consideration. In Table 4.1, from 128 well-located earthquakes only 99 events of earthquake that occurred in the study area can be extracted, which can be divided into various magnitudes as follows: M2-2.9, 14 events, M3-3.9, 54 events, and M4-4.9, 31 events (Figure 4.24). The earthquakes which mostly occur in the study area are the earthquakes with M3-3.9 and M4-4.9 respectively. They are all shallow earthquakes with depth less than 70 km. There are various depths as follows: below a depth of 0-5 km, 39 events, a depth of 6-10 km, 19 events, a depth of 11-15 km, 19events, a depth of 16-20 km, 5 events, a depth of 21-25 km, 6 events, a depth of 26-30 km, 5 events, a depth of 31-35 km, 4 events, a depth of 36-40 km, 1 event, and a depth of 61 km, 1 events (Figure 4.25). The earthquakes with magnitudes 4-4.9 from this study usually occur in Changwat Chiang Rai and Chiang Mai. It can be concluded that these two areas are the areas of higher seismic risk than others in northern Thailand. The earthquakes occurring within the area of the KST seismographic network or the reservoir area of the KST dam mostly have the magnitudes of 2-3.9, and the nearest earthquake to the KST dam is the earthquake on March 2, 2008 with magnitude of 3.1 and source-to-site is 15 km.

No	Date	Origin	Origin Time (UTC)		Location		Depth	м	Region	
NO	Dute	hr	min	sec	Lat	Long	(km)	101		
1	22-May-1999	15	23	28	18.919	100.196	-	2.6	Amphoe Chiang Muan, Phayao	
2	29-Jun-1999	6	38	16	21.042	98.35	19	5.6	Northern Myanmar	
3	15-Jul-1999	17	35	11	21.386	100.529	33	5.2	Northern Laos	
4	10-Aug-1999	23	14	34	18.933	99.955	11	3.4	Amphoe Ngao, Lampang	
5	10-Aug-1999	23	15	16	18.929	100.087	9	2.9	Amphoe Chiang Muan, Phayao	
6	19-Nov-1999	23	21	53	18.791	100.12	-	3.0	Amphoe Ngao, Lampang	
7	13-Apr-2000	13	13	52	19.274	100.474	3	3.1	Amphoe Pong, Phayao	
8	5-Sep-2000	11	44	28	19.147	100.184	4	3.1	Amphoe Pong, Phayao	
9	7-May-2001	1	4	26	18.448	100.484	1	3.1	Amphoe Rong Kwang, Phrae	
10	7-Nov-2001	5	36	39	18.775	99.551	5	3.2	Amphoe Mueang Phan, Lampang	
11	26-Apr-2002	20	31	41	19.145	99.314	-	4.3	Amphoe Phrao, Chiang Mai	
12	2-Jul-2002	3	54	4	19.898	100.6	3	5.0	Northern Laos	
13	2-Jul-2002	17	55	17	19.91	100.57	3	3.7	Northern Laos	
14	3-Jul-2002	0	17	46	19.902	100.64	2	3.9	Northern Laos	
15	21-Jul-2002	22	49	45	19.777	100.837	9	3.9	Northern Laos	
16	7-Sep-2002	6	11	44	18.578	100.361	3	3.2	Amphoe Song, Phrae	
17	25-Sep-2002	14	27	46	19.296	99.587	8	3.6	Amphoe Wiang Pa Pao, Chiang Rai	
18	6-Nov-2002	5	21	21	18.676	99.921	-	2.9	Amphoe Ngao, Lampang	
19	18-Dec-2002	13	47	11	19.395	99.196	5	4.7	Amphoe Phrao, Chiang Mai	
20	29-Jan-2003	7	14	30	19.729	100.449	7	3.8	Amphoe Thoeng , Chiang Rai	
21	15-Mar-2003	4	29	42	19.329	99.566	2	3.2	Amphoe Wiang Pa Pao, Chiang Rai	
22	23-Aug-2003	8	57	30	18.849	99.39	8	3.3	Amphoe Mae On, Chiang Mai	
23	18-Sep-2003	11	4	15	19.915	100.888	1	4.4	Northern Laos	
24	23-Nov-2003	15	8	9	20.405	100.982	19	4.5	Northern Laos	
25	14-Mar-2004	5	49	37	19.9	100.563	7	3.9	Northern Laos	
26	27-Mar-2004	4	5	35	19.497	99.63	5	3.7	Amphoe Mae Saruai, Chiang Rai	
27	17-Aug-2004	18	53	54	17.465	100.819	61	4.1	Amphoe Chat Trakan, Phitsanulok	
28	11-Sep-2004	1	31	56	18.787	98.978	7	3.4	Amphoe Mueang, Chiang Mai	
29	26-Dec-2004	1	29	28	21.412	98.107	34	6.5	Northern Myanmar	
30	30-Dec-2004	23	54	21	21.254	97.761	18	6.3	Northern Myanmar	
31	25-Jan-2005	16	30	21	22.608	100.677	23	5.7	Northern Laos	
32	1-Apr-2005	7	18	20	19.412	99.421	3	3.7	Amphoe Wiang Pa Pao, Chiang Rai	
33	4-Jun-2005	23	1	37	17.909	100.669	34	3.8	Amphoe Tha Pla, Uttaradit	
34	9-Jun-2005	21	7	56	18.656	100.249	0	2.3	Amphoe Song, Phrae	
35	29-Jun-2005	0	38	52	18.604	99.611	10	3.7	Amphoe Chae Hom, Lampang	
36	4-Dec-2005	9	34	32	18.769	98.972	13	3.9	Amphoe Mueang, Chiang Mai	
37	7-Dec-2005	9	0	58	19.734	99.544	8	3.8	Amphoe Mae Saruai, Chiang Rai	
38	15-Dec-2005	6	48	37	19.553	99.946	11	4.0	Amphoe Pa Daed, Chiang Rai	
39	15-Dec-2005	23	13	17	19.492	100.037	8	3.0	Amphoe Pa Daed, Chiang Rai	
40	16-Dec-2005	2	13	45	19.601	99.899	15	3.5	Amphoe Phan, Chiang Rai	
41	16-Dec-2005	2	15	40	19.564	99.892	11	3.7	Amphoe Phan, Chiang Rai	
42	17-Dec-2005	10	59	15	19.639	99.986	22	3.3	Amphoe Pa Daed, Chiang Rai	
43	17-Dec-2005	11	48	6	19.505	99.947	4	3.3	Amphoe Pa Daed, Chiang Rai	

Table 4. 3 The 128 well-located earthquakes during the year 1999 to 2010 after re-

locating in this study.

No	Date	Origin	Time (U	ITC)	Loc	ation	Depth	м	Region		
NO	Date	hr	min	sec	Lat	Long	(km)	141			
44	24-Jan-2006	13	41	59	20.611	98.418	1	5.6	Northern Myanmar		
45	15-Feb-2006	16	54	16	19.132	100.244	8	3.6	Amphoe Pong, Phayao		
46	20-Feb-2006	18	34	1	19.129	100.152	1	2.9	Amphoe Dok Kam Tai, Phayao		
47	6-Aug-2006	5	15	23	19.641	99.053	3	4.3	Amphoe Chiang Dao, Chiang Mai		
48	13-Oct-2006	15	35	28	20.077	100.479	19	3.7	Amphoe Wiang Kaen, Chiang Rai		
49	18-Oct-2006	12	1	10	18.95	100.049	4	3.4	Amphoe Dok Kam Tai, Phayao		
50	21-Oct-2006	1	58	47	20.32	100.511	22	4.3	Northern Laos		
51	16-Nov-2006	18	39	3	19.675	100.023	36	4.0	Amphoe Thoeng , Chiang Rai		
52	26-Nov-2006	19	32	57	19.02	101.207	4	3.8	Amphoe Bo Kluea, Nan		
53	12-Dec-2006	17	2	29	18.967	99.193	7	4.9	Amphoe Doi Saket, Chiang Mai		
54	12-Dec-2006	19	49	37	19.004	99.125	4	3.9	Amphoe Doi Saket, Chiang Mai		
55	12-Dec-2006	22	21	55	18.989	99.139	13	3.6	Amphoe Doi Saket, Chiang Mai		
56	13-Dec-2006	5	49	4	18.921	99.268	12	3.3	Amphoe Doi Saket, Chiang Mai		
57	23-Dec-2006	11	49	17	18.909	99.12	9	3.2	Amphoe Doi Saket, Chiang Mai		
58	25-Jan-2007	22	29	47	18.834	99.191	7	3.3	Amphoe Doi Saket, Chiang Mai		
59	18-Feb-2007	8	52	55	18.548	100.606	6	3.1	Amphoe Wiang Sa, Nan		
60	22-Apr-2007	6	18	3	19.4	99.536	3	4.1	Amphoe Wiang Pa Pao, Chiang Rai		
61	23-Apr-2007	14	17	6	19.464	99.769	16	3.7	Amphoe Phan, Chiang Rai		
62	15-May-2007	14	35	45	20.622	100.327	3	4.8	Northern Laos		
63	16-May-2007	8	56	10	20.657	100.678	24	6.2	Northern Laos		
64	16-May-2007	9	31	3	20.232	100.743	29	3.9	Northern Laos		
65	16-May-2007	10	5	35	20.621	100.855	23	4.1	Northern Laos		
66	16-May-2007	10	15	41	20.548	100.587	24	4.1	Northern Laos		
67	16-May-2007	10	26	1	20.488	100.894	15	4.1	Northern Laos		
68	16-May-2007	11	15	56	20.458	100.867	13	4.4	Northern Laos		
69	16-May-2007	11	35	12	20.53	100.79	19	4.0	Northern Laos		
70	16-May-2007	11	43	52	20.4	100.697	29	4.1	Northern Laos		
71	16-May-2007	13	18	7	20.495	100.64	33	4.6	Northern Laos		
72	16-May-2007	17	8	54	20.547	100.774	10	4.2	Northern Laos		
73	17-May-2007	3	25	40	20.652	100.379	36	4.2	Northern Laos		
74	18-May-2007	0	1	53	20.42	100.708	25	4.1	Northern Laos		
75	18-May-2007	1	40	55	20.458	100.67	20	4.0	Northern Laos		
76	18-May-2007	13	5	16	20.465	100.659	17	4.2	Northern Laos		
77	20-May-2007	1	21	21	20.268	100.747	24	3.9	Northern Laos		
78	23-May-2007	17	6	27	20.399	100.633	32	4.1	Northern Laos		
79	24-May-2007	11	15	17	20.31	100.746	24	4.0	Northern Laos		
80	7-Jun-2007	17	21	4	20.673	100.73	21	4.8	Northern Laos		
81	19-Jun-2007	5	6	42	18.983	99.154	2	4.5	Amphoe Doi Saket, Chiang Mai		
82	23-Jun-2007	6	53	45	21.468	99.552	4	5.1	Myanmar		
83	23-Jun-2007	8	17	7	21.412	99.32	2	5.9	Myanmar		
84	23-Jun-2007	8	27	37	21.324	99.316	12	5.7	Myanmar		
85	14-Jul-2007	8	29	18	20.357	100.783	17	3.8	Northern Laos		
86	28-Jul-2007	21	33	49	20.651	99.144	17	4.5	Myanmar		

Table 4.3. The 128 well-located earthquakes during the year 1999 to 2010 after re-

locating in this study (cont).

No	No Date		Origin Time (UTC)			Location		M	Region
NO			min	sec	Lat	Long	(km)	141	
87	6-Aug-2007	6	53	52	20.475	100.493	25	4.3	Northern Laos
88	6-Aug-2007	8	50	50	20.507	100.573	28	3.9	Northern Laos
89	7-Aug-2007	8	53	23	20.866	100.114	26	4.6	Northern Laos
90	8-Aug-2007	9	15	32	20.408	100.726	26	4.2	Northern Laos
91	19-Aug-2007	11	16	56	19.921	98.93	10	3.9	Myanmar-Thai Border
92	8-Sep-2007	7	12	46	20.59	100.674	29	4.2	Northern Laos
93	16-Oct-2007	2	39	24	18.73	100.246	1	2.4	Amphoe Song, Phrae
94	16-Oct-2007	6	46	53	20.483	100.727	13	4.7	Northern Laos
95	1-Nov-2007	19	5	47	20.374	100.722	25	4.6	Northern Laos
96	23-Dec-2007	11	19	31	18.655	100.654	3	3.2	Amphoe Wiang Sa, Nan
97	2-Mar-2008	3	23	35	18.736	100.113	1	3.1	Amphoe Song, Phrae
98	9-Apr-2008	15	49	24	19.3	99.266	13	3.2	Amphoe Phrao, Chiang Mai
99	10-Jun-2008	21	37	43	20.112	100.858	13	4.7	Northern Laos
100	1-Jul-2008	9	45	51	19.219	99.345	3	3.9	Amphoe Wiang Pa Pao, Chiang Rai
101	9-Jul-2008	4	39	48	18.689	100.253	2	2.2	Amphoe Song, Phrae
102	25-Nov-2008	8	10	52	18.905	100.167	2	2.5	Amphoe Chiang Muan, Phayao
103	29-Nov-2008	8	6	25	20.289	100.658	32	4.0	Northern Laos
104	31-Dec-2008	8	0	1	18.67	100.616	4	3.6	Amphoe Wiang Sa, Nan
105	31-Dec-2008	8	4	11	18.674	100.611	5	3.6	Amphoe Wiang Sa, Nan
106	29-Jan-2009	23	24	33	19.045	100.318	4	2.8	Amphoe Chiang Muan, Phayao
107	6-Feb-2009	1	39	18	19.547	99.759	7	2.8	Amphoe Phan, Chiang Rai
108	22-May-2009	7	58	9	20.464	100.796	12	4.4	Northern Laos
109	22-May-2009	18	50	15	21.318	102.01	8	5.0	Northern Laos
110	1-Jun-2009	12	44	27	18.821	100.707	11	3.1	Amphoe Mueang, Nan
111	10-Jun-2009	0	23	59	18.848	100.286	1	2.6	Amphoe Chiang Muan, Phayao
112	10-Jun-2009	0	25	5	18.899	100.242	0	2.7	Amphoe Chiang Muan, Phayao
113	18-Jun-2009	19	50	16	18.892	100.309	6	2.6	Amphoe Chiang Muan, Phayao
114	21-Jun-2009	18	6	20	19.588	99.977	14	3.6	Amphoe Thoeng, Chiang Rai
115	16-Aug-2009	17	57	11	20.231	100.746	10	4.2	Northern Laos
116	1-Oct-2009	11	56	2	20.836	101.689	4	4.1	Northern Laos
117	14-Oct-2009	1	59	31	20.811	101.498	21	4.8	Northern Laos
118	7-Nov-2009	3	54	55	20.458	101.793	18	3.9	Northern Laos
119	10-Nov-2009	7	36	51	20.815	101.763	31	4.7	Northern Laos
120	10-Nov-2009	8	1	44	20.802	101.243	27	4.2	Northern Laos
121	10-Nov-2009	8	40	23	20.844	101.418	25	4.1	Northern Laos
122	2-Dec-2009	7	3	5	19.232	99.209	14	3.3	Amphoe Phrao, Chiang Mai
123	26-Dec-2009	1	11	49	20.376	98.944	3	4.1	Northern Myanmar
124	9-Mar-2010	13	3	24	20.323	99.168	30	4.2	Northern Myanmar
125	26-Jun-2010	2	23	59	20.354	99.827	10	3.9	Northern Myanmar-Thai
126	6-Jul-2010	15	23	29	20.362	99.614	30	4.1	Northern Myanmar-Thai
127	18-Jul-2010	12	53	19	20.263	101.272	4	3.9	Northern Laos
128	29-Aug-2010	8	19	2	19.516	99 512	6	34	Amphoe Mae Suai, Chiang Bai

Table 4.3. The 128 well-located earthquakes during the year 1999 to 2010 after re-

locating in this study (cont).

Figure 4. 23. Epicentral map of 128 well-located earthquakes during the year 1999 to 2010 after re-locating.

Figure 4. 24. Number of earthquakes and magnitude of the total 128 events in this study, and the only 99 events in the study area.

Figure 4. 25. Number of earthquakes and depth of 99 events in the study area.

4.3.2 Frequency and Magnitude Relations (b-value)

Evaluate the frequencies of earthquakes that occur in any specific area is necessary for the seismic hazard analysis that area. It can be calculated from the Gutenberg-Richter's Recurrence Law (Gutenberg & Richter, 1944). This will allow for the studying of the numbers of the opportunity of earthquakes with different magnitudes to be occurred within the specific area.

To obtain the Gutenberg-Richter law (b-value) for this study, the data from Table 4.1, Figure 4.23, and Figure 4.24 must undergo the process of declustering according to the following guidelines, the outcome was shown in Table 4.2:

- 1) Start date: May 22, 1999; End date: August 29, 2010.
- 2) Northern Thailand" is defined as that area between latitude 17-20.5 and longitude 98.5-101.5.
- 3) Only earthquakes of magnitude 2.0 and greater were used, because the earthquake catalogue of the KST is almost certainly incomplete below this magnitude for the area, as outlined above.
- 4) Preliminary, there are only 69 earthquake events which can be applied to study for the b-value.

Magnitude (M) Range	Count per M Range	Cumulative Total Above Lower M in Range	Annual Rate
2.0 - 2.4	3	69	5.75
2.5 - 2.9	11	66	5.50
3.0 - 3.4	20	55	4.58
3.5 - 3.9	21	35	2.92
4.0 - 4.4	11	14	1.17
4.5 - 4.9	3	3	0.25

Table 4. 4. Earthquake Numbers in Northern Thailand, during the year 1999 to 2010.

By plotting, on a logarithmic scale, the number of earthquakes greater than or equal to a given magnitude in a set period of time against the magnitude, a basic characteristic of the seismicity rate in an area or the b value can be determined. 1. Firstly, choose a simple x-y plot, with magnitude M as the x-axis and number of earthquakes greater than magnitude M as the y-axis. Then plot this data set on a logarithmic-linear graph. In roughly, an approximate linear arrangement of points is shown. Using a straight edge, draw a single line that best represents the set of points that have plotted. That line does not need to run through the center, or even touch, all of the points. There is now a line that represents the data - the numbers of earthquakes with respect to magnitude over 12 years in northern Thailand (1999-2010). The equation for a line on a simple x-y plot is y = bx + a, where a, is the y-intercept and b represents the slope of the line. To keep b positive at all times, think of the above equation as true for positive-sloping lines (going up as when move left-to-right), and the equation y = a - bx as true for negative-sloping lines.

2. The graph has a y-axis that is logarithmic. Thus, a negative-sloping line on this graph would be described as $\log y = a - bx$. Indeed, instead of calling it the y-axis, think of it as a function N of the magnitude, M, which itself can be substituted for x (since the x-axis is magnitude). Make these substitutions in the equation given above. There is now a mathematical expression that represents the Gutenberg-Richter relation, the correlation between the magnitude of earthquakes and their relative numbers. It should look something like

3. Use a ruler to actually measure the slope of the line. Pick any segment of the line and sketch out a right triangle, with the legs parallel to the axes, and the line itself forming the hypotenuse. Measure the height of the vertical side of the triangle and divide this by the length of the horizontal side. The answer will be the slope of the line, otherwise known as the b value.

4. Another way to find the *b* value is to note the value of N(M) at each of two points along the line, exactly one magnitude unit (i.e. in the x-direction) apart. Divide the larger number (the point on the left) by the smaller number (the point on the right), and then take the logarithm of this quotient. That answer is the b value of this line.

Therefore, the b-value of northern Thailand for 12 years from the method that described above is 0.59 (Figure 4.26), if an annual rate is required, calculating by

using the number of the cumulative total by 12, the b value obtained is also 0.59 (Figure 4.26). According to the Gutenberg-Richter relation, the b value from this study can be used to assess the seismic hazards such as the opportunity on earthquakes with different magnitudes occurrences within northern Thailand. The results from Figure 4.26 show that the earthquakes with magnitude 3 could occurred at least 4 per year, and the earthquakes with magnitude 3.5 could occurred at least 2.5 per year, and the earthquakes with magnitude 4 could occurred at least 1.5 per year.

Figure 4. 26. The Gutenberg-Richter law for the northern Thailand seismicity period of 1999 to 2010, and for 1 year average the b value is 0.59.

4.4 Analyzing Ground-motion Parameters

For the earthquake study in northern Thailand, understanding the behavior and characteristics of earthquake ground motion is necessary, which is very useful for design engineers, and for structural design to withstand earthquakes. Ground motion during an earthquake is measured by strong motion seismograph (accelerograph), which records the acceleration of the ground. Since ground motion at particular site due to earthquakes is influenced by source, travel path and local site condition. Strong ground shaking can causes severe damages to man-made structure and unfortunately, sometimes, induce losses of human lives. The characteristics of ground motion that are important in earthquake engineering applications are peak ground motion (peak ground acceleration (PGA), peak ground velocity (PGV), and peak ground displacement (PGD)), and duration of strong motion, and frequency content. Each of these parameters influences the response of structure. Peak ground motion primarily influences the vibration amplitudes. Duration of strong motion has a pronounced effect on the severity of shaking. A ground motion with moderate peak acceleration and a long duration may cause more damage than a ground motion with a larger acceleration and a shorter duration. Frequency content strongly affects the response characteristics of a structure. In a structure, ground motion is amplified the most when the frequency content of the motion and the natural frequencies of the structure are close to each other (Mohraz & Sadek, 2001). Because of the complexity of earthquake ground motions, identification of single parameter that accurately describes all important ground motion characteristics is regarded as impossible (Jennings, 1985; Joyner & Boore, 1988).

4.4.1 Peak Ground Acceleration

The PGA is a measure of earthquake acceleration on the ground and an important input parameter for earthquake engineering. Unlike the Richter magnitude scale, PGA is not a measure of the total size of the earthquake but rather how hard the earth shakes in a given geographic area. Unlike the MMI scale, PGA is measured by instruments, not from personal reports, although PGA generally correlates well

with the MMI scale. The PGA can be expressed in g (the acceleration due to Earth's gravity) or in m/s^2 (1 g = 9.81 m/s^2).

In this study, the Kinematics Strong Motion Analyst program is used to analyze the PGA from 20 strong ground-motion earthquakes. This program can use to determine acceleration, velocity, and displacement of ground motion.

Figure 4. 27. Reading the PGA = 0.003858g at 03:23:39.755 UTC in north-south direction of Amphoe Ngao-Song border earthquake on March 2, 2008, M3.10 and source-to-site the MYOA station 15 km.

4.4.2 Duration of Motion

(Kramer, 1996) described that the duration of strong ground motion can have a strong influence on earthquake damage. Many physical processes, such as the degradation of stiffness and strength of certain types of structures and the build-up of pore water pressure in loose, saturated sands, are sensitive to the number of load or stress reversals that occur during an earthquake. A motion of short duration may not produce enough load reversals for damaging response to build up in a structure, even if the amplitude of the motion is high. On the other hand, a motion with moderate amplitude but long duration can produce enough load reversals to cause substantial damage

Due to no standard definition of strong motion duration, the selection of procedure for computing the duration for a certain study depends on the purpose of the intended application. There are different definitions of the duration of strong ground motion.(Bolt, 1969) proposed bracketed duration, which is defined as the time between the first and last exceedance of threshold acceleration (usually 0.05g) (Figure 4.29).

Figure 4. 29. Bracketed duration obtained graphically from the accelerogram based on the threshold acceleration of 0.05g.

4.4.3 Frequency Content

In case of frequency content, (Kramer, 1996) stated the dynamic response of compliant objects, be they buildings, bridge, slopes, or soil deposits, is very sensitive to the frequency at which they are loaded. Earthquakes produce complicated loading with components of motion that span a board range of frequencies. The frequency content describes how the amplitude of ground motion is distributed among different frequencies. Since the frequency content of an earthquake motion will strongly influence the effects of that motion, characterization of the motion cannot be complete without consideration of its frequency content. The frequency content of a ground motion can also be described by a power spectrum or power spectral density function. The power spectral density function can also be used to estimate the statistical properties of a ground motion and to compute stochastic response using random vibration techniques (Clough & Penzien, 1975; Vermarcke, 1976; Yang, 1986). Power spectral density (PSD) function shows the strength of the variations (energy) as a function of frequency. In other words, it shows at which frequencies variations are strong and which frequencies variations are weak.

Figure 4. 30. The PSD and frequency content of Amphoe Ngao-Song earthquake on

Figure 4. 31. The PSD and frequency content of Sumatra Indonesia earthquake on December 26, 2004, M9.1 and source-to-site the MYOA station >1,500 km.

4.5 Results of Ground Motion Parameters Analysis

The PGA of 20 strong ground-motion earthquakes during the year 1999 to 2010 is summarized in Table 4.4. There are no earthquakes with ground-motion greater than 0.05g at the MYOA station (the proposed KST dam). In case of duration of motion, by using the criteria of bracketed duration (Bolt, 1969), the results of this study showed that there was no earthquakes which have the ground-motion more than 0.05g. The characteristics of earthquake ground motion of northern Thailand from the PGA, duration of motion, and frequency content can be summarized that the PGA value at the site depends on the earthquake's magnitude and the epicentral distance (source-to-site). The earthquakes with smaller magnitude have shorter magnitude vice versa the earthquakes with larger magnitude have longer duration of motion and lower frequency content than the earthquakes with smaller magnitude.

		Peak	Ground Accele	eration (PGA)					Location	
											Distance to
No	Date	Component	Time (UTC)	cm/s^2	ę	Frency	Lat	Long	м	Region	the MYOA
		·			5	content (Hz)		5		5	station (km)
		N-S	23:14:48.280	0.878847	0.0009	3-50					Stadori (kili)
1	10-Aug-1999	Vertical	23:14:46.920	0.373286	0.0004	3-50	18.933	99.955	3.42	Amphoe Ngao, Lampang	48
	5	E-W	23:14:48.275	0.657851	0.0007	3-50				1 2 1. 2	
		N-S	23:22:00.055	1.858995	0.0019	1-50					
2	19-Nov-1999	Vertical	23:21:59.335	0.708568	0.0007	1-60	18.791	100.120	3.03	Amphoe Ngao, Lampang	19
		E-W	23:21:59.470	2.530054	0.0026	1-50					
		N-S	20:32:14.555	0.750442	8000.0	1-30					
3	26-Apr-2002	Vertical	20:32:15.320	0.232761	0.0002	1-30	19.145	99.314	4.32	Amphoe Phrao, Chiang Mai	112
		E-W	20:32:14.760	0.440160	0.0004	1-30					
		N-S	3:54:50.430	0.345154	0.0004	0.2-20					
4	2-Jul-2002	Vertical	3:54:31.360	0.23/727	0.0002	0.2-20	19.898	100.600	4.97	Laos	154
		E-W	3:54:51.270	1.055612	0.0005	0.2-20					
-	7.0 0000	N=5	6:11:52.000	0.475620	0.00011	1-50	40 570		0.40		0.4
5	7-Sep-2002	F-W	6.11.52.740	0.945668	0.0000	1-50	18.578	100.361	3.18	Amphoe Song, Phrae	26
		N-S	18.18.44 980	2 558666	0.0010	0.2-3					
6	21-San-2003	Vertical	18:18:47.815	0.932354	0.0010	0.2-4	10 000	05 730	6.60	Myanmar	130
0	21 JCP 2003	E-W	18:18:41.465	0.928094	0.0009	0.2-5	17.700	75.150	0.00	wyanna	430
		N-S	1:08:43.825	0.546100	0.0006	0.2-0.6					
7	26-Dec-2004	Vertical	1:08:49.585	0.735392	0.0008	0.2-0.6	3.316	95.854	9.10	Sumatra Islands, Indonesia	> 1500
		E-W	1:09:10.700	0.576617	0.0006	0.2-0.6				,	
		N-S	1:10:24.055	0.625202	0.0006	0.2-1					
8	26-Dec-2004	Vertical	1:10:02.660	0.803384	8000.0	0.2-1	3.316	95.854	9.10	Sumatra Islands, Indonesia	> 1500
		E-W	1:10:46.300	0.523906	0.0005	0.2-1					
		N-S	1:11:20.830	0.384166	0.0004	0.2-1					
9	26-Dec-2004	Vertical	1:11:47.510	0.362633	0.0004	0.2-1	3.316	95.854	9.10	Sumatra Islands, Indonesia	> 1500
		E-W	1:11:32.135	0.422176	0.0004	0.2-1					
		N-S	1:12:13.760	0.535636	0.0005	0.2-1					
10	26-Dec-2004	Vertical	1:12:19.475	0.860398	0.0009	0.2-1	3.316	95.854	9.10	Sumatra Islands, Indonesia	> 1500
		E-W	1:12:51.470	0.857780	0.0009	0.2-1					
		N-S	1:13:38.515	0.530924	0.0005	0.2-0.6					
11	26-Dec-2004	E W	1:13:07.040	0.792146	0.0008	0.2-0.6	3.316	95.854	9.10	Sumatra Islands, Indonesia	> 1500
		E-VV	1:15:20.205	0.703140	0.0006	0.2-0.6					
12	26 Dec 2004	Vertical	1.14.20.100	0.617070	0.0006	0.2-0.6	2 2 1 6	05.954	0.10	Sumatra Islands Indonasia	> 1500
12	20-Dec-2004	E-W	1:13:55.970	0.586001	0.0006	0.2-0.6	5.510	95.054	9.10	Sumatra Istanus, muonesia	> 1500
		N-S	1:14:34.455	0.355073	0.0004	0.2-0.6					
13	26-Dec-2004	Vertical	1:15:00.475	0.533855	0.0005	0.2-0.6	3.316	95.854	9.10	Sumatra Islands, Indonesia	> 1500
		E-W	1:15:13.780	0.562801	0.0006	0.2-0.6					
		N-S	1:31:39.040	0.560553	0.0006	0.2-10					
14	26-Dec-2004	Vertical	1:31:38.320	0.486190	0.0005	0.2-10	21.412	98.107	6.53	Myanmar	306
		E-W	1:31:33.010	0.486191	0.0005	0.2-10					
		N-S	12:01:21.965	0.897797	0.0009	1-50				Amphoe Dok Kam Tai	
15	18-Oct-2006	Vertical	12:01:21.880	0.464508	0.0005	1-50	18.950	100.049	3.35	Dhave a	36
		E-W	12:01:22.555	0.780996	8000.0	1-50				Phayao	
		N-S	17:03:05.055	1.288414	0.0013	0.2-40				Amphoe Doi Saket,	
16	12-Dec-2006	Vertical	17:03:04.375	0.446271	0.0005	0.2-40	18.967	99.193	4.86	Chiang Mai	117
		E-W	17:03:05.995	0.763968	0.0008	0.2-40					
4-		N-5	0:57:31.770	1.025551	0.0010	0.2-10	00-11	400 000			007
17	16-May-2007	F-W	0:01:22.295	1.118008	0.0011	0.2-10	20.540	100.350	6.21	Laos	225
		N-S	5:07:16 470	0.862205	0.0009	0.2-40					
1.9	19- lun-2007	Vertical	5:07:17.535	0.281525	0.0003	0.2-40	18 050	99 1 90	0.00	Amphoe Doi Saket,	112
10	-> 5001 2001	E-W	5:07:18.010	0.612953	0.0006	0.2-40	10.750	,,VV		Chiang Mai	***

Table 4. 5. The PGA and frequency content of 20 strong ground-motion earthquakes

		Peak	Ground Accel	eration (PGA	N)					Location	
No	Date					Franci					Distance to
NO	Date	Component	Time (UTC)	cm/s ²	g	contont (Hz)	Lat	Long	м	Region	the MYOA
						content (HZ)					station (km)
		N-S	3:29:39.665	3.783707	0.0039	3-50				Amphoe Nazo-Sona	
19	2-Mar-2008	Vertical	3:23:39.665	2.208710	0.0023	3-50	18.740	100.110	3.10	Amphoe Ngao-Jong,	15
		E-W	3:23:39.755	3.848810	0.0039	3-50				Lampang-Phrae	
		N-S	12:44:43.505	0.374622	0.0004	0.2-80					
20	1-Jun-2009	Vertical	12:44:36.850	0.179374	0.0002	0.2-80	18.806	100.593	3.10	Amphoe Wiang Sa, Nan	53
		E-W	12:44:36.915	0.253605	0.0003	0.2-80					

Table 4.5.	The PGA and free	quency content	of 20 strong	ground-motion	earthquakes
	at the MYOA sta	tion during the	year 1999 to	2010 in this stu	dy (cont).

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

CHAPTER V

COMPARISON OF DATA FROM BEFORE AND AFTER RE-LOCATING

These steps consist of comparison of data from before and after re-locating well-located earthquakes such as the epicenter of earthquakes, the frequency and magnitude relation (b-value), the relationship of earthquakes with geological structures, and the correlation of the KST's epicenters with the TMD.

5.1 Epicenter of Earthquakes before and after Re-locating

The comparison of KST's epicenters before and after re-locating can be summarized as follows:

Before relocating, the KST network has 118 events with magnitude 2.0-6.6 (Table 3.2) that can be categorized in northern Thailand, 62 events with magnitude 2.0-5.0 and in neighboring countries, 56 events with magnitude 3.9-6.6, and mostly scattered between Lat.18.5- 20.0 N Long.99.0-101.5 E (Figure 5.2). After relocating, the KST network has 128 well-located earthquakes with magnitude 2.2-6.5 (Table 4.1). 67 events are categorized to be in northern Thailand with magnitude range of 2.2-4.9 and in the neighboring countries 61 events with magnitude 3.9-6.5 (additional of 10 events are added, with 2 events of magnitude 3-3.9, and with 7 events of magnitude 4-4.9, and 1 event at magnitude 6-6.9 (Table 3.2 and Table 4.1)). The epicenters are mostly scattered along the Lat.18.0-20.5 N and Long.99.0-100.5 E (Figure 5.2). The depths of earthquakes are shallow with focal depth less than 70 km (Figure 4.25).

There are earthquakes with magnitudes 2-3.9 occurred near the reservoir area and around the seismographic stations of the KST network but no earthquakes occurred at the proposed KST dam in Phrae (Figure 5.3). The earthquake that occurred nearest the proposed KST dam is at Amphoe Song in Phrae on June 9, 2005 with magnitude 2.34, with epicenter at Lat.18.656 N and Long. 100.249 E, about 11.2 km to the northeast from the proposed KST dam (Figure 5.3 and Table 4.1).

The regions where the earthquakes with magnitude 4-4.9 mostly occur are in Chiang Mai and Chiang Rai. They were found in Amphoe Doi Saket (near the Mae Kuang dam), Amphoe Phrao, and Amphoe Chiang Dao in Chiang Mai (Figure 5.4, Figure 5.5, and Table 4.1), and Amphoe Thoeng, Amphoe Wiang Pa Pao in Chiang Rai (Figure 5.6 and Table 4.1).

The earthquakes before and after re-locating have difference in the magnitude about ± 0.00 -0.57 unit and the location about ± 2.0 -125 km (Table 5.1). The original pre-relocating earthquake epicenters do not have any relation with existing geologic structure. This may be due to the manually analysis, not automatic, which did not have uniform standard procedure in the analysis. It was depended on the operator judgment to pick the phase of P or S-wave. However, the epicenters of 128 events after re-locating based on the criteria that were used in this study are more reliable and have better accuracy than before the re-locating, owing to the new epicenters were obtained from the intersection of 3 circles from at least 3 epicentral distances (Figure 5.7 - Figure 5.10). Together all events' origin times have been revised, as the difference in occurrence time from each station have been fixed to be less than 2 seconds error.

Figure 5.7 is the examples compares earthquake's locations from before and after re-locating on July 2, 2002. Before re-locating the location is at Amphoe Mae Suai Changwat Chiang Rai (Figure 5.7a) but after re-locating the location is in Northern Laos (Figure 5.7b). Figure 5.8 is the earthquake's locations from before and after re-locating which occurred on July 3 2002. Before re-locating, the location is at Amphoe Kun Tan Changwat Chiang Rai (Figure 5.8a) but after re-locating, the location is in Northern Laos (Figure 5.8b). Figure 5.9 is the earthquake's locations from before and after re-locating for September 18, 2003. Before re-locating, the location is in Myanmar (Figure 5.9a) but after re-locating the location is moved to Northern Laos (Figure 5.9b). Figure 5.10 is the earthquake's locations from before and after re-locating for March 14, 2004. Before re-locating, the location is in Amphoe Mae Chan, Changwat Chiang Rai (Figure 5.10a) but after re-locating the location is in Northern Laos (Figure 5.10b).

		Start	Time						Ori	gin Tiı	me	<i>c</i> .		
No.	Date	(U1	TC)	befor	e re-loca	ting	No.	Date		(UTC)		after	re-locat	ing
		hr	min	Lat	Long	М	-		hr	min	sec	Lat	Long	М
1	22-May-1999	15	23	18.900	100.200	2.0	1	22-May-1999	15	23	28	18.919	100.196	2.6
							2	29-Jun-1999	6	38	16	21.042	98.35	5.6
							3	15-Jul-1999	17	35	11	21.386	100.529	5.2
2	10-Aug-1999	23	14	18.950	100.040	3.1	4	10-Aug-1999	23	14	34	18.933	99.955	3.4
				40.700			5	10-Aug-1999	23	15	16	18.929	100.087	2.9
3	19-Nov-1999	23	21	19.790	100.110	2.9	6	19-Nov-1999	23	21	53	18.791	100.12	3.0
4	13-Apr-2000	15	15	19.510	100.480	3.U 2.2	/ 0	13-Apr-2000	15	15	5Z 20	19.274	100.474).1 2 1
6	7-May-2000	1	44	19.129	100.110	3.2	0 0	7-May-2001	1	44	20	19.147	100.184	3.1
0	7 Way 2001	1	4	10.510	100.440	5.5	10	7-Nov-2001	5	36	39	18.775	99.551	3.2
7	26-Apr-2002	20	31	18.910	99.080	4.5	11	26-Apr-2002	20	31	41	19.145	99.314	4.3
8	' 2-Jul-2002	3	54	19.668	99.432	5.0	12	2-Jul-2002	3	54	4	19.898	100.6	5.0
							13	2-Jul-2002	17	55	17	19.91	100.57	3.7
9	3-Jul-2002	0	17	19.860	100.280	3.7	14	3-Jul-2002	0	17	46	19.902	100.64	3.9
10	21-Jul-2002	22	49	19.920	100.900	4.1	15	21-Jul-2002	22	49	45	19.777	100.837	3.9
11	7-Sep-2002	6	11	18.580	100.320	3.5	16	7-Sep-2002	6	11	44	18.578	100.361	3.2
12	25-Sep-2002	14	27	19.390	99.350	3.6	17	25-Sep-2002	14	27	46	19.296	99.587	3.6
13	6-Nov-2002	5	21	18.670	99.980	2.9	18	6-Nov-2002	5	21	21	18.676	99.921	2.9
14	18-Dec-2002	13	47	19.390	98.800	4.9	19	18-Dec-2002	13	47	11	19.395	99.196	4.7
15	29-Jan-2003	7	14	19.750	100.566	3.9	20	29-Jan-2003	7	14	30	19.729	100.449	3.8
17	02 4 2002	0	57	10 500	00.014	2.5	21	15-Mar-2003	4	29	42	19.329	99.566	3.2
10	25-AUg-2005	0 11	57	18.599	99.216	5.5	22	25-Aug-2005	0 11	51	50 15	10.015	99.39 100.000	5.5 4.4
10	23 Nov 2003	11	4	20.407	100.129	4.5	25	23 Nov 2003	11	4	15	20.405	100.000	4.4
10	14-Mar-2004	5	49	20.320	101.200	3.9	24	14-Mar-2004	5	49	37	19.9	100.563	3.0
20	27-Mar-2004	4	5	19.466	99.583	3.6	26	27-Mar-2004	4	5	35	19.497	99.63	3.7
21	17-Aug-2004	18	54	17.353	100.553	4.1	27	17-Aug-2004	18	54	54	17.465	100.819	4.1
22	11-Sep-2004	1	31	18.812	98.844	3.6	28	11-Sep-2004	1	31	56	18.787	98.978	3.4
23	26-Dec-2004	1	30	21.627	103.341	6.6	29	26-Dec-2004	1	30	28	21.412	98.107	6.5
24	30-Dec-2004	23	55	21.335	100.377	6.4	30	30-Dec-2004	23	55	21	21.254	97.761	6.3
25	25-Jan-2005	16	31	23.507	99.749	6.0	31	25-Jan-2005	16	31	21	22.608	100.677	5.7
26	1-Apr-2005	7	18	19.386	99.431	3.7	32	1-Apr-2005	7	18	20	19.412	99.421	3.7
27	4-Jun-2005	23	1	17.859	100.676	3.8	33	4-Jun-2005	23	1	37	17.909	100.669	3.8
28	9-Jun-2005	21	7	18.575	100.240	2.3	34	9-Jun-2005	21	7	56	18.656	100.249	2.3
29	29-Jun-2005	0	38	18.815	99.504	3.1	35	29-Jun-2005	0	38	52	18.604	99.611	3.7
30	4-Dec-2005	9	34	18.773	98.992	4.2	36	4-Dec-2005	9	34	32	18.769	98.972	3.9
22	1-Dec-2005	9	10	19.722	99.478	5.0 4 1	20	1-Dec-2005	9	10	58 27	19.754	99.544	5.8 4.0
32	15-Dec-2005	23	40	19.452	00 022	3.0	30	15-Dec-2005	23	40	17	19.555	100.037	4.0 3.0
34	16-Dec-2005	25	13	19 488	99.826	3.6	40	16-Dec-2005	25	13	45	19.601	99 899	3.5
35	16-Dec-2005	2	15	19.494	99.927	3.7	41	16-Dec-2005	2	15	40	19.564	99.892	3.7
36	17-Dec-2005	10	59	19.608	100.147	3.2	42	17-Dec-2005	10	59	15	19.639	99.986	3.3
37	17-Dec-2005	11	47	19.466	100.011	3.3	43	17-Dec-2005	11	47	6	19.505	99.947	3.3
38	24-Jan-2006	13	42	20.898	98.464	5.5	44	24-Jan-2006	13	42	59	20.611	98.418	5.6
39	15-Feb-2006	16	54	19.134	100.207	3.4	45	15-Feb-2006	16	54	16	19.132	100.244	3.6
40	20-Feb-2006	18	33	19.138	100.221	2.8	46	20-Feb-2006	18	33	1	19.129	100.152	2.9
							47	6-Aug-2006	5	15	23	19.641	99.053	4.3
41	13-Oct-2006	15	35	20.229	100.157	3.7	48	13-Oct-2006	15	35	28	20.077	100.479	3.7
42	18-Oct-2006	12	0	18.945	100.116	3.2	49	18-Oct-2006	12	0	10	18.95	100.049	3.4
43	21-Oct-2006	1	58	20.325	100.846	4.2	50	21-Oct-2006	1	58	47	20.32	100.511	4.3
44	16-Nov-2006	18	38	19.540	99.999	3.7	51	16-Nov-2006	18	38	3	19.675	100.023	4.0
45	26-NOV-2006	19	52	19.069	101.239	5.8 4 7	52	26-NOV-2006	19	32	57	19.02	101.207	5.8 4.0
40 47	12-Dec-2006	1 / 1 Q	∠ ∆0	18 965	77.245 99.180	4.1 3.8	53 54	12-Dec-2006	10	∠ ⊿0	∠y 37	10.907 10.907	99.195 00 125	4.7 3.0
48	12-Dec-2006	22	21	19.008	99,144	3.0 3.6	55	12-Dec-2006	17 22	 21	55	18,989	99,139	3.6
49	13-Dec-2006	5	48	18.899	99.256	3.1	56	13-Dec-2006	5	48	4	18.921	99.268	3.3

Table 5. 1. The KST's epicenters before and after re-locating.

		Start	Time						Ori	gin Ti	me	<i>c</i> .		
No.	Date	רט)	FC)	befor	e re-loca	ting	No.	Date		(UTC)		after	re-locat	ting
		hr	min	Lat	Long	М			hr	min	sec	Lat	Long	М
50	23-Dec-2006	11	48	18.880	99.638	3.2	57	23-Dec-2006	11	48	17	18.909	99.12	3.2
51	25-Jan-2007	22	29	18.824	99.387	3.2	58	25-Jan-2007	22	29	47	18.834	99.191	3.3
52	18-Feb-2007	8	52	18.555	100.582	3.1	59	18-Feb-2007	8	52	55	18.548	100.606	3.1
53	22-Apr-2007	6	17	19.427	99.838	4.0	60	22-Apr-2007	6	18	3	19.4	99.536	4.1
							61	23-Apr-2007	14	17	6	19.464	99.769	3.7
54	16 May 2007	0	E C	20 646	101 445	6.1	62	15-May-2007	14	35 54	45	20.622	100.327	4.8
54	16 May 2007	0	20 10	20.040	101.445	2.0	60	10-1viay-2007	0	50	10	20.057	100.070	0.Z
55	16 May 2007	9	21	20.421	101.440	3.9	64	16 May 2007	o	31	3	20 232	100 743	3.0
57	16-May-2007	10	4	20.234	100.011	4.0	65	16-May-2007	10	5	35	20.232	100.745	4.1
58	16-May-2007	10	15	20.666	100.934	4.0	66	16-May-2007	10	15	41	20.548	100.587	4.1
59	16-May-2007	10	25	20.581	101.070	4.1	67	16-May-2007	10	26	1	20.488	100.894	4.1
60	16-May-2007	11	15	20.420	101.197	4.2	68	16-May-2007	11	15	56	20.458	100.867	4.4
61	16-May-2007	11	35	20.533	100.822	3.9	69	16-May-2007	11	35	12	20.53	100.79	4.0
62	16-May-2007	11	43	20.716	101.214	4.1	70	16-May-2007	11	43	52	20.4	100.697	4.1
63	16-May-2007	13	18	20.540	101.051	4.5	71	16-May-2007	13	18	7	20.495	100.64	4.6
64	16-May-2007	17	8	20.309	101.364	4.1	72	16-May-2007	17	8	54	20.547	100.774	4.2
65	17-May-2007	3	25	20.029	101.416	4.1	73	17-May-2007	3	25	40	20.652	100.379	4.2
66	18-May-2007	0	1	20.087	101.254	3.9	74	18-May-2007	0	1	53	20.42	100.708	4.1
67	18-May-2007	1	41	20.253	100.798	3.9	75	18-May-2007	1	40	55	20.458	100.67	4.0
68	18-May-2007	13	5	20.612	101.232	4.2	76	18-May-2007	13	5	16	20.465	100.659	4.2
69	20-May-2007	1	21	20.441	100.812	3.9	77	20-May-2007	1	21	21	20.268	100.747	3.9
70	23-May-2007	17	6	20.434	100.781	4.0	78	23-May-2007	17	6	27	20.399	100.633	4.1
71	24-May-2007	11	15	20.507	100.666	3.9	79	24-May-2007	11	15	17	20.31	100.746	4.0
72	7-Jun-2007	17	21	20.606	100.879	4.7	80	7-Jun-2007	17	21	4	20.673	100.73	4.8
73	19-Jun-2007	5	6	18.931	99.178	4.4	81	19-Jun-2007	5	6	42	18.983	99.154	4.5
74	23-Jun-2007	6	54	19.629	96.758	4.9	82	23-Jun-2007	6	53	45	21.468	99.552	5.1
75	23-Jun-2007	8	17	20.887	98.861	5.9	83	23-Jun-2007	8	17	7	21.412	99.32	5.9
76	23-Jun-2007	8	27	21.461	99.352	5.8	84	23-Jun-2007	8	27	37	21.324	99.316	5.7
							85	14-Jul-2007	8	29	18	20.357	100.783	3.8
77	28-Jul-2007	21	33	20.578	100.153	4.3	86	28-Jul-2007	21	33	49	20.651	99.144	4.5
78	6-Aug-2007	6	53	20.501	100.814	4.1	87	6-Aug-2007	6	53	52	20.475	100.493	4.3
79	6-Aug-2007	8	50	20.327	100.704	3.8	88	6-Aug-2007	8	50	50	20.507	100.573	3.9
80	7-Aug-2007	8	55	20.490	101.172	4.3	89	7-Aug-2007	8	55	23	20.866	100.114	4.6
01	8-AUg-2007	9 11	15	20.320	100.441	2.9	90	8-Aug-2007	9	15	52	20.408	100.726	4.Z
02	19-Aug-2007	7	10	19.015	90.115	J.O	91	19-Aug-2007	7	10	20	20 50	90.95	5.9
8/	16-0ct-2007	2	38	18 661	100.705	2.5	92	16-Oct-2007	2	30	24	18 73	100.074	4.Z 2.4
85	16-Oct-2007	6	46	20 512	100.142	4.5	94	16-Oct-2007	6	46	53	20.483	100.240	2. 4 4.7
86	1-Nov-2007	19	5	20.212	100.000	4.6	95	1-Nov-2007	19	5	47	20.403	100.722	4.6
87	23-Dec-2007	11	19	18.652	100.655	3.1	96	23-Dec-2007	11	19	31	18.655	100.654	3.2
88	2-Mar-2008	3	22	18.707	100.088	3.1	97	2-Mar-2008	3	23	35	18.736	100.113	3.1
89	9-Apr-2008	15	47	19.394	99.620	3.2	98	9-Apr-2008	15	49	24	19.3	99.266	3.2
90	10-Jun-2008	21	37	20.652	100.794	4.8	99	10-Jun-2008	21	37	43	20.112	100.858	4.7
91	1-Jul-2008	9	45	19.420	99.538	3.8	100	1-Jul-2008	9	45	51	19.219	99.345	3.9
92	9-Jul-2008	4	39	18.701	100.248	2.2	101	9-Jul-2008	4	39	48	18.689	100.253	2.2
93	25-Nov-2008	8	10	18.816	100.277	2.6	102	25-Nov-2008	8	10	52	18.905	100.167	2.5
94	29-Nov-2008	8	6	20.630	100.890	4.0	103	29-Nov-2008	8	6	25	20.289	100.658	4.0
95	31-Dec-2008	7	59	18.653	100.650	3.7	104	31-Dec-2008	8	0	1	18.67	100.616	3.6
96	31-Dec-2008	8	4	18.694	100.642	3.7	105	31-Dec-2008	8	4	11	18.674	100.611	3.6
97	29-Jan-2009	23	23	19.039	100.317	2.8	106	29-Jan-2009	23	24	33	19.045	100.318	2.8
98	6-Feb-2009	1	39	19.505	99.717	2.8	107	6-Feb-2009	1	39	18	19.547	99.759	2.8
99	22-May-2009	7	58	20.294	101.086	4.3	108	22-May-2009	7	58	9	20.464	100.796	4.4
100	22-May-2009	18	50	20.984	102.471	5.1	109	22-May-2009	18	50	15	21.318	102.01	5.0
101	1-Jun-2009	12	43	18.815	100.578	3.1	110	1-Jun-2009	12	44	27	18.821	100.707	3.1
102	10-Jun-2009	0	23	18.798	100.269	2.7	111	10-Jun-2009	0	23	59	18.848	100.286	2.6

Table 5.1. The KST's epicenters before and after re-locating (cont).

		Start	Time						Ori	gin Ti	me	-		
No.	Date	(U ⁻	TC)	befor	e re-loca	ting	No.	Date		(UTC))	aftei	r re-locat	ting
		hr	min	Lat	Long	М			hr	min	sec	Lat	Long	М
103	10-Jun-2009	0	24	18.829	100.277	2.7	112	10-Jun-2009	0	25	5	18.899	100.242	2.7
104	18-Jun-2009	19	49	18.890	100.330	2.6	113	18-Jun-2009	19	50	16	18.892	100.309	2.6
							114	21-Jun-2009	18	6	20	19.588	99.977	3.6
105	16-Aug-2009	17	57	20.535	100.288	4.2	115	16-Aug-2009	17	57	11	20.231	100.746	4.2
106	1-Oct-2009	11	56	20.022	103.047	4.1	116	1-Oct-2009	11	56	2	20.836	101.689	4.1
107	14-Oct-2009	1	58	20.205	102.039	4.8	117	14-Oct-2009	1	59	31	20.811	101.498	4.8
108	7-Nov-2009	3	55	20.377	101.304	3.9	118	7-Nov-2009	3	54	55	20.458	101.793	3.9
109	10-Nov-2009	7	36	20.590	102.088	4.8	119	10-Nov-2009	7	36	51	20.815	101.763	4.7
110	10-Nov-2009	8	2	20.109	101.440	4.3	120	10-Nov-2009	8	1	44	20.802	101.243	4.2
111	10-Nov-2009	8	40	20.276	101.413	4.1	121	10-Nov-2009	8	40	23	20.844	101.418	4.1
112	2-Dec-2009	7	2	19.310	99.203	3.3	122	2-Dec-2009	7	3	5	19.232	99.209	3.3
113	26-Dec-2009	1	11	20.695	99.665	4.0	123	26-Dec-2009	1	11	49	20.376	98.944	4.1
114	9-Mar-2010	13	3	20.508	99.383	4.2	124	9-Mar-2010	13	3	24	20.323	99.168	4.2
115	26-Jun-2010	2	24	20.183	99.524	3.9	125	26-Jun-2010	2	23	59	20.354	99.827	3.9
116	6-Jul-2010	15	23	20.004	99.054	4.1	126	6-Jul-2010	15	23	29	20.362	99.614	4.1
117	18-Jul-2010	12	53	20.249	100.978	3.8	127	18-Jul-2010	12	53	19	20.263	101.272	3.9
118	29-Aug-2010	8	18	19.520	99.540	3.4	128	29-Aug-2010	8	19	2	19.516	99.512	3.4

Table 5.1. The KST's epicenters before and after re-locating (cont).

Figure 5. 1. Number of earthquakes and magnitude before and after re-locating.

Figure 5. 2. Epicentral map before and after re-locating of this study.

Figure 5. 3. DEM map shows the epicenters before and after re-locating with magnitudes 2-3.9 near the proposed KST dam in Phrae and the epicenters on June 9, 2005 with M2.34 and source-to-site the MYOA and the MYOM stations 15 km.

Figure 5. 4. DEM map shows the epicenters before and after re-locating with magnitudes 3-5.9 near the Mae Kuang dam in Chiang Mai.

Figure 5. 5. DEM map shows the epicenters before and after re-locating with magnitudes 3-5.9 in Amphoe Doi Sa ket and Amphoe Phrao, Chiang Mai.

Figure 5. 6. DEM map shows the epicenters before and after re-locating with magnitudes 2-4.9 in Amphoe Phan and Amphoe Pa Daet, Chiang Rai.

Figure 5. 7. Location of an earthquake with a magnitude of 5.0 on July 2, 2002 (a) before re-locating; Amphoe Mae Suai Changwat Chiang Rai (b) after relocating; Northern Laos, based on data of KST network.

Figure 5. 8. Location of an earthquake with a magnitude of 3.9 on July 3 2002 (a) before re-locating; Amphoe Kun Tan Changwat Chiang Rai (b) after relocating; Northern Laos, based on data of KST network.

Figure 5. 9. Location of an earthquake with a magnitude of 4.4 on September 18 2003 (a) before re-locating; Myanmar (b) after re-locating; Northern Laos, based on data of KST network.

Figure 5. 10. Location of an earthquake with a magnitude of 3.9 on March 14 2004 (a) before re-locating; Amphoe Mae Chan Changwat Chiang Rai (b) after relocating; Northern Laos, based on data of KST network.

5.2 Frequency and Magnitude Relation (b-value) before and after re-locating

The relationship between the frequency and magnitude of earthquakes before re-locating the b-value is 0.52 (Figure 5.11), and after re-locating the b-value is 0.59 (Figure 5.12). The b-value has a little difference as the number of earthquakes before and after re-locating which were used in this study is different. Table 5.2 shows the earthquake numbers in northern Thailand during the year 1999 to 2010. Before re-locating, the cumulative earthquake above lower M in range of the earthquake magnitude 2.0-2.4 is 74, magnitude 2.5-2.9 is 70, magnitude 3.0-3.4 is 60, magnitude 3.5-3.9 is 40, magnitude 4.0-4.9 is 18, and magnitude 4.5-4.9 is 7. Table 5.3 shows the earthquake numbers in northern Thailand during the year 1999 to 2010 after re-locating, the cumulative earthquake above lower M in range of the earthquake numbers in northern Thailand during the year 1999 to 2010 after re-locating, the cumulative earthquake above lower M in range of the earthquake magnitude 2.0-2.4 is 69, magnitude 2.5-2.9 is 66, magnitude 3.0-3.4 is 55, magnitude 3.5-3.9 is 35, magnitude 4.0-4.9 is 14, and magnitude 4.5-4.9 is 3.

Figure 5. 11. Northern Thailand seismicity during the year 1999 to 2010 before relocating, b-value = 0.52.

Magnitude	Count per M	Cumulative Total	Appual Pata
(M) Range	Range	Above Lower M in Range	Annual nale
2.0 - 2.4	4	74	6.2
2.5 - 2.9	10	70	5.8
3.0 - 3.4	20	60	5.0
3.5 - 3.9	22	40	3.3
4.0 - 4.4	11	18	1.5
4.5 - 4.9	6	7	0.6
5.0 - 5.4	1		

Table 5. 2. Earthquake Numbers in Northern Thailand, during the year 1999 to 2010 before re-locating.

Figure 5. 12. Northern Thailand seismicity during the year 1999 to 2010 after relocating, b-value = 0.59.

Magnituda (M) Panga	Count por M Pango	Cumulative Total	Appual Pata
Magnitude (M) hange	Count per Minange	Above Lower M in Range	Annual hate
2.0 - 2.4	3	69	5.75
2.5 - 2.9	11	66	5.50
3.0 - 3.4	20	55	4.58
3.5 - 3.9	21	35	2.92
4.0 - 4.4	11	14	1.17
4.5 - 4.9	3	3	0.25

Table 5. 3. Earthquake Numbers in Northern Thailand, during the year 1999 to 2010 after re-locating.

5.3 Relationship of Earthquakes with Geological Structures

In the interpretation part, detailed geomorphology was used to identify geologic features those are associated with active tectonic landforms for strike-slip faulting (Keller & Pinter, 1996). There were several features of each tectonic landform associated with active fault as explained below (Figure 5.13).

(1) Linear valleys was generated from a transform faulting (strike-slip fault), which controls the flow of stream channels in a straight form.

(2) Shutter ridge is a long and narrow mound that obstructs stream flow. The shutter ridge effected the hill ridge by cutting through it and gave the appearance that the ridge moved out from the originally mountain line. This is common evident for strike-slip fault.

(3) Offset stream which was a result of strike-slip fault cutting through the stream. It cut and displaced the stream channel, which originally was flowing in straight line. The distance of movement from the originally stream line can be referred to displacement of fault movement.

(4) Beheaded stream, one of the causes of strike-slip fault, affecting the form of stream. The originally straight-continuous stream was cut by fault displacement and the new stream upper end shows no connection with the main stream.

Figure 5. 13. Assemblage of landforms associated with active tectonic strike – slip faulting (Keller & Pinter, 1996).

(5) Fault scarp, the characterized slanting cliff, was caused by fault cutting through the area. This may be caused by both normal fault and strike-slip fault. It is commonly appear in the topography that showed steep cliff next to the basin and indicated distinctly by rows of fault trace movement.

(6) Sag pond, which was effected by strike-slip fault and caused the subsidence of the land in the area. Water is ponding in the fault-developed basin. Both normal fault and strike-slip fault can be caused of this.

(7) Spring and hot spring are fault generated open gap of fracture in the subsurface rock and consequently underground water in that area flows out from subsurface. Hot spring is related to hydrothermal activity in the subsurface rock.

(8) Triangular facet is the result of vertical movement of normal fault. After faulting it was affected by surface erosion until it has the triangle cliff character.

(9) Bench is the topography landform that was developed as a consequent of triangular facet landform. The normal fault causes this step-like feature.

(10) Wine glass canyon is the affected from normal fault, which cut through a stream channel and continue with vertical erosion that is faster than its horizontal erosion, resulted into a valley that is resemble to wine glass, that is to say, the top of the valley is rather wide and the lower part is narrow and deep.

In this study, the Digital Elevation Models (DEM) which created from SRTM was used to create contour line to study the relationship between earthquake's epicenters with geological structures. DEMs are gray scale images wherein the pixel values are actually elevation numbers. The pixels are also coordinated to world space (longitude and latitude), and each pixel represents some variable amount of that space (foot, meter, mile, etc.) depending on the purpose of the model and land area involved. They produced using elevation data derived from existing contour maps, digitized elevations and photogrammetric stereo-models based on aerial photographs and satellite remote sensing images.

The results of this study (Figure 5.3-Figure 5.6 and Figure 5.14-Figure 5.16) found that some epicenters after re-locating were associated with mapped faults with surficial expression, but some epicenters were not. However, (Bott et al., 1997) mentioned that northern Thailand is similar to the Basin and Range province in the western United States of America in term of earthquake processes and tectonics. In the Basin and Range province background earthquakes as large as M6-6.5 can occur on buried faults with no surface expression or apparent geological association (dePolo, 1994). Therefore some epicenters probably associated with faults which have no surficial expression might be background earthquakes.

Figure 5. 14. Epicenters of earthquake on June 9, 2005, before (green triangle) and after (yellow triangle) re-locating, plotting in Google map. Note: epicenter after re-locating on fault scarp.

Figure 5. 15. Epicenters of earthquake on October 16, 2007, before (green triangle) and after (yellow triangle) re-locating, plotting in Google map. Note: epicenter after re-locating on fault scarp.

Figure 5. 16. Topographic map shows the epicenters of earthquakes after re-locating (yellow circles and squares) near the Mae Kuang dam site. Note: epicenters associated with and closely to mapped fault.

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

5.4 Correlation of the KST's Epicenters with the TMD

In earthquake study, it is necessary to recheck the KST's events with the TMD recorded events, such as when and where the earthquakes have occurred, and to check the accuracy of the events. The information of the TMD's epicenters in this study mostly comes from the catalogue and the website of the TMD (http://www.seismology.tmd.go.th/home.html).

The first seismograph station of the TMD was set up in 1963 in Chiang Mai, northern Thailand. At first, this station is the participation of the Worldwide Standardized Seismograph Network: WWSSN, and thereafter has transferred to participate with the Incorporated Institution of Seismology: IRIS. Later the TMD has set up more seismograph stations in many provinces cover all parts of Thailand as listed in Table 5.4.

Comparing the KST's epicenters of this study with the TMD's epicenters was rather difficult due to the lack of local earthquakes reported in TMD bulletin. Since TMD stations is regional stations, they were sparse and reported only large to medium earthquakes with some small local events. There were only 45 events or 35 percent of the KST's events (Table 5.5) to compare with. In conclusion, the epicenters of the two networks show not the same location and magnitude (Figure 5.17), which may be due to the instrument types (shot period and broadband), the operators, and the computer program that used in the analyses.

However, in the study, it has been tried to compare the KST's epicenters with the TMD's epicenters for the recorded during the year 1978 to 1998 (Table 5.6) or the year before the set-up of the KST network, and the epicenter of earthquake with magnitude 6.3 on May 5, 2014, in order to identify the area of high seismicity from the past, and present earthquakes. The results from past and present earthquakes of this study indicates that the earthquakes with magnitudes 4-4.9 frequently occurred in Chiang Mai, and Chiang Rai between latitude 18.75-19.75 and longitude 98.75-99.75 (Figure 5.18 and Figure 5.19).

Seismic Station List	Network Code	Station Code	Lat	Long	Elevation (m)	Sensor	Digitizer
Kirithan Dam, Chanthaburi	ТМ	CHBT	102.33	12.7526	4	Trillium 120 sec	taurus, trident
Doi Suthep, Chiang Mai	ТМ	CMMT	98.95	18.8128	399.7	Trillium 120 sec	taurus, trident
Wachiralongkorn Dam, Kanchanaburi	тм	KHLT	98.5893	14.7970	164	Trillium 40 sec	taurus, trident
Lumpraplueng Dam, Nakhonratchasima	ТМ	KRDT	104.8442	14.5905	266	Trillium 40 sec	taurus, trident
The Immigration Checkpoint, Mae Hong Son	ТМ	MHIT	97.9632	19.3148	270	Trillium 120 sec	taurus, trident
Sariang Meteorological Station, Mae Hong Son	тм	MHMT	97.931	18.1764	164	Trillium 40 sec	taurus, trident
Khao Kho, Phetchabun	ТМ	PBKT	100.9687	16.5733	8	Trillium 120 sec	taurus, trident
Bangwaad Dam, Phuket	ТМ	PKDT	98.335	7.8920	53	Trillium 40 sec	taurus, trident
Ranong	ТМ	RNNT	98.4778	9.3904	38	Trillium 40 sec	taurus, trident
Songkhla	тм	SKLT	100.6188	7.1735	14.5	Trillium 120 sec	taurus, trident
Srinakarintara Dam, Kanchanaburi	ТМ	SRDT	98.1212	14.3945	122	Trillium 40 sec	taurus, trident
Ratchaprapa Dam, Surat Thani	ТМ	SURT	98.795	8.9577	26	Trillium 40 sec	taurus, trident
Pak Mun Dam, Ubon Ratchathani	тм	UBPT	105.4695	15.2773	120	Trillium 120 sec	taurus, trident
Nampoong, Sakon Nakhon	тм	SKNT	103.9815	16.9742	254	Trillium 40 sec	taurus, trident
Tha Ngiu Dam, Trang	ТМ	TRTT	99.6912	7.8362	71	Trillium 40 sec	taurus, trident
Kwae-noi Dam,Phitsanulok	TMD	PHIT	100.416499	17.189269	113.5	SP -S13-1HZ	smart24
Huai Tha Phrae Reservoir, Sukhothai	TMD	SUKH	99.631013	17.482143	58.0294	SP -S13-1HZ	smart24
Sirikit Dam, Uttaradit	тмр	UTTA	100.554083	17.744258	62.61	SP -S13-1HZ	smart24
Namsong Reservoir, Phrae	тмр	PHRA	100.229325	18.498912	186.83564	BB KS2000M 120 sec	smart24
Kiewlom Dam, Lampang	тмр	LAMP	99.632246	18.522614	246.655	SP -S13-1HZ	smart24
Namkorn Dam, Nan	тмр	NAN	100.911631	19.283535	261.711992	SP -S13-1HZ	smart24
Mae Puem Reservoir, Phayao	TMD	PAYA	99.869172	19.360284	408.264	SP -S13-1HZ	smart24
Huai Chang Reservoir	TMD	CRAI	100.373434	20.228927	356.746966	BB KS2000M 120 sec	smart24
Doi Ang Khang Meteorological Station, Chiang Mai	TMD	CMAI	99.04526	19.932477	1502.668207	BB KS2000M 120 sec	smart24
Umphang Meteorological Station, Tak	TMD	UMPA	98.86035	16.20572	403.234	BB KS2000M 120 sec	smart24
Pranburi Dam, Prachuap Khiri Khan District	TMD	PRAC	99.79288	12.47263	53.63791	BB KS2000M 120 sec	smart24
Thap Salao Dam, Uthaithani	TMD	UTHA	99.445133	15.558565	128.607	SP -S13-1HZ	smart24
Kaeng-Krachan Reservoir, Phetchaburi	TMD	PHET	99.62675	12.91331	100.6704	SP -S13-1HZ	smart24
Pattaya Meteorological Station, Chon Buri	TMD	PATY	100.865694	12.923188	39.190244	SP -S13-1HZ	smart24
Klong Din Daeng Reservoir, Nakhon Si Thammarat	TMD	SRIT	99.60196	8.59549	58.4626	BB KS2000M 120 sec	smart24
Tha-Thong Dam, Surat-Thani	TMD	SURA	99.62945	9.16634	-5.54492	BB KS2000M 120 sec	smart24
Choraka Reservoir, Chaiyaphum	TMD	CHAI	101.9864	15.9018	198.9548	SP -S13-1HZ	smart24
Huai Plew Nguek Reservoir, Nong Khai	TMD	NONG	103.1457	18.06346	140.47	BB KS2000M 120 sec	smart24
Huai Khan Reservoir, Nakhon Phanom	TMD	PANO	104.6122	17.1476	135.5955	BB KS2000M 120 sec	smart24
Tha-Phra Agricultural weather station, Khon Kaen	TMD	KHON	102.823	16.33778	134.6877	SP -S13-1HZ	smart24
Khlong Tha Dan Reservoir, Nakhon Nayok	TMD	NAYO	101.3209	14.31523	106.293	BB KS2000M 120 sec	smart24
Um-Puem Reservoir, Surin	TMD	SURI	103.5529	14.7688	125.908	SP -S13-1HZ	smart24
Huai Yang Reservoir, Sa-Kaew	TMD	SRAK	102.0425	14.012	96.90778	SP -S13-1HZ	smart24
Huai Nam Man Reservoir, Loei	TMD	LOEI	101.2644	17.50928	305.5835	BB KS2000M 120 sec	smart24
Bang-Kamprud Reservoir, Krabi	TMD	KRAB	99.631013	17.482143	58.0294	SP -S13-1HZ	smart24

Table 5. 4. Details of the TMD's seismic stations all part of Thailand.

		Ear	rthqua	ke Dat	a of the K	ST				Eart	thqual	ke Data	a of the T	MD	
No.		Ori	igin Tir	me	Loc	ation		No.	Data	Ori	gin Ti	me	Loc	ation	
	Date		(UTC)		200		М		Date	(Loc	al, UT	C+7)	200	ation	М
		hr	min	sec	Lat	Long				hr	min	sec	Lat	Long	
1	22-May-1999	15	23	28	18.919	100.196	2.6								
2	29-Jun-1999	6	38	16	21.042	98.35	5.6								
3	15-Jul-1999	17	35	11	21.386	100.529	5.2								
4	10-Aug-1999	23	14	34	18.933	99.955	3.4								
5	10-Aug-1999	23	15	16	18.929	100.087	2.9								
6	19-Nov-1999	23	21	53	18.791	100.12	3.0								
7	13-Apr-2000	13	13	52	19.274	100.474	3.1								
8	5-Sep-2000	11	44	28	19.147	100.184	3.1								
9	7-May-2001	1	4	26	18.448	100.484	3.1								
10	7-Nov-2001	5	36	39	18.775	99.551	3.2								-
11	26-Apr-2002	20	31	41	19.145	99.314	4.3	1	26-Apr-2002	20	31	40	18.80	99.20	5.3
12	2-Jul-2002	3	54	4	19.898	100.6	5.0	2	2-Jul-2002	3	54	5	20.18	100.17	5.3
13	2-Jul-2002	17	55	17	19.91	100.57	3.1	3	2-Jul-2002	17	55	20	19.83	100.65	3
14	3-JUI-2002	0	17	40	19.902	100.04	3.9	4	3-JUI-2002	0	17	49	19.05	100.69	э э.
15	Z1-Jul-2002	22	49	45	19.777	100.857	2.9	2	Z1-Jul-2002	22	49	5U 40	17.72	100.01	2.
17	7-Sep-2002	14	27	44	10.070	00 597	3.2	0	7-3ep-2002	0	11	4Z	17.09	100.04	5
19	25-Sep-2002	5	21	40 21	19.290	99.307	2.0								
10	18-Dec-2002	13	47	11	10.070	00 106	4.7	7	18-Dec-2002	13	47	15	10.06	08.05	4
20	29-Jap-2003	7	1/	30	19.395	100 //0	3.8		10-Dec-2002	15	47	15	19.00	20.20	4.
20	15-Mar-2003	4	29	42	19.729	99 566	3.2								
22	23-Aug-2003	8	57	30	18.849	99.30	3.3	8	23-Aug-2003	15	57		19.00	99.20	2
23	18-Sep-2003	11	4	15	19.915	100 888	4.4	9	18-Sep-2003	18	4		20.50	100.90	5
24	23-Nov-2003	15	8	9	20 405	100.982	4.5	24.11	10 500 2005	10			20.50	100.70	
25	14-Mar-2004	5	49	37	19.9	100.563	3.9								
26	27-Mar-2004	4	5	35	19.497	99.63	3.7	10	27-Mar-2004	3	0		19.43	99.46	3.0
27	17-Aug-2004	18	54	54	17.465	100.819	4.1	532							
28	11-Sep-2004	1	31	56	18,787	98.978	3.4	11	11-Sep-2004	8	30		18.70	98.70	3.
29	26-Dec-2004	1	30	28	21.412	98.107	6.5	12	26-Dec-2004	8	30		20.70	98.00	6.4
30	30-Dec-2004	23	55	21	21.254	97.761	6.3								
31	25-Jan-2005	16	31	21	22.608	100.677	5.7								
32	1-Apr-2005	7	18	20	19.412	99.421	3.7								
33	4-Jun-2005	23	1	37	17.909	100.669	3.8	13	5-Jun-2005	6	17		17.80	100.60	3.8
34	9-Jun-2005	21	7	56	18.656	100.249	2.3								
35	29-Jun-2005	0	38	52	18.604	99.611	3.7								
36	4-Dec-2005	9	34	32	18.769	98.972	3.9	14	4-Dec-2005	16	34		18.70	98.50	4.3
37	7-Dec-2005	9	0	58	19.734	99.544	3.8	15	7-Dec-2005	16	2		19.70	99.60	3.9
38	15-Dec-2005	6	48	37	19.553	99.946	4.0	16	15-Dec-2005	13	48		19.43	100.18	4.
39	15-Dec-2005	23	13	17	19.492	100.037	3.0								
40	16-Dec-2005	2	13	45	19.601	99.899	3.5	17	16-Dec-2005	9	13		19.43	99.96	3.8
41	16-Dec-2005	2	15	40	19.564	99.892	3.7	18	16-Dec-2005	9	14		19.43	99.96	3.9
42	17-Dec-2005	10	59	15	19.639	99.986	3.3								
43	17-Dec-2005	11	47	6	19.505	99.947	3.3								
44	24-Jan-2006	13	42	59	20.611	98.418	5.6	19	24-Jan-2006	20	42		20.53	98.69	5.
45	15-Feb-2006	16	54	16	19.132	100.244	3.6								
46	20-Feb-2006	18	33	1	19.129	100.152	2.9								
47	6-Aug-2006	5	15	23	19.641	99.053	4.3	20	6-Aug-2006	12	15		19.15	98.92	3.
48	13-Oct-2006	15	35	28	20.077	100.479	3.7								
49	18-Oct-2006	12	0	10	18.95	100.049	3.4								
50	21-Oct-2006	1	58	47	20.32	100.511	4.3								
51	16-Nov-2006	18	38	3	19.675	100.023	4.0	21	17-Nov-2006	1	39		19.50	99.60	4.
52	26-Nov-2006	19	32	57	19.02	101.207	3.8								
53	12-Dec-2006	17	2	29	18.967	99.193	4.9	22	13-Dec-2006	0	2		18.93	98.97	5.
54	12-Dec-2006	19	49	37	19.004	99.125	3.9								
55	12-Dec-2006	22	21	55	18.989	99.139	3.6								
56	13-Dec-2006	5	48	4	18.921	99.268	3.3								
57	23-Dec-2006	11	48	17	18.909	99.12	3.2	23	23-Dec-2006	18	51		19.00	99.00	3.
58	25-Jan-2007	22	29	47	18.834	99.191	3.3								

Table 5. 5. Correlation of the KST's epicenters with the TMD.

		Ear	thqua	ke Dat	a of the K	ST				Ear	thquak	e Data	of the T	MD
No.	D-4-	Ori	gin Tir	me	Loc	ation		No.	Date	Ori	igin Tir	me	Loc	ation
	Date	hr	(UIC)	sec	Lat	Long	M			hr	min	sec	Lat	Long
59	18-Feb-2007	8	52	55	18.548	100.606	3.1							3
60	22-Apr-2007	6	18	3	19.4	99.536	4.1	24	22-Apr-2007	13	18	0	19.40	99.36
61	23-Apr-2007	14	17	6	19.464	99.769	3.7	25	23-Apr-2007	21	18	0	19.60	99.20
62	15-Mav-2007	14	35	45	20.622	100.327	4.8							
63	16-May-2007	8	56	10	20.657	100.678	6.2							
64	16-May-2007	9	31	3	20.232	100.743	3.9							
65	16-May-2007	10	5	35	20.621	100.855	4.1	26	16-May-2007	17	4	0	21.00	100.50
66	16-May-2007	10	15	41	20.548	100.587	4.1		,					
67	16-May-2007	10	26	1	20.488	100.894	4.1							
68	16-May-2007	11	15	56	20.458	100.867	4.4							
69	16-May-2007	11	35	12	20.53	100.79	4.0							
70	16-May-2007	11	43	52	20.4	100.697	4.1							
71	16-May-2007	13	18	7	20.495	100.64	4.6							
72	16-May-2007	17	8	54	20.547	100.774	4.2							
73	17-Mav-2007	3	25	40	20.652	100.379	4.2							
74	18-Mav-2007	0	1	53	20.42	100.708	4.1							
75	18-Mav-2007	1	40	55	20.458	100.67	4.0							
76	18-May-2007	13	5	16	20.465	100.659	4.2							
77	20-May-2007	1	21	21	20.268	100.747	3.9							
78	23-May-2007	17	6	27	20.399	100.633	4.1							
79	24-May-2007	11	15	17	20.31	100.746	4.0							
80	7-Jun-2007	17	21	4	20.673	100.73	4.8							
81	19-Jun-2007	5	6	42	18.983	99.154	4.5	27	19-Jun-2007	12	6	0	18.90	99.00
82	23-Jun-2007	6	53	45	21.468	99.552	5.1	045	19 5011 2001		0	Ŭ	10.70	,,
83	23-lun-2007	8	17	7	21 412	99.32	59	28	23-lun-2007	15	17	0	21 27	99.82
84	23-Jun-2007	8	27	37	21.324	99.316	5.7	20	25 5011 2001	10		Ŭ	21.21	,,
85	14-Jul-2007	8	29	18	20 357	100 783	3.8							
86	28-Jul-2007	21	33	49	20.651	99 144	4.5							
87	6-Aug-2007	6	53	52	20.475	100.493	4.3							
88	6-Aug-2007	8	50	50	20.507	100.573	3.9							
89	7-Aug-2007	8	53	23	20.866	100.114	4.6							
90	8-Aug-2007	9	15	32	20.408	100.726	4.2							
91	19-Aug-2007	11	16	56	19.921	98.93	3.9							
92	8-Sep-2007	7	12	46	20.59	100.674	4.2							
93	16-Oct-2007	2	39	24	18.73	100.246	2.4							
94	16-Oct-2007	6	46	53	20.483	100.727	4.7	29	16-Oct-2007	13	47	0	20.80	100.93
95	1-Nov-2007	19	5	47	20.374	100.722	4.6	30	2-Nov-2007	2	5	0	21.57	100.92
96	23-Dec-2007	11	19	31	18.655	100.654	3.2							
97	2-Mar-2008	3	23	35	18.736	100.113	3.1	31	2-Mar-2008	10	23	0	18.99	99.97
98	9-Apr-2008	15	49	24	19.3	99.266	3.2							
99	10-Jun-2008	21	37	43	20.112	100.858	4.7	32	10-Jun-2008	4	38	0	20.67	97.44
100	1-Jul-2008	9	45	51	19.219	99.345	3.9							
101	9-Jul-2008	4	39	48	18.689	100.253	2.2							
102	25-Nov-2008	8	10	52	18.905	100.167	2.5							
103	29-Nov-2008	8	6	25	20.289	100.658	4.0	33	29-Nov-2008	15	6	15	21.25	101.41
104	31-Dec-2008	8	0	1	18.67	100.616	3.6							
105	31-Dec-2008	8	4	11	18.674	100.611	3.6							
106	29-Jan-2009	23	24	33	19.045	100.318	2.8							
107	6-Feb-2009	1	39	18	19.547	99.759	2.8							
108	22-May-2009	7	58	9	20.464	100.796	4.4	34	22-May-2009	14	58	14	20.64	100.60
109	22-Mav-2009	18	50	15	21,318	102.01	5.0	35	23-Mav-2009	1	50	24	21.37	102.00
110	1-Jun-2009	12	44	27	18.821	100 707	3.1	55		-	50			
111	10-Jun-2009	0	23	59	18,848	100 286	2.1							
112	10-lun-2009	n n	25	5	18 899	100.200	27							
113	18-Jun-2009	19	50	16	18.892	100 309	2.6							
114	21-lun-2009	18	6	20	19.588	99.977	3.6	36	22-Jun-2009	1	6	19	19.67	100.04
115	16-Aug-2009	17	57	11	20.231	100 746	4 2	37	17-Aug-2009	0	57	13	20.57	100.85
116	1-Oct-2009	11	56	2	20.836	101 689	<u>4</u> 1		1	0	51	10	20.01	100.00
+ + 0	1 000 2007		50	~	20.000	101.007								

Table 5.5. Correlation of the KST's epicenters with the TMD (cont).
	Earthquake Data of the KST								Earthquake Data of the TMD						
No.	Date	Origin Time (UTC)		Loc	ation	м	No.	Date	Ori (Loc	gin Tii al, UT:	me 'C+7)	Loc	ation	М	
		hr	min	sec	Lat	Long				hr	min	sec	Lat	Long	
118	7-Nov-2009	3	54	55	20.458	101.793	3.9	38	7-Nov-2009	10	55	9	20.63	101.54	3.9
119	10-Nov-2009	7	36	51	20.815	101.763	4.7								
120	10-Nov-2009	8	1	44	20.802	101.243	4.2								
121	10-Nov-2009	8	40	23	20.844	101.418	4.1								
122	2-Dec-2009	7	3	5	19.232	99.209	3.3	39	2-Dec-2009	14	3	4	19.26	99.18	3.3
123	26-Dec-2009	1	11	49	20.376	98.944	4.1	40	26-Dec-2009	8	11	52	20.56	99.12	4.2
124	9-Mar-2010	13	3	24	20.323	99.168	4.2	41	9-Mar-2010	20	3	29	20.33	98.95	4.4
125	26-Jun-2010	2	23	59	20.354	99.827	3.9	42	26-Jun-2010	9	24	2	20.37	99.77	4.0
126	6-Jul-2010	15	23	29	20.362	99.614	4.1	43	6-Jul-2010	22	23	32	20.42	99.83	4.5
127	18-Jul-2010	12	53	19	20.263	101.272	3.9	44	18-Jul-2010	19	53	13	21.30	101.27	4.5
128	29-Aug-2010	8	19	2	19.516	99.512	3.4	45	29-Aug-2010	15	19	4	19.57	99.63	3.3

Table 5.5. Correlation of the KST's epicenters with the TMD (cont).

Figure 5. 17. Epicenters of the KST before (green square) and after (yellow square) relocating and the TMD's epicenter (purple square) of earthquake on December 12, 2006, plotting in Google map. They are all difference in magnitudes and locations of earthquakes.

No	Date	Lat	Long	М	Region
1	26-May-1978	19.27	99.06	4.8	Amphoe Phrao, Chiang Mai
2	10-Feb-1980	19.35	99.23	4.2	Chiang Mai
3	20-Jun-1982	18.92	99.18	4.3	Chiang Mai
4	19-Feb-1988	18.87	99.17	4.2	Chiang Mai
5	8-May-1994	18.3	99.2	4.5	Chiang Mai
6	11-Sep-1994	19.46	99.6	5.1	Amphoe Mae Suai, Chiang Rai
7	5-Nov-1995	19.8	98.8	4.0	Amphoe Fang, Chiang Mai
8	9-Dec-1995	18.2	99.8	5.1	Amphoe Rong Kwang, Phrae
9	21-Dec-1995	19.7	99	5.2	Amphoe Phrao, Chiang Mai
10	2-Feb-1997	18.4	99.9	4.0	Amphoe Song, Phrae
11	13-Jul-1998	19.7	99.1	4.1	Amphoe Fang, Chiang Mai

Table 5. 6. Details of the TMD's epicenters with magnitude greater than 4 during the year 1978 to 1998.

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

Figure 5. 18. Correlation of the KST's epicenters (yellow) of this study to the TMD's epicenters (purple) during the year 1978 to 1998.

Figure 5. 19. Correlation of the KST's epicenters (yellow) of this study to the TMD's epicenters (purple) during the year 1978 to 1998 and the M6.3 (red star) earthquake on May 5, 2014.

CHAPTER VI DISCUSSION

In this chapter, a main point is described for the discussion related to the results from location of earthquakes after re-locating along with the previous works. The discussion comprised of characteristics of seismicity in northern Thailand, and frequency and magnitude distribution.

6.1 Characteristics of Seismicity in Northern Thailand

The newly located earthquake location of earthquakes of the size ranging from M2.2-6.2 (Table 4.1) during 1999-2010, recorded by the KST network, a local seismograph network in this study, confirms that the earthquake in the study area consist of minor to light magnitude ranges between M3-4.9 (Figure 4.23 and Figure 4.24) local earthquake. They are shallow earthquakes with depth less than 70 kilometer (Table 4.1 and Figure 4.25). The earthquake's locations are clearly and significantly have some epicenters after re-locating, were associated with mapped faults with surficial expression, but some epicenters were not (Figure 5.3- Figure 5.6).

Upon reviewing the result of this study with that of (Bott et al., 1997), there is both consistence and inconsistence issues. The consistence is that the seismicity is of low to moderate level. The obvious significantly inconsistence conclusion by (Bott et al., 1997), is that the relation of some earthquake hypocenter with mapped faults of the site. The data source used by (Bott et al., 1997) in their review and this study are different. This study used data obtain from local seismograph network. It consists of shot period seismometer which is appropriated to study small local earthquake. The distance between stations is 20-80 kilometer. However, (Bott et al., 1997), utilized earthquake achieve from global seismograph network maintains by the TMD. The network may not be appropriated for monitoring the local-small earthquake. This achieve might not be completed for small earthquake occurred in the northern Thailand. The error in reading of phase times may lead to incorrectly determination of earthquake location. Also the magnitude that has been used may be of different scale, leading to the inconsistent in magnitude conversion. All of these factors made it difficult to come up with the correlation of earthquake location with structural geology of northern Thailand.

Because of the highly uncertainty in the earthquake location determination which is clearly mention by (Bott et al., 1997), the type of the network and instrument is therefore important for the determination of earthquake. This study is strongly supplemented of the work by (Bott et al., 1997). It complements the study of small local earthquake data such as M3-3.9 and M4-4.9, with data from more suitable seismograph. To study small local earthquake magnitude smaller than M3 to understand the earthquake pattern in northern Thailand, it is necessary to install more of short period seismograph with separation distance between stations at not more than 50 kilometer, so that more of the smaller earthquake epicenter can be detected and be located correctly.

Macroseismic survey should also be carried out whenever an earthquake of M3 or greater occur. Macroseismic study can provide an accurate result for earthquake such that relationship to the geological structure can be determined e.g. (Harnpattanapanich, 2006c) which was used to study the December 7, 2005, Mae Suai, Chiang Rai earthquake. With the help of epicenter determined from the KST local network, the intensity map, in MMI scale obtained from macroseismic survey from population around the epicenter, GPS located and displayed on 1:50,000 scale topographic map, showed the good correlation of Isoseismal line and the drawn Meizoseismal area to the geologic formations and structure of the area.

One of the most important factor that cause the differing in the epicenter location determination among the agency or network is the error from the operators themselves i.e. the error in reading phases time. When these data are different the located earthquake epicenter would be in error. When more data are available rereading of the phases data or using other earth velocity model in the analysis can help verifying the correct epicenter. In order to explain the characteristic and relation of earthquakes, it is necessary for the seismologist to correctly determine the earthquake location. From this research, it can be observed that the evaluation of small local earthquake recorded by a local network such as the KST network, at a rather short period of only 12 years, however, the characteristic of earthquakes in the area can be identified and correlated well with distribution of earthquake of M4 to M5.2 between 1978-1998 (Table 5.6) obtained from the TMD network and the earthquake of M6.3 at Amphoe Mae Lao, Chiang Rai on May 5, 2014 and with active fault zone in map produced by the DMR. The result can be used to delineate high risk zone for earthquake hazard in Amphoe Mae Suai, Chiang Rai, and Amphoe Phrao, Chiang Mai where major active fault i.e. the Phayao fault and the Mae Tha fault are located. The area is covered by latitudes 18.75-19.75N and longitudes 98.75-99.75E (Figure 6.1). It can be identified that the Mae Suai dam, the Mae Kuang dam and the Mae Ngad dam are all located in the high earthquake hazard zone. The study for the effect of earthquake to these dams should be a priority for the RID.

Figure 6. 1. Epicentral map shows the area of high seismic hazard between Lat 18.75-19.75 Long 98.75-99.75 estimated from present and historical seismicity.

6.2 Frequency and Magnitude Distribution

Gutenberg-Richter Recurrence Law is used for the estimation of earthquake hazard level of the study area. The new b-value from this study, covered the period 1999-2010, is 0.59 (Figure 6.2) where average earthquake occurrence for M3 is 4 per year, M3.5 is 2.5 per year and M4 is 1.5 per year. This statistic help identify the number and size of future small earthquake. The information can support the work by WCFS (1996) in the evaluation of earthquake risk to the KST dam.

With the available of higher intensity, more damages medium size earthquake e.g. M5-6.5, the data set is used to compare with (WCFS, 1996) result. B value from (WCFS, 1996) is -0.92 \pm 0.12, where average earthquake recurrence for M5 is 7 year, M5.5 is 20 year, M6 is 56 year and M6.5 is 163 year. When included the earthquake of M6.3 at Amphoe Mae Lao, Chiang Rai on May 5, 2014 in the data set, the event is the largest ever for the period of 163 year and is the largest ever recorded by instrument for Thailand. The maximum intensity at the epicenter, reported by the DMR is VIII on MMI scale. The accelerograph recorded at the MYOA station for the KST dam at 130 km from the epicenter gave maximum ground acceleration of 0.0052g. However, the strong motion recorded study by (Khamkom, 2014) obtained from the instrument at the MSAC station, located at the right abutment of the Mae Suai dam, which is only 15 km from the epicenter, gave maximum ground acceleration of 0.33g. This is the highest value ever recorded in Thailand. There was continuous strong ground vibration (more than 0.05g) for more than 7 second. It is likely that the strong vibration from main shock and the aftershocks are the causes of damages affected more than 10,000 houses and buildings situated in the Mae Lao flood plain. The results show that the size and the distance from the epicenter of earthquakes affecting the level of violence or damage to occur. Due to the statistic of earthquakes with magnitudes 3.5 are likely to occur in the study area average 2.5 per year, and may cause the structure to damage. If it happened near the community such as the impact of earthquake on March 27, 2005 with M3.73 to the Mae Suai dam, the report of (Harnpattanapanich, 2005) stated that found crack of lift joint at upstream left gallery about 12 meter long. Hazard evaluation from Gutenberg-Richter Law obtained in this study and the study by WCFS, 1996 will help clarifying and complementing the statistics analyses of earthquake study in northern Thailand.

Figure 6. 2. Northern Thailand seismicity during the year 1999 to 2010 and for 1 year average b-value = 0.59.

iulalongkorn University

Tab	le 6.	1. Rec	urrence	intervals	for	earthqua	kes in	the	KST	project	(WCFS,	1996)
											,		

М	Intervals (yrs)*
5	7 (2 - 27)
5.5	20 (4 - 89)
6	56 (11 - 296)
6.5	163 (27 - 979)

* Range of interval when incorporating the standard error of b-value

CHAPTER VII

CONCLUSIONS AND RECOMMENDATIONS

Based on the results of re-locating the KST's epicenters during the year 1999 to 2010 by using the arrival times of P-and S- waves and triangulation method, calculating the origin time, determining the result and summarizing from the study with other previous studies, for examples, the magnitudes, the focal depths, the relationship with geological structures, the b value, and the characteristics of earthquake ground motion, the conclusions can be drawn below.

- 1. Before relocating, the KST network has 118 events with magnitude 2.0-6.6 that can be categorized in northern Thailand, 62 events with magnitude 2.0-5.0 and in neighboring countries, 56 events with magnitude 3.9-6.6, and mostly scattered between latitudes 18.5- 20.0N longitudes 99.0-101.5E. After relocating, the KST network has 128 well-located earthquakes with magnitude 2.2-6.5. The 67 events are categorized to be in northern Thailand with magnitude range of 2.2-4.9 and in the neighboring countries 61 events with magnitude 3.9-6.5. The epicenters are mostly scattered along the latitudes 18.0-20.5N and longitudes 99.0-100.5E. The depths of earthquakes are shallow with focal depth less than 70 km.
- 2. The epicenters of 128 events after re-locating based on the criteria that were used in this study are more reliable and have better accuracy than before the re-locating, owing to the new epicenters were obtained from the intersection of 3 circles from at least 3 epicentral distances. Together all events' origin times have been revised, as the difference in occurrence time from each station have been fixed to be less than 2 seconds error.
- 3. The earthquakes before and after re-locating have difference in the magnitude about ± 0.00 -0.57 unit and the location about ± 2.0 -125 km. This may be due to the manually analysis, not automatic, which did not have uniform standard procedure in the analysis. It was depended on the operator judgment to pick the phase of P or S-wave.

- 4. There are earthquakes with magnitudes 2-3.9 occurred near the reservoir area and around the seismograph stations of the KST network, but no earthquakes occurred at the proposed KST dam in Phrae. The earthquake that occurred nearest the proposed KST dam is at Amphoe Song in Phrae on June 9, 2005 with magnitude 2.34, with epicenter at latitudes 18.656N and longitudes 100.249E, about 11.2 km to the northeast from the proposed KST dam.
- 5. There are no earthquakes with ground-motion greater than 0.05g at the proposed KST dam (the MYOA station). The characteristics of earthquake ground motion of this study from the PGA, duration of motion, and frequency content can be summarized that the PGA value at the site depends on the earthquake's magnitude and the epicentral distance (source-to-site).
- 6. The regions where the earthquakes with magnitude 4-4.9 mostly occur are in Chiang Mai and Chiang Rai. They were found in Amphoe Doi Saket (near the Mae Kuang dam), Amphoe Phrao, and Amphoe Chiang Dao in Chiang Mai, and Amphoe Thoeng, Amphoe Wiang Pa Pao in Chiang Rai.
- 7. The correlation of the KST's epicenters with the TMD's epicenters for the recorded during the year 1978 to 1998 or the year before the set-up of the KST network, and the epicenter of earthquake with magnitude 6.3 on May 5, 2014, in order to identify the area of high seismicity from the past, and present earthquakes. The result from past and present earthquakes of this study indicates that the earthquakes with magnitudes 4-4.9 frequently occurred in Chiang Mai, and Chiang Rai between latitudes 18.75-19.75N and longitudes 98.75-99.75E.
- 8. The results of the KST's epicenters of this study show that some epicenters after re-locating were associated with mapped faults with surficial expression, but some epicenters were not. However, (Bott et al., 1997) mentioned that northern Thailand is similar to the Basin and Range province in the western United States of America in term of earthquake processes and tectonics. In the Basin and Range province background

earthquakes as large as M6-6.5 can occur on buried faults with no surface expression or apparent geological association (dePolo, 1994). Therefore some epicenters probably associated with faults which have no surficial expression might be background earthquakes.

- 9. The epicenters of the KST and the TMD networks are not plotted in the same location and with varying magnitudes. This may be due to the instrument types (shot period and broadband), the operators, and the computer program that used in the analyses.
- The b-value before re-locating is 0.52, and after re-locating the b-value is
 0.59. The b-value has a little difference as the number of earthquakes before and after re-locating which were used in this study is different.

Recommendations

To study small local earthquake magnitude smaller than M3 to understand the earthquake pattern in northern Thailand, it is necessary to install more of short period seismograph with separation distance between stations at not more than 50 kilometer, so that more of the smaller earthquake epicenters can be detected and be located correctly.

There should be a detailed study on the intensity of the earthquakes using macroseismic method. So, in the case, the earthquakes with the magnitudes >3 on the Richter scale need to be corrected and relocated in order to emphasize the importance of that active-fault segment.

REFERENCES

Abbott, P. L. (2004). Natural Disasters. New York: The McGraw-Hall.

Bolt, B. A. (1969). *Duration of strong motion.* Paper presented at the 4th World Conference on Earthquake Engineering, Santiago, Chile.

Bolt, B. A. (1978). Earthquake. New York: W. H. Freeman and Company.

- Bolt, B. A. (1999). *Earthquake*. New York: W. H. Freeman and Company.
- Bolt, B. A., & Miller, R. D. (1971). Seismicity of Northern and Southern California. Bulletin of Seismological Society of America, 61(6), 1831-1847.
- Bormann, P. (2012). New Manual of Seismological Observatory Practice (NMSOP-2), IASPEI G. G. R. C. f. Geosciences (Ed.)
- Bott, J., Wong, I., Prachua, S., Wechbunthung, B., Hinthong, C., & Sarapirome, S. (1997).
 Comtemporary seismicity in northern Thailand and its tectonic implications. Paper presented at the the International Conference on Stratigraphy and
 Tectonic Evolution of Southeast Asia and the South Pacific, Bangkok, Thailand.
- Charusiri, P., Daorerk, V., & Supajanya, T. (1996). Applications of Remote-Sensing Techniques to Geological Structures Related to Earthquakes and Earthquake-Prone Areas in Thailand and Neighbouring Areas. A Preliminary Study. . *Scientific Research, 21*(1), 14-38.
- Charusiri, P., Kosuwan, S., Fenton, C. K., Takashima, I., Won-in, K., & Udchachon, M. (2001). Thailand Active Fault Zones and Earthquake Analyses: A Preliminary Synthesis. *Asian Earth Science (submitted for publication)*.
- Charusiri, P., Takashima, I., Kosuwan, S., Won-in, Saithong, P., Saensrichan, W., . . . Meetuwong, R. (2006). The Study of Mae Yom Active Fault, Keang Sua Ten, Amphoe Song, Changwat Phare. In F. o. S. Department of Geology, Chulalongkorn University (Ed.), (pp. 174): submitted to Department of Royal Irrigation.
- Clough, R. W., & Penzien, J. (1975). Dynamic of Structures. New York: McGraw-Hill.

- dePolo, C. M. (1994). The Maximum Background Earthquake for the Basin and Range Province, Western North America. *Bulletin of the Seismological Society of America, 84*(2), 466-472.
- Esteva, L. (1970). Seismic risk and seismic design decisions in R. J. Hansen, ed., Seismic Design of Nuclear Power Plants. Paper presented at the MIT Press, Cambridge, Massachusetts.
- Fenton, C. H., Charusiri, P., Hinthong, C., Lumjuan, A., & Mangkonkarn, B. (1997). Late Quaternary Faulting in Northern Thailand. In: Dheeradirok, P., Hinthong, C., Chaodumrong, P., Puttapiban, P., Tansathien, W., Utha-aroon, C., Sattayarak, N., Nuchanong, T., and Techawan, S. eds.,. Paper presented at the the International Conference on Stratigraphy and Tectonic Evolution of Southeastern Asia and the South Pacific, Bangkok, Thailand.
- Fenton, C. H., Charusiri, P., & Wood, S. H. (2003). Recent paleoseismic investigations in Northern and Western Thailand. *Annals of Geophysics, 46*(5), 957-981.
- Gutenberg, B., & Richter, C. F. (1944). Frequency of Earthquakes in California. *Bulletin* of Seismological Society of America, 34(4), 1985-1988.
- Gutenberg, B., & Ritchter, C. H. (1954). *Seismicity of the Earth and Associated Phenomena*. New Jersey: Princeton University Press.
- Harnpattanapanich, T. (2005). Installation of Dam Instrument in Regional Irrigation Office 2: Engineering Geology Division, Office of Engineering and Topographical and Geotechnical Survey.
- Harnpattanapanich, T. (2006a). Macroseismic report of Nam Pat in Uttaradit earthquake on June 5, 2005: Engineering Geology Division, Office of Engineering Topographical and Geotechnical Survey.
- Harnpattanapanich, T. (2006b). Macroseismic report of Lampang earthquake on June 29, 2005: Engineering Geology Division, Office of Engineering Topographical and Geotechnical Survey.
- Harnpattanapanich, T. (2006c). Macroseismic report of Mae Suai in Chiang Rai earthquake on December 7, 2005: Engineering Geology Division, Office of Engineering Topographical and Geotechnical Survey.

Havskov, J., & Ottemoller, L. (2008). Processing Earthquake Data

Hinthong, C. (1991). Role of Tectonic Setting in Earthquake Event in Thailand. ASEAN-EC Workshop on Geology and Geophysics. Jakarta, Indonesia.

- Hinthong, C. (1997). The study of active faults in Thailand. Report of EANHMP An Approach to Natural Hazards in the Eastern Asia.
- Hongjatsee, U. (1999). *Major fault and seismic hazard in northern, Thailand.* (Master), Chiang Mai Faculty of Science.
- <u>http://geo.cornel.edu/</u>. Diagram illustrating the form of ground motion nears the ground surface in four types of earthquake waves.

http://samjshah.com/.

http://www.geosci.usyd.edu.au/.

<u>http://www.iris.edu/</u>. Comparison of frequency magnitude and energy release <u>http://www.sci.tsu.ac.th</u>. The point on the fault that first ruptures is the focus. The

point on the Earth's surface directly above the focus is the epicenter <u>http://www.seismology.tmd.go.th/home.html</u>.

http://www.usgs.gov/.

http://www.yorku.ca/. Seismometer recording horizontal and vertical ground -motion https://sites.google.com. The point where the three circles intersect is the epicenter

of the earthquake. This technique is called triangulation

- Jennings, P. C. (1985). Ground motion parameters that influence structural damage, in R.E. Scholl and J. L. King, eds. Strong Ground Motion Simulation and Engineering Applications. In E. P. 85-02 (Ed.). Berkeley, California.
- Joyner, W. B., & Boore, D. M. (1988). Measurement, characterization, and prediction of strong ground motion, in Earthquake Engineering and Soil Dynamics II- Recent Advances in Ground-Motion Evaluation. In A. Geotechnical Special Publication 20 (Ed.), (pp. 43-102). New York.
- Keller, E. A., & Pinter, N. (1996). *Active tectonics: Earthquake, uplifts, and landscape*. New Jersey: Prentice-Hall.
- Khamkom, K. (2014). Peak ground acceleration, peak ground velocity, duration of motion, frequency content of main shock M6.3 at Phan district, Chiang Rai province and aftershocks M5-6 and M4-5. Paper presented at the Lesson learnt from Mae Lao earthquake, Bangkok, Thailand.

- Khaowiset, K. (2007). Neotectonics along the Pua Fault in Changwat Nan, Northern Thailand: Evidence from Remote Sensing and Thermoluminescence Dating. (Master), Chulalongkorn, Faculty of Science.
- Kosuwan, S., Saithong, P., A., L., Takashima, I., & Charusiri, P. (1999). *Preliminary Results of Studies on the Mae Ai Segment of the Mae Chan Fault Zone, Chiang Mai Northern Thailand.* Paper presented at the The CCOP Meeting on Exodynamic Geohazards in East and Southeast Asia, Pattaya, Chonburi.
- Kramer, S. L. (1996). Geotechnical Earthquake Engineering: Prentice Hall.
- Mohraz, B., & Sadek, F. (2001). *Earthquake ground motion and response spectra. In The Seismic Design Handbook (2nd Edn)*: Naeim, F. (ed.) Kluwer Academic Publishers.
- Noson, Qamar, & Thorsen. (1988). Washington State Earthquake Hazards. Washington: Washington Division of Geology and Earth Resources Information.
- Nutalaya, P., Sodsri, S., & Arnold, E. P. (1985). Series on Seismology-Volume II-Thailand. In E.P Arnold (ed.). *Southeast Asia Association of Seismology and Earthquake Engineering*, 402.
- Rhodes, B. P., Perez, R., Lamjuan, A., & Kosuwan, S. (2002). *Kinematics of the Mae Kuang Fault, Northern Thailand Basin and Range Province*. Paper presented at the The Symposium on Geology of Thailand, Bangkok Thailand.
- Richter, C. F. (1935). An instrumental earthquake scale. *Bulletin of the Seismological Society of America, 25,* 1-32.
- Richter, C. F. (1958). *Elementary Seismology*: W. H. Freeman and Company.
- RID. (2000). The supply and installation of seismometer of the Survey-Design of the Kaeng Sua Ten Project (Final Report): the Royal Irrigation Department.
- Siribhakdi, K. (1986). Seismogenic of Thailand and Periphery. In: Lukkunaprasit, P., Chandrangsu, K., Poobrasert, S., and Mahasuverachai, M. eds. Paper presented at the 1st Workshop on Earthquake Engineering and Hazard Mitigation, Bangkok, Thailand.
- Udchachon, M. (2002). *Neotectonic of the southeastern segment of the Phrae fault system, Phrae basin, Northern Thailand.* (Master), Chulalongkorn, Chulalongkorn University.

- Vermarcke, E. H. (1976). *Structural response to earthquakes, Chapter 8 in C. Lomnitz and E. Rosenblueth, eds.* Amsterdam,: Elsevier.
- WCFS. (1996). Environmental Impact Assessment: Geological Aspect, Kaeng Sua TenProject, Changwat Phrae, Main Report (in English). In P. C. GMT Corporation,WCFS, and Thai Engineers for the Department of Mineral Resources (Ed.).
- Yang, C. Y. (1986). *Random Vibration of Structures*. New York: John Wiley and Sons.

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

ความเร่งพื้นดินสูงสุด ความเร็วพื้นดินสูงสุด ระยะเวลาการสั่นไหว และช่วงค่าความถี่จากการสั่นไหวของ แผ่นดินไหวหลัก ขนาด 6.3 อำเภอพาน จังหวัดเชียงราย และแผ่นดินไหวตาม ขนาด 5-6 และขนาด 4-5 PEAK GROUND ACCELERATION, PEAK GROUND VELOCITY, DURATION OF MOTION, FREQUENCY CONTENT OF MAIN SHOCK M6.3 AT PHAN DISTRICT, CHIANG RAI PROVINCE AND AFTERSHOCKS M5-6 AND M4-5

วัฒนา คำคม

นักธรณีวิทยาขำนาญการพิเศษ ทั่วหน้ากลุ่มงานวิชาการวิศวกรรมธรณี ส่วนวิศวกรรมธรณี สำนักสำรวจด้านวิศวกรรมและธรณีวิทยา กรมชลประทาน

Watana Khamkom

Senior Professional Geologist, Chief of Technical Engineering Geology Group, Engineering Geology Division, Office of Engineering Topographical and Geotechnical Survey, the Royal Irrigation Department

บทคัดย่อ

การศึกษาความเร่งพื้นดินสูงสุด ความเร็วพื้นดินสูงสุด ระยะเวลาการลั่นไหว และซ่วงค่าความถึจากการสั่นไหวของแผ่นดินไหวหลัก ขนาด 6.3 และแผ่นดินไหวตาม ขนาด 5-6 และขนาด 4-5 มีวัตถุประสงค์เพื่ออธิบายลักษณะการสั่นไหวของพื้นดินที่รุนแรง และเพื่อ ประเมินผลกระทบของแผ่นดินไหวที่มีต่อเขื่อนแม่สรวย จากค่าพารามิเตอร์ของการสั่นไหวที่มากกว่าหนึ่งพารามิเตอร์ เนื่องจากการใช้ ค่าความเร่งพื้นดินสูงสุดเพียงอย่างเดียวไม่สามารถที่จะอธิบายได้อย่างชัดเจน โดยค่าความเร่งพื้นดินสูงสุด ณ บริเวณที่ตั้งเชื่อนแม่สรวย ของแผ่นดินไหวหลัก ขนาด 6.3 เมื่อวันที่ 5 พฤษภาคม 2557 มีค่าเท่ากับ 0.33 g ในแนวตะวันออก-ตะวันตก ซึ่งเป็นค่าที่มากที่สุด ตั้งแต่มีการตรวจวัดแรงกระทำของแผ่นดินไหวได้ด้วยเครื่องมือในประเทศไทย แต่เชื่อนแม่สรวยได้รับการออกแบบเพื่อด้านทานแรง แผ่นดินไหว ด้วยวิธี pseudo static ค่าสัมประสิทธิ์ของการสั่นละเทือน เท่ากับ 0.10 จึงทำให้เกิดคำถามและความวิตกกังวลในเรื่อง ความมั่นคง และปลอดภัยของตัวเขื่อนแม่สรวย การอธิบายลักษณะการสั่นไหวของพื้นดินที่รุนแรงเพื่อให้เกิดความเข้าใจและชัดเจน จึง จำเป็นต้องใช้ค่าพารามิเตอร์ชองการสั่นไหวอย่างน้อย 2 พารามิเตอร์

<mark>คำสำคัญ:</mark> พารามิเตอร์การสั่นไหวของพื้นดิน ความเร่งพื้นดินสูงสุด ความเร็วพื้นดินสูงสุด ระยะเวลาการสั่นไหว ช่วงค่าความถี่ของการ สั่นไหว สเปคตรัมตอบสนอง ผลกระทบในท้องถิ่น

ABSTRACT

The study of peak ground acceleration, peak ground velocity, duration of motion, and frequency content of main shock with M6.3 and aftershocks with M5-6 and M4-5 has the purpose to describe the characteristics of strong ground motion and to evaluate the seismic hazard of the Mae Suai dam by using more than one ground motion parameters since using of only the peak ground acceleration is unable to describe clearly. The peak ground acceleration at the Mae Suai dam site of main shock with M6.3 on May 5, 2014 is 0.33 g in the East-West component which is the highest value from the instrumental data that have been recorded in Thailand. However the Mae Suai dam has been designed to withstand earthquake force by the pseudo static method with seismic coefficient of 0.10 that raises the questions of concern about stability and safety of the Mae Suai dam. In order to describe the characteristics of strong ground motion thoroughly and clearly, the necessity to use at least two ground motion parameters is applied.

KEYWORDS: ground motion parameters, peak ground acceleration, peak ground velocity, duration of motion, frequency content, response spectrum, local site effect

90 การประชุมสัมมนาเรื่อง "บพเรียนแผ่นดินไหวแม่ลาว เชียงราย ภัยพิบัติใกล้ตัว" 20 พฤศจิกายน 2557

1. บทน้ำ

ตามที่ได้เกิดแผ่นดินไหว ขนาด 6.3 เมื่อวันที่ 5 พฤษภาคม 2557 เวลา 18:08:42 น. ความรุนแรงของแผ่นดินไหวส่งผลกระทบ ต่อผู้คนและทำความเสียหายให้กับโครงสร้างอาคารเป็นบริเวณกว้าง โดยเชื่อนแม่สรวย จังหวัดเชียงราย เป็นเชื่อนหนึ่งที่ได้รับการคาด ว่าจะได้รับผลกระทบที่รุนแรงจากการสั่นไหว เนื่องจากอยู่ใกล้ศูนย์กลางแผ่นดินไหว ประมาณ 15 กิโลเมตร จากการตรวจสอบสภาพ เชื่อนภายหลังการเกิดแผ่นดินไหวทางกายภาพด้วยสายตา [1] ของเจ้าหน้าที่ผู้เกี่ยวข้อง ไม่พบว่ามีความเสียหายที่รุนแรงจากการสั่น ไหวของแผ่นดินไหว แต่เมื่อตรวจสอบข้อมูลที่ได้จากเครื่องมือตรวจวัดพฤติกรรมเชื่อน พบว่ามีการเปลี่ยนแปลงค่าของข้อมูลในช่วงที่ เกิดเหตุการณ์แผ่นดินไหวหลัก และแผ่นดินไหวตาม หลายครั้ง [2] โดยค่าความเร่งพื้นดินสูงสุด ที่บันทึกได้จากเครื่องมือวัดค่าความเร่ง (accelerograph) ที่ติดตั้งอยู่ที่สถานี MSAC บริเวณฐานขันฝั่งขวาของเชื่อนแม่สรวย มีค่าเท่ากับ 0.33 g (ในแนวตะวันออก-ตะวันตก) ซึ่งถือว่าเป็นค่าที่มากที่สุด ตั้งแต่มีการตรวจวัดแรงกระทำของแผ่นดินไหวได้ในประเทศไทย เชื่อนแม่สรวยและเขื่อนของกรม ขลประทานส่วนใหญ่ได้รับการออกแบบเพื่อต้านทานแรงแผ่นดินไหว ด้วยวิธี pseudo static กำหนดค่าสัมประสิทธิ์ของการ สั่นสะเทือน เท่ากับ 0.10 ดังนั้นสัดส่วนค่าสัมประสิทธิ์ของการสั่นสะเทือนที่ใช้ในการออกแบบต่อค่าความเร่งพื้นดินสูงสุดที่ตรวจวัดได้ จากแรงกระทำของแผ่นดินไหวในครั้งนี้ จึงมีค่า ประมาณ 1:3 เท่า ทำให้เกิดคำถามและความวิตกกังวลในเรื่องความมั่นคงและ ปลอดภัยของเชื่อนแม่สรวย ทั้งจากผู้บริหารและเจ้าหน้าที่ผู้เกี่ยวข้องของกรมชลประทาน ตลอดจนประชาชนที่อยู่บริเวณท้ายน้ำของ เชื่อนแม่สรวย เชื่อนแม่สรวยได้รับการสำรวจ และออกแบบโดยบริษัท COYNE ET BELLIER Bureau d'Ingenieurs Conseils และ ับริษัท ทีม คอนซัลติ้ง เอ็นจิเนียริ่ง แอนด์ แมเนจเมนท์ จำกัด เป็นเชื่อนคอนกรีตบดอัดผสมกับเชื่อนดิน เชื่อนสูง 59 เมตร สภาพ ธรณีวิทยาฐานรากบริเวณที่ตั้งเขื่อนเป็นหินยุคไซลูเลียน-ดีโวเนียน (รูปที่ 1) ดำเนินการก่อสร้างโดย กิจการร่วมค้า SC ประกอบด้วย บริษัท สี่แสงการโยชา (1979) จำกัด ร่วมกับ China National Water Resources and Hydropower Engineering Corporationมี ที่ปรึกษาควบคุมงานก่อสร้าง ประกอบด้วย บริษัท COYNE ET BELLIER Bureau d'Ingenieurs Conseils และ บริษัท ทีม คอนซัลติ้ง เอ็นจิเนียริ่ง แอนด์ แมเนจเมนท์ จำกัด ในลักษณะอำนวยการก่อสร้างเต็มรูปแบบ (Full Supervision) ก่อสร้างแล้วเสร็จเมื่อปีพ.ศ. 2546 การศึกษานี้มีวัตถุประสงค์เพื่อศึกษาลักษณะการสั่นไหวของพื้นดินของแผ่นดินไหวหลัก ขนาด 6.3 และแผ่นดินไหวตามขนาด 5-6 และขนาด 4-5 จากค่าพารามิเตอร์ของการสั่นไหว ประกอบด้วย ความเร่งพื้นดิบสูงสุด ความเร็วพื้นดินสูงสุด ระยะเวลาการสั่นไหว และช่วงค่าความถี่จากการสั่นไหวที่รุนแรง เพื่อประเมินผลกระทบของแผ่นดินไหวที่มีต่อเขื่อนแม่สรวย

การสั่นไหวที่รุนแรงของพื้นดิน

การศึกษาแรงกระทำของแผ่นดินไหวที่มีต่อเขื่อนแม่สรวยหรือโครงสร้างด่างๆ มีค่าพารามิเตอร์ของการสั่นไหวที่สำคัญสำหรับ งานทางด้านวิศวกรรมแผ่นดินไหวที่ต้องนำมาพิจารณาประกอบกัน 3 ประการ คือ (1) ขนาดของแรงที่กระทำ (ความเร่งพื้นดินสูงสุด, ความเร็วพื้นดินสูงสุด, การเคลื่อนที่พื้นดินสูงสุด) (2) ช่วงค่าความถี่ของการสั่นไหวที่รุนแรง (3) ระยะเวลาของการสั่นไหวที่รุนแรง[3,4] ซึ่งในการอธิบายลักษณะการสั่นไหวที่รุนแรงของพื้นดินให้ชัดเจนจะต้องใช้อย่างน้อย 2 พารามิเตอร์ ไนการศึกษานี้ได้ใช้ข้อมูล แผ่นดินไหวที่บันทึกได้จากเครื่องมือตรวจวัดค่าความเร่งพื้นดินที่สถานี MSAC ยี่ห้อ Kinemetrics รุ่น Basalt, FBA-2g ซึ่งเป็นสถานี ตรวจวัดแผ่นดินไหวของกรมขลประทาน ที่ได้ดำเนินการติดตั้งเครื่องมือและตรวจวัดค่าความเร่งพื้นดินตั้งแต่เดือนชันวาคม 2555 ในช่วงที่เกิดเหตุการณ์แผ่นดินไหว เฉพาะเดือนพฤษภาคม 2557 สามารถตรวจวัดค่าความเร่งพื้นดินได้มากกว่า 1,000 ครั้ง แต่พบว่ามี . ปัญหาเครื่องมือตรวจวัดดับ 2 ครั้ง คือ ช่วงวันที่ 5-7 พฤษภาคม 2557 และวันที่ 13 มิถุนายน-26 กรกฎาคม 2557 ทำให้ข้อมูล บางส่วนไม่สมบูรณ์ และไม่มีข้อมูลในช่วงนี้ ส่วนข้อมูลจุดศูนย์กลางแผ่นดินไหว อ้างอิงข้อมูลจากกรมอุตุนิยมวิทยา และกรมอุทก ศาสตร์ กองทัพเรือ ในการวิเคราะห์ค่าความเร่งพื้นดินสูงสุด ความเร็วพื้นดินสูงสุด และระยะเวลาของการสั่นไหว ใช้โปรแกรม Kinemetrics Strong Motion Analyst โดยระยะเวลาของการสั่นไหวที่รุนแรง ได้เลือกใช้ค่า bracketed duration [5,6] ซึ่งได้ ้อธิบายถึงช่วงระหว่างเวลาเริ่มต้นและเวลาสุดท้ายที่มีค่าเกินค่าความเร่งเกณฑ์ที่กำหนด (โดยทั่วไป เท่ากับ 0.05e) เนื่องจากใช้งานได้ ้ง่ายที่สุด และขึ้นอยู่กับคุณสมบัติของค่าความเร่งที่บันทึกได้โดยตรง ส่วนการวิเคราะห์ช่วงค่าความถี่ของการสั่นไหว ได้ใช้โปรแกรมKMI Power Spectral Density โดยทั้ง 2 โปรแกรม เป็นของ บริษัท Kinemetrics ประเทศสหรัฐอเมริกาผลการวิเคราะห์ค่าพารามิเตอร์ จากการสั่นไหวของแผ่นดินไหวหลัก ขนาด 6.3 พบว่าค่าความเร่งพื้นดินสูงสุด มีค่ามากที่สุดในแนวตะวันออก-ตะวันตก เท่ากับ 0.329356 g (รูปที่ 2) แต่เป็นค่า ณ เวลา 11:08:51.820 UTC ค่าความเร็วพื้นดินสูงสุด เท่ากับ 24เซนติเมตร/วินาที (รูปที่ 3) ณ เวลา 11:08:51.8 UTC ระยะเวลาของการสั่นไหวที่รุนแรงที่มีค่าเกิน 0.05 g เท่ากับ 7 วินาที (รูปที่ 4)ช่วงค่าความถี่จากการสั่นไหวที่รุนแรง พบว่ามีค่ามากที่สุดที่ความถี่ 2.5 เฮิรตซ์ (รูปที่ 5) ในกรณีของแผ่นดินไหวตาม ขนาด 5-6 และขนาด 4-5 (ตารางที่ 1) พบว่า แผ่นดินไหวที่จะมีผลกระทบต่อเชื่อนแม่สรวย คือ แผ่นดินไหวที่มีขนาดตั้งแต่ 4 ตามมาตราริกเตอร์ ขึ้นไป และต้องมีจุดศูนย์กลางอยู่ ห่างจากที่ตั้งเชื่อนแม่สรวยไม่เกิน 10 กิโลเมตร

การประชุมสัมมนาเรื่อง "บทเรียนแผ่นดินไหวแม่ลาว เชียงราย ภัยพิบัติใกล้ตัว" 20 พฤศจิกายน 2557 91

รูปที่ 1 สภาพธรณีวิทยาบริเวณที่ตั้งเขื่อนแม่สรวย และเชื่อนของกรมชลประทาน ศูนย์กลางแผ่นดินไหว ชนาด 6.3 วันที่ 5 พฤษภาคม 2557 กรมอุตุนิยมวิทยา และ USGS และรอยเลื่อนมีพลัง กรมทรัพยากรธรณี

ร**ูปที่ 2** ความเร่งพื้นดินสูงสุด เท่ากับ 0.329356g ที่เวลา 11:08:51.820 UTC (18:08:51.820 น.) ในแนวตะวันออก-ตะวันตก (C3)

รูปที่ 3 ความเร็วพื้นดินสูงสุด เท่ากับ 24 เซนติเมตร/วินาที ที่เวลา 11:08:51.8 UTC (ในแนวตะวันออก-ตะวันตก)

รูปที่ 4 ระยะเวลาการสั่นไหวที่รุนแรง เท่ากับ 7 วินาที (ในแนวตะวันออก-ตะวันตก)

X

× Ø

รูปที่ 5 ค่าความถี่ของการสั่นไหวที่รุนแรงที่สุด เท่ากับ 2.5 เฮิรตซ์ (ในแนวตะวันออก-ตะวันตก)

รูปที่ 6 สเปคตรัมความเร่งตอบสนองในแนวตะวันออก-ตะวันตก (damping ratio 0,2,5,10 และ 20%)

ń	วันที่	ເວລາ	ขนาด	กะติรูด	อองจีฐต	ความลึก	บริเวณ	Component	PGA (g) ที่ สถานี MSAC (เชื่อนแม่สรวย)	ican (UTC)
	5/5/2014	18/08/42 14						Vertical	-0.215158	11:08:50.740
1	3/2/2014	A DOLLAR MAN	6.3	19.68	99.69	7	อำเภอพาน จังหวัดเชื่องราย	N-5	0.271973	11:08:51.600
+	5/5/2014	11:08:42 UTC		1000000				E-W	0.329356	11:08:51.820
	E/5/2014	18/12/37 N						Vertical	-0.132732	11:12:37.100
	5/ 3/ 2014	Construction of	5	19.68	99.43		อาเภอแม่สรวย จังหวัดเขียงราย	N-S	-0.150293	11:12:37.185
Z	5/5/2014	11:12:37 UTC			1000			E-W	-0.172878	11:12:37.325
-								Vertical	-0.042319	11:13:36.850
	5/5/2014	18-13-36 1						N-S	-0.034268	11:13:36.440
2	3 5/5/2014 18:13:36 W	10,111.00 0.					_	E-W	-0.039301	11:13:36.640
	E. (2014	10.16.32.1	-			-		Vertical	-0.031970	11:14:34.050
1.40	5/5/2014	10.14.3£ HI	4.8	19.64	99.65		อาเภอพาน จังหรัดเขียงราย	N-S	-0.033858	11:14:34.030
4	5/5/2014	11:14:32 UTC	4.0	17.04				E-W	-0.069984	11:14:34.035
_			-	-	-	-		Vertical	0.047155	11:15:42.170
Vote	Concessory 1	10.15.40.4						N-S	-0.038218	11-15:42.015
5	5/5/2014	18:15:40 u.						E-W	0.054985	11:15:42.175
			-	-	-			Vertical	0.020066	11:19:41.825
	5/5/2014	18:19:37 W	-		00.71		อาเกอขาน จังหวัดเชียงราย	N-5	0.024459	11:19:41.780
6	5/5/2014	11:19:37 UTC	5.1	19.71	99.11	1	C INTERNAL TRANSPORT	E-W	0.029538	11:19:42.275
_			-		-	-		Vertical	-0.039684	11:20:20.225
1								N-S	0.039146	11:20:20.180
7	5/5/2014	18:20:20 u.						EW	0.057750	11:20:20:295
			-	-	-	-		Vertical	-0.021581	11:22:22.545
	5/5/2014	18:22;18 4.	1	- mark	100000	1		N-S	0.022630	11:22:22.775
8	5/5/2014	11:22:18 UTC	4.6	19.73	99.65	6	SURIGRAPHIE Adv Income to	EW	0.024013	11:22:22.370
			-	-	-	-		Vertical	0.035268	12/06/25:615
	5/5/2014	19:06:19 %						vertical	0.036977	12-06-26 035
9	6/6/2010	12:06:19 UTC	5.1	19.70	99.62	5	5J/090004236 04M30/4814235	74-5	0.059189	12:06:25:545
	51 51 E 0 2 1		-	-	-			E-IV	0.037105	12/20/20 950
	5/5/2014	19:20:57 W					100000000000000000000000000000000000000	Vertical	0.024900	12-20-20 025
10	E/E/2014	12-20-57 LITC	5.2	19.86	99.68		สำนาอเมือง จังหวดเรียงราย	N-5	0.033146	12-20-20-770
	37372014	TENNOT OIC				-		E-W	-0.040802	12/20/20/110
	5/5/2014	19:20:59 %						Vertical	-0.021308	12:21:05:555
11	F (F 2004 A	10.00 50 1170	5.1	19.78	99.74		อาเภอแมลาว จงหวดเชยชราย	N-S	0.027586	12:21:05:110
	5/5/2014	12:20:09:010						E-W	0.032721	12:21:03:205
	5/5/2014	19:25:05 u.						Vertical	-0.009630	12/25/09/305
12		12.25/05/1/70	4.4	19.72	99.6	6	อาเภอแมสรวช สุรหวดเซอรราย	N-S	0.013675	12:23:09:093
	5/5/2019	12,2303 010						E-W	-0.015384	12/23/09.400
	5/5/2014	19:40:09 u.					SCHE DISCHER	Vertical	0.004459	1240:17.115
13		10 10 10 1170	4	19.86	99.7	5	อาเภอเมียง จังหวัดเขียงราย	N-S	0.003834	12.40.17.090
	5/5/2014	12:40:09 010						E-W	0.007086	12:40:16,900
	5/5/2014	19:49:23 N.						Vertical	0.025386	12:49:26.430
14			4,2	19.72	99.71	8	อาเกอแมลาว จงหวดเชื่องราย	N-S	-0.018200	12:49:28.815
	5/5/2014	12:49:23 UTC						E-W	0.018100	12:49:26.665
-	5/5/2014	20:04:45 N.						Vertical	0.015621	13:04:49.775
15			4.5	19,67	99.74	7	อาเภอพาบ จังหวัดเชื่องราย	N-S	-0.013582	13:04:49.660
1	5/5/2014	13:04:45 UTC						E-W	-0.019103	13:04:49:720
	5/5/2014	20:18:02 14	-					Vertical	0.009553	13:18:08.880
12	ar or bridge		43	19.7	99,7	3 7	อาเภอพาน จังหวัดเชียงราย	N-S	-0.011311	13:18:08.525
10	5/5/2014	13:18:02 UTC						E-W	-0.010990	13:18:08.795

more and 1	ด่าดาารแร่งพื้นดิบสงสด	. ของแย่บดิบไหวหลัก ขนาด 6.3 และแผ่น	และแผ่นดินไหวตาม	ขนาด 5-6	และขนาด 4-5	
MISINA 1	. TI IFI A ISAB A VILLAFI HALI HEITI	001001101101				

หมายเหตุ: • เครื่องตับ

ş	วันที่	isan	ชนาด	ละติรูด	ลองจิฐค	ความลึก	บริเวณ	Component	PGA (g) ที่ สถานี MSAC (เชื่อนแม่สรวย)	เวลา (UTC)
27	5/5/2014 5/5/2014	20:34:29 ч. 13:34:29 UTC	4.7	19.69	99.65	6	อาเภอพาน จังหวัดเชี่ยงราย	Vertical N-S E-W	-0.020795 -0.023411 0.021037	13:34:33.650 13:34:33.450 13:34:33.645
18	5/5/2014 5/5/2014	21:26:52 u. 14:26:52 UTC	4.4	19.67	99.65	7	อาเภอพาน จงหวัดเชียงวาย	Vertical N-S E-W	0.009300 -0.006469 0.009746	14:26:53.825 14:26:55.830 14:27:48.210
19	5/5/2014 5/5/2014	21:51:02 u. 14:51:02 UTC	4	19.83	99.59	6	อาเภอเมือง จังหวัดเขียงราย	Vertical N-S E-W	0.003857 -0.005495 -0.003424	14:51:08.015 14:51:08.205 14:51:08.305
20*	5/5/2014 5/5/2014	22:34:20 v. 15:34:20 UTC	4	19.7	99.63	6	อำเภอแม่สรวย จังหวัดเชียงราย	Vertical N-S E-W		
21*	5/5/2014 5/5/2014	23:03:06 W. 16:03:06 UTC	4	19.67	99.72	5	อำเภอทาน จงหวัดเชื่องราย	Vertical N-S E-W		
22*	5/5/2014 5/5/2014	23:07:25 tz. 16:07:25 UTC	4.5	19.6	99.62		อำเภอแม่สรวย จังหวัดเขียงราย	Vertical N-S E-W		_
23*	5/5/2014 5/5/2014	23:20:17 u. 16:20:17 UTC	4.5	19.69	99.69	5	อำเภอพาน จังหวัดเชียงราย	Vertical N-S E-W		
24*	6/5/2014 5/5/2014	0:12:51 u. 17:12:51 UTC	4	19.68	99,57	6	อำเภอแม่สรวย จังหวัดเชียงราย	Vertical N-S E-W		
25*	6/5/2014 5/5/2014	0:35:28 u. 17:35:28 UTC	4.8	19.72	99.71	4	อำเภอแม่ลาว จังหวัดเพียงราย	Vertical N-S E-W		
26*	6/5/2014 5/5/2014	0:38:12 u. 17:38:12 UTC	4.1	19.78	99.62	2	อำเภอเมือง จังหวัดเขียงราย	Vertical N-S E-W		
27*	6/5/2014 5/5/2014	0:58:30 %. 17:58:30 UTC	4.1	19.66	99.64	14	อำเภอพาน จังหวัดเชียงราย	Vertical N-S E-W		
28*	6/5/2014 5/5/2014	1:02:33 W. 18:02:33 UTC	4.1	19.64	99.73	*	อำเภอหาน จังหวัดเชียงราย	Vertical N-S E-W		
29*	6/5/2014 5/5/2014	2:12:04 N. 19:12:04 UTC	4.7	19.82	99.71	6	อ้านกอแม่ดาว จังหรัดเชียงราย	Vertical N-S E-W		
30*	6/5/2014 5/5/2014	3:05:25 y. 20:05:25 UTC	4,4	19.61	99,62	10	อำเภอแม่สรวอ จังหวัดเชียงราย	Vertical N-S E-W		
31*	6/5/2014 5/5/2014	4:17:05 u. 21:17:05 UTC	5.1	19.65	99.66	23	อำเภอพาน จังหวัดเรียงราย	Vertical N-S E-W		
32*	6/5/2014 5/5/2014	5:10:56 u. 22:10:56 UTC	4,1	19.68	99.66	7	อำเภอพาน จังหวัดเชียงราย	Vertical N-S E-W		

ตารางที่ 1 ค่าความเร่งพื้นดินสูงสุด ของแผ่นดินไหวหลัก ขนาด 6.3 และแผ่นดินไหวตาม ขนาด 5-6 และขนาด 4-5 (ต่อ)

หมายเหตุ: * เครื่องดับ

	*	1.1		Stan in the					
ζŗ.	วันที่ เวลา	ชนาด	กะกิจูด	ମହନସ୍କିରୁମ	ความถึก	บริเวณ	Companent	PGA (g) ที่ สถานี MSAC (เพื่อนเมลรวย)	uan (UTC)
33*	6/5/2014 6:04:55 tz. 5/5/2014 23:04:55 UTC	5.2	19.70	99.62	7	อำเภอแม่สรวย จังหวัดเขียงราย	Vertical N-S E-W		
34*	6/5/2014 7:50:16 ч. 6/5/2014 00:50:16 UTC	5.9	19,73	99.69	20	อำเภอแปลาว จังหวัดเซียงราย	Vertical N-S E-W		
35*	6/5/2014 7:58:19 u. 6/5/2014 00:58:19 UTC	5.6	19.70	99.53	2	อำเภอแม่สรวย จังหวัดเชียงราย	Vertical N-S E-W		
36*	6/5/2014 11:45:14 %. 6/5/2014 04:45:14 UTC	4,3	19.66	99,65		อำเภอพาน จังหวัดเชียงราย	Vertical N-S E-W		
37*	6/5/2014 16:20:35 u. 6/5/2014 09:20:35 UTC	4.2	19.77	99.64	18	อำเภอแม่ลาว จังหวัดเชียงราย	Vertical N-S E-W		
38*	6/5/2014 19:42:12 u. 6/5/2014 12:42:12 UTC	4,7	19.63	99.62	4	อำเภอพาน จังหวัดเชียงราย	Vertical N-S E-W		
39*	6/5/2014 20:47:01 %. 6/5/2014 13:47:01 UTC	4,7	19.75	99.7	6	อำเภอแม่สาว จังหวัดเชียงวาย	Vertical N-S E-W		
40*	6/5/2014 21:50:12 ч. 6/5/2014 14:50:12 UTC	4.9	19.74	99.59	ı	อำเภอแม่สรวย จังหวัดเชื่องราย	Vertical N-S E-W		
41*	6/5/2014 22:57:32 u. 6/5/2014 15:57:32 UTC	4.6	19.67	99.67	9	อำเภอพาน จังหวัดเชียงราย	Vertical N-S E-W		
42*	7/5/2014 1:29:39 tJ. 6/5/2014 18:29:39 UTC	4.2	19.73	99.62	12	ຍຳມາວແນ່ສາວ ຈັ່ງກັງທເຫີຍຈະາຍ	Vertical N-S E-W		
43*	7/5/2014 3:52:26 v. 6/5/2014 20:52:26 UTC	4.8	19.7	99.59	7	อำเภอแม่สรรย จังหวัดเชียงราย	Vertical N-5 E-W		
44	8/5/2014 1:37:35 u. 7/5/2014 18:37:35 UTC	4	19.64	99.62	7	อาเภอพาน จังหวัดเชียงราย	Vertical N-S E-W	0.008975 0.006552 0.011565	18:37:38.815 18:37:39.110 18:37:38.680
45	9/5/2014 3:43:38 u, 8/5/2014 20:43:38 UTC	4,7	19.69	99.63	2	อำเภอแม่สรรย จงหวัดเชียงราย	Vertical N-S E-W	0.03504 0.030308 0.065275	20:43:42.420 20:43:42.325 20:43:42.435
46	9/5/2014 9:48:24 u. 9/5/2014 02:48:24 UTC	4.1	19.64	99.74	5	อาเภอพาน จังหวัดเชียงราย	Vertical N-S E-W	0.007223 -0.008155 -0.009507	02:48:29.170 02:48:29.405 02:48:28.980
47	9/5/2014 14:12:31 u. 9/5/2014 07:12:31 UTC	4.7	19.62	99.57	7	อำเภอแม่สรวย จังหวัดเขียงวาย	Vertical N-S E-W	0.065254 -0.113121 -0.112382	07:12:32.130 07:12:32.290 07:12:32.300
48	10/5/2014 12:56:47 u. 10/5/2014 05:56:47 UTC	4	19.65	99.58	2	อามาอแม่สรวย จงหวัดเพียงราย	Vertical N-S E-W	-0.013294 0.018143 -0.023815	05:56:47.485 05:56:48.485 05:56:48.460

ตารางที่ 1 ค่าความเร่งพื้นดินสูงสุด ของแผ่นดินไหวหลัก ขนาด 6.3 และแผ่นดินไหวตาม ขนาด 5-6 และขนาด 4-5 (ต่อ)

การประชุมสัมมนาเรื่อง "บพเรียนแผ่นดินไหวแม่ลาว เขียงราย ภัยพิบัติใกล้ตัว" 20 พฤศจิกายน 2557

96

หมายเหตุ: * เครื่องดับ

186

গ	วับที่	เวลา	ชนาด	ຄະທີ່ຈູດ.	<u>สองจิ</u> จูต	ความลึก	ບຮັບລ	Component	PGA (g) ที่ สถานี MSAC (เรื่อนแม่สรวย)	เวลา (UTC)
	12/5/2014	9:47:27 u.						Vertical	0.000663	02:27:31.910
49	12/5/2014	02:47:271(07)	4	19.6	99.71	5	อาเภอพาน จังหวัดเชียงราย	N-S	0.000479	02:27:33.060
	10/07/2011	Service of the Contract of the						E-W	0.000797	02:27:32.795
	12/5/2014	18:05:29 u.						Vertical	0.025988	11:05:36.350
50	12/5/2014	11:05:29 LITC	5	19.80	99.72	8	อำเภอแม่สาว จงหวัดเชียงราย	N-S	0.016686	11:05:37.225
								E-W	0.043418	11:05:36.226
	15/5/2014	0:23:57 ц.						Vertical	-0.015910	17:24:00.220
51	14/5/2014	17:23:57 UTC	4.4	19,57	99.67	9	อาเภอพาน จังหวัดเขียงราย	N-5	-0.015525	17:24:00.380
			_					E-W	0.019685	17:24:00.620
	16/5/2014	11:31:34 u.						Vertical	-0.017894	04:31:34.510
52	16/5/2014	04-31-34 UTC	4.8	19.66	99.63	1	อาเภอพาน จงหวัดเชียงราย	N-S	-0.015344	04:31:34.835
								E-W	0.016873	04:31:36.296
	21/5/2014	17:19:49 u.						Vertical	-0.002002	10:19:56.255
53	21/5/2014	10:19:49 UTC	4,1	19.64	99.7	7	อาเภอพาน จังหวัดเชียงราย	N-S	0.002418	10:19:55.865
			_					E-W	-0.002191	10:19:56.270
	27/5/2014	19:22:16 ti.						Vertical	-0.034109	12:22:23.110
54	27/5/2014	12-22:16 UTC	4.6	19.89	99.72	4	อาเภอเมือง จังหวัดเชียงราย	N-S	-0.024143	12:22:23.160
								E-W/	-0.030852	12:22:22.705
55*	26/6/2014 26/6/2014	14:29:35 ม. 7:29:35 UTC	4.5	19.71	99.67		อำเภอแม่ลาว จังหวัดเชียงราย	Vertical N-S E-W		
56*	15/7/2014 15/7/2014	20:30:53 u. 13:30:53 UTC	4.3	19,7	99.7		อำเภอพาน จังหวัดเชียงราย	Vertical N-S E-W		
	16/8/2014	14:03:18 u.						Vertical	-0.066798	07:03:20.335
57	16/8/2014	07-03-18 LITE	3.8	19.69	19.6		อำเภอแม่สรวย จังหวัดเชียงราย	N-S	0.027879	07:03:20.415
	10/0/2014	VI.WITH OIC						E-W	0.140529	07:03:20.375
	16/8/2014	15:25:25 N.						Vertical	0.059734	08:25:26.100
58	16/8/2014	08-25-25 LITC	4.1	19.68	99.61		อำเภอแม่สรวย จังหวัดเชียงราย	N-S	-0.053289	08:25:26.140
		social and service						E-W	-0.128819	08:25:26.040
	25/8/2014	05:32:45 v.						Vertical	0.147961	22:32:47.340
59	24/R/2014	22-32-45 L/T/C	4.8	19.71	99.55		อำเภอแม่สรวย จังหวัดเชียงราย	N-S	0.216523	22:32:47.340
	L+/0/2014	AND	· · · · · ·					E-W	-0.212339	22:32:47.865

ตารางที่ 1 ค่าความเร่งพื้นดินสูงสุด ของแผ่นดินไหวหลัก ขนาด 6.3 และแผ่นดินไหวตาม ขนาด 5-6 และขนาด 4-5 (ต่อ)

หมายเทตุ: * เครื่องตับ

3. สรุป

จากการศึกษาค่าพารามิเตอร์ของการสั่นไหวที่รุนแรงของแผ่นดินไหวหลักขนาด 6.3 พบว่าค่าความเร่งพื้นดินสูงสุด มีค่ามากที่สุด ในแนวตะวันออก-ตะวันตก เท่ากับ 0.329356 g แต่เป็นค่า ณ เวลา 11:08:51.820 UTC เท่านั้น ค่าความเร็วพื้นดินสูงสุด เท่ากับ 24 เซนติเมตร/วินาที ณ เวลา 11:08:51.8 UTC เช่นเดียวกัน ระยะเวลาของการสั่นไหวที่รุนแรงที่มีค่าเกิน 0.05 g เท่ากับ 7 วินาที ช่วง ค่าความถึงากการสั่นไหวที่รุนแรง มีค่ามากที่สุดที่ความถี่ 2.5 เอิรตซ์ และจากการศึกษาค่าพารามิเตอร์ของการสั่นไหวที่รุนแรงของ แผ่นดินไหวตาม ขนาด 5-6 และขนาด 4-5 สามารถสรุปได้ว่าแผ่นดินไหวที่จะมีผลกระทบต่อเขื่อนแม่สรวย เมื่อพิจารณาจากค่า ความเร่งพื้นดินสูงสุดที่มากกว่า 0.05 g ระยะเวลาของการสั่นไหว และช่วงค่าความถึงากการสั่นไหวที่รุนแรง คือ แผ่นดินไหวที่มีขนาด ตั้งแต่ 4 ตามมาตราริกเตอร์ ขึ้นไป และต้องมีจุดศูนย์กลางอยู่ห่างจากที่ตั้งเขื่อนแม่สรวยไม่เกิน 10 กิโลเมตร เนื่องจากว่ามีการ เปลี่ยนแปลงค่าของข้อมูลที่ได้จากเครื่องมือตรวจวัดพฤติกรรมเชื่อน จากการตรวจสอบเขื่อนแม่สรวยภายหลังการเกิดแผ่นดินไหวทาง กายภาพด้วยสายตา ไม่พบว่าเชื่อนได้รับความเสียหายที่รุนแรงจากแผ่นดินไหว ซึ่งอาจมีความเป็นปได้ว่าเนื่องจากเชื่อแม่สรวยได้รับ การออกแบบเพื่อด้านทานแรงกระทำของแผ่นดินไหว ด้วยวิธี pseudo static ค่าสัมประสิทธิ์ของการสั่นสะเทือน เท่ากับ 0.10 และ เขื่อนแม่สรวยตั้งอยู่บนสภาพธรณีวิทยาฐานรากที่เป็นหินยุคไขลูเลียน-ติโวเนียน ซึ่งในทางธรณีวิทยาจัดเป็นพื้นที่ที่ค่อนข้างเสถียรมาก 98 การประชุมสัมมนาเรื่อง "บทเรียนแผ่นดินไหวแม่ลาว เขียงราย ภัยพิบัติโกล้ตัว" 20 พฤศจิกายน 2557

ระยะเวลาการสั่นไหวของพื้นดินที่รุนแรง ค่อนข้างสั้นกว่าเมื่อเปรียบเทียบกับบริเวณที่เป็นที่ตั้งของชุมขนที่อยู่ทางด้านท้ายน้ำของเชื่อน แม่สรวยและชุมชนที่ตั้งอยู่ตามที่ราบลุ่มน้ำแม่ลาว ซึ่งส่วนใหญ่เป็นตะกอนดินยุคปัจจุบันที่ยังไม่แข็งตัว ทำให้บริเวณที่เป็นที่ตั้งของ ชุมชนได้รับความเสียหายมากทั้งจากแผ่นดินไหวหลัก และแผ่นดินไหวตาม เนื่องจากถูกสั่นไหวอย่างต่อเนื่องและยาวนานกว่า ประการ สุดท้ายที่สำคัญ คือ ค่าความถี่ธรรมชาติในการสั่นไหวของเชื่อนแม่สรวยอาจจะไม่สอตคล้องกับค่าความถี่จากการสั่นไหวที่รุนแรงของ แผ่นดินไหว ซึ่งต้องมีการศึกษาอย่างละเอียดอีกครั้งหนึ่ง แต่เพื่อสร้างความเชื่อมั่นในเรื่องความปลอดภัย เพื่อคืนความสุขให้กับราษฎร หรือชุมชนที่อยู่บริเวณท้ายเชื่อนแม่สรวย และเพื่อเพิ่มประสิทธิภาพในการศึกษาวิเคราะห์ผลกระทบของแผ่นดินไหวที่มีต่อเชื่อนแม่ สรวยให้ดียิ่งขึ้น จึงได้เสนอให้มีการติดตั้งเครื่องมือตรวจวัดความเร่งพื้นดินเพิ่มเติม บริเวณตีนเขื่อนแม่สรวย อีก 2 ชุด คือ บนฐานราก ที่เป็นหิน 1 ชุด และฐานรากที่เป็นดิน 1 ชุด เนื่องจากค่าความเร่งพื้นดินเพิ่มเงิม บริเวณที่ต้องมือตรวจวัด ซึ่งตั้งอยู่บนสันเขื่อนายไงกาง ความเป็นจริง ประมาณ 1-3 เท่า อันเป็นผลเนื่องมาจากสภาพภูมิประเทศบริเวณที่ตั้งเครื่องมือตรวจวัด ซึ่งตั้งอยู่บนสันเขื่อนแม่สรวยที่ สูงประมาณ 59 เมตร

กิดดิกรรมประกาศ

ขอขอบคุณกลุ่มงานศิลากลศาสตร์และธรณีวิศวกรรมสิ่งแวดล้อม ส่วนวิศวกรรมธรณี สำนักสำรวจด้านวิควกรรมและธรณีวิทยา กรมขลประทาน กรมอุตุนิยมวิทยา และกรมอุทกศาสตร์ กองทัพเรือ ที่สนับสนุนข้อมูลในการวิเคราะห์

เอกสารอ้างอิง

- KOLD Bulletin 62. Inspection of dams following earthquake-guidelines. Committee on Seismic Aspects of Dam Design, Paris, 1988 and 2007 Revision.
- [2] กรมชลประทวน, รายงานสรุปผลการตรวจสอบเสถียรภาพเชื่อนแม่สรวย อำเภอแม่สรวย จังหวัดเซียงราย และเชื่อนต่างๆ จากผลกระทบของ แผ่นดินไทว เมื่อวันที่ 5 พฤษภาคม 2557, 2557
- [3] Kramer, S. L. Geotechnical Earthquake Engineering. Prentice Hall, New Jersey, 1996, pp. 54-105.
- [4] ICOLD Bulletin 72. Selecting seismic parameters for large dams. Committee on Seismic Aspects of Dam Design, Paris, 1989 and 2010 Revision.
- [5] Bolt, B. A. Duration of strong motion. Proceeding of the 4th World Conference on Earthquake Engineering, Santiago, Chile, 1969, pp.1304–1315.
- [6] Federal Emergency Management Agency. Federal Guidelines for Dam Safety: Earthquake Analyses and Design of Dams, FEMA 65, May 2005.

VITA

Mrs. Watana Khamkom was born on January 13, 1962 in Buriram, northeastern Thailand. She studied at Baan Krasang primary school from grade one to grade seven, and graduated at high school level from Burirampittayakom school, Buriram, in 1980. In 1984, she received a B.Sc. degree in Geology from the Department of Geology, Faculty of Science, Khon Kaen University, Thailand. After her graduation, she started to work as a research assistant at the Department of Geology, Faculty of Science, Khon Kaen University, Thailand. From 1987 to 1989, she worked as a government employee at the Regional Irrigation Office 4 (former), Khon Kaen. Hereafter, she has moved to work as a government official at the Engineering Geology Group, Geotechnical Division, the Royal Irrigation Department and has been employed until present at the Engineering Geology Division, Office of Engineering Topographical and Geotechnical Survey. She enrolled as a graduate student of Geology program at Graduate School, Chulalongkorn University, Bangkok, Thailand in 2006 and again in 2010.

> จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University