สารออกฤทธิ์ทางชีวภาพของหญ้าก้อนกลอง Sphaeranthus africanus Linn. ตอนที่ 2

นางสาว พรพรรณ์ สุขปัญญาเลิศ

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาเคมี คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2543 ISBN 974-665-314-8 ลิบสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

BIOACTIVE COMPOUNDS OF Sphaeranthus africanus Linn. PART II

Miss Pornpan Sukpanyalert

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Chemistry Department of Chemistry Faculty of Science Chulalongkorn University Academic Year 2000 ISBN 974-665-314-8

Bioactive Compounds of Sphaeranthus africanus Linn. Part II
Miss Pornpan Sukpanyalert
Chemistry
Professor Udom Kokpol, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree.

......Dean of Faculty of Science

(Associate Professor Wanchai Phothiphichitr, Ph.D.)

Thesis committee

.....Chairman

(Professor Padet Sidisunthorn, Ph.D.)

(Professor Udom Kokpol, Ph.D.)

(Assistant Professor Preecha Lertpratchya, Ph.D)

จุฬาลงกรณ์มหาวิทยาลัย

พรพรรณ์ สุขปัญญาเลิศ:สารออกฤทธิ์ทางชีวภาพของหญ้าค้อนกลอง *Sphaeranthus africanus* Linn. ตอนที่2 (BIOACTIVE COMPOUNDS OF *Sphaeranthus africanus* Linn. Part II), อาจารย์ที่ปรึกษา ศ.คร. อุคม ก๊กผล; 95 หน้า; ISBN 974-665-314-8

สิ่งสกัดเอทานอลของหญ้าค้อนกลองแสดงความเป็นพิษต่อเซลล์มะเร็งและให้ผลบวกต่อ การทดสอบฤทธิ์การต้านอนุมูลอิสระ ในงานวิจัยนี้สามารถแยกสารได้ 7 ชนิด ได้แก่ stigmasterol, chrysophenol D, 3,7-dimethoxy-4',5,6-trihydroxyflavone, chrysophenol C, $3\alpha,5\beta$ diangeloxoyloxy-7-hydroxycarvotanacetone, 1-angeloxoyloxy-3-[4'-angeloxoyloxy-3'-methoxy] -2-propene และ 1-angeloxoyloxy-3-[4'-isopentanoloxoxoyloxy-3'-methoxy]-2-propene สาร ประกอบชนิดสุดท้ายเป็นสารใหม่ที่ยังไม่เคยมีผู้รายงานมาก่อน ฟลาโวนอยด์ที่แยกได้ทั้งหมด คือ chrysophenol D, 3,7-dimethoxy-4',5,6-trihydroxyflavone, chrysophenolC และ $3\alpha,5\beta$ diangeloxoyloxy-7-hydroxy carvotanacetone แสดงฤทธิ์ด้านอนุมูลอิสระ DPPH นอกจากนี้ $3\alpha,5\beta$ -diangeloxoyloxy-7-hydroxy carvotanacetone และ chrysophenol D ยังแสดงความเป็นพิษ อย่างจำเพาะเจาะจงกับต่อเซลล์มะเร็งกล่องเสียงอีกด้วย

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

ภาควิชาเครื่	มีลายมือชื่อ	มนิสิตนางสาวพรท	เรรณ์ สุขปัญญาเลิศ
ภาควิชาเครื่	มีลายมืออาจ	อารย์ที่ปรึกษาศ	. คร. อุคม ก๊กผล
ปีการศึกษา254	43ลายมืออาจ	งารย์ที่ปรึกษาร่วม	

4172370223 : MAJOR CHEMISTRY KEY WORD : Sphaeranthus africanus Linn/ CONIFERYL ALCOHOL DERIVATIVES/ CAVOTANACETONE PORNPAN SUKPANYALERT : BIOACTIVE COMPOUNDS OF Sphaeranthus africanus Linn. PART II ADVISOR : PROFESSOR UDOM KOKPOL,Ph.D. 95 pp. ISBN 974-665-314-8

The ethanolic crude extract of the whole plant of *Sphaeranthus africanus* Linn. exhibited cytotoxicity against various carcinoma cell lines and gave positive results for free radical scavenging activity test. Seven compounds were isolated, namely stigmasterol, chrysophenol D, 3,7-dimethoxy-4',5,6-trihydroxyflavone, chrysophenol C, 3α ,5 β -diangeloxoyloxy-7-hydroxycarvotanacetone,1-angeloxoyloxy -3-[4'- angeloxoyloxy-3'-methoxy]-2-propene and 1-angeloxoyloxy-3-[4'-isopentano loxoyloxy-3'-methoxy]-2-propene. The last compound was found to be a new compound. All isolated flavonoids (chrysophenol D, 3,7-dimethoxy-4',5,6-trihydroxy flavone, chrysophenol C) and 3α ,5 β -Diangeloxoyloxy-7-hydroxy carvotanacetone showed free radical scavenging activity against DPPH radical. 3α ,5 β -diangeloxo yloxy-7-hydroxy carvotanacetone and chrysophenol D also exhibited specifically cytotoxicity against KB cell.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

Department......Chemistry.....Student's signature...Miss Pornpan Sukpanyalert.... Field of study......Chemistry... Advisor's signature....Prof. Dr. Udom Kokpol...... Academic year.....2000......Co-Advisor's signature....

ACKNOWLEDGEMENT

On the success of this thesis, the author would cordially like to acknowledge her advisor, Professor Dr. Udom Kokpol for his advice, generous contribution of comment, suggestion and full permission to the author to express her competency extremely through this thesis. She also gracefully acknowledges to Professor Dr. Tatsuo Higa, Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Japan, for his advice and taking care all the time while she had been in Japan for a year. She is grateful to Dr. Siriporn Zungsonthiporn (Weed Science Subdivision, Botany and Weed Science Division, Ministry of Agriculture and Cooperatives) for sample collection. She would like to thank her thesis committee, Professor Dr. Padet Sidisunthorn, Assistant Professor Dr. Warinthon Chavasiri, and Assistant Professor Dr. Preecha Lertpratchya for their comment, suggestion, and correction. Thank is expanded to Dr. Junichi Tanaka, Dr. Ikuko Ichiba-Ohtani, and Dr. Toshio Ichiba for kindly advice, structure elucidation, activities tests, and their helpful discussion.

She is financially supported as a research student by the Association International Education, Japan (AIEJ), and is supported the chemicals and laboratory equipment through this thesis by Natural Products Research Unit, Chemistry Department, Chulalongkorn University and Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Okinawa, Japan.

Special thank is given to her best friends and other foreign students in University of the Ryukyus for their friendship, comment, helpfulness, and cheerfulness.

Finally, the author would like to thank her parents and family in encouraging her to withstand ephemeral burden and despair.

Contents

	Pages
Abstract in Thai	iv
Abstract in English	V
Acknowledgment	vi
List of Figures	viii
List of Schemes	x
List of Tables	xi
List of Abbreviations	xii
Chapter	
I Introduction	1
1.1 Chemical Constituents of Sphaeranthus africanus	3
1.2 The Previous Researches	6
1.3 The Goal of this Research	11
II Experimental	12
2.1 Plant Material	
2.2 General Procedure	12
2.3 Chemicals	
2.4 Extraction	
2.5 Assay	14
III Results and Discussion	
3.1 Extraction for the Whole Plant of <i>S. africanus</i>	15
3.2 Biological Activities of the Crude Extracts	15
3.3 Separation of the Dichloromethane Extract (SAM) and	the Ethyl Acetate
Extract (SAE)	17
3.4 Purification, Properties, and Structural Elucidation of O	organic
Compounds Isolated from S. africanus	
IV Conclusion	
Proposal for future work	
References	
Curriculum Vita	

List of Figures

Figures	F	Pages
1.1	The Whole Plant, inflorescence, and seed of Sphaeranthus africanus	2
3.1	The IR Spectrum of Compound 1	22
3.2	The ¹ H NMR Spectrum of Compound 1	23
3.3	The ¹³ C NMR Spectrum of Compound 1	24
3.4	The Structure of Compound 1 (Stigmasterol)	26
3.5	The IR Spectrum of Compound 2	28
3.6	The Mass Spectrum of Compound 2	29
3.7	The UV Spectrum of Compound 2	30
3.8	The ¹ H NMR Spectrum of Compound 2	31
3.9	The ¹³ C NMR Spectrum of Compound 2	32
3.10	The COSY Spectrum of Compound 2	33
3.11	The HMBC Spectrum of Compound 2	34
3.12	The COSY connectivity for the Compound 2	36
3.13	The HMBC connectivity for the Compound 2	36
3.14	The Structure of the Compound 2	36
3.15	The IR Spectrum of Compound 3	39
3.16	The UV Spectrum of Compound 3	40
3.17	The Mass Spectrum of Compound 3	41
3.18	The ¹ H NMR Spectrum of Compound 3	42
3.19	The ¹³ C NMR Spectrum of Compound 3	43
3.20	The COSY Spectrum of Compound 3	44
3.21	The HMBC Spectrum of Compound 3	45
3.22	The NOESY Spectrum of Compound 3	46
3.23	The Structure of Compound 3	47
3.24	The Structure of Compound 3a	48
3.25	The COSY Connectivity of Compound 3	49
3.26	The HMBC Connectivity of Compound 3	49
3.27	The NOESY Connectivity of Compound 3	49

3.28	The Structure of Compound 3	49
3.29	The IR Spectrum of Compound 4	53
3.30	The UV Spectrum of Compound 4	54
3.31	The Mass Spectrum of Compound 4	55
3.32	The ¹ H NMR Spectrum of Compound 4	56
3.33	The ¹³ C NMR Spectrum of Compound 4	57
3.34	The COSY Spectrum of Compound 4	58
3.35	The HMBC Spectrum of Compound 4	59
3.36	The COSY Connectivity of Compound 4	61
3.37	The HMBC Connectivity of Compound 4	61
3.38	The Structure of Compound 4	61
3.39	The IR Spectrum of Compound 5	64
3.40	The Mass Spectrum of Compound 5	65
3.41	The ¹ H NMR Spectrum of Compound 5	66
3.42	The ¹³ C NMR Spectrum of Compound 5	67
3.43	The Structure of Compound 5	69
3.44	The Proton Assignment of Compound 5	69
3.45	The Carbon Assignment of Compound 5	69
3.46	The IR Spectrum of Compound 6	72
3.47	The Mass Spectrum of Compound 6	73
3.48	The ¹ H NMR Spectrum of Compound 6	74
3.49	The ¹³ C NMR Spectrum of Compound 6	75
3.50	The Structure of Compound 6	77
3.51	The Proton Assignment of Compound 6	77
3.52	The Carbon Assignment of Compound 6	77
3.53	The IR Spectrum of Compound 7	80
3.54	The Mass Spectrum of Compound 7	81
3.55	The ¹ H NMR Spectrum of Compound 7	82
3.56	The ¹³ C NMR Spectrum of Compound 7	83
3.57	The Structure of Compound 7	85
3.58	The Proton Assignment of Compound 7	85
3.59	The Carbon Assignment of Compound 7	85

List of Schemes

Schemes	Pages
1.1 The Extraction Procedure (The Previous Research)	6
1.2 The Extraction Procedure (The Previous Research)	8
2.1 The Extraction Scheme of Sphaeranthus africanus	13
3.1 The Possible Mass Fragmentation of Compound 2	
3.2 The Possible Mass Fragmentation of Compound 3	50
3.3 The Possible Mass Fragmentation of Compound 4	62
3.4 The Possible Mass Fragmentation of Compound 5	70
3.5 The Possible Mass Fragmentation of Compound 6	78
3.6 The Possible Mass Fragmentation of Compound 7	86

List of Tables

Tables	I	Pages
1.1	The Result of Rice Growth Inhibition Activities of Reported Compounds	s7
1.2	The Result of Brine Shrimp Lethality Cytotoxicity Test of Reported	
	Compounds	8
1.3	The Percentage Inhibition of cAMP with Reported Compounds	9
3.1	Cytotoxicity Test for the EtOH Extract of S. africanus	15
3.2	Cytotoxicity Test for the SAM and SAE	16
3.3	Free Radical Scavenging Action of the SAM, SAE, and SAH to DPPH	
	Radical Activity	16
3.4	Sample Code, Property, and Weight of VLC Fractions of the SAM	17
3.5	Sample Code, Property, and Weight of OCC Fractions of the SAE	18
3.6	Cytotoxicity of the SAM, SAE, and SAH Fraction Against KB Cell	19
3.7	Free Radical Scavenging Action of the SAM, SAE, and SAH Fraction	
	to DPPH Radical Acitivity	20
3.8	The ¹³ C NMR of Stigmasterol and Compound 1	25
3.9	The ¹ H NMR of Coniferyl alcohol Derivative and the Compound 2	35
3.10	The ¹ H and ¹³ C NMR Data of Compound 3	47
3.11	The ¹ H and ¹³ C NMR Data of Compound 3a	48
3.12	² The ¹ H and ¹³ C NMR Data of Compound 4	60
3.13	³ The ¹ H and ¹³ C NMR Data of Chrysophenol D and Compound 5	68
3.14	The ¹ H and ¹³ C NMR Data of Compound 6, 3,7-dimethoxy-4',5-	
	hydroxy flavone, and herbacetin-3,7-dimethoxy	76
3.15	⁵ The ¹ H and ¹³ C NMR data of Quercetagetin-3,3',7-trimethoxy ether,	
	and Compound 7	84
3.16	Cytotoxicity Against KB Cell of Isolated Compounds	87
3.17	The Free Radical Scavenging Action to DPPH Radical Activity	88

List of Abbreviations

br	broad
°C	degree Celsius
ca	calculation
cm ⁻¹	unit of wavenumber
CDCl ₃	deuterated chloroform
CH_2Cl_2	dichloromethane
dd	doublet of doublet
d	doublet (NMR)
DPPH	diphenyl picryl hydrazyl radical
EtOAc	ethyl acetate
Fig.	figure
g	gram
Hept	heptane
Hex	hexane
HPLC	high performance liquid chromatography
Hz	hertz
IR	infrared
J	coupling constant
kg	kilogram
LC ₅₀	concentration of that 50% lethality
mg	milligram (s)
m	multiplet (NMR)
m	medium (IR)
mL	milliliter (s)
m.p.	melting point
MW	molecular weight
MeOH	methanol
NMR	nuclear magnetic resonance
ppm	part per million
q	quartet (NMR)
$R_{\rm f}$	retardation factor

R _t	retention time
S	singlet (NMR)
S	strong (IR)
t	triplet (NMR)
td	triplet of doublet (NMR)
W	weak (IR)
w/w	weight by weight
δ	chemical shift
%	percent
μg	microgram (s)
μL	micro liter (s)

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

CHAPTER I Introduction

Thailand is located in the tropical region of the world and agriculture is the major economic. Farmers have been continuously facing many problems such as climate, harmful insects, and weeds. Especially weed can make huge damage to agriculture for instance, diminishing quality and quantity of crops, blocking dam, and irrigation system, causing forest fire, making main plant die, including water pollution and in some case, irritating human or animals. In this sense, weeds are always the targets to be controlled. However, our investigation in Thailand revealed that many weed species have been utilized by indigenous people in various ways; as food, medicinal plants, animal feed, housing materials, materials for handicrafts and ornaments, agricultural use, and so on.

At the present time, there are many reports to affirm that some weeds constituted substances, which affected the growth of side-growing plants or other creatures. *Sphaeranthus indicus* Linn. contained 7-hydroxyfrullanolide, which can use for the antimicrobial agent and also this kind of weed has long been used in indigenous medicine in the treatment of septic gastric disorders.¹

The popularity of utilizing weeds might be due to their fewer side effects, reasonable cost and greater availability. In addition, consuming local medicinal plants can reduce the import of synthetic drugs from foreign countries. However, the importance of the plants not only uses as food or medicine and also uses in agriculture and cosmetic industry as well.

Following the above mentioned outcome, natural product chemistry is one of the approaches to search for chemical constituents from natural materials and involves seeking their activities. The researchers who attended to natural product have the advantage in providing the basic information about the previous native people utilized, chemical constituents and bioactivities of the substances, which may have the wide utilization.

In term of natural product chemistry investigation, this research is focused on searching for bioactive compounds from the tropical weed. *Sphaeranthus africanus* Linn. was selected to study systematically.

S. africanus belonging to Sphaeranthus genus (Family Compositae)² wide spread in the tropical and subtropical areas of Africa, Asia, and Australia.³ Among them about 40 species have been chemically studied.⁴ Some species of this genus are widely used as a folk medicines for the treatment of skin infection, glandular swelling bronchitis, jaundice, and nervous depression, etc.¹

In Thailand, two species, *S. africanus* Linn. (Yah khon klong) and *S. indicus* Linn. (Ka ra boon), are commonly found.⁴ The former was selected for this research to investigate for bioactive compounds according to a promising preliminary screening test of ethanolic extract which revealed selective cytotoxicity against KB cell lines.

S. africanus is abundant in rice field, particularly in the central region of Thailand. Its life cycle is about 1 year. The botanical aspects of this plant can be summarized as follows.⁵

Stem: The height is 15-45 cm. The upper part is greenish and the lower parts are yellowish. The stem and branches are fully covered with hairs.

<u>Leaves</u>: The leaves are oval shaped, about 0.5-3.5 cm wide and 2-11 cm long. <u>Inflorescence</u>: It is small, violet, and typically bisexual flowers.

Seed: Dried seed is brown and cylinder-shaped about 1 mm long.

Figure 1.1 (1) habit, (2) the whole plant, (3) inflorescence, (4) seed of S. africanus

1.1 Chemical Constituents of Sphaeranthus Genus

Among 40 species of genus *Sphaeranthus*, only 5 species *S. indicus, S. suaveolens, S. bullatus, S. kirkii, and S. africanus* have been chemically studied.¹⁰ Over 50 compounds have been reported from these plants. These are mainly classified into four groups; monoterpenes, sesquiterpenes, flavonoids, and miscellaneous.

1.1.1 Monoterpenoids

Monoterpenoids have been found in *S. indicus*, *S. bullatus*, *S. kirkii*, and *S. suaveolens*. They are mainly classified into two main groups, i.e., carvotanacetone derivatives such as compounds 1-7 and cyclic monoterpenes such as **8**,9^{.6}

1α,2α-epoxy-5α(4-tigloyloxy-tigloyloxy)carvone (7)

α-Ionone (8)

Carvone (9)

1.1.2 Sesquiterpenoids

Numerous sesquiterpenoids have been reported from this genus.⁷ Among them eudesmanolides, sesquiterpene lactones,⁸ have often been found. Although eudesmanolides were found in many plants, 7-hydroxyeudesmanolides isolated from this genus are very rare in nature. Eudesmanolide and 7 α -hydroxyeudesm-4-en-6-12-olide (**10**) was first reported in 1986 from genus *Sphaeranthus*.⁹ This compound was particularly interesting since it showed pronounced cytotoxicity and antitumor activity against a number of human cancer cell lines.¹⁰ In addition, a new sesquiterpene acid, 2-hydroxycostic acid (**11**), along with known compounds β -eudesmol (**12**) and ilicic acid (**13**) have been isolated from *S. indicus*. Later on two new eudesmanolides (**14**-**15**) were reported by Supada *et al.*¹¹

2-hydroxycostic acid (11)

β-eudesmol (12)

ilicic acid (13)

1.1.3 Flavonoids

A number of flavonoids have been isolated from several plants in family Compositae including Sphaeranthus genus. Examples are flavonoids isolated from *S.* $africanus^{12}$: quercetagetin-3,6,7-trimethyl ether (16), quercetagetin-3,3',7-trimethyl ether (17), quercetagetin-3,7-dimethyl ether (18).

1.1.4 Miscellaneous

Examples of other types of compounds are given. A new sesquiterpene glycoside, sphaeranthanolides (19) has been isolated from the flowers of *S. indicus*. This compound exhibited immunostimulatory activity.¹³ Further investigation of *S. bullatus* and *S. suaveolens* revealed the presence of α -humulene (20), thymolisutyrate (21).⁴

1.2 Previous Research

1.2.1 Chemical Constituents and Biological Activities of Sphaeranthus africanus Linn.¹²

Mr. Panya Maneejak aimed at the search for rice growth inhibitor. The extraction procedure and the results of the research are as followed.

Isolated Compounds	Eluent	Activities (%)	
		Root	Shoot
1. Mixture of long chain hydrocarbon	Hexane	-	-
$(C_{26}-C_{34})$			
2. Mixture of long chain ester	Hexane	62.92	73.69
3. Mixture of long chain alcohol	Hexane	-	12.68
$(C_{23}, C_{25}, C_{27}, C_{30}, C_{33})$			
4. Friedelan-3β-ol	Hexane	Very sma	ll amount
5. Mixture of long chain alcohol	Hexane	-	34.34
$(C_{26}-C_{27}, C_{29}, C_{30}, C_{33})$			
6. Stigmasterol	Hexane	18.79	7.79
7. Mixture of long chain acid	Hexane	97.70	98.77
(C ₁₉ -C ₂₅)			
8. Stigmasteryl-3-O-β-D-glucopyranoside	CHCl ₃	31.49	0.44
9. 2-(3,4-dihydroxyphenyl)-5-hydroxy-3,6,7-	CHCl ₃	17.25	12.21
trimethoxy-4H-1-benzopyran-4-one			
10. 2-(3-methoxy-4-hydroxyphenyl)-5,6-	CHCl ₃	10.77	1.55
dihydroxy-3,7-dimethoxy-4H-1-benzopyran-			
4-one			
11. 2-(3,4-dihydroxyphenyl)-5,6-dihydroxy-3,7-	EtOAc	42.77	35.22
dimethoxy-4H-1-benzopyran-4-one			

Table 1.1 The Result of Rice Growth Inhibition Activities.

1.2.2 Bioactive Compounds of *Sphaeranthus africanus* Linn.¹⁴

Miss Wimonpun Rungprom, she aimed for the purpose of bioactive compounds from this plant. This plant was selected from the result of the preliminary screening test. The ethanolic crude extracts of the whole plants of *S. africanus* revealed high cytotocixity activity against *Artemia salina* (brine shrimp) and six carcinoma cell lines. The extract was isolated as shown on the following scheme (Scheme 1.2).

The isolated compounds were tested for brine shrimp lethality cytotoxicity activity and the results are shown in Table 1.2 and 1.3.

Table 1.2	The Result of	f Brine Shrimp	Lethality	Cytotoxicity	Test of
	Repo	orted Compoun	ds		

Isolated Compounds	LC ₅₀ (µg/mL)	Activity
Compound 1	180.62	Low activity
Compound 2	>1000	No activity
Compound 3	241.82	Low activity
Compound 4	0 0 00 12.34	Medium activity
Compound 5	11.45	Medium activity
Compound 6	145.61	Low activity
Compound 7	72.32	Medium activity
Compound 8	>1000	No activity

Isolated Compounds	% Inhibition
Compound 3	75.0
Compound 6	50.0
Compound 7	42.0
Compound 9	87.5

 Table 1.3 The Percentage Inhibition of cAMP of Compounds 3, 6, 7, and 9

The Structure of Isolated Compounds.

Compound 1 Friedelan-3_β-ol

Compound 3 Quercetagentin-3,6,7-trimethyl ether

3α, 5β-diangeoloxoyloxy-7-hydroxycarvotanacetone

Compound 5 2,4α,6β-triangeoloxoyloxy-5-(sec-propyl)-2-cyclohexenone

Compound 6 Chrysophenol-C

Compound 7 Quercetagentin-3,7-dimethyl ether

Compound 9 Quercetin

1.3 The Goal of this Research

A preliminary screening of ethanol extract of the whole plant of *S. africanus* showed selective cytotoxicity against KB cells out of three carcinoma cell lines. Furthermore, previous researchers obtained some new compounds as well as known compounds exhibiting strong inhibition against cAMP and cytotoxicity against carcinoma cell lines. Therefore, it is worthwhile to continue the search for bioactive compounds from this plant. The goal of the present research is summarized as follows:

- 1. Extraction and isolation of the constituents from the whole plant of *S. africanus*.
- 2. Elucidation of the chemical structures of isolated compounds.
- 3. Search for active and useful compounds.

สถาบนวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

CHAPTER II Experimental

2.1 Plant Material

The whole plant of *Sphaeranthus africanus* Linn. was collected at Kasetsart University, Bangkok, during January 1999. The voucher specimens (085404-87-154) have been deposited in the herbarium of the Royal Forest Department, Bangkok.

2.2 General Procedure

The ¹H and ¹³C NMR spectra including 2D NMR spectra were recorded on a JEOL α - 500 and JEOL α -270 spectrometer. The NMR spectra were measured in CDCl₃ and DMSO-*d*₆. TMS was used as internal standard.

The FT-IR spectra were recorded on a Fourier-Transform Infrared Spectrophotometer model Impact 410: solid samples were incorporated to potassium bromide to form a pellet.

HPLC separations were performed on a Hitachi L-6000 or Shimadzu LC-9A pump equipped with Waters Refractive Index Detector R401, and Hitachi L-4000 UV or Waters 486 UV detectors. Columns used were reversed-phase C-18 (10 x 250 mm, 5 μ m, Capcell PAK), normal-phase silica (8 x 250 mm, 5 μ m, Cosmosil 5SL) and NH₂ normal-phase (4.6 x 250 mm, 5 μ m, UG 80).

2.3 Chemicals

Merck silica gel 60H was used for open column chromatography. Analytical thin layer chromatography was performed on precoated TLC plates; Merck Kieselgel 60 F_{254} , HPTLC RP18 WF₂₅₄, and NH₂ F_{254} . Prep-TLC was also performed on Merck Kieselgel 60 F_{254} plates. All solvents used in this research were purified prior to use by standard methodology except for reagent grade ones.

2.4 Extraction

A sample of the air-dried whole plant was cut into coarse pieces. The sample (approximately 6 kg) was extracted by soaking in ethanol for three days at room

temperature. The extraction was repeated for several times until the color of the last extract was clear. The solution was filtered, and the solvent was evaporated, yielding the ethanolic crude extract (1045 g).

A part (612 g) of the extract was partitioned between dichloromethane and water (volume ratio 1:3) to gain a dichloromethane soluble fraction and water-soluble fraction. The water-soluble fraction was further extracted with ethyl acetate to obtain an ethyl acetate extract. The procedure is shown in Scheme 2.1.

Scheme 2.1 Extraction Scheme of Sphaeranthus africanus

2.5 Assay

The following assays were performed for the isolation of active compounds from *S. africanus*, which might possibly be used for agricultural and/or medicinal purposes.

2.5.1 The Inhibitory Effect Against Carcinoma Cell Lines

Several crude extracts of *S. africanus* were preliminary screened by the MTT assay. This method used three carcinoma cell lines: human Nasopharyngeal carcinoma cell line (KB), human leukemia carcinoma cell line (HL-60), human colon carcinoma cell line (HCT-8). Beijing Medicinal School, Beijing, China, performed these experiments.

2.5.2 Free Radical Scavenging Action Against DPPH Radical

A sample was dissolved in ethanol or dimethylsulfoxide (DMSO), (ca. 3 mg/ mL or 1.5 mM) and further diluted to seven stages with 50% ethanol-water. The sample solution (100 μ L) was added 50 μ L of DPPH in ethanol (750 μ M) to give 150 μ L of 250 μ M DPPH solution with 66.7% of the initial sample concentration. The solution was allowed to stand for 20 min at ambient temperature, then a microplate reader (Automated Microplate Reader Elx800, BIO-TEX Instruments, INC.) measured the optical density at 515 nm (OD515). The OD₅₁₅ values obtained in the non-scavenger run and blank (50% ethanol-water) were regarded as 100% and 0% activities of DPPH, respectively. The OD₅₁₅ values (duplicate) obtained for each sample was plotted against the sample concentration, and the EC₅₀ was obtained from the graph.

14

CHAPTER III

Results and Discussion

3.1 Extraction for the Whole Plant of Sphaeranthus africanus

According to Scheme 2.1 the whole plant of *S. africanus* was extracted to give three crude extracts, SAM (CH_2Cl_2 extract), SAE (EtOAc extract), and SAH (H_2O layer).

3.2 Biological Activities of the Crude Extracts

3.2.1 Cytotoxicity of the EtOH Extract

Preliminary cytotoxicity test of the ethanol extract was performed against three carcinoma cell lines as shown in Table 3.1. The extract showed selective activity against KB cells.

Table 3.1 Cytotoxicity Test for the EtOH extract of S. africanus

Cell lines	Inhibition (%)		Estimation	
	at 1 µg/mL	at 10 µg/mL	at 10 0µg/mL	
HL-60	-12.83	-14.22	8.13	-
KB	22.49	53.19	63.33	++
HCT-8	-23.23	-15.10	45.84	-

HL-60 = Human leukemia carcinoma cell line

KB = Human nasopharynxgal carcinoma cell line

HCT-8 = Human colon carcinoma cell line

-	=	No activity
+	=	Weak activity
++	=	Strong activity
+++	=	Very strong activity

3.2.2 Activity of the CH₂Cl₂ and the EtOAc Extracts

Cytotoxicity of the SAM and the SAE (Table 3.2) and free-radical scavenging activity of the SAM, SAE, and SAH (Table 3.3) are tested. Both the SAM and SAE showed significant cytotoxicity against HL-60 and KB, but not HCT-8. The SAH showed only weak free-radical scavenging activity, whereas the SAE showed very strong and the SAM showed strong activities.

Cell lines	Samples	Inhibition (%)		Estimation	
		at 1 µg/mL	at 10 µg/mL	at 100 µg/mL	
HL-60	SAM	-6.37	0.55	87.07	+
	SAE	4.62	26.96	86.33	+
KB	SAM	15.73	17.44	58.11	+
	SAE	33.12	54.53	66.37	++
HCT-8	SAM	-39.14	-35.14	9.38	
	SAE	-36.46	0.26	44.95	

Table 3.2 Cytotoxicity Test for SAM and SAE

Table 3.3 Free Radical Scavenging Action of SAM, SAE, and SAH to DPPHRadical Activity

Sample	EC ₅₀ (EC _{125μM} DPPH) mg/mL
SAM	0.095
SAE	0.01
ลฬาลงกรกโบบ	หาวทยาลย
SAH	0.50

$EC_{50} < 0.1 \text{ mg/mL} =$	Strong
$EC_{50} < 0.01 \text{ mg/mL} =$	Very strong

3.3 Separation of Dichloromethane Extract (SAM) and Ethyl Acetate Extract (SAE)

The SAM and SAE, which revealed significant cytotoxicity against various carcinoma cell lines and free radical scavenging activity, were selected for investigation.

3.3.1 Separation of Dichloromethane Extract (SAM)

The dichloromethane extract (SAM) was separated by SiO₂ vacuum liquid chromatography (VLC). The dichloromethane solution of the extract (235.10 g) was mixed with silica gel (500 g). After removal of the solvent, the silica gel was put in a column, and eluted with Hex-CH₂Cl₂-EtOAc-MeOH by increasing polarity of solvent. Each fraction (about 1,000 mL) was collected and concentrated to a small volume and then checked by TLC. The fractions containing the same components were combined. The results of separation and combination are shown in Table 3.4. Cytotoxicity against KB cell (MTT method) and free-radical scavenging activity of each fraction are shown in Table 3.6 and 3.7, respectively.

Table 3.4 Sample Code, Property, and weight of VLC fractions of SAM

Eluent	Code	Property	Weight (g)
100% Hexane	SAM1	yellow viscous	7.28
25% CH ₂ Cl ₂ in Hexane	SAM2	dark brown oil	28.29
50% CH ₂ Cl ₂ in Hexane	SAM3	dark brown oil	18.48
75% CH ₂ Cl ₂ in Hexane	SAM4	dark brown oil	35.71
100% CH ₂ Cl ₂	SAM5	dark brown oil	7.27
25% EtOAc in CH ₂ Cl ₂	SAM6	dark brown solid	9.11
50% EtOAc in CH ₂ Cl ₂	SAM7	dark brown oil	6.31
75% EtOAc in CH ₂ Cl ₂	SAM8	dark brown oil	6.57
100% EtOAc	SAM9	dark brown solid	5.31
25% MeOH in EtOAc	SAM10	dark brown oil	49.05
50% MeOH in EtOAc	SAM11	dark brown oil	7.66
75% MeOH in EtOAc	SAM12	dark brown oil	2.69

The ethyl acetate extract (SAE) was separated by open column chromatography (OCC). The extract (37.38 g) was dissolved in EtOAc and mixed with silica gel (40 g). After removal of the solvent, it was put on a top of a SiO₂ column, and eluted with gradient solvent system (Hex-CH₂Cl₂-EtOAc-MeOH). Each fraction (about 500 mL) was collected and the solvent was removed. According to a TLC analysis, the fractions containing the same components were combined. The results are shown in Table 3.5.

Elutent	Code	Property	Weight (g)
10% EtOAc in Hexane	SAE1	yellow viscous oil	0.04
15% EtOAc in Hexane	SAE2	yellow viscous oil	0.02
30% EtOAc in Hexane	SAE3	yellow solid amorphous	0.15
50% EtOAc in Hexane	SAE4	yellow solid amorphous	1.13
60% EtOAc in Hexane	SAE5	yellow solid amorphous	3.11
70% EtOAc in Hexane	SAE6	black tar	4.40
80% EtOAc in Hexane	SAE7	black tar	2.55
90% EtOAc in Hexane	SAE8	black tar	4.12
100% EtOAc	SAE9	black tar	4.74
10% MeOH in EtOAc	SAE10	black tar	2.26
20% MeOH in EtOAc	SAE11	black tar	3.73
30% MeOH in EtOAc	SAAE12	black tar	1.73
50% MeOH in EtOAc	SAE13	black tar	1.40
70% MeOH in EtOAc	SAE14	black tar	0.87
100% MeOH in EtOAc	SAE15	black tar	0.83

Table 3.5 Sample Code, Property, and Weight of OCC Fractions of SAE

Sample	Dose (µg/mL)			
	10	3	1	0.3
SAM	50.5	-	-	-
SAE	15.3	-	-	-
SAH	12.6	-	-	-
SAM1	11.0		-	-
SAM2	25.7	<u></u>	-	-
SAM3	95.1	31.2	20.6	14.0
SAM4	93.0	40.9	28.3	19.6
SAM5	85.5	36.6	23.2	13.2
SAM6	32.7	6 g -	-	-
SAM7	24.2	- 2-	-	-
SAM8	27.2	-	-	-
SAM9	11.7	OTTA-4	-	-
SAM10	16.0	12/2/1-	-	-
SAM11	32.9	and the second second	-	-
SAM12	18.6	Will-ser	-	-

Table 3.6 Cytotoxicity of SAM, SAE, and SAH fraction against KB cell

- = no activity

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

Sample	EC ₅₀ (EC _{125µM} DPPH)
SAM	0.095
SAE	0.010
SAH	0.500
SAM1	-
SAM2	-
SAM3	1.840
SAM4	0.219
SAM5	0.079
SAM6	0.034
SAM7	0.050
SAM8	0.069
SAM9	0.127
SAM10	0.102
SAM11	0.194
SAM12	0.142

Table3.7 Free Radical Scavenging Action of SAM, SAE, and SAH Fraction toDPPH Radical Activity

 $EC_{50} < 0.1 \text{ mg/mL} = \text{strong}$

< 0.01 mg/mL = very strong

From Table 3.6, sub-fractions SAM3, SAM 4, and SAM 5 are shown interesting cytotoxicity against KB cell more than other fractions. In case of free radical scavenging action against DPPH radical activity, the result is shown in Table 3.7. The SAM 5, SAM 6, SAM 7, and SAM 8 are shown strong activity but other fractions are exhibited weak activity.

3.4 Purification, Properties and Structural Elucidation of Organic Compounds Isolated from *S. africanus*

3.4.1 Purification, properties and structural elucidation of Compound 1

This compound was isolated from dichloromethane extract. After elution with 25 % dichloromethane in hexane, dark brown oil was gained. The dark brown oil was subjected to separation on silica gel (VLC; Si 60) with stepwise gradient elution (heptane-CH₂Cl₂-EtOAc-MeOH) to give thirteen fractions. Fraction 4 was further separated by open column chromatography (OCC) on silica gel. The ninth fraction was recrystallized from methanol to give white needles (m.p. 163-164°C, 73.3 mg, 0.2 % w/w of dichloromethane extract). It showed a single <u>sp</u>ot with R_f value of 0.55 in heptane:EtOAc (3:2) solvent system.

Its IR spectrum (Fig 3.1) showed the absorption band of a hydroxy group at $3400 - 3300 \text{ cm}^{-1}$ and C-O stretching vibration at 1056 and 1032 cm⁻¹. In addition, the band at 1650 cm⁻¹ revealed the presence of C=C functional group; the stretching and bending vibrations of -CH₃ and -CH₂- were detected at 2960 - 2860 and 1460 cm⁻¹, respectively.

The ¹H NMR spectrum (Fig 3.2) showed important signals at δ 5.01 and 5.34 ppm compatible with -CH=CH- and -C=CH-, respectively. Hydroxy proton was detected at 3.48 ppm (1H, s). In addition, the ¹³C NMR spectrum (Fig 3.3) exhibited total twenty nine carbon signals: at δ 140.7 and 121.7 ppm ascribing for the olefinic carbons, the signals at δ 138.3 and 129.3 ppm consistent with olefinic carbons and the signal at δ 71.8 ppm coinciding with the carbon that connected with a hydroxy group.

The ¹H and ¹³C NMR data indicated a steroidal structure for compound 1. It was identified as stigmasterol by comparison of the ¹³C NMR data with those reported in Table 3.8.¹⁵

According to the physical properties and spectral evidences, it could be concluded that compound 1 was stigmasterol. The structure of this compound is shown in Fig. 3.4.

Position	Stigmasterol, Hz(CDCl ₃) ¹⁵	Compound 1, Hz(CDCl ₃)
1	37.3	37.3
2	31.7	31.7
3	71.8	71.8
4	42.3	42.3
5	140.8	140.7
6	121.7	121.7
7	31.9	31.9
8	31.9	31.9
9	50.2	50.2
- 10	36,6	36.5
11	21.1	21.1
12	39.7	39.7
13	42.3	42.2
14	56.9	56.9
15	24.4	24.4
16	28.8	28.9
17	56.1	56.0
18	12.1	12.0
19	19.4	19.4
_ 20	40.5	40.5
21	21.0	21.1
22	138.3	138.3
23	129.4	129.3
24	51.3	51.2
25	31.9	31.9
26	19.0	19.0
27	21.2	21.1
28	25.4	25.4
29	12.4	12.3

Table 3.8 The ¹³C NMR Assignment of Stigmasterol and Compound 1

Fig. 3.4 The Structure of Compound 1 (Stigmasterol)

3.4.2 Purification, Properties and Structural Elucidation of Compound 2

Compound 2 was obtained from dichloromethane extract by eluting with 25% dichloromethane in hexane. This fraction was subsequently separated by OCC with hexane-EtOAc-MeOH, OCC (Si-60) with hexane-EtOAc, and preparative thin layer chromatography (Si-60, hexane-EtOAc, 1:1) to give three fractions. The third fraction was separated by reversed phase HPLC (MeOH:H₂O, 7:3) to give compound 2 (retention time = 46 minutes) and compound 3 (retention time = 50 minutes) as a minor compound. Compound 2 is colorless oil (3.4 mg, 1.45×10^{-3} % w/w of dichloromethane extract). It showed one spot on TLC with R_f value of 0.37 in MeOH:H₂O (7:1) as a solvent system.

The IR spectrum (Fig 3.5) of compound 2 showed the absorption band of an α,β -unsaturated carbonyl of ester at 1700 - 1770 cm⁻¹. The characteristic absorption peak due to an aromatic moiety was observed at 1600 - 1400 cm⁻¹.

The molecular formula of compound 2 (Fig 3.6) was established by high-resolution mass spectroscopy, which revealed a molecular ion peak at m/z 344, calculated for $C_{20}H_{24}O_5$. Other fragmentation and fragmentation pattern displayed in scheme 3.1.

The UV spectrum of this compound (Fig 3.7) showed three maximal absorption wavelengths at 290 ($\varepsilon = 4.7 \times 10^2$), 257 ($\varepsilon = 1.6 \times 10^2$), and 215 ($\varepsilon = 3.4 \times 10^2$) nm, respectively.

The ¹H NMR spectrum (Fig 3.8) composed of a signal for aromatic protons

at δ 6.98 (d (L,S) *J*=1.8, 7.9 Hz) position 6', δ 7.0 (d (L) *J*= 8.2 Hz) position 5', and δ 7.01 (d (S) *J*=1.8) position 2'. Furthermore, the characteristic signals of a trans -Ar-CH=CH-CH₂OCOR fragment were visible as one double triplet at δ 6.26 (*J* = 6.4, 15.6) and doublet at δ 6.64 (*J*= 15.8), and a double doublet at δ 4.81 (*J* = 1.5, 6.4). Two non equivalent 2-methylbut-2-enolate gave rise to two double quartets (3H each) at δ 2.07 (*J* = 1.5, 7.0) and 2.06 (*J* = 1.7, 9.5), one quintet (3H) at δ 1.92 (*J* = 1.6), one singlet (3H) at δ 2.05, one quartet of quartet (1H) at δ 6.07 (*J* = 1.5, 7.0) and one board quartet (1H) at δ 6.20 (*J* = 6.7). Finally, one methoxy group was assigned for a singlet signal at δ 3.84 ppm.

The ¹³C NMR spectrum (Fig 3.9) was consisted with this structural assignment as it showed two carbonyl signals at δ 167.8 and 165.9. Furthermore, six aromatic carbons at δ 135.2, 119.4, 123.0, 139.7, 151.3, and 110.3 ppm, two methine carbons at δ 123.7 and 133.4 ppm and the presence of one methoxy group at δ 55.9 ppm were also observed. Finally, two 2-methyl but-2-enolate residues gave four methine carbons at δ 138.2, 127.8, 123.2, and 139.9, and four methyl groups at δ 15.8, 20.6, 15.9, and 20.7 ppm.

Nonetheless, the ¹³C NMR spectrum exhibited signals of 2-methyl but-2enolate that might be angelate (Z-isomer) and tiglate (E-isomer).¹⁶ The conjugated ester group caused an upfield shift (δ =6.07 and 6.20 ppm) of neighboring proton more pronounce for angelate more than for tiglate.

In the case if geometries of double bonds in angelate portion were supported by COSY (Fig 3.10) and HMBC (Fig 3.11), that led to the structure of compound 2, a coniferyl alcohol derivative originally isolated from *Blumea lacera*.¹⁷

This structure was confirmed by ¹H NMR and mass spectra comparison with those reported. The proton-proton connectivity, the proton-carbon connectivity, and the structure of compound 2 are showed in Fig. 3.12, 3.13, and 3.14, respectively.

สถาบนวทยบรการ จุฬาลงกรณ์มหาวิทยาลัย

ุลถาบนวทยบรการ จุฬาลงกรณ์มหาวิทยาลัย

Position	Coniferyl alcohol Derivative (CDCl ₃)	Compound 2 (CDCl ₃)	
-	¹ H, mult, <i>J</i> (Hz)	¹ H, mult, <i>J</i> (Hz)	¹³ C,Hz
1	4.72, dd, <i>J</i> =1,6	4.81, dd, <i>J</i> =1.5,6.4	64.6
2	6.29, dt, <i>J</i> =6,15	6.26, dt, <i>J</i> =6.4,15.6	123.7
3	6.59, dt, <i>J</i> =1,15	6.64, d, <i>J</i> =15.8	133.4
1'			135.2
2'		7.01, d(S), <i>J</i> =1.8	110.3
3'			- 151.3
4'	1119,501		139.7
5'		7.02, d(L), <i>J</i> =8.2	123.0
6'		6.98, d(L,S), <i>J</i> = 1.8,7.9	119.4
1"	A PARTE	0.01	165.9
2"			123.2
3"	1.90, dq, <i>J</i> =1.5,1.5	2.05, s	20.7
4"	1.99, dq, <i>J</i> =1.5,6	2.06, dq, J = 1.7, 9.5	15.9
5"	6.71, qq, <i>J</i> =1.5,6	6.20, br q, <i>J</i> = 6.7	139.9
1'''			167.8
2'''		20	127.8
3'''	6.03, qq, <i>J</i> =1.5,6	6.07, qq, <i>J</i> =1.5,7.0	138.2
4'''	2.00, m	1.92, quint, <i>J</i> =1.6	20.6
5'''	2.03, dq, <i>J</i> =1.5,6	2.07, dq, <i>J</i> =1.5,7.0	15.8
-OMe	3.81, s	3.84, s	55.9

Table 3.9 ¹HNMR Data of Coniferyl Alcohol Derivative and the Compound 2

Fig. 3.12 The COSY Connectivity for Compound 2

Fig. 3.13 The HMBC Connectivity for Compound2

Fig. 3.14 The Structure of Compound 2 1-Angeloxoyloxy-3-[4'-angeloxoyloxy-3'-methoxy]-2-propene

Scheme 3.1 The possible mass fragmentation of Compound 2

3.4.2 Purification, properties and structural elucidation of Compound 3

Compcund 3 is colorless oil (2.0 mg, 8.51×10^{-4} % w/w of dichloromethane extract). It exhibited one spot on TLC with R_f value of 0.35 in MeOH:H₂O (7:1) as a solvent system.

The IR spectrum of compound 3 (Fig 3.15) displayed the absorption band due to α , β -unsaturated carbonyl of ester group at 1770 - 1700 cm⁻¹. In addition, the absorption peaks at 1600 - 1400 cm⁻¹ suggested the presence of aromatic moiety.

The UV spectrum (Fig 3.16) showed absorption wavelength at 290 ($\epsilon = 1.8 \text{ x}$ 10³), 255 ($\epsilon = 7.1 \text{ x} 10^3$), and 215 ($\epsilon = 1.3 \text{ x} 10^4$) nm.

The mass spectrum (Fig 3.17) showed the molecular peak at m/z 346, which is consistent with a molecular weight of $C_{20}H_{26}O_5$. Other fragmentation and fragmentation pattern displayed in scheme 3.2.

The ¹H NMR (Fig 3.18) showed signals of aromatic protons at δ 6.97 (2H, br s) and 6.99 (1H, br s). One methoxy group which was detected at δ 3.84 (3H, s). In addition the methine protons were found at δ 2.45 (1H,d *J*=7) and 2.25 (1H,m).

The ¹³C NMR (Fig 3.19) exhibited aromatic carbons at δ 138.2, 119.3, 122.9, 133.3, 151.2, and 110.2 ppm, two carbonyl esters at δ 167.1 and 171.0 ppm. The methoxy group was detected at δ 55.9 ppm. The ¹H and ¹³C NMR data of this compound are shown in the Table 3.10.

The proton and carbon connectivity was studied by HMQC and supported by the COSY and HMBC cross peaks as indicated in Fig 3.20 and Fig 3.21, respectively. By analysis of the NMR data it was suggested that compound 3 is a derivative of compound 2 where C-2" double bond is saturated. The geometries of the remaining double bonds were determined by NOESY experiment (Fig 3.22) and confirmed by comparison with those of compound 2. The portion of 2-methyl butanolic acid in compound 3 is confirmed by NMR comparison with the known compound 3a (Table 3.11).¹⁸

According to the above data compound 3 was named 1-Angeloxoyloxy-3-[4'isopentanoloxoyloxy-3'-methoxy]-2-propene. However, this compound was analogue of coniferyl alcohol. Computational searching suggested that there was no report of the isolation of this compound; consequently, it was a new compound.

สถาบนาทยบวกาว

Fig 3.16 The UV Spectrum of Compound 3

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

สถาบนวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

สถาบนวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

Position	Compound 3 (CDCl ₃)		
	¹ H, mult, <i>J</i> (Hz)	¹³ C, Hz	
1	4.81, dd, <i>J</i> =1.5,6.5	64.5	
2	6.28, td, <i>J</i> =6.5,16	123.8	
3	6.64, br d, <i>J</i> =16	135.2	
1'		138.2	
2'	6.99, br s	110.2	
3'		151.2	
4'		133.3	
5'	6.97, br s	122.9	
6'	6.97, br s	119.3	
1"		171.0	
2"	2.45, d, <i>J</i> =7	43.0	
3"	2.25, m	25.9	
4"	1.07, d, <i>J</i> =6.5	22.3	
5"	1.07, d, <i>J</i> =6.5	22.3	
1'''	ASPENTAL ST	167.1	
2'''		127.8	
3'''	6.09, qq, <i>J</i> =0.5,7	139.6	
4'''	1.92, dq, <i>J</i> =0.5,1.5	20.6	
5'''	2.01, qq, <i>J</i> =1.5,7.5	15.8	
-OMe	3.84, s	55.9	

Table 3.10 The ¹H and ¹³C NMR data of Compound 3

Fig. 3.23 Structure of Compound 3

Position	Sinapyl alcohol diisovalerate (CDCl ₃)		
	¹ H, mult, <i>J</i> (Hz)	¹³ C, Hz	
1	4.71, dd, <i>J</i> =6.4,0.9	64.6 t	
2	6.22, dt, <i>J</i> =16,6.4	123.7 d	
3	6.50, dt, <i>J</i> =16,6.4	134.0 d	
1'		128.8 s	
2'	6.61, s	103.4 d	
3'		152.3 s	
4'		134.6 s	
5'		152.3 s	
6'	6.61, s	103.4 d	
1"		170.7 s	
2"	2.45, d, <i>J</i> =7.5	43.0 t	
3"	2.2, m	25.7	
4"	1.06, d, <i>J</i> =6.5	22.3 q	
5"	1.06, d, <i>J</i> =6.5	22.3 q	
1'''	BEREVERSIA	172.9 s	
2'''	2.23, d, <i>J</i> =7.5	43.4 t	
3'''	2.2, m	26.04	
4'''	0.97, d, <i>J</i> =6.5	22.44 q	
5'''	0.97, d, <i>J</i> =6.5	22.44 q	
-OMe	3.9, s	56.1 q	
-OMe	3.9, s	💓 56.1 q	

Table 3.11 The ¹H and ¹³C NMR Data of Compound 3a

Fig. 3.24 Structure of Compound 3a

Fig. 3.25 The COSY Connectivity of Compound 3

Fig. 3.26 The HMBC Connectivity of Compound 3

Fig. 3.27 The NOESY Connectivity of Compound 3

Fig. 3.28 The Structure of Compound 3 1-Angeloxoyloxy-3-[4'-isopentanoloxoyloxy-3'-methoxy]-2-propene

C₉H₇O M⁺131

3.4.4 Purification, Properties and Structural Elucidation of Compound 4

Compound 4 was isolated from dichloromethane extract by eluting with 50% dichloromethane in hexane. This fraction was further purified by VLC (Si-60) with stepwise gradient elution (heptane-CH₂Cl₂-EtOAc-MeOH) to give 7 fractions. Chlorophyll was removed from fraction 4 by VLC (MCI GEL CHP 20P) eluting with MeOH and then with EtOAc. The MeOH fraction was separated by OCC (Si-60) with increasing polarity of the eluents (hexane-CH₂Cl₂-MeOH) to give four fractions. Fraction 2 was purified by preparative TLC (Si-60; hexane:EtOAc (3:2)) to give this compound. Compound 4 was colorless oil 9.2 mg (3.91 x 10^{-3} % w/w of dichloromethane extract). Its R_f value was 0.65 (hexane:EtOAc 3:2).

The IR spectrum of this compound (Fig 3.29) showed an intense band of OH stretching at 3530 cm⁻¹, the characteristic band of α , β -unsaturated ester (C=CCO₂R) at 1710 cm⁻¹ and α , β -unsaturated ketone (C=CC=O) at 1650 cm⁻¹.

The UV absorption was measured (Fig 3.30) and showed the maximum wavelength at 225 nm ($\varepsilon = 2.6 \times 10^4$). This compound has optical rotation activity of $[\alpha]_D^{29}$ -227.75 (c 0.4833, CHCl₃).

The mass spectrum (Fig 3.31) revealed a molecular ion peak at m/z 364, calculated for $C_{20}H_{28}O_6$. The loss of one part of angelate and two molecules of angelate obtained peaks at m/z 265 and 164, respectively. Other fragmentation peaks were found at m/z 83 $[C_4H_7CO]^+$, the characteristic of cyclic ketone and at m/z 55 $[83-CO]^+$. The possible mass fragmentation pattern⁶ of this compound was shown in scheme 3.3.

The ¹H NMR spectrum (Fig 3.32) indicated important proton signals at δ (ppm); 7.04 (1H, dt, *J*=1, 6 Hz), 6.15 (1H, dq, *J*=1.5,7 Hz), 6.18 (1H,dq, *J*=1.5,7 Hz), 5.84 (1H, d, *J*=12.5 Hz), 5.76 (1H, dd, *J*=3.5,5.5 Hz), 4.29 (1H, br d, *J*=14 Hz), 4.37 (1H, br d, *J*=14 Hz), 2.51 (1H, dddd, *J*=3.5, 7.0, 12.5 Hz), 2.07 (1H, dd, *J*=2.5,7.0 Hz), 1.92 (3H, q, *J*=1.5 Hz), 1.97 (3H,q, *J*=1.5 Hz), 1.05 (3H, d, *J*=7.0 Hz), 1.00 (3H, d, *J*=7 Hz), and 2.03 (2H, dq, *J*=1.5, 6.0 Hz)

The ¹³C NMR spectrum (Fig 3.33) showed a ketonic carbon (δ 195.3), ester carbons (δ 167.0 and 166.7), methine carbons (δ 73.0, 66.8, 46.4, and 27.7), methylene carbon (δ 60.7), methyl carbons (δ 19.9, 19.6, 16.0, and 15.8), tertiary carbon (δ 138.9, 140.4, and 139.4) and quarternary carbons (δ 139.1, 126.9, and 129.2) The ¹H and ¹³C NMR data are shown in Table 3.12.

Generally, most carvotanacetones had hydroxy groups at C-3, C-5, and C-7 which were always esterified by most common acids such as tiglic acid, angelic acid, and acetic acid. In compound 4 the substituents in these positions were confirmed by COSY ans HMBC spectrum showed in Fig 3.34 and Fig 3.35, respectively. It was indicated that the substituents on C-3 and C-5 are angelate and on C-7 is a hydroxy group.

Relative stereochemistry of three methines at δ 5.76 (H-3), 2.51 (H-4), and 5.74 (H-5) was deduced from their coupling constant. Owing to the greater coupling constant of ${}^{3}J_{4,5}$ (12.5 Hz), H-4 and H-5 were arranged in the opposite direction, while H-3 and H-4 were oriented in the same plane. The ¹H-¹H COSY spectrum allowed the assignment of all proton signals while the ¹³C NMR signals were assigned by HMQC and HMBC experiments. The ¹H-¹H COSY connectivity, ¹H-¹³C HMBC connectivity are showed in Fig 3.36 and Fig 3.37, respectively.

All above data allowed us to assign compound 4 as $3\alpha-5\beta$ -diangeloxoyloxy-7-hydroxy carvotanacetone and confirmed with the reference.^{15,20} The structure of this compound is exhibited in Fig 3.38.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

Fig 3.30 The UV Spectrum of Compound 4

Fig 3.32 The ¹H NMR Spectrum of Compound 4

สถาบนวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

สถาบนวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย
Position	Compound 4 (CDCl ₃)					
	¹ H, mult, <i>J</i> (Hz)	¹³ C, Hz				
1		139.1				
2	7.04, dt, <i>J</i> =1,6	138.9				
3	5.76, dd, <i>J</i> =3.5, 5.5	66.8				
4	2.51, dddd, <i>J</i> =3.5,5.5	46.4				
5	5.84, d, <i>J</i> =12.5	73.0				
6		195.3				
7	4.29, br d, <i>J</i> =14	60.0				
	4.37, br d, <i>J</i> =14	b				
8	2.07, dd, <i>J</i> =2.5, 7	27.7				
9	1.00, d, <i>J</i> =7	19.6				
10	1.05, d, <i>J</i> =7	19.9				
1'	3. Atte Onite &	166.7				
2'	Alexan N	126.9				
3'	6.15, dq, <i>J</i> =1.5, 7	140.4				
4'	2.03, dq, <i>J</i> =1.5, 6	15.8				
5'	1.92, q, <i>J</i> =1.5	20.6				
1"		167.0				
2"	20 N	127.2				
3"	6.18, dq, <i>J</i> =1.5, 7	139.4				
4"	2.03, dq, <i>J</i> =1.5, 6	16.0				
5"	1.97, q, <i>J</i> =1.5	20.5				

Table 3.12 The ¹H and ¹³C NMR Data of Compound 4

จุฬาลงกรณมทาวิทยาลย

Fig. 3.36 The COSY Connectivity of Compound 4

Fig. 3.37 The HMBC Connectivity of Compound 4

61

Scheme 3.3 The Possible Mass Fragmentation of Compound 4

m/z 55

3.4.5 Purification, Properties and Structural Elucidation of Compound 5

Compound 5 (75.8 mg, 3.22×10^{-2} % w/w of dichloromethane extract), yellow needles and m.p. = 214-215°C, was isolated from dichloromethane extract by eluting with 100% dichloromethane . Chlorophyll was removed from this fraction by VLC (MCI GEL CHP 20P) using MeOH and EtOAc as the eluents. MeOH fraction was separated by OCC (Si-60) with increasing polarity of eluent (hexane-EtOAc-MeOH) to give eleven fractions. Fraction 5 and 6 were recrystallised from CH₂Cl₂:MeOH (1:1) to obtain this compound.

The IR spectrum (Fig 3.39) exhibited an absorption band due to OH stretching vibration of hydroxy group at 3400 - 3300 cm⁻¹. The absorption band at 1660 cm⁻¹ which corresponded to the C=O stretching vibration of , possibly an α , β - unsaturated ester were observed. In addition, the absorption peak at 1600 - 1400 cm⁻¹ suggested the presence of aromatic moiety.

The molecular formula of compound 5 was established by low-resolution mass spectroscopy (Fig 3.40) which revealed a molecular ion peak at m/z 360. Other fragmentation and fragmentation pattern displayed in scheme 3.4.

The ¹H NMR spectrum (Fig 3.41) and ¹³C NMR spectrum (Fig 3.42) were measured in DMSO-*d6*. Then the data was investigated and compared with the reference¹² as shown in the Table 3.13.

Fig 3.39 The IR Spectrum of Compound 5

Fig 3.40 The mass Spectrum of Compound 5

Position	Chrysophenol D		Compound 5 (DMSO-d ₆)		
	(DMSO-d _d	5+CDCl ₃)			
	¹ H, mult, <i>J(Hz)</i>	¹³ C, Hz	¹ H, mult, <i>J(Hz)</i>	¹³ C, Hz	
2		155.9		156.0	
3		137.6		137.7	
4		178.1		178.2	
5		151.7	_	151.7	
5-OH	12.63, s		12.63, br s		
6		131.5		131.6	
7		158.5		158.6	
8	6.81, s	91.1	6.84, s	91.3	
9		151.7		151.7	
10		105.5		105.5	
1`		120.8		120.7	
2`	7.58, s	115.7	7.57, d, <i>J</i> = 2.5	115.5	
3`		145.2		145.3	
4`	13	148.8		148.9	
5`	6.89, d, <i>J</i> = 9	115.6	6.88, d, <i>J</i> = 8.5	115.7	
6`	7.47, d, <i>J</i> = 9	120.5	7.47, dd, <i>J</i> = 2.5,8.4	120.6	
-OMe	3.71, s	56.3	3.70, s	56.5	
-OMe	3.77, s	59.6	3.77, s	59.6	
-OMe	3.81, s	60.0	3.89, s	60.1	

Table 3.13 The ¹H and ¹³C NMR Data of Chrysophenol D and Compound 5

All the above data suggested that compound 5 is concluded to be Chrysophenol D. The proton and carbon assignments of this compound were achieved on the basis of comparison with previous report. The structure, the ¹H and ¹³C NMR data assignment of this compound are exhibited in Fig 3.43, 3.44, and 3.45, respectively.

Fig. 3.43 The Structure of Compound 5 Chrysophenol D

Fig. 3.44 The Proton Assignment of Compound 5

Fig. 3.45 The Carbon Assignment of Compound 5 Scheme 3.4 The Possible Mass Fragmentation of Compound 5

3.4.5 Purification, Properties and Structural Elucidation of Compound 6

Ethyl acetate extract was isolated by OCC (Si-60) eluted with step gradient solvent system (hexane-EtOAc-MeOH). The 30% EtOAc in hexane fraction was purified by recrystallisation from CH_2Cl_2 :MeOH (1:1) to give compound 6 and compound 7. Compound 6 is yellow needle, 47.9 mg (0.13 % w/w of EtOAc extract) m.p. = 279°C.

The IR spectrum (Fig 3.46) of compound 6 showed the absorption band of a hydroxy group at 3500 - 3200 cm⁻¹. The strong absorption band at 1654 cm⁻¹ revealed the presence of α , β -unsaturated carbonyl and the characteristic absorption peak due to an aromatic moiety was observed at 1600 - 1400 cm⁻¹.

The molecular formula of compound 6 (Fig 3.47) was determined as $C_{17}H_{14}O_7$ by low-resolution mass spectrometry (M⁺) m/z 330. The fragmentation pattern displayed in scheme 3.5.

The ¹H and ¹³C NMR data (Fig 3.48 and Fig 3.49) was investigated and compared with those of the references^{21,22} as shown in Table 3.14. Compound 6 was identified to be 3,7-dimethoxy-4',5,6-trihydroxy flavone as they exhibited the same NMR data.

Fig 3.50 displayed the structure of compound 6 and the proton and carbon assignment of this compound are showed in Fig 3.51 and 3.52.

Fig 3.46 The IR Spectrum of Compound 6

ш	3,7-dimethoxy-4',5,6-	Herbacetin-3,7-dimethoxy*		Compound 6 [#]	
#	trihydroxy flavone*				
	¹ H, mult, <i>J</i> (Hz)	1 H, mult, J (Hz)	¹³ C	¹ H, mult, <i>J</i> (Hz)	¹³ C
2			155.8		158.3
3		SAMP 4	137.4		135.5
4			178.4		175.9
5			152.7		151.3
5-OH	12.45, s	12.21, s		12.45, s	
6			95.4		131
6-OH	9.60, s	6.57, s		9.55, s	
7		1/5 6 6	154		150.8
8	6.85 1H s	8.82 -OH s	126.1	6.90 1H s	91
9			143.7		147.1
10		a hacomin	104.4		104.1
1`		RAMAN	120.8		121.4
2`	7.97 m, <i>Jo</i> =9, <i>Jm</i> =2	8.03 1H d, <i>J</i> = 8.8	130.3	8.10 1H d, <i>J</i> = 8.9	129.3
3`	6.95 m, <i>Jo</i> =9, <i>Jm</i> =2	6.97 1H d, <i>J</i> = 8.8	115.6	6.94 1H d, <i>J</i> = 8.9	115.2
4`			160.2	0	159.1
4`-OH	10.10, s	10.28, s	ž	10.15, s	
5`	6.95 m, Jo=9, <i>Jm</i> =2	6.97 1H d, <i>J</i> = 8.8	115.6	6.94 1H d, <i>J</i> = 8.9	115.2
6`	7.97 m, Jo=9, <i>Jm</i> =2	8.03 1H d, <i>J</i> = 8.8	130.3	8.10 1H d, <i>J</i> = 8.9	129.3
OMe	3.80 3H S	3.80 3H S	59.6	3.75 3H s	59.8
OMe	3.92 3H S	3.91 3H S	56.4	3.93 3H s	56.2

Table 3.14 The ¹H and ¹³C NMR Data of Compound 6, 3,7-dimethoxy-4',5-trihydroxy flavone, and Herbacetin-3,7-dimethoxy

Note :

3.... Solvent for NMR data is DMSO- d_6 + CDCl₃

Solvent for NMR data is DMSO- d_6

Fig. 3.50 The Structure of Compound 6

Fig. 3.52 The Carbon Assignment of Compound 6

Scheme 3.6 The Possible Mass Fragmentation of Compound 6

3.4.7 Purification, Properties and Structural Elucidation of Compound 7

Compound 7 (49.5 mg, 0.13 % w/w of ethyl acetate extract) was obtained as yellow amorphous substance. It melted at 217-218°C.

The IR spectrum (Fig 3.53) of this compound showed the existence of hydroxy group and carbonyl group at $3500 - 3200 \text{ cm}^{-1}$ and 1649 cm^{-1} , respectively.

The molecular formula of compound was confirmed by the molecular peak at m/z 360, displayed in molecular mass spectrum (Fig 3.54) and fragmentation pattern exhibited in scheme 3.7.

The ¹H and ¹³C NMR data were compared with that reported¹² as displayed in Table 3.15. The proton and carbon NMR spectrum were exhibited in Fig 3.55 and Fig 3.56. Both ¹H and ¹³C NMR spectral data of compound 7 was closely resembled to those of Chrysophenol C. The structure, the proton, and the carbon assignment of this compound are exhibited in Fig 3.57, 3.58, and 3.59, respectively.

จุฬาลงกรณมหาวทยาลย

Fig 3.56 The ¹³C NMR Spectrum of Compound 7

#	Chrysophenol C (DMSO-d ₆)		Compound 7 (DMSO-d ₆)		
	¹ H, mult, <i>J</i> (Hz)	¹³ C, Hz	¹ H, mult, <i>J</i> (Hz)	¹³ C, Hz	
2		151.6		151.3	
3		135.9		135.7	
4		176.1		175.9	
5		151.0		150.8	
5-ОН	12.43, s		12.44, br s		
6		131.3		131.1	
6-ОН	9.96, s	5 7 A	9.58, br s		
7		158.6		158.3	
8	6.88, s	91.3	6.93, s	91.1	
9		149.0		148.8	
10		104.3		104.1	
1`		121.9		121.7	
2`	7.77, s	111.8	7.79, d, <i>J</i> = 2.5	111.5	
3`	Q	147.4	2	147.2	
4`		147.1		146.9	
4`-OH	9.77, s		9.79, br s		
5`	6.94, d, <i>J</i> = 8	115.6	6.95, d, <i>J</i> = 8.5	115.3	
6`	7.72, d, <i>J</i> = 8	121.9	7.76, dd, <i>J</i> = 2.5,10	121.7	
-OMe	3.73, s	60.1	3.74, s	59.8	
-OMe	3.85, s	56.5	3.86, s	56.2	
-OMe	3.91, s	55.9	3.93, s	55.6	

 Table 3.15 The ¹H and ¹³C NMR Data of quercetagetin-3,3`,7-trimethoxy ether and Compound 7

Fig. 3.58 The Proton Assignment of Compound 7

Fig. 3.59 The Carbon Assignment of Compound 7

Scheme 3.7 The Possible Mass Fragmentation of Compound 7

3.5 The Result of Activities of Isolated Compounds

3.5.1 The Cytotoxicity Against KB Cell of Isolated Compounds

According to preliminary cytotoxicity screening test, dichloromethane and ethyl acetate extracts showed significant cytotoxicity against human leukemia carcinoma cell line (HL-60) and human nasopharyngeal carcinoma cell line (KB). Especially ethyl acetate extract exhibited strong cytotoxicity against KB cell line. The results of cytotoxicity testing are abown in Table 3.16.

Samples		% Inhibition /	Dose (µg/mL)	
_	10	3	1	0.3
Compound 1	24.4	-	-	-
Compound 2	47.4		-	-
Compound 3	34.0	2.14-	-	-
Compound 4	96.4	94.4	48.4	28.5
Compound 5	42.8	34.0	20.3	13.2
Compound 6	11.0	997997 2 9	-	-
Compound 7	37.5	2/32/5-5-	-	-

Table 3.16 Cytotoxicity Against KB Cell of Isolated Compounds

From above data, compound 4 and compound 5 revealed strong and medium cytotoxicity against KB cell line, respectively.

= No activity

3.5.2 The Free Radical Scavenging Action to DPPH Radical Activity

Isolated compounds were tested for free radical scavenging activity. The results are showed in Table 3.17.

Table 3.17 Th	e Free	Radical	Scavenging	action to	DPPH	Radical	Activity
---------------	--------	---------	------------	-----------	------	---------	----------

Samples	EC ₅₀ (EC _{125 μM} DPPH) mM/mL
Compound 1	112
Compound 2	
Compound 3	
Compound 4	0.870
Compound 5	0.030
Compound 6	0.060
Compound 7	0.040
Catechin	0.105

 $EC_{50} < 0.1 mM/mL = strong$

< 0.01 mM/mL = very strong

In this method, catechin was selected as the standard. From this table compounds 1, 2, and 3 did not show the activities. Compound 4 showed weaker activity than catechin, while, compounds 5, 6, and 7 showed strong activity. After compared with standard, all flavonoids exhibited stronger activity than catechin.

CHAPTER IV

Conclusion

In this research, seven compounds were isolated from bioactive fractions of *S. africanus*. Their structures were characterized by spectroscopic study, and cytotoxicity and free radical scavenging action have been examined. The isolated compounds are summarized as follows.

Compound 1; Stigmasterol

(73.3 mg, 1.20 x 10^{-2} % w/w of ethanol extract, 1.22 x 10^{-3} % w/w of dry plant)

Compound 2; 1-angeloxoyloxy-3-[4'-angeloxoyloy-3'-methoxy]-2-

Propene (3.4 mg, 5.56 x 10^{-4} % w/w of ethanol extract, 5.67 x 10^{-5} % w/w of dry plant)

Compound 4; 3α,5β-diangeoloxoyloxy-7-hydroxycarvotanacetone (9.2 mg, 1.50 x 10⁻³ w/w of ethanol extract, 1.53 x 10⁻⁴ % w/w of dry plant)

Compound 5; Chrysophenol D (75.8 mg, 1.24 x 10⁻² % w/w of ethanol extract,

1.26 x 10⁻³ % w/w of dry plant)

Compound 6; 3,7-dimethoxy-4',5,6-trihydroxy flavone

(49.7 mg, 8.12 x 10⁻³ % w/w of ethanol extract, 8.28 x 10⁻⁴ % w/w of dry plant)

Compound 7; Chrysophenol C (49.5 mg, 8.09 x 10⁻³ w/w of ethanol extract, 8.25 x 10⁻⁴)

All the isolated substances, carvotanacetone derivative (**Compound 4**) and chrysophenol D (**Compound 5**) have significantly revealed 96.4 % and 42.8 % inhibition at 10 µg/mL against KB cell line. In the case of free radical scavenging action to DPPH radical activity, carvotanacetone (**Compound 4**) shown weak activity ($EC_{50} = 0.870$ mM/mL. Where as, chrysophenol D (**Compound 5**), 3,7-dimethoxy-4',5,6- trihydroxy flavone (**Compound 6**), and chrysophenol C (**Compound 7**) exhibited ($EC_{50} = 0.03$, 0.06, and 0.04 mM/mL, respectively) stronger activity than catechin (commercial standard, $EC_{50} = 0.105$ mM/mL). As above, the carvotanacetone derivative and flavonoid derivatives have displayed the significant cytotoxicity against KB carcinoma cell line, and they have also shown high antoxidation activity. Therefor in the future may use this result to modify the useful substances or medicines.

Proposal for future work

It could be clearly seen that various biologically active compounds could be isolated from the active fractions of whole plant of *S.africanus*. Even though, the uses of human carcinoma cell lines cytotoxicity lethality and free radical scavenging activity against DPPH assay are the preliminary indication among well known bioassays, their results were firmly reliable and showed good tendency towards studying on more sophisticated bioassays such as anticancer in pharmaceutical aspects or in agricultural aspects. Therefore, further studies on those mentioned bioassays should be conducted.

1-Angeloxoyloxy-3-[4'-isopentanoloxoyloxy-3'-methoxy]-2-propene is a new compound but exhibited not very strong activities. Although the naturally relative amount of this compound was tiny, it may be synthesized from 4-hydroxy isoeugenol.²² After that we can synthesize its derivatives and study about structure activity relationship.

Another aspect that would make whole plant used research fulfill is the chemotaxonomy study on chemical constituents of other parts of *S. africanus* and also various parts of another species in Thailand such as *S. indicus*.

The outcome obtained from this research supported a promising concept of the fully utilization and biologically active compound searching from ideal and potential natural resources of Thai weeds.

REFERENCES

- 1. Mohamed, S.S., Pir, M.S., Khalid, M.K., Atta, Ur. New Eudesmanolides from Sphaeranthus indicus; J. Nat. Prod., 1991, 54(3), 882.
- Heywood, V. H., Horborne, J. B., Turner, B. L. *The Biology and chemistry of the compositae;* Acedamic press, New York, 1977, 578.
- 3. Perry, L. M. Medicinal plants of east and southeast asia attributed properties and uses; London, The mit press, **1980**, 88.
- Jakypovic, J., Grenz, M., Bohlman, F., Mungai, G.M. Carvotanacetone Derivatives and Eudesman-12,6β-olides from Sphaeranthus Species; Phytochemistry, 1990, 29(4), 1231.
- Smitinand, T. Chaew Phan Mai Hong Pra Tet Thai; Fanny Press, Bangkok, 1990, 312.
- Zdero, C., Bohlman, F., Mungai, G.M. Carvotacetone Derivatives and Other Constituents from Representatives of the Sphaeranthus Group; Phytochemistry, 1991, 30(10), 3297.
- Gogte, M.G., Anantha subramanian, L., Nargund, K.S., Bhattacharyya, S.C. Some Interesting Sesquiterpenoids from Sphaeranthus indicus Linn. (Compositae); Indian. J. Chem., 1986, (25B), 233.
- Luengo, D.D., Miski, M., Gage, D.A., Mabry T.J. 7α-Hydroxy-Sesquiterpene Lactone from Decachaeta ovatifolia; Phytochemistry, 1986, 25(8), 1917.
- 9. Rojatkar, S.R., Sawaikar, D.D., Nagasampagi, B.A. Photo-oxidation of 7hydroxyeudesmanolide, a constituent from Sphaeranthus indicus Linn.; Indian. J. Chem., 1994, 33B, 1203.
- 10. Ma, W.W., Kozliwski, J.F., McLaughlin, J.L. Bioactive Neoligans from Endlicheria dysodantha; J. Nat. Prod., **1991**, 54(4), 1153.
- Sohoni, J.S., Rojakar, S.R., Kukhani, M.M., Dhaneshhor, N.N., Nagasampagi,
 B.A. A New Eudesmenolide and 2-Hydroxycostic Acid from Sphaeranthus indicus Linn. X-Ray Molecular Structure of 4α,5α-Epoxy-7α-hydroxyeudesmanolide; J. Chem. Sac. Perkin Trans I, 1998,157.

- Maneechakr, P. Chemical Constituents and Biological Activities of Sphaeranthus africanus Linn.; Ms Thesis (Chemistry), Graduate School, Chulalongkorn University, 1994.
- Shekhani, M.S., Shah, P.M., Yasmin, A., Siddigui, R., Perveen, S., Rhaman, A.U. An Immunostimulant Sesquiterpene Glycoside from Sphaeranthus indicus; Phytochemistry, 1990, 29(8), 2573.
- Rungprom, W. Bioactive Compounds of Sphaeranthus africanus Linn.; Ms Thesis (Chemistry), Graduate School, Chulalongkorn University, 1998.
- Wright, J.L.C., McInnes, A.G., Shimizu, S., Smith, D.G., Walter, J.A., Idler, D., Khalil, W. Identification of C-24 alkyl epimers of marine sterols by ¹³C nuclear magnetic resonance spectroscopy; Can. J. Chem., **1978**, 56, 1898.
- Vogeli, U., Philipsborn, W.V. Vicinal C,H Spin Coupling in Sustituted Alkenes. Stereochemical Significance and Structural Effects; Org. Magn. Resonace., 1975, 7, 617-627.
- 17. Bohlmann, F., Zdero, C. Uber Ein Neues Coniferylalkohol-Derivat Aus Blumea lacera; Tetrahedron Letters, **1969**, 2, 69.
- Martinez, V., Barbera, O., Sanchez-Parareda, J., Marco, J.A.Phenolic and Acetylenic Metabolites from Artemisia assoana; Phytochemistry, 1987, 26 (9), 2619.
- 19. Hhmed, A.A., A. A. Mahmoud. Carvotacetone Derivatives from the Egyptian Plant Sphaeranthus suaveolens; Phytochem, 1997, 45(3), 533-535.
- Wagner, H., Maurer, I., Parkas, L., Strelisky, J. Syntheses Von Polyhydroy-Flavonolmethylathern Mit Potentieller Cytotoxischer Wirksamkeit-II; Tetrahedron, 1977, 33, 1411.
- 21. Wollenweber, E., Dorr, M., Beyer, M., Roitman, J.N., James, N., Puttock, C.F. Rare Flavonoids from Odixia and Ozathamnus spp. (Asteraceae, Gnaphalieae); Z. Naturforsch., **1997**, 52c, 571.
- Jeffrey, B.H.F., Herbert, B., Gerard, P.M. Phytochemical Dictionary; A Handbook of Bioactive Compounds from Plants; Taylor & Francis Ltd., 1999.

Curriculum Vitae

Miss Pornpan Sukpanyalert was born on August 16, 1976 in Ayutthaya, Thailand. She graduated with Bachelor Degree of Science, major in Chemistry from Chulalongkorn University. She was supported by a research from the Association International Education, Japan (AIEJ), University of the Ryukyus during October 1999 to August 2000 and from Natural Products Research Unit of Department of Chemistry, Chulalongkorn University. Her present address is 846/77 Pracha-Utid 44, Bangmod, Tungkru, Bangkok 10140.

