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LIST OF NOTATIONS

Let N be the set of all nonnegative integers, S C N x N a numerical semigroup,

a,b nonnegative integers.

N* the set N\{0}

N2 the set {(m,n) | m,n € N}

Tiap) the set {(m,n) e N> |0 <m <aand 0 <n <b}

Elap) the set N2\ 7,4

S* the set S\{(0,0)}

G(9) the set N2\ S

MG(S) the set {(m,n) € G(S) | a®> +* < m? +n? for all (a,b) € G(S)}

PMG(S) the set {g € G(5) | g+ s € S for all s € S*}
SG(S) theset {g € G(S)|g+g€ S and g+ s € S for all s € S*}



CHAPTER 1
PRELIMINARIES

Let N be the set of all nonnegative integers. Then N is a monoid under the
usual addition. In this work, we aim to study subsemigroups of N x N (we give
the definition in Chapter II). Most of our results are analogous to the results in
numerical semigroups. In this chapter, we give some definitions, propositions and
examples in numerical semigroups in order to get ideas of our materials.

The study of sets of linear combination of natrual numbers with nonnegative
coefficients rose in 1884 by Sylvester : “Let s; and s, be two relatively prime
natural numbers. Determine the largest integer which cannot be written as a
linear combination mys; + nese where ny and ns, are nonnegative integers”. A
generalization of Sylvester’s problem was proposed by Frobenius.

From Sylvester and Frobenius’s problem, we see that the condition that gives
the existence of the answer is the greatest common divisor of those given integers
which is one. On the other hand, this condition guarantees that there are finitely
many positive integers which cannot be written as linear combinations of given
positive integers.

In 1987, Froberg, Gottlieb and Haggkvist investigated this structure in [1] and

first gave the word numerical semigroup.

Definition 1.1. [1] A numerical semigroup is a submonoid S of N such that N\ S

is finite.

Definition 1.2. [6] Let S be a numerical semigroup. An element g of N\S is
called a gap of S. The set of all gaps of S is denoted by G(S). The largest interger
not in S is called the Frobenius number of S, denoted by F'(S).

Example 1.3. Let S ={0,7,8,9,10,...}. We see that S is a submonoid of N and
N\S ={1,2,3,4,5,6} is a finite set. Hence S is a numerical semigroup. We have
that G(5) = {1,2,3,4,5,6} and the Frobenius number of S is 6.



Definition 1.4. [6] Let A be a nonempty subset of N. The smallest submonoid of
N containing A is the set {nia; + -+ +ngax | k € N*ay,...,a € A,ng, ... ,ny €
N}, denoted by (A).

Proposition 1.5. Let A be a nonempty finite subset of N. Then (A) is a numerical
semigroup if and only if gcd(A) = 1 where ged(A) is the greatest common divisor
of elements of A.

The proof of Proposition 1.5 can be seen in [6]. This condition is the same as

the condition on Sylvester and Frobenius’s problem.

Definition 1.6. [6] A nonempty subset A of N is a system of generators of a
submonoid M of N if (A) = M. We also say that M is generated by A. In this

case, we say that A is minimal if none of its proper subsets generates M.

Definition 1.7. [6] A submonoid M of N is finitely generated if there exists a

system of generators of M with finitely many elements.

Given A, B C N, we define A+ B ={a+0b|a € A,be B}. For a subset S of
N, we denote S* = S\{0}.

Proposition 1.8. [6] Let S be a submonoid of N. Then S*\ (S*+ S*) is a
system of generators of S. Moreover, every system of generators of S contain

S\ (S* + S*).

Example 1.9. Let S = {0,5,7,9,10,12,14,15,16, ...}, we have that S* + S* =
{10,12,14,15,16,...}. Then S*\ (S* 4+ 5*) = {5,7,9} and ged({5,7,9}) = 1.

Proposition 1.10. [6] Fvery numerical semigroup admits a unique finite minimal

system of generators.

The proof of Proposition 1.8 and Proposition 1.10 can be seen in [6]. In Chapter
IT, we define an addition operation on N x N. We give the definition of numerical
semigroups on N x N and system of generators of a submonoid of N x N similarly to
numerical semigroups and system of generators of a submonoid of N, respectively.
We prove a condition on a subset of N x N which generates a numerical semigroup
on N x N. Moreover, we provide an algorithm to find the minimal system of

generators of numerical semigroups on N x N.



Definition 1.11. [3] A numerical semigroup is said to be irreducible if it cannot
be expressed as the intersection of the numerical semigroups properly containing
it.

Example 1.12. Let S = {0,2,4,5,6,...} and S’ = {0,4,5,6,...}. Then S and
S’ are numerical semigroups. The numerical semigroups containing S are S; =
{0,2,3,4,...} and Sy = N. Then S is irreducible because S # S; N Sy. Let
Sy =40,3,4,5,6,...}. Then S5 is a numerical semigroup containing S’. Then S’

is not irreducible because S’ = S N Ss.

The next proposition shows that irreducible numerical semigroups are maximal

in the set of numerical semigroups with fixed Frobenius number.

Proposition 1.13. [6] Let S be a numerical semigroup. The following statements

are equivalent.
1. S is wrreducible.
2. S is mazimal among numerical semigroups with Frobenius number F(S).
3. S is maximal among numerical semigroups that do not contain F(S).

Since irreducible numerical semigroups deal with the larger numerical semi-
groups, a construction of numerical semigroups containing a fixed numerical semi-

group is considered.

Definition 1.14. [4] Let S be a numerical semigroup. A gap g of S is a special gap
if 2g € S and g+ s € S for all s € S*. The set of all special gaps of S is denoted
by SG(S).

Example 1.15. Let S = (5,6) = {0,5,6,10, 11,12, 15, 16, 17, 18,20, 21,22, ...} be
a numerical semigroup. Then G(5) = {1,2,3,4,7,8,9,13,14,19} and SG(S) = 19.

Given a numerical semigroup S and = € SG(S5). Following from the definition
of special gap, we have that S U {z} is a numerical semigroup containing S. In
[4], the concept of special gap gave a method of finding the set of all numerical
semigroups containing a fixed numerical semigroup. We explain this method by

the following example.



Example 1.16. Let S = {0,4,5,6,...}. Then G(S) = {1,2,3} and SG(S) =
{2,3}. Then S; = SU{2} = {0,2,4,5,6,...} and S, = SU{3} = {0,3,4,5,6,...}.
Next, compute SG(S;) = {3} and SG(S5;) = {2}. Then S3 = S;U{3} = S,U{2} =
{0,2,3,4,5,6,...}. After that compute SG(S3) = {1} so that Sy = S5 U {1} = N.

Hence all numerical semigroups containing S are 5,51, Sz, S3 and Sj.

The next proposition gives another characterization of irreducible numerical

semigroup given by its special gap.

Proposition 1.17. [4] Let S be a numerical semigroup. Then S is irreducible if

and only if SG(S) has at most one element.

Example 1.18. From Example 1.12, S is irreducible with SG(S) = {3} but S’ is
not irreducible with SG(S") = {2, 3}.

After we give the definition of numerical semigroup on N x N, in Chapter III,
we define the special gap of a numerical semigroup on N x N and an irreducible
numerical semigroup on N x N similarly to an irreducible numerical semigroup on
N. Then we prove that the spacial gap of a numerical semigroup on N x N gives

a characterization of irreducible numerical semigroups on N x N.

Definition 1.19. [6] A numerical semigroup S is symmetric if it is irreducible

with odd Frobenius number.

Example 1.20. S = {0,2,4,5,6, ...} is a symmetric numerical semigroup because

S is irreducible with Frobenius number 3.

The concept of symmetric numerical semigroup can be explained by given two

£S)

5 Onl real line. Then

distinct integers a and b having the same distance from
only one of a and b belongs to S. The following proposition is a characterization

of symmetric numerical semigroups. For the proof see [1] and [6].

Proposition 1.21. [6] Let S be a numerical semigroup and Z the set of all integers.

Then the following statements are equivalent.
1. S is symmetric

2. F(S) is odd and for any x € Z\S, F(S) —x € S.



3. |G(S)| = E8L

2

When a numerical semigroup is generated by two relatively prime numbers a
and b, this is similar to Sylvester’s problem. The solution of Sylvester’s problem is

ab— a — b and the number of positive integers that cannot be written as nia + ngb

is ab—a—b+1

——. This implies the following proposition.

Proposition 1.22. [6] Let S be a numerical semigroup generated by {a,b}. Then

S is symmetric.

Proposition 1.23. [6] Let S be a numerical semigroup generated by {a,b}. Then
F(S)=ab—a—b and the cardinality of G(S) is ==btl,

In Chapter III, we define symmetric numerical semigroups on N x N and give
characterizations of symmetric numerical semigroups on N x N. Moreover, we use
results from Chapter II to prove some characterization of symmetric numerical
semigroups on N x N when system of generators are given.

Given a numerical semigroup S. If S is not irreducible, then we have numerical
semigroups S; D S and Sy D S such that S = S; N S,. Following from this, one
can prove that every numerical semigroup can be expressed as an intersection of
irreducible numerical semigroups. But it is not always true that every numerical
semigroup can be expressed as an intersection of symmetric numerical semigroups.

The condition of those numerical semigroups appeared in [2].

Definition 1.24. [2] Let S be a numerical semigroup. An integer z is called a

pseudo-Frobenius number if x ¢ S and  + s € S for all s € S*.

Example 1.25. Let S = (5,6) = {0,5,6,10,11,12,...}. Then pseudo-Frobenius

number of S are 7,8 and 9.

Proposition 1.26. [2] Let S be a numerical semigroup and gy, . .., g; be its pseudo-
Frobenius numbers. Then S can be written as the intersection of symmetric nu-

merical semigroup if and only if for all even g;, there exists an odd positive integer

y; such that g +vy; ¢ (SU{y:}).

In Chapter III, we define the pseudo maximal gap of a numerical semigroup on

N x N similarly to the pseudo-Frobenius number. After that we provide conditions



of numerical semigroup on Nx N that can be expressed as intersection of symmetric
numerical semigroups on N x N.

In summary, we aim to study numerical semigroups on N x N and investigate
their properties analogously to numerical semigroup of N. In Chapter II, we in-
troduce the concept of numerical semigroups on N x N and study conditions of
subsets of N x N which generate numerical semigroups on N x N. In Chapter III,
we investigate basic properties of irreducible and symmetric numerical semigroups

on N x N and the most results are analogous to [2], [4], [5] and [6].



CHAPTER 11
SYSTEM OF GENERATORS

First, let us introduce an operation on the set N x N. For (a,b), (¢,d) € Nx N,
we define an addition operation + on the set Nx N by (a,b)+ (¢,d) = (a+c¢,b+d).
This operation is clearly commutative and associative. We say that (a,b) = (¢, d)

if and only if a = ¢ and b = d. For a positive integer n, we write (a,b) + -+ - + (a,b)

.

v
n terms

as n(a,b) and denote 0(a,b) by (0,0) so that n(a,b) = (na,nb) for any nonnegative
integer n.

Let (a,b), (c,d) € N x N, we define (a,b) — (¢,d) by (a — ¢,b — d). Note that
(a,b) — (c,d) does not need to be an element of N x N.

Our main result in this chapter is Proposition 2.24, giving a condition on a
nonempty subset of N x N so that it generates a submonoid of N x N under addition
+ with finite complement. So we define the definition of a system of generators
of a submonoid of N x N similarly to the definition of a system of generators of a
submonoid of N in Chapter L.

For the convenience, we denote the set N x N by N2,

Definition 2.1. Let A be a nonempty subset of N2. The smallest submonoid of N
containing A is the set {nja;+---+ngax | k € N* ay,...,ar € A,ny, ..., n, € N},
denoted by (A).

Given A C N? and (m,n) € N, we denote (A U {(m,n)}) by (A, (m,n)).

Example 2.2. Let A = {(1,0),(2,0)}. The smallest submonoid of N? containing
Ais {(0,0),(1,0),(2,0),(3,0),(4,0),...}.

Definition 2.3. A nonempty subset A of N? is a system of generators of a sub-
monoid M of N? if (A) = M. We also say that M is generated by A. In this case,

we say that A is minimal if none of its proper subsets generates M.



Example 2.4. From Example 2.2, we have that {(1,0),(2,0)} is a system of
generators of {(0,0), (1,0),(2,0),(3,0),(4,0),...}. However, {(1,0),(2,0)} is not
a minimal system of generators of {(0,0),(1,0),(2,0),(3,0),(4,0),...} because

((1,0)) ={(0,0),(1,0),(2,0),(3,0),(4,0),...}.

Definition 2.5. A submonoid M of N? is finitely generated if there exists a system

of generators of M with finitely many elements.

Example 2.6. The submonoid {(0, 0), (1,0), (2,0), (

, 1, 2, 0),(4,0),...} of N? is finitely
generated because ((1,0)) = {(0,0), (1,0), (2,0), (3,

3,
0),(4,0),...}.
Definition 2.7. A subset S of N? is a numerical semigroup if it contains (0,0),

closed under the addition and N\ S is finite.

From now on, the word numerical semigroup is referred to a submonoid of N?
in Definition 2.7. However, the word numerical semigroup on N is referred to a

submonoid S of N under usual addition on N with N\S' is finite.

Definition 2.8. Let S be a numerical semigroup. An element of N?\S is said to

be a gap of S. We denote the set of all gaps of S by G(S) which is a finite set.

Example 2.9. The set S = N2\{(1,0),(2,0),(3,0),(4,0)} is a numerical semi-
group with G(S) = {(1,0), (2,0), (3,0), (4,0)}-

To illustrate a submonoid S of N? as a diagram in XY-plane, we describe those
elements of S and N?\S by e and o, respectively. For any elements that do not

appear in the diagram, we assume that they belong to S.

Example 2.10. The numerical semigroup S with G(S) = {(0,1), (1,1),(0,2), (1,2)}

can be represented by the following diagram.

00 @

1

OO0 @
o X N

Figure 2.1: The numerical semigroup S



Given subsets A, B € N? we define A+ B={a+b|a€ Abe B}. Fora
subset S of N2, we denote S* by S\{(0,0)}.

Proposition 2.11. Let S be a submonoid of N?. Then S*\(S* + S*) is a system

of generators of S.

Proof. Let (m,n) € S* be such that (m,n) ¢ S*\(S* + S*). Then there ex-
ists (mq,mn1), (Mo, nz) € S* for which (my,ny) + (mg,ne) = (m,n). We note
that my,me < m and ny,ny < n. If (my,ny) ¢ S*\(S* + S*), then (mgs,n3) +
(ma,ng) = (my,my) for some (mg,ng), (my,ng) € S*. We apply this process
to (ma,ns), (M3, n3), (my,ny) and those (m;,n;)’s occur in this way. This pro-
cess must stop in finite steps because S is a submonoid of N2. Hence (m,n) =
(MaysNay) + -+ (Mays Na, ) Where (Me,;, e, ) € S*\(S* + 5*). This shows that
S*\(S* + S*) is a system of generators of S. O

Since every numerical semigroup is a submonoid of N2, the following corollary

gives us a system of generators of numerical semigroups.

Corollary 2.12. Let S be a numerical semigroup. Then S*\(S* + S*) is a system

of generators of S.

Proposition 2.13. Let S be a numerical semigroup. Then S*\(S* + S*) is a

minimal system of generators of S.

Proof. We show that S*\(S*4-5*) is a subset of any system of generators of S. Let
A be a system of generators of S. If s € S*\(S* + 5*), then s = Aja; + - -+ + A\a,
where n € N* A\y,... A\, € N* ay,...,a, € A. Since s ¢ (S* + S*), we have that
s = a; for some 1 < i < n. Hence s € A and S*\(S* + S*) is a minimal system of

generators of S. O

For the convenience, given a,b € N, we define the following sets.
Ttapy = {(m,n) e N> |0 <m<aand 0 <n<b}and By = N\I(,y).

To show that E(, ;) U{(0,0)} is a numerical semigroup, let (z1,y1), (T2, Y2) € Eap)-
If0<z; <aand 0 < 2y <a, then y; > b and y, > b. Hence (z1,y1) + (22,92) €
E(ap) because y; +yo > b. If 0 < 2y < a but o3 > a, then (z1,y1) + (22, 12) € Eap)
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because z1+1x5 > a. For the last case, if 1 > a and x5 > a, then (z1,y1)+ (22, y2) €

E(,p) because x4+ x5 > a. It follows that E(,; U{(0,0)} is a numerical semigroup.

Example 2.14. Let S be a numerical semigroup with G(S) = {(1,0), (0,1), (2,1)}.
The set S* + S* can be shown by the following diagram and S*\(S* + S*) =

{(2,0),(3,0),(1,1),(0,2),(1,2),(0,3)}.

_ 0000
000
- 000®
0000
0000

\V]

o

-000@
0000
0000

S S 4+ S*

Figure 2.2: The sets S and S* + S*, respectively

Proposition 2.15. Fvery numerical semigroup 18 finitely generated.

Proof. Let S be a numerical semigroup. It suffices to show that S*\(S* + 5%) is
finite. Since G(S) is finite, there exists (a,b) € N? such that G(S) C I(,p). Set

A={(m,n) eN?|2a+2<m}U{(m,n) e N?| 2b+2 < n}.

Since A = {(m,n) e N2 | 0 < m < 2a+2and 0 < n < 20+ 2} is finite, if we
can show that A C (S* 4+ 5*), then S*\(S* + 5*) is a finite set. Let (m,n) € A.
If 2a 4+ 2 <'m, then (m,n) = (a + 1,0) + (a + k,n) for some positive integer k. If
2b+ 2 < n, then (m,n) = (0,b+ 1) 4+ (m, b+ k) for some positive integer k. Then
(m,n) € S* + S* and hence S*\(S* + S*) is a finite set. O

Remark 2.16. It is not always true that any submonoids of N? are finitely
generated. The example is S = {(m,n) € N* | m # 0} U {(0,0)}. Then
{(1,n) e N* | 0 < n} C S*\ (S* + S*) becomes an infinite set.

Proppostion 2.15 points that there is an opportunity to find conditions on a
finite subset of N? so that it generates a numerical semigroup. Next, we give the
definitions of the ged of element of N? similarly to the greatest common divisor of

positive integers so that we give those conditions via the ged of element of N2,



11

Definition 2.17. Let (a,b), (c,d) € N>, We say that (a,b) divides (c,d), denoted
by (a,b)|(c,d), if there exists a positive integer k such that k(a,b) = (¢, d).

Definition 2.18. Let (ay,by),. .., (a,,b,) € N2 An element (x,y) of N? is the ged
of all of the (a;, b;)’s if (z,y)|(a;, b;) for all 1 < i < n and any other (z’,y’) € N? that
divides all the (a;,b;)’s also divides (x,y). We write ged((ay,b1), ..., (an, by)) =
ged({(ar, br), - (an, bn)}) = (2, 9).

Example 2.19. ged((5,5),(7,7)) = (1,1) and ged((2,0),(0,2)) does not exist.

Proposition 2.20. Let aq,...,a, be positive integers. Then the following state-

ments hold.
1. ged(ay, ..., a,) = d if and only if ged((a1,0),. .., (a,,0)) = (d,0).
2. ged(ay, ..., a,) = d if and only if gcd((0,a4),...,(0,a,)) = (0,d).

Proof. For the first statement, assume that ged(as,...,a,) = d. Then d|a; for
all . Hence (d,0)|(a;,0) for all 4. Let ged((aq,0),...,(a,,0)) = (k,0). Then
(d,0)|(k,0) and k|a; for all 4. This implies that d|k and k|d so that d = k. For
the converse, assume that ged((a1,0),...,(a,,0)) = (d,0). Then d|a; for all 7. If
ged(ay, ..., a,) = k, then d|k and (k,0)|(a;, 0) for all i which implies that d|k and
k|d so that d = k.

Proving the second statement is similar to the proof of the first statement. [

Proposition 2.21. Let A be a system of generators of a numerical semigroup.

The following statements hold.
1. There exists a finite subset Ay of A with ged(Ay) = (1,0).
2. There exists a finite subset Ay of A with ged(Az) = (0,1).

Proof. For the first statement, we note that for any (a,b), (c,d) € N2, (a,b) +
(¢,d) = (a+ ¢,0) if and only if b = d = 0. This implies that (z,0) € A for
some x € N*; otherwise, N?\ (A) has infinitely many elements. Then there exists
a finite subset A’ = {(x,0)} of A such that ged(A’) = (x,0). Let d be the smallest
positive integer such that there exists a finite subset A; = {(a1,0),...,(a,,0)}
of A with ged(A;) = (d,0). For any (m,0) € A, we have that (d,0)|(m,0)). If
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not, there exist Ay = A; U{(m,0)} and dy < d such that gcd(As) = (dy,0) which
yields a contradiction. Hence (d,0)|(x,0) for all (z,0) € (A). Since A generates
a numerical semigroup, there exists (a,0),(a + 1,0) € (4). Then d = 1 because
(d,0)|(a,0), (d,0)|(a+1,0) and ged((a,0), (a + 1,0)) = (1,0).

Proving the second statement is similar to the proof of the first statement. [J

Remark 2.22. When a subset A of N? holds the condition(1) of the Proposition
2.21, there exists (x,0) € (A) such that (z +n,0) € (A) for all n € N. If A holds
the condition(2) of the Proposition 2.21, then there exists (0,y) € (A) such that
0,y +n) € (A) for all n € N.

Proposition 2.23. Let A C N2 be a system of generators of a numerical semi-

group. Then (1,k),(I,1) € A for some k,l € N.

Proof. Let S be the numerical semigroup generated by A. Since G(S) is a finite
set, we have that (1,y) € S for some y € N. Then there exists n € N*, Ay, ..., \, €
N, (a1,b1), ..., (an,bn) € A such that Ai(ay,by) + -+ + Ay(an, bn) = (1,y) because
A is a system of generators of S. Therefore A\ja; + Ayas + -+ + Aya, = 1. This
shows that A; = a; = 1 for some 1 < i < n. So we have that (1,k) € A. Proving
that (I,1) € A is similar. O

Proposition 2.24. A nonempty subset A of N? is a system of generators of a

numerical semigroup if and only if the following statements hold.
1. There exists a finite subset Ay of A with ged(A;) = (1,0).
2. There exists a finite subset Ay of A with ged(As) = (0,1).
3. (1,k),(I,1) € A for some k,l € N.

Proof. Following Proposition 2.21 and Proposition 2.23, we have that A satisfies
those conditions.

For the converse, assume that A satisfies those conditions. By Remark 2.22,
let u,v be the smallest positive integers such that (u 4+ n,0) and (0,v + n) belong
to (A) for all n € N. Set w = max{u,v}. From the condition (3), we have
that (w,wk), (wl,w) € (A) and we may assume that wl < wk. Observe that
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{(z,y) e N2 |w <zandw <y} € (A). Let 4 = {(z,y) e N? |0 <z <
w and 2wk < y} and Ay = {(z,y) € N? | 2wk < zand 0 < y < w}. If we can
show that Aj, Ay C (A), then A is a system of generators of a numerical semigroup.

If (z,y) € Ay, then y = 2wk + a where a € N. Since xk < wk, we have that
(,y) = (z,2wk + a) = (x,zk) + (0, wk + a + wk — zk) € (A).

If (x,y) € Ay, then z = 2wk + b where b € N. Since yl < wl < wk, we have
that (z,y) = Qwk +b,y) = (yl,y) + (wk + b+ wk — yl,0) € (A).

Therefore Ay, Ay C (A) and (A) is a numerical semigroup. O

Definition 2.25. Let n be a positive integer. A numerical semigroup S is n —

dimensional if its minimal system of generators contains exactly n elements.
Proposition 2.26. A 2-dimensional numerical semigroup is unique.

Proof. Let A be a minimal system of generators of 2-dimensional numerical semi-
group. From Proposition 2.24, we have that (1,%),(l,1) € A for some k,l € N. If
k=1=0,then A= {(1,0),(0,1)} which generates N2. If k # 0 and [ # 0, then
there exists finite subsets {(a1,0),...,(a,,0)} = Ay and {(0,b1),...,(0,b,)} = Az
of A such that ged(A;) = (1,0) and ged(As) = (0,1). This contradicts the minimal-
ity of A. If k # 0 and [ = 0, then there exists a finite subset {(a,0),..., (a,,0)} =
Ay C A such that ged(A;) = (1,0). This leads to the same contradiction. For the
case k = 0 and [ # 0, the proof is similar to the case £ # 0 and [ = 0. Hence a

2-dimensional numerical semigroup is unique. O
Proposition 2.27. There are no 3-dimensional numerical semigroups.
Proof. Follow directly from the proof of Proposition 2.26. O

Proposition 2.28. A minimal system of generators of a 4-dimensional numerical

semagroup satisfies one of the following statements.
1. {(0,1),(1,k), (a1,0), (az,0)} where 1 < a; < ag, ged(ar, az) =1 and k € N*.
2. {(1,0),(1,1),(0,b1), (0,b2)} where 1 < by < by, ged(by,be) =1 and | € N*.

Proof. Let A be a minimal system of generators of a 4-dimensional numerical

semigroup. From the proof of Proposition 2.26, we consider the case k # 0 and
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I = 0. There exists a finite subset {(a1,0),...,(a,,0)} = A; € A such that
ged(Ayp) = (1,0). Hence n = 2 so that A ={(0,1), (1, k), (a1,0), (az,0)}.

For the case k = 0 and [ # 0, the proof is similar to the first case so that
A={(1,0),(1,1),(0,b1), (0,b2)}. O

For n > 4, n-dimensional numerical semigroups always exist. Consider the set
{(0,1),(1,k),(n,0),...,(2n—3,0)}. Since there are no elements (n+1,0) such that
(n+1,0) = ao(n,0)+---+a;—1(n+i—1,0)+ a1 (n+i+1,0)+- - - +a,-3(2n—3,0)
where a; € N for all 0 < ¢ < n — 3. Hence this set always be a minimal system of

generators of an n-dimensional numerical semigroup.

Proposition 2.29. Let S be a numerical semigroup and a,b positive integers such
that G(S) = Ta—1-0)\{(0,0)}. Let Ay = {(z,y) |[a <2< 2a—-1and 0 <y <
b—1} and Ay = {(z,y) |0 <z <a—1and b <y <2b—1}. Then the minimal
system of generators of S is Ay U Ay. Moreover, its minimal system of generators

has 2ab elements.

Proof. To show that A; U Ay is a minimal system of generators of S, we show
that A; U Ay = S*\(S* + 5%). Let (x,y) € A;. Suppose that there exists
(x1,y1), (x2,y2) € S* such that (x1,y1) + (29, y2) = (x,y). Since z < 2a — 1,
we have that x; < a for some i. By this i, we have that b < y;. This contradits
b<y1+ys =y <b—1. Then (z,y) € S*\(S* + 5*). When (z,y) € A, the proof
is similar.

For the reverse inclusion, let (z,y) € N? such that (z,y) ¢ A U Ay. If 2 < a,
then 2b <y and (z,y) = (x,b) + (0,b+ k) where k € N. If a <z < 2a, then b < y
and (x,y) = (x,y — b) + (0,0). If 2a < z, then (z,y) = (a,0) + (a + k,y) where
k € N. Therefore, (z,y) ¢ S*\(S* +5*). Since A; and A, are disjoint, its minimal

system of generators has 2ab elements. O
Remark 2.30. For a numerical semigroup S with G(S) C [(q—1-1), We set
e Ay ={(z,y)|a<r<2a—1land 0<y <b— 1}

e Ly ={(z,y)|0<xr<a—Tland b<y < 20— 1}.
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From Proposition 2.29, it is not hard to see that Ea—1p—1) C (A1 U Az). Then the

set (S N Ig—15-1)) U (A1 U Ay) is a system of generators of S which contains at

most 3ab elements.

We end this chapter with an algorithm for finding the minimal system of gen-

erators. Given a numerical semigroup S, the following informations are required.

Set positive integers a and b so that G(S) € Iq—1p—1)-

Set G =@, Ag = SN Iy-1p-1) and Ay, Ay from the Remark 2.30.
Set R; = {(z,y) € AgU A UAy |y =1} where 0 <7< 2b—1.
Define an order < on N? by (z1,11) < (22,12) if y1 = y2 and z1 < xs.

The set of all maximal elements of X C N2 respect to the relation < is

denoted by Max<.X.

The algorithm is the following steps:

1.

Set 1 =2b— 1.

If (7'1,7'2) — (gl,gg) ¢ S for all (g1,g2) S AOUA1 UAQ and (7'1,7'2) c MaXSRi,
then add (r1,72) to G.

Remove (r1,72) from R; and Ay U A; U As.
If R; # @, then repeat step 2.
If 7 # 0, then replace R; in 2., 3. and 4. by R;_; and repeat step 2.

(G is a system of generators of S.

Example 2.31. From Example 2.14, we set (a,b) = (3,2) so that G(S) C I2.1).

Ay = {(070)7 (270)7 (17 1)}

A ={(z,y)|3< e <band 0 <y < 1}

o Ay ={(z,y)|0<zr<2and 2<y <3}

e Ry={(0,0),(2,0),(3,0),(4,0),(5,0)}.
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e R ={(1,1),(3,1),(4,1),(5,1)}.
e Ry =1{(0,2),(1,2),(2,2)}.
e Ry =1{(0,3),(1,3),(2,3)}.

Set i« = 3. Then {(2,3)} = Max<R3. Since (2,3) — (0,3) = (2,0) € 5, we
remove (2,3) from R3. Since Rz = {(0,3),(1,3)} is not the empty set, we repeat
the second step with {(1,3)} = Max<Rs. Since (1,3) — (0,2) = (1,1) € S, we
remove (1,3) from R3. Since R3; = {(0,3)} is not the empty set, we repeat the
second step with {(0,3)} = Max<Rs3. Since (0,3) — (g1,92) ¢ S for all (g1,90) €
AgU A U Ay, we add (0,3) to G. After removing (0, 3) from R3, we have that R3

is the empty set. Then we consider Ry;. We continue this process and finally get

G ={(2,0),(3,0),(1,1),(0,2),(1,2),(0,3)}.



CHAPTER I11
IRREDUCIBLE NUMERICAL SEMIGROUPS

In this chapter, we first introduce the special gap of a numerical semigroup
and an irreducible numerical semigroup. The concept of special gaps lead to the
extension of a numerical semigroup S to a numerical semigroup S” with |S"\S| = 1.
Then we study the structure of symmetric numerical semigroups and provide some
results of symmetric numerical semigroups. After that we give the characterization
on a numerical semigroup so that it can be written as an intersection of symmet-
ric numerical semigroups containing it. Finally, we introduce fundamental gaps.
This gives another method for finding all numerical semigroups containing a fixed

numerical semigroup.

3.1 Irreducible Numerical Semigroups

In this part, we investigate some results of irreducible numerical semigroups
analogusly to [4] and [6]. Our main results are to characterize irreducible numerical

semigroups by its maximal gap and its special gap.

Definition 3.1. Given a nonempty finite subset A of N?. An element (a,b) of A
is mazimal if for any (z,y) € A, 2* +y? < a*+b*. The set of all maximal elements

of A is denoted by M(A). For a numerical semigroup S, the set of all maximal

gaps of S is denoted by MG(S).

Definition 3.2. Let S be a numerical semigroup. A gap g of S is a special gap if
for any s € §*, g+ s € S and 2g € S. The set of all special gaps of S denoted by
SG(S).

The next proposition follows directly from the definition of the special gap of

a numerical semigroup.
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Proposition 3.3. Let S be a numerical semigroup and g a gap of S. Then g €
SG(S) if and only if SU{g} is a numerical semigroup.

To compute all numerical semigroups containing a fixed numerical semigroup,
let S be a numerical semigroup. Set O(S) = {S}. By Proposition 3.3, we have
that SU{g1},...,SU{g,} are numerical semigroups where {g1, ..., g,} = SG(S).
Then add those numerical semigroups S U {g;} to O(S) for all 1 < ¢ < r. For
each S; € O(S5), we apply Proposition 3.3 and add them to the set O(S) until
N? € O(9).

Proposition 3.4. Let S be a numerical semigroup. Then MG(S) C SG(S).

Proof. Let (a,b) € MG(S). Since a® + bv? < (2a)? + (2b)?, (a,b) + (a,b) € S.
Next, suppose that there exists (z,y) € S* such that (z,y)+ (a,b) € G(S). Hence
22 +y? < (z+a)*+ (y +b)? and it contradicts the property of MG(S). Therefore
MG(S) € SG(S). O

Proposition 3.5. Let S and T be numerical semigroups such that S C T'. Then
SUM(T\S) is a numerical semigroup. Moreover, M(T\S) C SG(S).

Proof. Let (a,b) € M(T\S). Suppose that there exists (z,y) € S* such that
(a+z,b+y) € G(S). Then (a+x,b+y) € T\S by S C T. Since a® +b* <
(a+z)?+(b+y)?, it contradicts the property of M(T\S). Hence for any (x,y) € S*,
(a+z,b+y) €S. Since a* +b* < (2a)* + (2b)?, we have that (a,b) + (a,b) € S.
For any (a,b), (c,d) € M(T\S), we have that a® + 0> < (a+c)? + (b+ d)?. The
property of M(T\S) forces that (a + ¢,b+ d) must be an element of S. Now, we
can conclude that S U M (T\S) is a numerical semigroup. O

Definition 3.6. A numerical semigroup is irreducible if it cannot be expressed as

ab intersection of two numerical semigroups properly containing it.

Remark 3.7. From Proposition 3.4, any numerical semigroups having more than

one maximal gap are not irreducible.

Example 3.8. To check that a numerical semigroup S with G(S5) = {(0,1), (1, 1),
(0,2),(1,2),(2,2)} is irreducible, we compute SG(S) = {(2,2)} and set S; =
S UA{(2,2)}. Next, compute SG(S1) = {(1,1),(1,2)} then set S5 = S U{(1,2)}
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and S3 = S; U {(1,1)}. Repeat this process until it return to N2. The proper
numerical semigroups containing S can be shown by the diagram in Figure 3.1. It

is easy to check that S # 5; N S; for all 4,5 € {1,2,3,4,5,6}.
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900 000
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- 000
-@00
. 900
- 000

Figure 3.1: Numerical semigroups containing S

When we say that a numerical semigroup is maximal, we mean it is maximal

in the sense of subset.

Proposition 3.9. Let S be a numerical semigroup such that MG(S) has one

element. The following statements are equivalent.
1. 5 is irreducible.
2. 8 is mazimal among numerical semigroups T with MG(T) = MG(S).
3. S is mazimal among numerical semigroups T with T N MG(S) = @.

Proof. (1)—(2) Assume that S is irreducible. Let T be a numerical semigroup such
that S C T and MG(T) = MG(S). Note that S = SUZ = (SNT)U(MG(T)NT') =
(SUMG(T))NT = (SUMG(S))NT. Since SUMG(S) is a numerical semigroup
properly containing S, it forces that S = T because S is irreducible. Then S is
maximal.

(2)—(3) Assume that S is maximal among numerical semigroups 7" such that

MG(T) = MG(S). Let T be a numerical semigroup such that S C T and T'N
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MG(S) = @. Since MG(S) has exactly one element, assume that MG(S) =
{(a,b)}. We have that T'U E(,) is a numerical semigroup and MG (T U E(,)) =
{(a,b)} = MG(S). Hence T'U E,) € S by the hypothesis. Then S =T
(3)—(1) Assume that S is maximal among numerical semigroup 7" such that
TNMG(S) =@. Let S; and S be numerical semigroups such that S C S; and
S C S,. Then S;NMG(S) and S, N MG(S) are nonempty sets by the hypothesis.
Since M G(S) has one element, we have that MG(S) C S; N S,. It follows that S

is irreducible. O

Example 3.10. Given (a,b) € N2. Trreducible numerical semigroups with the
maximal gap (a,b) may not be unique. The following diagram is an example of

irreducible numerical semigroups with the maximal gap (2,2).
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Figure 3.2: Irreducible numerical semigroups with maximal gap (2, 2)

Proposition 3.11. Let S be a numerical semigroup such that {gy, ..., g,} € G(S5).

Then S is mazimal among numerical semigroups T with T N {g1,..., 9.} = @ if
and only if SG(S) C {g1,---,9n}-

Proof. Assume that S is maximal among numerical semigroups 7" with TN{g1, ..., gn}
= . Let z € SG(5). Then S U {z} is a numerical semigroup containing S. By
the hypothesis, we have that (S U {z}) N {g1,..., 9.} is not empty. This shows
that © € {g1,...,9,} and hence SG(S) C {g1,...,n}-

For the converse, assume that SG(S) C {g1,...,9»}. Let T be a numerical
semigroup such that S C T. By Proposition 3.5, we have that M (T\S) C SG(S) C
{91,--.,9n}. Hence TN{g1,..., 9.} # @ and then S is maximal among numerical
semigroups 7" with TN {g1,...,9,} = @ as desired. O

Proposition 3.12. A numerical semigroup S is irreducible if and only if SG(S)

has at most one element.



21

Proof. It is easy to see that N? is irreducible. Let S # N? be a numerical semigroup.
Assume that S is irreducible. Suppose that SG(S) has more than one element.
Let g1, g0 € SG(S) be distinct elements. Then (S U{g;}) N (S U{go}) = S. This
contradicts S is irreducible. Hence SG(S) has exactly one element.

For the converse, assume that SG(S) has one element. Since MG(S) C SG(S5),
we have MG(S) = SG(S). By Proposition 3.11, S is maximal among numerical
semigroups 7" with 7'N M G(S) = @. Since MG(S) has exactly one element, S is
irreducible by Proposition 3.9. |

The next proposition gives us the process for constructing a numerical semi-
group when gaps are fixed. This process can be applied for constructing an irre-

ducible numerical semigroup too.

Proposition 3.13. Let S be a numerical semigroup such that {g,...,g,} € G(5)
and H = {9 € G(S) | g+g € Sand g — g ¢ S for all i}. If H is a nonempty
set, then S U {h} is a numerical semigroup not intersecting {g1,...,gn} for all

he M(H).

Proof. We show that M(H) C SG(S). If h = (hy, hy) € M(H), then (2hy,2hs) €
S. Suppose that there exists (x,y) € S* such that (hy, hs) + (x,y) ¢ S. Since
S is close, we have (2(hy 4+ ®,hy + y)) = (2h1,2hs) + (22,2y) € S. Therefore
gi—(h1+x, he+y) € S for some i by (hy, hy) € M(H). It follows that g;— (h1, he) €
S which yields a contradiction. Hence M(H) C SG(S) and then S U {h} is a

numerical semigroup. O

Proposition 3.14. Let S be a numerical semigroup with {g1,...,9,} € G(95).
Then S is mazximal among numerical semigroups T with T N {g1,..., 9.} = @ if

and only if for any g € G(S), g+ g € S implies g; — g € S for some 1 <i < n.

Proof. Let S be a numerical semigroup be such that S is maximal among numerical
semigroups 7" with TN {g1,..., 9.} = . Let g € G(S) be such that g +¢g € S.
If g;—g ¢ S for all i, then the set H in Proposition 3.13 is not empty. Hence
S U {h} is a numerical semigroup not intersecting {gi, ..., ¢g,} where h € M(H).
It contradicts the maximality of S. Then ¢g; — g € S for some +.
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For the converse, assume that for any g € G(S), g + g € S implies g; — g € S
for some 1 < ¢ < n. Let T be a numerical semigroup such that S C T and
g € M(T\S). Hence g+ g € S by Proposition 3.5. Following from assumption, we
have that g; —g € S for some 7. Since S C T and g € T, we have that g; € T". This

shows that S is a maximal numerical semigroup not intersecting {g1,...,g,}. O

Corollary 3.15. Let S be a numerical semigroup with the maximal gap g'. Then

S is irreducible if and only if for any g € G(S), g+ g € S implies ¢ —g € S.

Proof. This follows from Proposition 3.9 and Proposition 3.14. (I

To construct a maximal numerical semigroup with gaps ¢1, ..., g, containing
a fixed numerical semigroup, we can use Proposition 3.13. Firstly, set Sp = S U
(Eg,N...NE,, ) where S is a fixed numerical semigroup.

It is not hard to see that for any (a,b) € S and (¢, d) € (E, N...NE,,),
(a,b) + (c,d) € (E,,N...ME, ), 2(a,b) € S and 2(c,d) € (E,,N...NE,,).
Hence S is a numerical semigroup.

For n € N, construct S,;; = S, U{A(S,)} where h(S,) € M(H,) and H, =
{9 € G(S,) | g+g € Sandgi—g ¢ Sforalll < i < m}. Since G(Sp) is a
finite set, this process must stop when H, is the empty set. The last numerical

semigroup occured by this process is a maximal numerical semigroup with gaps
g1, - - -, 9gm- This process can be illustrated by the following example.

Example 3.16. Let S = E33y U {(0,0),(1,2),(3,3)} be a numerical semigroup.
To construct a maximal numerical semigroup S’ with {(3,2), (1,3),(2,3)} € G(5)
and S C 5, we set Sy = SU(E32) N E3) N Eeg) = EsU{(0,0),(1,2),(3,3)}

and compute the set H,.

® Hy= {(370)7 (27 1)7 (37 1)7 (072)7 (272)7 (073)} ;S =S50U {(37 1)}

Hy={(3,0),(2,1),(0,2),(2,2),(0,3)} ; 52 = 51 U{(3,0)}

Hy = {(2,1),(2,2),(0,3)} ; Sy = S5 U {(0,3)}

Hy ={(2,1),(2,2)}; Sa =53 U{(2,2)}

Hy={(2,1)} ;5 =S5, 0{(2, 1)}

Hs; = @ and S5 is a maximal numerical semigroup as desired.
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Figure 3.3: A process for constructing a maximal numerical semigroup
3.2 Symmetric Numerical Semigroups

In this part, we investigate a special kind of irreducible numerical semigroups,
called symmetric numerical semigroups. We provide some results analogusly to

[1], [2] and [6].

Definition 3.17. An element (a,b) of N? is odd(even) if at least one of a,b is
odd(both of a and b are even).

Proposition 3.18. Let S be an irreducible numerical semigroup. Then there exists

a gap (a,b) of S such that G(S) C Iap)-

Proof. Let (a,b) € MG(S). Suppose that there exists (z,y) € G(S) but (z,y) ¢
Iqp. If @ < @, then consider the numerical semigroup 5" = (S, (x,y)). Hence
(a,b) € S" by Proposition 3.9. There exists (x;,y;) € S and n € N such that
(x1,01) 4+ -+ (n, yn) + (z,y) = (a,b). Since a < z, it follows that (z1,y1)+---+
(%5, yn) = (a,b) and it is a contradiction. Hence G(S) C I(, ). For the case z < a,

we have that b < y and the proof is similar. 0

Proposition 3.19. Let S be a numerical semigroup with odd gap ¢'. If H ={g €
G(S) | g —g ¢ S} is not the empty set and h € M(H), then SU{h} is a numerical
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semigroup not containing ¢ .

Proof. Assume that H{g € G(S) | ¢ —g ¢ S} is a nonempty set and h = (hy, he) €
M(H). We show that h € SG(S). Suppose that there exists s = (s1, s3) € S* such
that h +s € G(S). Since hf + hj < (hq + s1)* + (ha + $2)%, ¢ — (h+s) € S. Since
s € S, it follows that ¢ — h € S and it is a contradiction. Next, suppose that
h+h € G(S). We have that ¢ — (h+h) € S by h? +h3 < (hy + h1)? + (ha + ha)*.
Following from the fact that ¢’ is odd, ¢' — (h + h) = s for some s € S*. Since
g —h=h+s €S, itis a contradiction. So S U{h} is a numerical semigroup not

containing ¢'. O

Proposition 3.19 may not be true when odd gap is removed. Let S be an
irreducible numerical semigroup given by the following diagram. Note that the
maximal gap of S is (4, 2) which is even. Compute the set H as in the Proposition
3.19, we have that H = {(2,1)} but S U {(2,1)} is not a numerical semigroup
because (4,2) ¢ S.

4 JOXK X J@

1

OXGRON X )
@O O @O
0 L 2 3 4
Figure 3.4: Numerical semigroup S

Definition 3.20. A numerical semigroup is symmetric if it is irreducible with the

odd maximal gap.

Proposition 3.21. Let S be a numerical semigroup with the maximal gap g'. Then

S is symmetric if and only if for any gap g of S, ¢ —g € S.

Proof. Assume that S is symmetric. Then ¢’ is odd. If g € G(S) and ¢’ — g ¢ 5,
then the set H of Proposition 3.19 is not the empty set. For h € M (H), we have
that SU{h} is a numerical semigroup with odd maximal gap ¢’. This contradicts
Proposition 3.9. Hence ¢’ — g € S.

For the converse, assume that ¢ — g € S for all ¢ € G(S). If ¢ = (g1, 5)

is even, then (%, 9—25) € G(S5). This contradicts the hypothesis. Hence ¢’ is odd.
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Next, let T" be a numerical semigroup such that S C T. For any g € T\S,
g —g e S CT. Hence ¢ € T. This implies that S is a maximal numerical
semigroup with MG(S) = {¢'}. So S is irreducible. O

Proposition 3.22. Let S be a numerical semigroup with odd maximal gap (a,b).

(a+1)(b+1

Then S is symmetric if and only if G(S) contains exactly 5 ) elements.

Proof. Assume that S is symmetric. Then G(S) € (.3 and hence the cardinality
of G(5) is bounded by (a + 1)(b+ 1). We note the fact that for any (z,y) € S,
(a,b)—(z,y) ¢ S. From this fact, we have that G(5) has at least W elements.

Since S is symmetric, we follow from Proposition 3.21 so that (a,b)— (g1, g2) € I(ap)

(a+1)(b+1)

5 elements.

(a+1)(b+1)
2

for any gaps (g1, ¢2) of S. Hence G(5) has exactly

For the converse, assume that G(S) contains exactly elements. If
(x,y) € Iiapy NS, then (a,b) — (x,y) € G(S) by the above fact. Moreover, (a,b) —
(#,y) € Iy Hence (z,y) € Iap NS implies (a,b) — (z,y) € Lup N G(S).
This shows that the set I, N G(S) has at least w elements. By the
hypothesis, we have that G(S) C Ij,p). Then for any (z,y) € G(S), we have that
(a,b) — (z,y) € S otherwise G(S) has more than W elements. Hence S is

symmetric by the Proposition 3.21. O

We know the form of 4-dimensional numerical semigroups from the Chapter
II. To characterize 4-dimensional symmetric numerical semigroups, we need the

following proposition.

Proposition 3.23. Let S be an n-dimensional numerical semigroup with minimal
system of generators {(0,1), (1, k), (a1,0),...,(an2,0)} witha; < as <--- < a,_»
and k > 1. Then S is symmetric if and only if a; =n — 2 and a;;1 = a; + 1 for
2<i<n-3.

Proof. Assume that S is symmetric. We claim that (a; — 1, (a; — 1)k —1) € G(95).
If not, there exists a,...,a, € N such that a;(0,1) + as(1, k) + ag(a1,0) +-- - +
ap(an-2,0) = (a1 — 1,(ay — 1)k — 1). Since a1 < az < -+ < ap—2, we have
that ap = a; — 1 and o; = 0 for all 3 < ¢ < n —2. Then o;(0,1) + (a; —
1)(1,k) = (a1 — 1, (a; — 1)k — 1) forces that oy € N. It is a contradiction. Hence
(ap — 1, (a1 — )k = 1) € G(5).
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Let | be the largest integer such that ([,0) € G(S) and (I +¢,0) € S for all
positive integers i > 1. By Proposition 3.18, we have that (I, (a; —1)k—1) € G(95)
and we claim that MG(S) = {(I,(a; — 1)k — 1)}. It is sufficient to show that
(I,(a; — 1)k) € S. Let a be a nonnegative integer such that aa; <1 < (a + 1)a.
Hence 0 < | — aay < ay. Since (I, (a1 — 1)k) = a(a1,0) + (I — aay)(1, k) + (a1 k —
Ik + aark — k)(0,1), we already prove the claim.

It is not hard to see that {(i,(a; — 1)k —1) | 0 <7 < a; —2} € S. Then
{(l—a1+2,0),(l—a;+3,0),...,(l—1,0),(1,0)} C G(S) by the fact in Proposition
3.22. It follows that a;|(I+1) and a1|(l —a; + 1) because l —a; +2,l—a; +3,...,1
are consecutive a; — 1 numbers. By closed property of semigroup, we have that
(l —a;+2—na,0),(l —a; +3—=mna,0),..., (Il —nay,0) ¢ S for all n € N.

To prove that a; = n — 2, we consider the set {(l + 1,0),...,(l + a1,0)} C S.
If a1 > n — 2, then the above set has at least n — 1 elements. By the system of
generators, (I +¢,0) = a;(ay,0) 4+ as(l +2,0) + -+ 4+ a;_1(l +¢— 1,0) for some
nonnegative integers o, . ..,a;_; and 2 < ¢ < a;. This is impossible. If a; < n—2,
then the above set has at most n — 3 elements. Hence a,,—o ¢ {(l 4+ 1,0),...,(l +
a1,0)} and then a,_» can be represented by a positive linear combination of (ay,0)
and (I + ¢,0) for some 1 < i < ay. This contradicts the minimality of system of
generators. It follows that a; =n—2and ay ={+2,a3 =1+3,... 0,90 =1+n—2.

For the converse, assume that a; =n—2and a;.1 =a; +1for 2 < <n—3.
We see that as,...,a,_o are consecutive n — 3 numbers. Then ma; = a, — 1 for
some positive integer m. Hence ((m — 1)a; + a; — 1,0) = (ma; — 1,0) must be a
gap of S.

We claim that G(S) = {(pa; +7r,0) € N> | pr e NO<p<m-—1,1
r <a —1land0 < b < rk}. To prove this, let (z,y) € G(S). Hence x <

IA

may — 1. If a1|z, then (x,y) = a(ay,0) +y(0, 1) for some o € N and it contradicts
(x,y) € G(S). Assume that x = pa; + r where p,r € N, 0 < p < m — 1 and
1 <r<a—1. Ifrk <y, then (z,y) = p(a1,0) + r(1,k) + (y — rk)(0,1). This
contradicts (z,y) € G(S). Hence y < rk.

Next, we show that (pa;+r,rk—1) € G(S) for all nonnegative integers p, r such
that 0 <p <m-—1and 1 <r <a;—1. Suppose that there exists A; € N such that
(pay +r,rk—1) = A (a1,0) + Aa(1, k) + A3(0,1). If Ay < p, then Ay > a3 +r and it
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is impossible because we have A3 < 0. So A\; = p and Ay = r. This leads to A3 < 0
again. Therefore (pa; +r,rk—1) € G(S) foral 0 <p<m—1land 1 <r <a;—1.
It is not hard to see that {(1, k), (2,2k),..., (a1 —1,(a; — 1)k)} € S. Now we have
the set G(S) as desired.

From the set G(S), it follows that MG(S) = {(ma; — 1,(a; — 1)k — 1)}. If
ap is even, then ma; — 1 is odd. If a; is odd, then (a; — 1)k — 1 is odd. Hence
the maximal gap of S is odd. By counting the number of gaps of S, we have that
the number of its gaps are m(k + 2k +--- + (a1 — 1)k) = M Hence S is
symmetric by Proposition 3.22. O

Corollary 3.24. Let S be an n-dimensional numerical semigroup with the minimal
system of generators {(1,0),(1,1),(0,b1),...,(0,b,-2)} with by < by < -+ < bp—s
and | > 1. Then S is symmetric if and only if by = n — 2 and by, = b; + 1 for
2<i<n—3.

Proof. For the only if part, assume that S is symmetric. Then we claim that
MG(S) = {(by — 1)l — 1,k} where k is the largest integer such that (0, k) € G(95)
and (0,k +4) € S for all positive integer i@ > 1. The rest of the proof follows
similarly to Proposition 3.23.

For the converse, assume that by = n—2 and b;17 = b;+1 for 2 < ¢ < n—3. Since
ba, ..., b,_o are consecutive n — 3 numbers. Then mb; = by — 1 for some positive
integer m. We claim that G(S) = {(a,pby +7) € N* | pr e NNO<p<m-—1,
1 <r <b—1land0 < a < rl}. The rest of the proof follows similarly to
Proposition 3.23. 0

Corollary 3.25. A J-dimensional numerical semigroup is symmetric if and only

if its minimal system of generators satisfies one of the following sets.
1. {(0,1),(1,¢),(2,0),(a,0)} where a is an odd integer and ¢ > 1.
2. {(1,0),(¢,1),(0,2),(0,a)} where a is an odd integer and ¢ > 1.
Proof. This follows from Proposition 2.28, Proposition 3.23 and Corollary 3.24. [

Proposition 3.26. Let S be a 5-dimensional numerical semigroup with the mini-
mal system of generators {(0,1), (1, k), (a1,0), (az,0), (m,n)} with 0 < k,m,n and

1 <ay <ag. Then S is symmetric if and only if ay =3, m =2 andn = k.
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Proof. Assume that S is symmetric. Since 0 < k,m,n, it follows that (z,0) € S
if and only if (z,0) = ay(a1,0) + as(az,0) when oy, as € N. This is equivalent to
(x,0) € S if and only if © = aya; + azay. By Proposition 1.23, ajas — a1 — as is
the Frobenius number of the numerical semigroup on N with minimal system of
generators {ay, as}. Hence (ajas —a; —a9,0) € G(S) and (ayas —a; —as+1i,0) € S
for all positive integer i > 1. Moreover, the set {(z,y) € G(S) | y = 0} has exactly

%21_“2“ elements by Proposition 1.23. Since S is symmetric, we assume that

MG(S) = {(a1as — a; — as,y)}.

To prove that y = k — 1, we follow from the results of Proposition 3.18 so
that k — 1 < y. If k—1 < y, then the cardinality of G(S) has at most (y +
1)(@e=e=a2tl _ 1) 4 k. This contradicts Proposition 3.22. Hence y = k — 1 and
MG(S) = {(a1as — a1 — az, k — 1)}.

Next, we show that a; = 3. If a1 = 2, then MG(S) = {(a2 — 2,k — 1)}.
Since {(0,1),(1,k),(2,0), (az,0)} generates an irreducible numerical semigroup .S’
with MG(S") = {(ay — 2,k —1)}. Then S" C S and (ay — 2,k — 1) € S. This
is a contradiction. If a; > 4, then we follow from the maximal gap of S so
that (2,k),(3,k) € S. Since there are no nonnegative integers ay,as such that
a1(0,1) + ao(1,k) = (2,k), m =2 and n = k. For the same reason, we must have
(m,n) = (3, k) which yields a contradiction. Hence a; = 3 and the maximal gap
of S forces that (m,n) = (2,k).

For the converse, assume that a; = 3, m = 2 and n = k. Then S is generated
by {(0,1),(1,k),(2,k),(3,0), (az,0)}. Since {(x,y) € G(S) | y = 0} has exactly
ay — 1 elements, let G, = {(91,0),...,(ga,—1,0)} C G(S). We claim that G(S) =
{(z,y) eN? | (z,0) € G, and 0 < y < k —1}.

Let (z,y) € G(S). Then (z,0) € G,. Suppose that k < y. If (z —1,0) € G,
then 3|(x — 2) so that (z,y) = (z —2,0) + (2,y) = a(3,0) + (2, k) + (y — k)(0,1)
where o« € N. It contradicts (z,y) € G(S). If (x —1,0) € S, then (x — 1,0) =
a1(3,0)+as(ag, 0) for some ay, s € N. Hence (z,y) = a;1(3,0)4+az(az, 0)+(1, k) +
(y — k)(0,1). This contradicts (x,y) € G(S) again. Hence 0 <y <k — 1.

Next, let (z,y) € {(z,y) € N* | (2,0) € G, and 0 < y < k — 1}. Suppose that
(z,y) = a1(0,1) + as(1, k) + as(2, k) + a4(3,0) + as(az,0) where ay,...,a5 € N.
Since (z,0) € G, a; # 0 for some i € {2,3}. Hence y > k > k — 1 which yields a
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contradiction. Now we have the set G(S) as desired.
From the set G(5), we have that MG(S) = {(2a;—3, k—1)} and the cardinality

of S'is (ag — 1)k. Since 2a; — 3 is odd, S is a symmetric numerical semigroup. O

Corollary 3.27. Let S be a 5-dimensional numerical semigroup with minimal
system of generators {(1,0), (1,1),(0,b1),(0,b3), (m,n)} with 0 < I;m,n and 1 <
by < by. Then S is symmetric if and only if by =3, m =1 and n = 2.

Proof. For the only if part, assume that S is symmetric. We claim that M G(S) =
{(l=1,b1by — by —bs)}. The rest of the proof follows similarly to Proposition 3.26.

For the converse, assume that by = 3, m = [ and n = 2. Then S is generated
by {(1,0),(l,1),(1,2),(0,3),(0,b2)}. Since {(z,y) € G(S) | = = 0} has exactly
by — 1 elements, let G, = {(0,91),...,(0, g,—1)} € G(S). We claim that G(S5) =
{(z,y) € N> | (0,y) € Gy,and 0 < z < [ — 1}. The rest of the proof follows
similarly to Proposition 3.26. O

Proposition 3.28. Let a,b be positive integers not simultaneously even. The
number of symmetric numerical semigroup S with maximal gap (a,b) is at least

2([sDUAED where [x] is the least integer which is greater or equal to x.
Proof. When both of a and b are odd, we construct the following subsets of N2,
° Alz{(m,n)|O§m§“—;1andbi21§n§b}.
o Ay ={(m,n) | <m<aand 2 <n < b}\{(a,b)}.
o Ay={(mn)| 2 <m<aand0<n< B}
o S=FEupUAyU{(0,0)}.

Note that the cardinalities of A; and Az are equal which are %“(b“) and the
cardinality of N?\S is w. For any (m,n) € Ay, we have (a —m,b—mn) € A;
because “—;“1 <ag—-m<aand 0<b—n< b;21 Moreover, for any (m,n) € As,
we have (a —m,b—n) € A; because 0 < m < “—;1 and bi; < n < b. Next, we
extend the numerical semigroup S to be the set S’ by adding those elements (m,n)

from A; and Az to S and removing (¢ —m,b —n) from S until the cardinality of

N2\ S’ is equal to % The number of the set S’ that can be produced in
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this way is 2 ) For any odd integer z, x = 2k + 1 for some integer k. Then

(%W = (%W =k+1= “”Qi Hence 2“5 can be rewrited as 2 $D(5]),

To prove that S’ is closed, it suffices to show that A; + A3 C S. Since A; + A5 =
{(m,n) | “—;“1 <m< 3“—2_1 ande“Tl <n< L;l}, we have that A; + A3 C S C 5.
Now S’ is numerical semigroup with |G(S)| = w and then S’ is a symmetric
numerical semigroup.

For the case only one of a and b is odd, we may assume that a is odd and b is

even. Then construct the following subsets of N2.
° Alz{(m,n)|O§m§“—;1andg+1§n§b}.
o Ay ={(m,n) | <m<aand 2+1<n<b}\{(a,b)}.
o Ay={(m,n) | <m<aand0<n<t-1}.

}.

o Ay={(mn) | <m<agandn=

N o

e 5= E(a,b) U AQ UA4 U {(0,0)}

Note that the cardinalities of A; and A; are equal which are w and the
cardinality of N2\ S is w + <. For any (m,n) € Ay, we have (a—m,b—n) €
As because “—;1 <a-m<agand0<b=—n< g— 1. Moreover, for any (m,n) € As,
we have (a —m,b—n) € Ay because 0 < m < %1 and g +1<n<b We extend
the numerical semigroup S to be the set S’ by adding those elements (m,n) from
Ay and Aj to S and removing (a —m,b—n) from S. We stop the process when the
cardinality of N?\S" is equal to w The number of the set S’ that can be
(a+1)(®)

produced in this way is 27 1 (= 2((5)((%})). Proving that S’ is closed is similar
to the first case. g

3.3 Intersections of Symmetric Numerical Semigroups

Given a numerical semigroup S, if S is not irreducible, then there exists nu-
merical semigroups S; and S5 containing S such that S = S; N Sy. If S is not
irreducible, then there exist numerical semigroups S; and S, containing S such
that S; = S3 N Sy Since G(S) is finite, this process guarantees that S can be

written as an intersection of irreducible numerical semigroups.
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In this part, we study the condition for numerical semigroups that can be
expressed as an intersection of symmetric numerical semigroups. Most of the

results in this part are analogus to [2].

Proposition 3.29. Let S be a numerical semigroup and g an odd gap of S. There
exists a symmetric numerical semigroup S’ such that S C S" and MG(S") = {g}.

Proof. Let S; = SUE,. It is not hard to see that S is a numerical semigroup con-
taining S and MG(S1) = {g}. By Proposition 3.19, we can construct a symmetric
numerical semigroup S’ such that S; C S and MG(S") = {g}. O

Proposition 3.30. Let S be a numerical semigroup and g an even gap of S. Then

the following statements are equivalent.
1. There exists a symmetric numerical semigroup S" with S C S" and g € G(5").
2. There exists an odd element v € N* such that g+ x € G((S, x)).

Proof. (1) — (2) Assume that there exists a symmetric numerical semigroup S’
with S € S" and g € G(5”). Since S’ is symmetric, we have that ¢’ — g € S’ where
g € MG(S'). Since ¢ is odd, set # = ¢’ — g which is an odd element. Hence
(S,z) € 5" which yields g+ € G({(S.z)) by g+ a2 =¢ € MG(Y).

(2) — (1) Assume that there exists an odd element = € N? such that g + = ¢
(S,z). Let Sy = (S, ) UE, 4, be a numerical semigroup. Hence MG(Sy) = {g+x}
which is an odd element. Then there exists a symmetric numerical semigroup S’
such that Sy C 8" and MG(S') = {g + =}. Therefore S C Sy C 5. If g € S’, then
g+ x € 5" which is a contradiction. Hence g ¢ 5. O

Proposition 3.31. A numerical semigroup S can be expressed as an intersection
of symmetric numerical semigroups if and only if for any even gap g of S, there

exists an odd element x € N? such that g+ x € G((S,z)).

Proof. Assume that S can be expressed as an intersection of symmetric numerical
semigroups. Let g be an even gap of S. By the hypothesis, there exists n € N and
symmetric numerical semigroups 51, ..., S, such that S = S;NS;N---NS,. Then
g € G(5;) for some 1 < j < n. We finish the proof by Proposition 3.30.
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For the converse, assume that for any even gap g of S, there exists an odd
element z € N? such that g +x ¢ (S,z). Let g € G(S). If g is odd, then let
S, be a symmetric numerical semigroup such that S C S, and MG(S,) = {g} by
Proposition 3.29. If g is even, then let S, be a symmetric numerical semigroup
such that S C S, and g € G(S,) by Proposition 3.30. It is not hard to see that
SC () S, Notethat () S, isa numerical semigroup because G(S) is finite.

geG(S) geG(S)
Since g € G(9) implies g € G(5,), it follows that g € G( () 5,). This proves
geG(S)
that [ S, CS. Hence S= [\ S,. O
geG(S) geG(S)

Proposition 3.32. Let S be a numerical semigroup such that S = SyN---NS, for
some numerical semigroups Sy, ..., S,. Then MG(S) C MG(S;)U---UMG(S,).

Proof. Let (a,b) € MG(S). Since S = S N...NS,, there exists S; such that
(a,b) € G(S;). If (a,b) ¢ MG(S;), then there exists (¢,d) € G(S;) such that
a’® +b? < &+ d*. Moreover, (c,d) € G(S) which contradicts (a,b) € MG(S).
Hence (a,b) € MG(S;). O

The maximal gap of every symmetric numerical semigroups is odd. Then the

next corollary follows directly from Proposition 3.32.

Corollary 3.33. Let S be a numerical semigroup which can be expressed as an

intersection of symmetric numerical semigroups. Then MG(S) contains only odd

gaps.

Example 3.34. The converse of Corollary 3.33 may not be true. Let S be a
numerical semigroup with MG(S) = {(0,3),(3,0)} described by the diagram in
Figure 3.5. Since there is no odd element z € N? such that (0,2) +z € G((S, z)),

then S cannot be written as an intersection of symmetric numerical semigroups.

Figure 3.5: Numerical semigroup S
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To illustrate all symmetric numerical semigroups containing S, we follow from
all odd gaps of S and describe those numerical semigroups by the diagram in figure

3.6.

d X X X
I X X X

N W
w

o —
- 00
- Q@@
- Q@@

—
- 900
-00 0
30l X
—

0@
-@0
0
- @0
.00

w

[\V]

o =
- 9000
- 0000
- 0000
- 0000

—
- 9000
- 0000
- 9000
- 0000

Figure 3.6: All symmetric numerical semigroups containing S

Definition 3.35. Let S be a numerical semigroup. A gap g of S is pseudo maximal
if g+ s € S for all s € S*. The set of all pseudo maximal gaps of S is denoted by
PMG(S).

Let S be a numerical semigroup. We define a relation <g on N? by (a,b) <g
(¢,d) if and only if (¢ — a,d — b) € S. It is not hard to see that <g is an order
relation. Denote by Max< X, the set of all maximal elements of X respect to the

relation <g.
Proposition 3.36. Let S be a numerical semigroup. Then PMG(S) = Max<,G(S).

Proof. Let g € PMG(S) and ¢ € G(S) be such that g <g ¢’ and g # ¢’. Then
g — g = s for some s € S*. Since ¢ is a pseudo maximal gap of S, it follows
that g + (¢’ — g) € S. But it is imposible because ¢ € G(S). Hence g = ¢ so
that ¢ € Max<,G(S). For the reverse inclusion, suppose that g € Max<,G(S)
but g ¢ PMG(S). Then there exists s € S* such that g + s € G(S). Hence
(9+s)—g=se€S contradicts g € Max<,G(S). Therefore g € PMG(S). O
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Proposition 3.37. Let S be a numerical semigroup and g, . .., gn all pseudo max-
imal gaps of S and g € N2. Then g € G(S) if and only if gi — g € S for some
1 << n.

Proof. Assume that g € G(5). Following from Proposition 3.36, ¢ € G(S) implies
gi — g € S for some 1 < i < n. For the converse, assume that g; — g € S for some
1 <i < n. Suppose that g € S. Then g; = g+ (g; — g) € S yields a contradiction.
Hence g € G(9). O

Proposition 3.38. Any numerical semigroup with all pseudo mazimal gaps are

odd can be expressed as an intersection of symmetric numerical semigroups.

Proof. Let S be a numerical semigroup with all pseudo maximal gaps are odd.
Let ¢1,...,9, be all pseudo maximal gaps of S. For each 1 < i < n, let S,
be a symmetric numerical semigroup such that S C S, and MG(S,,) = {g;} by
Proposition 3.29. It is not hard to see that S C Sy, N---NS,,. Next, assume that
g € G(S5). By Proposition 3.37, we have that g, — g € S for some 1 < k < n. Since
S C Sy, for all ¢, it follows that gy —g € S, N---N.S,, so that g, —g € S, . Since
gr € G(S,,), it forces that g € G(Sy, ). This proves that S, N---NS, C€S. O

Proposition 3.39. Let S be a numerical semigroup and g, . .., g, all pseudo max-
imal gaps of S. Then S can be expressed as an intersection of symmetric numerical
semigroups if and only if for each even pseudo maximal gap g;, there exists an odd

element x € N? such that g; + = € G((S, x;)).

Proof. The only if part follows from Proposition 3.31. For the converse, assume
that for each even pseudo maximal gap g;, there exists an odd element x € N? such
that g;+x ¢ (S, z;). If g; is even, then there exists a numerical semigroup S,, such
that S C S,, and g; € G(S,,) by Proposition 3.30. If g; is odd, then we have a
numerical semigroup Sy, such that S C S, and g; € MG(S,,) by Proposition 3.29.
To prove that S = Sy, N---NS,,, we follow the proof similarly to Proposition 3.38.
Then S can be expressed as an intersection of symmetric numerical semigroup as

desired. 0

To express a numerical semigroup as an intersection of symmetric numerical

semigroups, we firstly compute the set PMG(S). For each g; € PMG(S), we
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compute a symmetric numerical semigroup as in Proposition 3.39. Then the in-
tersection of those numerical semigroups becomes S. We describe this method by

the next example.

Example 3.40. Let S be a numerical semigroup described by the below diagram.

Q900000
:@ O

2

el JOIe.

| JOX
OO0
ON X0
| JO¥ _

@00
000

Figure 3.7: Numerical semigroup S

Then PMG(S) = {(4,1),(4,2),(5,2),(5,3),(1,4)} and the only even pseudo
maximal gap of S is (4,2). Since (4,2)+(1,0) € G((S,(1,0))), we have that S can
be expressed as an intersection of symmetric numerical semigroups. By the proof
of Proposition 3.39, the intersection is S = Sy.1) N S42) N S(5,2) N S(5.3) N S(1,4)-

To construct a symmetric numerical semigroup S 4), we set Sop = S U E 4).

Then compute the set H in Proposition 3.19.
e H(Sy) =1{(0,1),(0,2),(1,2),(1,3)} and set Sy = So U{(1,3)}
e H(S1)=1{(0,2),(1,2)} and set Sy = S; U{(1,2)}
o H(S;) = @ then set S1.4) = S5

To construct a symmetric numerical semigroup S,2), we set So = (95, (1,0)). Since
H(Sy) = o, set Sw,2) = So. For constructing numerical semigroups S(s 2), S(5,3) and
S(,1), we follow the same process as S(1 4y. These symmetric numerical semigroups

can be seen in Figure 3.8.

The process in Example 3.40 does not guarantee minimal number of the inter-
section. Then we can remove S(52) from the intersection. The next proposition
gives a condition for which numerical semigroups can be removed from the inter-

section.
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Figure 3.8: Symmetric numerical semigroups containing S

Proposition 3.41. Let S be a numerical semigroup and Si,...,S, numerical
semigroups containing S. Then S =Sy N ---NS, if and only if for all g € SG(S),

g € G(S;) for some 1 <i<n.

Proof. Assume that S = Sy N---NS,. Let g € SG(S). Since S = S;N---NS,,
we have that ¢ € G(S;) for some 1 < ¢ < n. For the converse, assume that
for any special gap ¢ of S impies g € G(S;) for some 1 < i < n. Suppose that
ScSin---NnS,. Letge M((S1N---NS,)\S) which is a special gap of S by
Proposition 3.5. Hence g € G(S;) for some i and it contradicts g € Sy N ---N.S,.
Hence S =5,N---NS,. Il

From Proposition 3.41, for each S; we compute the set C'S; = {g € SG(S5) |
g ¢ S;}. Then S = S, N--- NSy, if and only if SG(S) = CSg, U---UCSy,.

By Example 3.40, we have that SG(S) = {(4,1),(4,2),(5,2),(5,3),(1,4)},
CSun = {4 1)}, CSuz = {(4,2),(5,2)}, OS2 = {(5,2)}, OS5 = {(5,3)}
and CS(14) = {(1,4)}. Then S = Si4,1) N Su2) N Sis.3) N S(1,4)-

3.4 Fundamental Gaps

Given a numerical semigroup S, Proposition 3.11 says that SG(S) determines

S up to maximality but not uniquely. This shows that we can find a numerical
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semigroup S’ such that SG(S) = SG(S’) but S # 5.

In this part, we study the set that determines a numerical semigroup uniquely,
called the fundamental gap. Another application of fundamenatl gaps is a con-
struction of all numerical semigroups containing a fixed numerical semigroup as

we presented in the first section. Most of the results in this part are analogus to
[5].

Example 3.42. The numerical semigroups described by the diagram below have

the same special gaps, {(2,1), (1,2)}, but they are not the same set.

- Q@OO® 000

1 1

O®O @O O
" @OO® @00
0_A17/7 0 1 2
Figure 3.9: Numerical semigroups with the same special gaps

Definition 3.43. Let S be a numerical semigroup. A subset X of G(S) determines

S if S is the maximum numerical semigroup such that X C G(.5).

From the above example, we see that {(2,1),(1,2)} does not determine those
numerical semigroups. However, each numerical semigroup determine by the set
of all its gap.

For a nonempty subset A of N2, let D(A) = {z € N? | z|a for some a € A}.

Example 3.44. Let X; = {(10,0)} and X, = {(0,9),(1,2), (4,8)}. Then D(X;) =
{(1,0),(2,0), (5,0),(10,0)} and D(X,) = {(0,1),(0,3),(0,9), (1,2),(2,4), (4,8)}.

Remark 3.45. Given a numerical semigroup S and a nonempty subset X C G(S5).
We have that X C D(X) C G(S).

Proposition 3.46. Let X be a nonempty finite subset of N?. Then X determines a
numerical semigroup if and only if N*\ D(X) is a numerical semigroup. Moreover,

X always determine N*\ D(X).

Proof. Let S be a numerical semigroup determined by X. Assume that X =

{(z1,v1), .., (Tn,yn)} for some positive integer n. From Remark 3.45, we have
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that D(X) C G(S) and then S € N*\ D(X). To complete the proof, we show that
NA\D(X) C S. If (a,b) € N2\D(X), then k(a,b) ¢ X for all positive integers
k. We set 5" = ((E(zy40) N N Bz, y)s (a,b)) which is a numerical semigroup
with X C G(5'). Since X determines S, it implies that S’ C S so that (a,b) € S.
Hence S = N*\D(X).

For the converse, assume that N2\ D(X) is a numerical semigroup. Let S’ be
a numerical semigroup such that X C G(S’). Hence X C D(X) C G(5') and
S’ C N\ D(X). So X determines a numerical semigroup N?\ D(X). O

Proposition 3.47. Let S be a numerical semigroup and X a nonempty subset of

G(S). Then X determines S if and only if for any g € G(S5), if 29,39 € S, then
g e X.

Proof. Assume that X determines S. By Proposition 3.46, we have that S =
N2\D(X). Then G(S) = D(X). Let g € G(S) be such that 2¢,3g € S. Since
g € D(X), kg € X for some positive integer k. But 2¢g,3g € S forces that k = 1
and hence g € X.

Assume that for any g € G(9), if 29,39 € S, then ¢ € X. By Proposition
3.46, it is enough to prove that S = N*\D(X). Since X C G(S), we have that
D(X) C G(S) and S C N*\D(X). Let g € G(S) and k be the largest positive
integer such that kg € G(S5). Therefore, 2kg, 3kg € S. By the hypothesis, we have
that kg € X and g € D(X). Then N?\D(X) C S. O

Definition 3.48. A gap ¢ of a numerical semigroup S is fundamental if 2¢g,3g €
S. We denote the set of all fundamental gaps of S by FG(S).

By the definition of SG(S9), it follows that SG(S) € FG(S). The next propo-

sition follows from the definition of fundamental gap and Proposition 3.47.

Proposition 3.49. Let S be a numerical semigroup and X a nonempty subset of
G(S). Then X determines S if and only if FG(S) C X. Moreover, FG(S) is the
smallest subset of G(S) which determines S.

Example 3.50. Let S = (Eq3 U{(1,1),(0,2)}).

e G(5)={(1,0),(2,0),(0,1),(2,1),(1,2),(0,3),(2,3)}
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e SG(5)=1{(2,0),(0,3),(2,3)}
o FG(S)={(2,0),(2,1),(1,2),(0,3),(2,3)}
Then FG(S), FG(S)U{(1,0)}, FG(S)U{(2,0)} and G(S) determine S.

Proposition 3.51. Let X be a nonempty finite subset of N?. The following state-

ments are equivalent.
1. There exists a numerical semigroup S such that FG(S) = X.

2. N2\ D(X) is a numerical semigroup and for any distinct elements x1,zo € X,

there are no positive integers k such that x1 = kx,.

Proof. (1)—(2) Assume that there is a numerical semigroup S such that FG(S) =
X. By Proposition 3.49 and Proposition 3.46, we have that S = N*\D(X) is a
numerical semigroup determined by X. Suppose that there are distinct elements
r1,r2 € X and a positive integer k > 2 so that xy = kxy. If k is even, then
1 = (§)(225) € S. If k is odd, then @y = 3zs + (52)(225) € S. That is
impossible. Hence there are no positive integers k such that z; = k.

(2)—(1) Assume that N?\D(X) is a numerical semigroup and for any distinct
elements z1,x9 € X, there are no positive integers k£ such that x; = kxy. Let
S = N?\D(X). Then X determines S and FG(S) C X by Proposition 3.49. We
show that X C FG(S). Let z € X. If 22 € G(S) = D(X), then k(2x) € X for
some positive integer k and it contradicts the hypothesis. For the case 3z € D(X),
we have the same contradiction. Hence 2z,3z € S which yields X C FG(S). O

Proposition 3.52. Let S be a numerical semigroup. Then SG(S) = Max< FG(S).

Proof. We note the fact that SG(S) € FG(S). Let x € SG(S). Suppose that
there exists y € FG(S) such that y — 2 € S. This forces that y = z because
x+s e §foral s € S* Hence v € Max<,FG(S). For the converse, let x €
Max< FG(S). Suppose that there exists s € S* such that (z + s) ¢ S. Since
(x+s)+(x+s)=2v+2s€ Sand (z+s)+ (z+s)+(xr+s) =3x+3s€ S,
x+ s € FG(S). Tt is a contradiction because  <g (z + s). Then z € SG(S). O
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From Proposition 3.12, we have that a numerical semigroup S' is irreducible if
and only if SG(S) has at most one element. Then by Proposition 3.52, we have

the following corollary.

Corollary 3.53. A numerical semigroup is irreducible if and only if Max<,FG(S)

has at most one element.

Proposition 3.54. Let S be a numerical semigroup and (a,b) € G(S) such that
SU{(a,b)} is a numerical semigroup. Then FG(SU{(a,b)}) = (FG(S)\{(a,b)})U
{(m,n) € G(S) | p(m,n) = (a,b) when p € {2,3} and (m,n) ¢ D(FG(S)\{(a,b)})}.

Proof. Let (m,n) € FG(SU{(a,b)}) but (m,n) ¢ FG(S)\{(a,b)}. Then k(m,n) €
S U{(a,b)} for some positive integer k > 2. Since (m,n) ¢ FG(S), we have that
2(m,n) = (a,b) or 3(m,n) = (a,b). Next, Suppose that (m,n) € D(FG(S)\{(a,b)}).
Since [FG(S)\{(a,b)}|N[SU{(a,b)}] = @, it follows that (m,n) € FG(S)\{(a,b)}
yields a contradiction. Hence (m,n) ¢ D(FG(S)\{(a,b)}).

For the reverse inclusion, it suffices to show that {(m,n) € G(5) | p(m,n) =
(a,b) when p € {2,3} and (m,n) ¢ D(FG(S)\{(a,b)})} € FG(S U {(a,b)}).
Let (m,n) € G(S) such that p(m,n) = (a,b) with prime p < 3 and (m,n) ¢
D(FG(S)\{(a,b)}). If p =2, then suppose that 3(m,n) € G(S U{(a,b)}). Since
3(m,n) € G(S), we have that 3(m,n) € D(FG(S)). It follows that (m,n) €
D(FG(S)\{(a,b)}) and it is a contradiction. For the case p = 3, the proof is

)
(

similar to the case p = 2. Hence {(m,n) € G(S) | p(m,n) = (a,b) when p €
{2,3} and (m,n) ¢ D(FG(S)\{(a,b)})} € FG(SU{(a,b)}). O

Example 3.55. Let S be a numerical semigroup with FG(S) = {(0,2), (1,2),(2,2)}.
Since Max< FG(S) = {(2,2)}, set S = S U {(2,2)}. By Proposition 3.54,
FG(S)) = {(1,1),(0,2),(1,2)} so that S; = N*\D((1, 1), (0,2), (1,2)). Proceeding

in this way, we have the diagram in Figure 3.10.
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Figure 3.10: All numerical semigroups containing S
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