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1. Introduction 

Poisson Jump Models are popular in option pricing and risk management due 

to the fact that they can capture the unexpected movement of the underlying asset’s 

indexes being modeled. In other words, the models are capable of creating leptokurtic 

distribution which are normally found in financial asset returns distribution while 

ordinary diffusive models cannot. Until recently, most of the Poisson Jump Models are 

modeled based on the constant arrival rate of the jump or jump intensity. However, it 

has been found that asset’s returns jump movement are having the properties called 

jump clustering and contagion effect. This has led to more studies toward conditional 

jump intensity models. 

As the jumps are introduced into the models to solve the extreme cases of asset’s 

indexes movement, it is clearly important that the jumps introduced should provide 

significant benefits to the model than without them. Furthermore, although in real life, 

jumps rarely happen, they still cause great impact as they would happen during crises. 

With the potential to create a huge amount of impact, it is essential to provide the jump 

characteristics that are similar to the real-life asset’s jumps into the jump models. 

Although some researchers have tried incorporating jump clustering and 

contagion effect into the models, there are some existing limitations in their models. 

This research will try to propose a multivariate jump diffusion models that could relax 

some of those limitations. 
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2. Background 

2.1 Definitions 

Different researches might define jump clustering and contagion effect 

differently. For this research, I define them like those as in the work of Aït-Sahalia, 

Cacho-Diaz, and Laeven (2014). In particular, jump clustering is the cluster of jumps 

in time series and the contagion effect is the contamination effect cross-sectionally 

towards other assets. For example, in terms of asset returns modeling, when a jump 

occurs, it changes the probability of the near next jump occurrence causing the 

clustering of jumps in the asset return. Further, these jumps can change the probability 

of another assets’ jump occurrence. This effect is referred as the contagion effect. 

2.2 Variations of Jump Models 

The most well-known jump model would be the jump diffusion model 

introduced by Merton (1976). This type of model adds jump component to the diffusion 

model. However, there are variations in jump components and variations in the 

diffusion components. Some of the classification are being made in the survey by Sepp 

(2003) and those variations are stochastic volatility jump diffusion model, jump 

diffusion model with stochastic jump intensity, jump diffusion model with stochastic 

volatility and stochastic jump intensity, and jump diffusion model with deterministic 

volatility and jump intensity. Each variations also varies in the detailed components. 

Although, there are pure jump models, I do not consider that variation because I would 

like the jump component to act as the trigger to an unexpected event. This research 

would falls in the variation of jump diffusion model with stochastic jump intensity. 
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2.3 Variations of Jump Size 

The most widely-used jump process is also from the model proposed by Merton 

and it is known as the compound Poisson process Merton (1976). This process has taken 

into account the amount of jumps from Poisson process and each of the jumps has a 

random jump size. Merton also has been using the randomization of jump size in log-

normal form for asset’s return. This is one of the most popular jump size used due to 

the fact that it is log-normally distributed like most of the return’s asset distribution 

models so adding them up would create a nice form. Another popular type of jump size 

studied by Kou (2002) is double exponential jumps, which are more flexible than log-

normal that it determines the heaviness of the left and right tails separately. Kou’s 

model is demonstrated by Kou and Wang for an easy implementation on option pricing 

Kou and Wang (2004). In the survey done by Sepp (2003), there is also a weighted 

mixture of independent jumps where each independent jumps are given some amount 

of different weight for the jump as a whole similar to the compound Poisson process. 

This research will assume the log-normal return distribution. 

2.4 Variations of Jump Intensity 

Two of the most used variations of jump intensity in similar type of research are 

Cox process (also known as doubly stochastic intensity) introduced by Cox (1955)  and 

Hawkes process introduced by Hawkes (1971). The Cox process is referred to the 

counting process where the jump intensity is some stochastic random variables. 

However, in some of the works like the works of Basu and Dassios (2002) and Dario 

and Simonis (2011), the jump intensity is not conditional on the prior jump intensity. 

Still, there are works which have taken account for prior intensity like the model studied 

by Fang (2000). The major difference between Cox process and Hawkes process 
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mentioned by Aït-Sahalia et al. (2014) is that Cox process does not depend on the 

numbers of previous jumps while Hawkes process does. 

This research will use the jump intensity that depends on the numbers of jumps 

in the prior period so it should fall in the category of a Hawkes process. In fact, we 

consider an extension of a Hawkes process. 

2.5 Usefulness of EM algorithm 

 Couvreur (1997) describes the type of problem in maximum-likelihood 

estimation that can be benefitted with the help of the Expectation-Maximization 

algorithm or EM algorithm. EM algorithm is useful when we need to maximize the 

likelihood of the problems with variables that are unobservable or “incomplete data” 

problems. It is also useful in problems with many parameters to estimate. Couvreur 

(1997) states its advantages as simplicity and ease of implementation with the main 

drawback of possible slow convergence in some cases. 

2.6 Concept of EM Algorithm 

The main concept of the EM algorithm is to find the maximum likelihood 

estimators through the use of 2-steps iterative methods: Expectation (E-Step) and 

Maximization (M-Step). For easy implementation in these 2 steps, the EM algorithm 

has the concept called ‘complete’ and ‘incomplete’ data. Let 𝑌 be a random variable 

that is observable with probability density function 𝑃(𝑦|Γ) where Γ is the unknown 

parameters. Let 𝑍 be an unobservable variable or latent variable with probability density 

function 𝑃(𝑧|Γ). The ‘complete’ data refers to  {𝑌, 𝑍} while the ‘incomplete’ data is {𝑌}. 

In the EM algorithm, instead of maximizing the likelihood function of the ‘incomplete’ 

data 𝐿(Γ) = 𝑃(𝑦|Γ), the algorithm first views the likelihood function of the ‘complete’ 

data 𝐿𝑐(Γ) = 𝑃(𝑦, 𝑧|Γ) = 𝑃(𝑧|Γ)𝑃(𝑦|𝑧, Γ). 



 

 

5 

In the E-Step, the expected complete-data log-likelihood 𝑄(Γ|Γ(𝑝)) =

𝔼[ln 𝐿𝑐(Γ) |Γ
(𝑝), 𝑦]  is computed where 𝑝 is the iteration number. In the M-Step, the 

parameter Γ(𝑝+1) that maximizes 𝑄(Γ|Γ(𝑝)) is determined; that is Γ(𝑝+1) =

𝑎𝑟𝑔𝑚𝑎𝑥
Γ

𝑄(Γ|Γ(𝑝)). Each iteration is the alternating computation of the M-Step and E-

Step until the convergence criteria are met. Under the regular condition, Γ converges to 

the maximum likelihood estimator. 
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3. Literature Review 

3.1 Findings on Jump Effects 

Many modelling researches have confirmed that there are effects on various 

assets’ returns that provide characteristics like jump clustering effect and contagion 

effect. Chan and Maheu (2002) show in their work that having conditional jump 

intensity significantly outmatches constant jump intensity. Polson and Scott (2011)’s 

analysis show that most existing volatility models are unable to explain some features 

of contagion effects and there is a significant evidence on contagion effects during 

major EU crisis periods. Their model also suggests another effect called directional 

clustering in addition to the other two effects where they define them as the effect that 

the shock of aggregate volatility provides specific directional bias in the signs of 

country-level returns. Christoffersen, Kris, and Ornthanalai (2012) study using S&P500 

index return and option data. They find evidence for time-varying jump intensities on 

both data, but option data’s jumps are insignificant in low volatility regime. 

Additionally, they find that jump intensities seem to depend on market risk level. Choe 

and Lee (2013) test the models with various kinds of jump intensities and find 

consistent evidence on the existence of conditional asymmetry, in which they refer to 

as ‘the difference between the dependence structures of up and down movements on 

past information’. Li and Zhang (2013) have additionally find that out-of-the-blue 

jumps correlate with stock price level historical average while the past jump intensity 

provides follow-on jumps (jump clustering) information. They also find that 

conditional expected jump size is negatively associated with stock price level historical 

average. Aït-Sahalia et al. (2014) show that the asset return model that considers jump 
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clustering and contagion effect has provided evidence on self-excitation and reflecting 

across countries. 

3.2 Findings on EM algorithm 

Roche (2011) collects different variants of EM algorithm from various 

researchers. Two main classifications are either deterministic or stochastic. Most of the 

deterministic variants EM algorithm focus on speeding up algorithm by either 

simplifying computations or increasing the rate of convergence. Stochastic variants on 

the other hand focus on difficulties in implementation of either E-step or M-step in 

standard EM algorithm by replacing with stochastic simulation. Although, stochastic 

variants might take up more computation it does come with a nice trait that due to 

stochastic simulation, there is lesser tendency to be trapped in local maxima or saddle 

points. 

3.3 Some Related Existing Models 

Merton (1976)’s model provides one of the most adopted jump models. This 

research is also one of the extension to Merton’s model so this section of literature 

review would focus on the works relating to the research’s topic that are proposing the 

extension of Merton’s model. 

Chan and Maheu (2002) model their jumps similar to autoregressive model AR 

(1) and called it ARJI. They also have the extension of stochastic volatility using 

GARCH. Their work is an early development of jump model that provides insight to 

the studies of jump clustering. So their model has yet to take account for the contagion 

effect. 

Aït-Sahalia et al. (2014) have created the multivariate jump diffusion process 

model with stochastic volatility and conditional jump intensity. Their stochastic 
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volatility is based on Heston’s Model and their jump intensity is based on Hawke’s 

process, in which the jump size is double exponential. Their results show that there are 

contagion effects across regions around the world. They use GMM method for fitting 

the data. The benefits of their GMM are that the result’s estimation of moments can be 

found in close-form, wrong assumption of parameters’ distributions are not crucial with 

the known confidence level of distribution correctness, and the results can be 

interpreted easily with the separation of different orders of moments. However, their 

jump intensity rate dynamics cannot include some normal noises due to the fact that it 

might cause a negative value on their jump intensity rate. They also assume that the 

jump size of the jump intensity rate is both cross-sectionally and serially independent 

from each other. On multivariate case, they have to assume some jump sizes of their 

jump intensity rates to be 0 to still hold good tractability in their estimation while the 

other jump sizes of their jump intensity rates are assumed to be some constant 

parameters. 

Polson and Scott (2011) study clustering, contagion, and directional effects on 

EU crisis periods. They define each correlation of stochastic volatility in terms of across 

time, cross-section, and upon volatility shocks to study the three effects. However, their 

model does not study these effects in terms of jumps so it is quite different from the 

model proposed by this research. 

Duncan, Randal, and Thomson (2009) propose the EM algorithm to estimate 

the maximum likelihood of the multivariate jump diffusion model (a variation of 

Merton’s model) with EM algorithm. Their work show the simplicity of 

implementation and also the better numerical properties compared to the conventional 

numerical optimization while also lessening the sensitivity of starting value choices. 
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Nevertheless, their work uses a constant jump intensity, which means the jump 

clustering and contagion effect are unaccounted for. 

Some recent similar studies also extend the model for microstructure or high 

frequency data. Carlsson, Foo, Lee, and Shek (2007) model the bivariate Hawkes 

process for high frequency trade prediction. The model contains only the Hawkes 

process, which is used to create signal to trigger buy and sell. Bacry, Delattre, Hoffman, 

and Muzy (2013) study a new stochastic price model at tick-by-tick up to two assets at 

once. They used Hawkes process as a self and mutually exciting intensities of jumps. 

They also account for the Epps effect (the correlation of the increments in microscopic 

scales). Bacry and Jean-Francois (2013) then create the first model that accounts for  

market price microstructure that includes random time arrival of price moves, discrete 

price grid, high frequency mean reversion, and correlation functions at various time 

scales. Their work mainly focuses on the microstructure in which they account for buy 

and sell order execution effects. Fonseca and Zaartour (2014) later create the stock price 

model with Hawkes process as an extension to Bacry et al. (2013)’s work to study lead-

lag correlation between two indexes in microstructure. Due to the fact, that the lead-lag 

correlation only happens when the prices move in the same direction, they assume that 

the two stocks would need to be positively correlated. Also, they only study the lead-

lag correlation in pair of indexes using a bivariate model. This research would not deal 

with the microstructure data and will not discuss further about their work. One of the 

reasons this research avoids microstructure data is because in dealing with the 

contagion effects, it needs to take into account the asset returns from different regions 

in which each countries’ market microstructure are not only different, but would also 

need to compensate on time lag, which can be difficult at the microscopic level. 
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3.4 Research Similarity 

This research would be the extension to the work of Duncan et al. (2009). The 

main extension is to change the constant jump intensity into conditional jump intensity 

which would incorporate jump clustering and contagion effect. The conditional jump 

intensity would be then be similar to the jumps from the work of Aït-Sahalia et al. 

(2014), but this research proposes a model that is more applicable with multiple assets 

with the help of EM algorithm. The variants of EM algorithm are developed with the 

focus on easiness in implementation. 
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4. Objective 

The objective of this research is to create a multivariate jump diffusion model 

incorporating jump clustering and contagion effects that can be fitted and is applicable 

in a wide range of applications. 

4.1 Contributions 

This research provides three main contributions. The first contribution is that 

the model relaxes the assumptions made from similar models. The main contributions 

in the model would come from an extension to the work of Aït-Sahalia et al. (2014) in 

three aspects. First, this research is modelling the jump intensity rates in logarithmic 

form meaning that it can account for noises and would still make the jump intensity 

rates non-negative. Second, this research is using the jump sizes of the jump intensity 

rates that are cross-sectionally correlated. Third, the jump sizes of the jump intensities 

are assumed to be multi-dimensional vectors of normal distributions instead of being 

the constant parameters. 

The second contribution is that it provides an estimation method for multivariate 

jump diffusion model with conditional jump intensity that is applicable to multiple 

assets by using the EM algorithm. The EM algorithm is a model-specific 

implementation method that would require nontrivial work for the proposed model. 

From the process of EM algorithm, it also provides the filtered and smoothed 

probabilities of jumps and jump intensities that can be computed as a byproduct. Also, 

given the proposed model, all parameters are able to be obtained from the close-form 

solutions at each step of the EM algorithm, which would require small effort in 

computation. 
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The last contribution is that it allows the analysis of asymmetry in contagion 

effect across regions. Statistical tests can be done using the information matrix. 

4.2 Possible Applications 

This section lists some possible implementations from the research’s model, 

however, these are not implemented in this research. 

Portfolio Asset Allocation. With the model’s additional consideration on risk 

involvement of jump clustering and contagion effects, the portfolio asset allocation’s 

decision would be affected through the change of expected return and the contagion 

and jump clustering risk. 

Strategic Trading. Jump clustering and contagion effect might contain lead or lag 

horizontally (across time) or cross-sectionally (across regions, industries, or considered 

groups), which may in turn provide a high probability of successful strategic trading. 

Risk Management. Forecasting of risk might be available if the estimated parameters 

are good enough. Value-At-Risk will also change with jump clustering or contagion 

effects. 

Pricing Derivatives. Some extensions to the model to include the risk neutral measure 

might be able to help price derivatives that account for jump clustering and contagion 

effects. 
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5. Methodology 

5.1 Model 

 Incorporating the jumps into the model creates the discontinuity in the 

dynamics. By letting 𝑋𝑖,𝑡 denote the return of asset 𝑖 at time 𝑡, the discrete-time of return 

is then given as: 

𝑋𝑖,𝑡 = 𝜇𝑖 + 𝜎𝑖∆𝑊𝑡 + ∑ ∑ 𝜃𝑖,𝑘,𝑗,𝑡
∆𝑁𝑘,𝑡
𝑗=1

𝐾
𝑘=1                        𝑖 = 1,… , 𝑛 (1) 

The model is divided into two parts like Merton’s model. The first part is the 

diffusion term consisting of the drift term (𝜇𝑖) and the volatility (𝜎𝑖) where 𝑊𝑡 is a 

standard Brownian motion. This research will refer to this diffusion term as 𝑧𝑖,𝑡 = 𝜇𝑖 +

 𝜎𝑖(𝑊𝑡 −𝑊𝑡−1) allowing it to be normally distributed with mean 𝜇𝑖 and variance 𝜎𝑖
2. 𝛴 

denotes the covariance matrix of 𝑧𝑡 = [ 𝑧1,𝑡, … , 𝑧𝑛,𝑡]. When no jump occurs, 

equation(1) is left with only the diffusion term (𝑋𝑖,𝑡 =  𝑧𝑖,𝑡). This means that the return 

is normally distributed during normal period with no jump. 

The second part is the jump term (∑ ∑ 𝜃𝑖,𝑘,𝑗,𝑡
∆𝑁𝑘,𝑡
𝑗=1

𝐾
𝑘=1 ). 𝐾 is the number of types 

of jumps. ∆𝑁𝑘,𝑡 is the number of jumps of type 𝑘 in the time interval (𝑡 − 1, 𝑡], which 

is assumed to be Poisson distributed with mean 𝜆𝑘,𝑡 where 𝜆𝑘,𝑡 is the jump intensity at 

time 𝑡 of jump type 𝑘. 𝜃𝑖,𝑘,𝑗,𝑡 is the random jump size of asset 𝑖 from jump type 𝑘 of 

each 𝑗 jump at time 𝑡, which is assumed to be normally distributed with mean 𝜈𝑖,𝑘 and 

variance 𝛿𝑖,𝑘
2 . 𝛥𝑘 denotes the covariance matrix of 𝜃𝑘,𝑗,𝑡 = [𝜃1,𝑘,𝑗,𝑡, … , 𝜃𝑛,𝑘,𝑗,𝑡], which is 

independent of 𝑗 as jumps from the same type are independent and identically 

distributed. When a jump of any type 𝑘 occurs, the jump term will not be zero and this 

makes the return have fat-tailed distribution. 
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The jump intensity of jump process of type 𝑘 at any time 𝑡 is not constant and 

follows the following equation: 

𝜆𝑗,𝑡+1 = 𝑒
𝑎𝑗+𝑏𝑗∆𝑉𝑡 ∙ 𝜆

𝑗,𝑡

𝑐𝑗 ∙ ∏ ∏ 𝑒𝜂𝑗,𝑘,𝑙,𝑡
∆𝑁𝑘,𝑡
𝑙=1

𝐾
𝑘=1                                  𝑗 = 1,… , 𝐾 (2) 

Equivalently, the log-intensity process follows the following equation: 

ln 𝜆𝑗,𝑡+1 = 𝑎𝑗 +𝑏𝑗∆𝑉𝑡 + 𝑐𝑗 ln 𝜆𝑗,𝑡 + ∑ ∑ 𝜂𝑗,𝑘,𝑙,𝑡
∆𝑁𝑘,𝑡
𝑙=1

𝐾
𝑘=1              𝑗 = 1, … , 𝐾  (3) 

where 𝑉𝑡 is a standard Brownian motion independent of 𝑊𝑡. Let 𝑢𝑗,𝑡 = 𝑎𝑗 + 𝑏𝑗(𝑉𝑡 −

𝑉𝑡−1) be normally distributed with mean 𝑎𝑗 and variance 𝑏𝑗
2. 𝐵 denotes the covariance 

matrix of 𝑢𝑡 = [𝑢1,𝑡, … , 𝑢𝐾,𝑡].  𝑢𝑗,𝑡 acts as the diffusion term of jump intensity. 𝑐𝑗 is the 

weight coefficient given to the jump intensity of previous time step. If 𝑐𝑗 is less than 1 

when no jump of jump intensity occurs, the jump intensity tends to diminish to its mean 

value implying that jump intensity process has mean-reverting property. 𝜂𝑗,𝑘,𝑙,𝑡 is the 

random jump size of intensity of type 𝑗 from the 𝑙𝑡ℎ jump of type 𝑘 at time 𝑡, which is 

assumed to be normally distributed with mean 𝜅𝑗,𝑘 and variance 𝜔𝑗,𝑘
2 . 𝛺𝑘 denotes the 

covariance matrix of 𝜂𝑘,𝑙,𝑡 = [𝜂1,𝑘,𝑙,𝑡, … , 𝜂𝐾,𝑘,𝑙,𝑡], which is independent of 𝑙 as jumps 

from the same type are independent and identically distributed. Assume that the log-

intensities at time 1 or ln 𝜆1 ≡ [ln 𝜆1,1 , … , ln 𝜆𝐾,1] are jointly normally distributed with 

mean vector 𝑎0 and covariance matrix 𝐵0. ∑ ∑ 𝜂𝑗,𝑘,𝑙,𝑡
∆𝑁𝑘,𝑡
𝑙=1

𝐾
𝑘=1  is the jump term in jump 

intensity. 𝜂𝑗,𝑘,𝑙,𝑡 represents the increase in the intensity of jump of type 𝑗 when there is 

a jump from type 𝑘. For 𝑗 = 𝑘, this 𝜂𝑗,𝑗,𝑙,𝑡 represents the self-exciting effect leading to 

jump clustering. For 𝑗 ≠ 𝑘, 𝜂𝑗,𝑘,𝑙,𝑡 represents the contagion effect that causes an 

alteration in the tendency to jump of a certain jump type 𝑗 from jump type 𝑘. 
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5.2 Estimation 

5.2.1 Expectation (E-Step) 

The parameters needed to estimate include: 

Γ = {𝜇, 𝛴, 𝜈, 𝛥, 𝜅, 𝛺, 𝑎0, 𝐵0, 𝑎, 𝐵, 𝑐} 

The complete data 𝐶 is given as: 

𝐶 = {X, Z, ∆N, θ, η, λ} 

where each variable starts from time t = 1 until t = T. 

𝑋 is the only observable data and is considered as incomplete data in this EM 

algorithm. The E-Step calculates: 𝑄(Γ|Γ(𝑝)) =  𝔼[ln 𝐿𝐶|Γ
(𝑝), 𝑥1, … , 𝑥𝑇] where 𝑥𝑡 

represents the observed vector of returns at time 𝑡. Let 𝑇 denote the last time step, the 

complete-data log-likelihood is given by: 

 ln 𝐿𝐶 = −
𝐾

2
ln 2𝜋 −

1

2
ln|𝐵0| −

1

2
(ln 𝜆1 − 𝑎0)

′𝐵0
−1(ln 𝜆1 − 𝑎0) 

 −
𝐾(𝑇 − 1)

2
ln 2𝜋 −

𝑇 − 1

2
ln|𝐵|

−
1

2
∑(ln 𝜆𝑡 − 𝑎 − 𝑐 ln 𝜆𝑡−1 −∑ ∑ 𝜂𝑘,𝑙,𝑡−1

∆𝑁𝑘,𝑡−1

𝑙=1

𝐾

𝑘=1

)

′

𝐵−1(ln 𝜆𝑡 − 𝑎

𝑇

𝑡=2

− 𝑐 ln 𝜆𝑗,𝑡−1 −∑ ∑ 𝜂𝑘,𝑙,𝑡−1

∆𝑁𝑘,𝑡−1

𝑙=1

𝐾

𝑘=1

) 

+∑∑[−𝜆𝑘,𝑡 + ∆𝑁𝑘,𝑡 ln 𝜆𝑘,𝑡 − ln(∆𝑁𝑘,𝑡!)]

𝐾

𝑘=1

 

𝑇

𝑡=1

 

+∑∑ ∑ [−
𝑛

2
ln 2𝜋 −

1

2
ln|Ω| −

1

2
(𝜂𝑘,𝑙,𝑡−1 − 𝜅𝑘)

′
Ω−1(𝜂𝑘,𝑙,𝑡−1 − 𝜅𝑘)]

∆𝑁𝑘,𝑡−1

𝑙=1

𝐾

𝑘=1

𝑇

𝑡=2

 

+∑∑ ∑ [−
𝐾

2
ln 2𝜋 −

1

2
ln|Δ| −

1

2
(𝜃𝑘,𝑙,𝑡 − 𝜈𝑘)

′
Δ−1(𝜃𝑘,𝑙,𝑡 − 𝜈𝑘)]

∆𝑁𝑘,𝑡−1

𝑙=1

𝐾

𝑘=1

𝑇

𝑡=1

 

−
𝑛𝑇

2
ln 2𝜋 −

𝑇

2
ln|Σ| −

1

2
∑(𝑧𝑡 − 𝜇)

′Σ−1(𝑧𝑡 − 𝜇)

𝑇

𝑡=1
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The conditional expectation in E-Step is given by: 

Let 𝑋 denotes 𝑥1, … , 𝑥𝑇  and 𝑋𝑡 denotes 𝑥1, … , 𝑥𝑡. The expected log-complete 

likelihood is 

𝑄(Γ|Γ(𝑝)) = −
𝐾

2
ln 2𝜋 −

1

2
ln|𝐵0| −

1

2
𝔼[(ln 𝜆1 − 𝑎0)

′𝐵0
−1(ln 𝜆1 − 𝑎0)|X] 

−
𝐾(𝑇 − 1)

2
ln 2𝜋 −

𝑇 − 1

2
ln|𝐵|

− 𝔼[
1

2
∑(ln 𝜆𝑡 − 𝑎 − 𝑐 ln 𝜆𝑡−1 −∑ ∑ 𝜂𝑘,𝑙,𝑡−1

∆𝑁𝑘,𝑡−1

𝑙=1

𝐾

𝑘=1

)

′

𝐵−1(ln 𝜆𝑡

𝑇

𝑡=2

− 𝑎 − 𝑐 ln 𝜆𝑡−1 −∑ ∑ 𝜂𝑘,𝑙,𝑡−1

∆𝑁𝑘,𝑡−1

𝑙=1

𝐾

𝑘=1

) |X]  

+𝔼[∑ ∑ −𝜆𝑘,𝑡 + ∆𝑁𝑘,𝑡 ln 𝜆𝑘,𝑡 − ln(∆𝑁𝑘,𝑡!)
𝐾
𝑘=1  𝑇

𝑡=1 |X] 

+𝔼[ ∑ ∑ ∑ {
−
𝑛
2 ln 2𝜋 −

1
2 ln

|Ω|

−
1
2 (𝜂𝑘,𝑙,𝑡−1 − 𝜅𝑘)

′
Ω−1(𝜂𝑘,𝑙,𝑡−1 − 𝜅𝑘)

}
∆𝑁𝑘,𝑡−1
𝑙=1

𝐾
𝑘=1

𝑇
𝑡=2 |X] 

+𝔼 [∑ ∑ ∑ −
𝐾
2 ln 2𝜋 −

1
2 ln

|Δ| −
1
2 (𝜃𝑘,𝑙,𝑡 − 𝜈𝑘)

′
Δ−1(𝜃𝑘,𝑙,𝑡 − 𝜈𝑘)

∆𝑁𝑘,𝑡
𝑙=1

𝐾
𝑘=1

𝑇
𝑡=1 |X] 

−
𝑛𝑇

2
ln 2𝜋 −

𝑇

2
ln|Σ| −

1

2
𝔼[∑ (𝑧𝑡 − 𝜇)

′Σ−1(𝑧𝑡 − 𝜇)
𝑇
𝑡=1 |X] 

 

5.2.2 Optimization (M-Step) 

The parameters’ values that maximizes 𝑄(Γ|Γ(𝑝)) in M-Step are given by: 

 𝜇̂ =
1

𝑇
∑ 𝔼[𝑧𝑡|X]
𝑇
𝑡=1   Σ̂ =

1

𝑇
∑ 𝔼[(𝑧𝑡 − 𝜇̂)(𝑧𝑡 − 𝜇̂)

′|X]𝑇
𝑡=1  

 𝜈̂𝑘  =  
∑ 𝔼[∆𝑁𝑘,𝑡(𝜃𝑘,1,𝑡)|X]𝑇
𝑡=1

∑ 𝔼[∆𝑁𝑘,𝑡|X]𝑇
𝑡=1

 𝛥̂𝑘 =
∑ 𝔼[∆𝑁𝑘,𝑡(𝜃𝑘,1,𝑡 − 𝜈̂𝑘)(𝜃𝑘,1,𝑡 − 𝜈̂𝑘)

′
|X]𝑇

𝑡=1

∑ 𝔼[∆𝑁𝑘,𝑡|X]𝑇
𝑡=1

 

 𝜅̂𝑘  =  
∑ 𝔼[∆𝑁𝑘,𝑡−1(𝜂𝑘,1,𝑡−1)|X]𝑇
𝑡=2

∑ 𝔼[∆𝑁𝑘,𝑡−1|X]𝑇
𝑡=2

 𝛺̂𝑘 =
∑ 𝔼[∆𝑁𝑘,𝑡−1(𝜂𝑘,1,𝑡−1 − 𝜅̂𝑘)(𝜂𝑘,1,𝑡−1 − 𝜅̂𝑘)

′
|X]𝑇

𝑡=2

∑ 𝔼[∆𝑁𝑘,𝑡−1|X]𝑇
𝑡=2

 

 𝑎̂0 = 𝔼[ln 𝜆1 |X]  𝐵̂0 = 𝔼[(ln 𝜆1 − 𝑎̂0)(ln 𝜆1 − 𝑎̂0)
′|X] 

 𝑎̂ =
1

𝑇−1
∑ 𝔼[𝑢𝑡|X]
𝑇
𝑡=2   𝐵̂ =

1

𝑇−1
∑ 𝔼[(𝑢𝑡 − 𝑎̂)(𝑢𝑡 − 𝑎̂)

′|X]𝑇
𝑡=2  

 𝑐̂ = 𝑐(𝑝) +

 𝔼[∑ 𝑑𝑖𝑎𝑔(ln 𝜆𝑡−1)𝐵̂
−1𝑑𝑖𝑎𝑔(ln 𝜆𝑡−1)

𝑇
𝑡=2 |X]

−1
𝔼[∑ 𝑑𝑖𝑎𝑔(ln 𝜆𝑡−1)𝐵̂

−1(𝑢𝑡 − 𝑎̂)
𝑇
𝑡=2 |X] 

Note: 𝑑𝑖𝑎𝑔(𝑎) means the diagonal matrix wose diagonal elements are the elements in 𝑎. 
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5.2.3 Auxiliary Probabilities 

Let 𝑁𝑜𝑟𝑚𝑎𝑙(𝑥; 𝑎, 𝐵) denote the probability density function at 𝑥 of the multivariate 

Normal random vector with mean vector 𝑎 and covariance matrix 𝐵, and 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑛; 𝜆) 

the probability mass function at 𝑛 of the Possion random variable with mean 𝜆. The 

following probabilities are needed to compute the expectations of the complete-data 

log-likelihood in the expectation step. 

Forward probability:  

Let 𝛼(𝜆𝑡, ∆𝑁𝑡, 𝑥𝑡|X𝑡−1) denote the likelihood of 𝜆𝑡, ∆𝑁𝑡, 𝑥𝑡 given X𝑡−1 =

{𝑥1… , 𝑥𝑡−1}, and 𝛼𝑡(𝑎, 𝑏, 𝑐) ≡ 𝛼𝑡(𝜆𝑡 = 𝑎, ∆𝑁𝑡 = 𝑏, 𝑥𝑡 = 𝑐| X𝑡−1) where 𝑡 is the time 

index. We have 

𝛼1(λ, n, 𝑥1) = 𝑃(𝜆1 = 𝜆, ∆𝑁1 = 𝑛, 𝑥1) 

= 𝑁𝑜𝑟𝑚𝑎𝑙(ln λ; 𝑎0, 𝐵0) ∙∏{𝑃𝑜𝑖𝑠𝑠𝑜𝑛(n; 𝜆𝑘,1)}

𝐾

𝑘=1

∙ 𝑁𝑜𝑟𝑚𝑎𝑙(𝑥;  𝜇 + n𝜈, Σ + n𝛥) 

𝛼𝑡(λ, n, 𝑥t) = 𝑃(𝜆𝑡 = λ, ∆𝑁𝑡 = n, 𝑥𝑡|Xt−1) 

= ∑ 𝑁𝑜𝑟𝑚𝑎𝑙(𝑥𝑡; 𝜇 + n𝜈, Σ + n𝛥)

𝜆𝑡−1,m

∙∏𝑃𝑜𝑖𝑠𝑠𝑜𝑛(n𝑘; λ𝑘)

𝐾

𝑘=1

 

∙ 𝑁𝑜𝑟𝑚𝑎𝑙(ln λ ; 𝑎 + ln 𝜆𝑡−1 +m𝜅, 𝐵 + m𝛺) ∙
𝛼𝑡−1(𝜆𝑡−1, m)

𝑃(𝑥𝑡−1|Xt−2)
, 𝑡 > 1 

2-Step probability: 

Let 𝜁(𝜆𝑡, ∆𝑁𝑡, 𝜆𝑡+1|X) denote the likelihood of 𝜆𝑡, ∆𝑁𝑡, 𝜆𝑡+1 given X = {𝑥1… , 𝑥𝑇}, 

and  𝜁t(a, b, c) ≡ 𝜁t(𝜆𝑡 = a, ∆𝑁𝑡 = b, 𝜆𝑡+1 = c| X) where 𝑡 is the time index. We have 

𝜁𝑡(λ, n, r) = 𝑃(𝜆𝑡 = λ, ∆𝑁𝑡 = n, 𝜆𝑡+1 = r|X) 
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= (∑γt+1(r,m)

∞

m

) ∙ (
𝑁𝑜𝑟𝑚𝑎𝑙(ln r ; 𝑎 + 𝑐 ln λ + n𝜅, 𝐵 + n𝛺)𝛼𝑡(λ, n)

∑ 𝑁𝑜𝑟𝑚𝑎𝑙(ln r ; 𝑎 + 𝑐 ln s + p𝜅, 𝐵 + p𝛺)𝛼𝑡(s, p)s,p
) 

Backward probability: 

Let 𝛾(𝜆𝑡, ∆𝑁𝑡|X) denote the likelihood of 𝜆𝑡, ∆𝑁𝑡 given X = {𝑥1… , 𝑥𝑇}, and 

𝛾t(a, b) ≡ 𝛾t(𝜆t = a, ∆𝑁𝑡 = b| X) where 𝑡 is the time index. We have 

γ𝑇(λ, n) = 𝑃(𝜆𝑇 = λ, ∆𝑁𝑡 = n|X) =
𝛼𝑇(λ, n)

∑ 𝛼𝑇(r, s)r,s
 

γ𝑡(λ, n) = 𝑃(𝜆𝑡 = λ, ∆𝑁𝑡 = n|X)   =  ∑𝜁𝑡(

∞

r

λ, n, r),             𝑡 < 𝑇 

Probability of jumps given return: 

Let 𝑃(∆𝑁𝑡 = n|X) denote the probability of ∆𝑁𝑡 = n given X = {𝑥1… , 𝑥𝑇}. We have  

𝑃(∆𝑁𝑡 = n|X) =∑𝑃(𝜆𝑡 = λ, ∆𝑁𝑡 = n|X)

λ

=∑𝛾𝑡(λ, n)

λ
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6. Scope of the Project 

6.1 Research 

The research propose a model and its estimation in general form that can be 

used for studying various type of assets. Sample data-fitting implementations will be 

done with regional weekly stock index’s return which can be used to analyze for 

existence of jump clustering and asymmetry in contagion effect across regions. 

6.2 Data 

The study will be divided into two parts. The first part uses weekly data on six 

countries data while the second part uses daily data on two continents data. 

For the first part, due to the fact that different markets open and close at different 

time, this study will use the weekly US dollar MSCI gross return of different countries 

to limit the effect of time difference. The study data involve 3 developed countries and 

3 Asian emerging countries since the start of January 1999 until the end of June 2014. 

The 6 countries are United States (US), Germany (DE), France (FR), Thailand (TH), 

Indonesia (ID), and Philippines (PH). The data are obtained from Bloomberg database. 

 For the second part, daily US dollar MSCI gross return of United States (US) 

and Latin America (LA) are used for the study. United States and Latin America are 

mostly in the same time zone so there is no need to adjust for the time lag. The data 

also start from January 1999 until the end of June 2015.  
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7. Empirical Result 

7.1 Multivariate case on weekly data 

The test is setup with two types of jumps: jumps that occur only in developed 

markets or developed jumps and jumps that occur only in emerging markets or 

emerging jumps. However, jumps in one region may increase the likelihood of jumps 

in the other region; that is, contagion effects across regions are allowed. 

7.1.1 Data Summary 

Table 1: Data summary statistics.  

Countries 
Mean 

(%) 

Standard 

Deviation 

(%) 

Skewness 
Excess 

Kurtosis 

Maximum 

(%) 

Minimum 

(%) 

D
e

v
e

lo
p

e
d

 

United 

States 
0 .0943 2.5848 -0.7829 6.4867 11.5827 -20.0473 

Germany 0.0849 3.6607 -0.7891 4.9126 15.2032 -26.0641 

France 0.0816 3.3785 -0.9195 6.3240 13.8786 -26.6867 

E
m

e
r

g
in

g
 

Thailand 0.2425 4.2405 -0.4726 4.1984 17.2644 -29.0259 

Indonesia 0 .2985 4.9469 -0.2280 2.8554 21.5421 -26.8420 

Phil ippines 0 .1433 3.5105 -0.3025 2.7574 15.2418 -20.8028 

 

Table 1 provides the summary statistics of the weekly MSCI return data. The 

mean of the developed market return is lower than the mean of emerging markets. 

The risk or the volatility in the developed market is lower than in the emerging 

markets. Developed markets return are more negatively skewed and the tails are 

fatter. Emerging markets return outliers are more spread out. 

7.1.2 Result and Discussion 

The parameters obtained from running the EM algorithm for 100 iterations are 

in Table 2 and Table 3. Table 2 shows all the parameters related in the dynamics of the 

return while Table 3 shows all the parameters related in the dynamics of the jump 

intensity. 
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Table 2: Obtained parameters on return dynamics from 100 

iterations. The parameters’ name are highlighted in gray boxes while 

their values are in the white boxes on their right.  

 US DE FR TH ID PH 

𝝁 0.0023 0.0063 0.0059 0.0011 0.0015 0.0066 

𝚺 (standard deviation) 0.0192 0.0273 0.0257 0.0365 0.0410 0.0314 

𝚺
 (

co
rr

el
a

ti
o

n
) 

US 1.0000 0.8080 0.8075 0.5253 0.4446 0.5079 

DE  1.0000 0.9326 0.5909 0.5178 0.5125 

FR   1.0000 0.5917 0.4825 0.5180 

TH    1.0000 0.5804 0.5586 

ID     1.0000 0.5710 

PH      1.0000 

𝝂 
Developed Jump -0.0099 -0.0408 -0.0381    

Emerging Jump    0.0122 0.0133 -0.0473 

𝜟 (standard deviation) 0.0324 0.0478 0.0430 0.0480 0.0626 0.0447 

𝜟
 (

co
rr

el
a
ti

o
n

) 

US 1.0000 0.6901 0.6941    

DE  1.0000 0.9270    

FR   1.0000    

TH    1.0000 0.3818 0.0905 

ID     1.0000 0.2087 

PH      1.0000 

 

Although data summary statistics from Table 1 shows that the mean of the return 

is lower in developed markets, the parameter 𝜇 (mean of the return diffusion term) from 

Table 2 shows that developed markets have higher diffusion mean. This might be due 

to the fact that emerging markets are more unpredictable and that the high mean in 

statistics are mostly the numbers from the jump term instead. The fact is also confirmed 

with the mean jump size (𝜈) in emerging markets that shows some positive numbers. 

The negative value of ‘𝜈’ on developed type of jump implies that the jumps captured 

from this run have negative expected jump sizes to the return whereas they are mixed 

in emerging type of jump. The volatilities from diffusion term and jump size are both 

higher in emerging markets and the jump sizes are less correlated among the countries 

than in the developed markets. 
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Table 3: Obtained parameters on jump intensity dynamics from 100 

iterations. 
 Developed Jump Emerging Jump 

𝒂𝟎 -0.1397 -0.1637 

𝑩𝟎 (standard deviation) 0.0677 0.0780 

𝑩𝟎 (correlation) 
Developed Jump 1.0000 0.0740 

Emerging Jump  1.0000 

𝒂 -0.1437 -0.1656 

𝑩 (standard deviation) 0.0663 0.0760 

𝑩 (correlation) 
Developed Jump 1.0000 0.0748 

Emerging Jump  1.0000 

𝒄 -0.0125 -0.0068 

𝜿 
Developed Jump 0.0114 0.0058 

Emerging Jump 0.0038 0.0106 

𝜴 Developed jump (standard deviation) 0.0302 0.0337 

𝜴 Developed 

Jump 

(correlation) 

Developed Jump 1.0000 0.0605 

Emerging Jump  1.0000 

𝜴 Emerging jump (standard deviation) 0.0304 0.0325 

𝜴 Emerging 

Jump 

(correlation) 

Developed Jump 1.0000 0.0639 

Emerging Jump  1.0000 

 

Table 3 shows the parameters from the log-intensity dynamic. The diffusion 

term of jump intensities are slightly different both in terms of mean and volatility 

between developed and emerging markets as can be seen in parameters 𝑎 and 𝐵. 

Negative ‘𝑐’ implies that jump intensity has a mean-reverting property. The contagion 

effect between the two types of jumps can be portrayed through the jump term of the 

jump intensity and can be analyzed in the parameter 𝜅 and 𝛺. Positive ‘𝜅’ shows that 

there are some self-exciting and contagion effects on the jump intensity. 𝛺 shows a 

slightly more volatile jump size of jump intensity in emerging markets than in 

developed markets. 

The EM algorithm in itself ensures that the likelihood increases in each 

iterations. Figure 1 plots the log-likelihood obtained from each iteration run. It can also 

be noticed that the log-likelihood converges really fast with 0.005% relative tolerance 

within the first 100 iterations. 
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Figure 1: Log-likelihood of 100 iterations from EM algorithm.

 
 

Figure 2: Return diffusion term for developed and emerging markets. 
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Figure 2 plots the smoothed expectation of the diffusion term of returns obtained 

from the model. The first plot (upper) shows the average of the diffusion term among 

the 3 developed countries and the second plot (lower) shows the average of the diffusion 

term among the 3 emerging countries. Most of the time, the graph shows the plot as a 

white noise, which is to be expected from the diffusion term. As stated before, the return 

diffusion term in emerging markets are more volatile than in developed countries as can 

be easily seen from the graph. 

Figure 3 plots the smoothed expectation of the jump term of returns obtained 

from the average of 3 developed countries (upper plot) and the average of 3 emerging 

countries (lower plot). The graphs show that the first relatively large movement happens 

during 1999 to 2003. The second large movement starts from mid-2007 to almost 2010 

and the third movement from 2010 to 2013 developed countries. The large jumps that 

are found during these three periods might come from the Dot-Com Bubble, the 2008 

Great Financial Crisis, and European sovereign debt crisis. During 2003 to 2007, the 

graphs are almost flat. These graphs tell us that the jump term can capture some of the 

unexpected movements of the returns to a certain degree. Comparing the graph of return 

jump term between the developed jump type and emerging jump type from Figure 3 

might not prove to be quite useful as it is the average plot. As stated earlier, the jumps 

of emerging markets are more mixed and unpredictable. Average plot of emerging jump 

type unfortunately cancels out making them look less volatile. Figure 9 in Appendix 2 

shows each country’ plots, which is easier to notice the unpredictive nature in emerging 

markets. 
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Figure 3: Return jump term for developed and emerging markets.

  
 

Figure 4: Expected jump intensity of each time-step t.

 
 

Figure 4 shows the movements of the expected jump intensity during 1999 to 

mid-2014. It shows higher rates during crises. After the rises of the rate, it stays high 

for a certain amount of time before settling down again. This is caused by the jump 

clustering effect and the mean-reverting property of the jump intensity in the model. It 
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can also be seen that the rate increases significantly during mid-2007, which is around 

the start of the Global Financial Crisis. The graph also shows that emerging jump 

intensity is more random than in developed countries, which corresponds to the more 

unpredictive nature of the emerging markets. 

 

Table 4: Average values of the parameters. 

 Developed Emerging 

Return Diffusion Mean 0.48 % 0.31 % 

Return Diffusion SD 2.41 % 3.63 % 

Return Diffusion 

Correlation 
0.85 0.52 0.57 

Return Jumps Mean -2.96 % -0.73 % 

Return Jumps SD 4.11 % 5.18 % 

Return Jumps 

Correlation 
0.77 0 0.23 

Long-run Jump Intensity 

(Diffusion Term) 
0.87 0.85 

Jump Intensity Half-Life 

(week) 
0.68 0.69 

 

Table 4 shows the average values of the parameters on developed and emerging 

jump types. For correlation, the values are the average among their own type and the 

middle values show the average correlation between the two types. The result from the 

return diffusion term shows lower return with higher risk in emerging markets. 

Although this fact might be unsatisfactory to portfolio managers or investors who are 

interested in emerging markets, but with the much lower correlation of return diffusion, 

the emerging markets might have better diversification opportunities. Nevertheless, the 

higher volatility in emerging markets might outdo the diversification opportunities. In 
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emerging markets, the return jump means are much lower in magnitude (some countries 

are actually positive). This tells us that there is less negative impact from emerging 

jumps compared to developed jumps. Still, the jumps in emerging markets are more 

unpredictable as can be seen in the return jump standard deviation. The return jump 

correlation also shows that developed markets are more systemic whereas emerging 

markets are more idiosyncratic. With the long-run jump intensity and their mean 

reversion rate that are only slightly different between the two market types, the jump 

terms might actually yield a better profit in emerging markets from similar number of 

jumps. Combining with the early strange fact of high risk, low return in emerging 

markets, this might prove to be that during normal time (diffusion term) or fundamental 

base of the emerging markets might be worse in investing, but during unexpected event 

(jump term) or speculative nature of the emerging market might create a higher fortune 

that comes with a greater risk involvement for speculative investing. This also aligns 

with the data summary statistics fact from Table 1 that emerging markets can provide 

higher return from higher risk. 

 

Table 5: Jump clustering and contagion effects impact on other jumps. 

Effects 
To 

Developed Jump Emerging Jump 

F
ro

m
 

Developed Jump 1.25 % 0.68 % 

Emerging Jump 0.48 % 1.17 % 

 

Table 5 shows the expected jump effects of a certain jump type to another jump 

type. When the effect is transferred from a jump type to the same jump type, it is a self-

exciting effect that causes jump clustering. When the effect is transferred from a jump 

type to another jump type, it is the contagion effect. The number shows that developed 
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jump self-excites the jump intensity by 1.25%. On average, the self-excitation seems to 

be small as the jump intensity is already high given the arrival of the first jump. The 

number thus shows the addition to the already high jump intensity of the last period. 

The contagion effect from developed jump type to emerging jump type is more than 

emerging jump type to developed jump type. This makes sense since developed 

countries should affect more to emerging countries than the other way around. 

Emerging jump also self-excites itself less than developed jump self-excites itself as 

emerging markets are less integrated among themselves. 

 

Table 6: Parameters statistical significance on two-sided test. 

Parameters 

Value 

(Standard 

Error) 

P-Value Parameters 

Value 

(Standard 

Error) 

P-Value 

𝝁𝑼𝑺 
0.0023 

(0.0008) 
0.0041* 𝜟𝑼𝑺,𝑫𝑬 

0.0011 

(0.0001) 
0.0000* 

𝝁𝑫𝑬 
0.0063 

(0.0011) 
0.0000* 𝜟𝑼𝑺,𝑭𝑹 

0.001 

(0.0001) 
0.0000* 

𝝁𝑭𝑹 
0.0059 

(0.0011) 
0.0000* 𝜟𝑫𝑬,𝑫𝑬 

0.0023 

(0.0002) 
0.0000* 

𝝁𝑻𝑯 
0.0011 

(0.0016) 
0.4893 𝜟𝑫𝑬,𝑭𝑹 

0.0019 

(0.0002) 
0.0000* 

𝝁𝑰𝑫 
0.0015 

(0.0018) 
0.3822 𝜟𝑭𝑹,𝑭𝑹 

0.0018 

(0.0002) 
0.0000* 

𝝁𝑷𝑯 
0.0066 

(0.0014) 
0.0000* 𝜟𝑻𝑯,𝑻𝑯 

0.0023 

(0.0002) 
0.0000* 

𝜮𝑼𝑺,𝑼𝑺 
0.0004 

(0.0000) 
0.0000* 𝜟𝑻𝑯,𝑰𝑫 

0.0011 

(0.0002) 
0.0000* 

𝜮𝑼𝑺,𝑫𝑬 
0.0004 

(0.0000) 
0.0000* 𝜟𝑻𝑯,𝑷𝑯 

0.0002 

(0.0002) 
0.2551 

𝜮𝑼𝑺,𝑭𝑹 
0.0004 

(0.0000) 
0.0000* 𝜟𝑰𝑫,𝑰𝑫 

0.0039 

(0.0004) 
0.0000* 

𝜮𝑼𝑺,𝑻𝑯 
0.0004 

(0.0000) 
0.0000* 𝜟𝑰𝑫,𝑷𝑯 

0.0006 

(0.0002) 
0.0069* 

𝜮𝑼𝑺,𝑰𝑫 
0.0003 

(0.0000) 
0.0000* 𝜟𝑷𝑯,𝑷𝑯 

0.0020 

(0.0002) 
0.0000* 

𝜮𝑼𝑺,𝑷𝑯 
0.0003 

(0.0000) 
0.0000* 𝜿𝑫𝑴,𝑫𝑴 

0.0114 

(76.928) 
0.9999 

𝜮𝑫𝑬,𝑫𝑬 
0.0007 

(0.0000) 
0.0000* 𝜿𝑫𝑴,𝑬𝑴 

0.0058 

(87.0315) 
0.9999 

𝜮𝑫𝑬,𝑭𝑹 
0.0007 

(0.0000) 
0.0000* 𝜿𝑬𝑴,𝑫𝑴 

0.0038 

(177.8009) 
1.0000 

𝜮𝑫𝑬,𝑻𝑯 
0.0006 

(0.0000) 
0.0000* 𝜿𝑬𝑴,𝑬𝑴 

0.0106 

(177.5716) 
1.0000 
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Table 6 (continued) : Parameters statistical significance on two-sided test. 
 

Parameters 

Value 

(Standard 

Error) 

P-Value Parameters 

Value 

(Standard 

Error) 

P-Value 

𝜮𝑫𝑬,𝑰𝑫 
0.0006 

(0.0000) 
0.0000* 𝜴𝑫𝑴−𝑫𝑴,𝑫𝑴 

0.0009 

(97.1534) 
1.0000 

𝜮𝑫𝑬,𝑷𝑯 
0.0004 

(0.0000) 
0.0000* 𝜴𝑫𝑴−𝑫𝑴,𝑬𝑴 

0.0001 

(139.183) 
1.0000 

𝜮𝑭𝑹,𝑭𝑹 
0.0007 

(0.0000) 
0.0000* 𝜴𝑫𝑴−𝑬𝑴,𝑬𝑴 

0.0011 

(245.3046) 
1.0000 

𝜮𝑭𝑹,𝑻𝑯 
0.0006 

(0.0000) 
0.0000* 𝜴𝑬𝑴−𝑫𝑴,𝑫𝑴 

0.0009 

(95.4296) 
1.0000 

𝜮𝑭𝑹,𝑰𝑫 
0.0005 

(0.0000) 
0.0000* 𝜴𝑬𝑴−𝑫𝑴,𝑬𝑴 

0.0001 

(143.1178) 
1.0000 

𝜮𝑭𝑹,𝑷𝑯 
0.0004 

(0.0000) 
0.0000* 𝜴𝑬𝑴−𝑬𝑴,𝑬𝑴 

0.0011 

(257.1241) 
1.0000 

𝜮𝑻𝑯,𝑻𝑯 
0.0013 

(0.0001) 
0.0000* 𝒂𝟎𝑫𝑴 

-0.1397 

(894.808) 
0.9999 

𝜮𝑻𝑯,𝑰𝑫 
0.0009 

(0.0001) 
0.0000* 𝒂𝟎𝑬𝑴 

-0.1637 

(735.9578) 
0.9998 

𝜮𝑻𝑯,𝑷𝑯 
0.0006 

(0.0000) 
0.0000* 𝑩𝟎𝑫𝑴 

0.0046 

(850.5554) 
1.0000 

𝜮𝑰𝑫,𝑰𝑫 
0.0017 

(0.0001) 
0.0000* 𝑩𝟎𝑫𝑴,𝑬𝑴 0.0004 

(953.2893) 
1.0000 

𝜮𝑰𝑫,𝑷𝑯 
0.0007 

(0.0000) 
0.0000* 𝑩𝟎𝑬𝑴 

0.0061 

(1518.0185) 
1.0000 

𝜮𝑷𝑯,𝑷𝑯 
0.0010 

(0.0000) 
0.0000* 𝒂𝑫𝑴 

-0.1437 

(22.5321) 
0.9949 

𝝂𝑼𝑺 
-0.0099 

(0.0023) 
0.0000* 𝒂𝑫𝑴,𝑬𝑴 

-0.1656 

(217.2242) 
0.9994 

𝝂𝑫𝑬 
-0.0408 

(0.0037) 
0.0000* 𝑩𝑫𝑴 

0.0044 

(14.2018) 
0.9998 

𝝂𝑭𝑹 
-0.0381 

(0.0034) 
0.0000* 𝑩𝑫𝑴,𝑬𝑴 

0.0004 

(672.8514) 
1.0000 

𝝂𝑻𝑯 
0.0122 

(0.0041) 
0.0029* 𝑩𝑬𝑴 

0.0058 

(257.9936) 
1.0000 

𝝂𝑰𝑫 
0.0133 

(0.0049) 
0.0069* 𝒄𝑫𝑴 

-0.0125 

(39.6979) 
0.9997 

𝝂𝑷𝑯 
-0.0473 

(0.0042) 
0.0000* 𝒄𝑬𝑴 

-0.0068 

(32.8074) 
0.9998 

𝜟𝑼𝑺,𝑼𝑺 
0.001 

(0.0001) 
0.0000*    

 
*Significance to 1% confidence level. 

 

 The statistical test result in Table 6 shows that the parameters involving in the 

dynamics of the return are significant at 1% significant level while the parameters 

involving the dynamics of the jump intensity are rather insignificant. This might tell that 

the jumps of return are presented, however, the stochastic jump intensity might not be 
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required. Still, there are some insignificant value of the parameters in the dynamics of 

the return like the 𝜇𝑇𝐻, 𝜇𝐼𝐷, and 𝛥𝑇𝐻,𝑃𝐻. This might means that this sample study might 

not correctly capture the jumps of certain emerging countries causing all jump 

intensity’s parameters to be insignificant.  

 

Table 7: Jump effects asymmetries statistical signficance on one-sided test. 

Interested Asymmetries 
Value 

(Standard Error) 
P-Value 

𝜿𝑫𝑴,𝑬𝑴 > 𝜿𝑬𝑴,𝑫𝑴 0.0019 (151.6336) 0.5000 

𝜿𝑫𝑴,𝑫𝑴 > 𝜿𝑫𝑴,𝑬𝑴 0.0057 (93.6454) 0.5000 

𝜿𝑫𝑴,𝑫𝑴 > 𝜿𝑬𝑴,𝑫𝑴 0.0076 (208.5249) 0.5000 

𝜿𝑬𝑴,𝑬𝑴 > 𝜿𝑫𝑴,𝑬𝑴 0.0048 (155.4664) 0.5000 

𝜿𝑬𝑴,𝑬𝑴 > 𝜿𝑬𝑴,𝑫𝑴 0.0068 (17.3127) 0.4998 

 

The statistical test result in Table 7 shows that there are no statistical 

significance evidences on contagion asymmetries or that jump clustering are stronger 

than contagion effects. Due to the fact that parameters involving the study of the jump 

effects are not significant statistically, jump effect asymmetries are not able to be 

concluded. 
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7.2 Bivariate case on daily data 

7.2.1 Data Summary 

Table 8: Data summary statistics.  

Data 
Mean 

(%) 

Standard 

Deviation 

(%) 

Skewness 
Excess 

Kurtosis 

Maximum 

(%) 

Minimum 

(%) 

United 

States 
0.0194 1.2423 -0.1908 8.2015 11.0426 -9 .5039 

Latin  

America 
0.0414 1.7359 -0.3426 9.2237 15.3640 -15.0601 

 

Table 1 provides the summary statistics of the daily MSCI return data. The 

mean of the US market return is lower than the mean of LA market. The volatility in 

the US market is lower than in the LA market. The LA market return is more 

negatively skewed, the tails are fatter, and the return outliers are more spread out. 

 

7.2.2 Result and Discussion 

The parameters obtained from running the EM algorithm for 30 iterations are in 

Table 9 and Table 10. Table 9 shows all the parameters related in the dynamics of the 

return while Table 10 shows all the parameters related in the dynamics of the jump 

intensity. 

 

Table 9: Obtained parameters on return dynamics from 30 iterations.  

 US LA 

𝝁 × 𝟏𝟎−𝟒 0.4744 5.9485 

𝚺 (standard deviation) 0.0111 0.0158 

𝚺 (correlation) 0.7150 

𝝂 0.0093 -0.0136 

𝜟 (standard deviation) 0.0285 0.0382 
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Table 10: Obtained parameters on jump intensity dynamics from 30 

iterations. 

 US Jump LA Jump 

𝒂𝟎 -3.5858 -3.6324 

𝑩𝟎 (standard deviation) 0.0551 0.0769 

𝑩𝟎 (correlation) 0.4474 

𝒂 -3.5856 -3.6356 

𝑩 (standard deviation) 0.0550 0.0768 

𝑩 (correlation) 0.4475 

𝒄 × 𝟏𝟎𝟒 0.5278 -9.1276 

𝜿 
US Jump 0.0045 0.0007 

LA Jump 0.0103 0.0111 

𝜴 US jump (standard deviation) 0.0290 0.0407 

𝜴 US Jump (correlation) 0.6202 

𝜴 LA jump (standard deviation) 0.0286 0.0399 

𝜴 LA Jump (correlation) 0.6153 

Long-run Jump Intensity  0.0265 0.0277 

Jump Intensity Half-Life (day) 0.6925 0.6932 

 

Table 9 shows that the mean of the diffusion is higher for Latin America with 

higher volatility. The correlation between United States and Latin America is high 

while the jump size in return is highly volatile. The US return has positive jump size 

mean while the LA return has negative jump size mean with higher volatility. 

Table 10 shows quite high correlation between the US jump intensity and LA 

jump intensity on both 𝐵 and 𝛺. The jump size of jump intensity 𝜅 shows that LA 

jump type provides high likelihood for the next jump to the US and LA markets than 

the US jump type. The long-run jump intensity and half-life are slightly different 

between the two jump types. 

Figure 5 plots the log-likelihood obtained from each iteration run on EM 

algorithm. It can also be noticed that the log-likelihood converges really fast within the 

first 30 iterations. 
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Figure 5: Log-likelihood of 30 iterations from EM algorithm. 

 

Figure 6: Return diffusion term for US and LA. 
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Figure 6 plots the smoothed expectation of the diffusion term of returns obtained 

from the model. The first plot (upper) shows the diffusion of the US market and the 

second plot (lower) shows the diffusion term of the LA market. During 2008, it seems 

that the jump term might not be able to capture all the high magnitude return from the 

high varying jump size (𝜈) requirement during the period reflecting in high diffusion. 

Figure 7: Return jump term for US and LA. 

 

Figure 7 plots the smoothed expectation of the jump term of returns obtained 

from the US market (upper plot) and the LA market (lower plot). The graph shows 

similar result with the multivariate in Section 7.1 that it seems to be able to capture the 

jumps during the three financial crises: Dot-Com Bubble, the 2008 Great Financial 

Crisis, and European sovereign debt crisis. 
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Figure 8: Expected jump intensity of each time-step t. 

 

Figure 8 shows the movements of the expected jump intensity during 1999 to 

mid-2015. It shows higher rates during crises period. The LA intensity shows more 

jumps of itself during other periods than the US jumps. 

 

Table 11: Jump clustering and contagion effects impact on other jumps. 

Effects 
To 

US Jump LA Jump 

F
ro

m
 

US Jump 0.5511% 0.2100% 

LA Jump 1.1368% 1.2566% 

 

Table 11 shows the expected jump effects of a certain jump type to another jump 

type. The effect from the LA jump contributes largely to both US and LA jumps. The  

self-exciting effect in the US shows a lot higher than the contagion while the contagion 
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effect in from the LA market is high and is almost equal to its self-exciting effect. This 

implies that the US market seems to react to most unexpected movements occurring in 

the LA market while the LA market does not react much to the US market.  

Table 12: Parameters statistical significance on two-sided test. 

Parameters 

Value 

(Standard 

Error) ×
𝟏𝟎−𝟒 

P-Value Parameters 

Value 

(Standard 

Error) ×
𝟏𝟎−𝟒 

P-Value 

𝝁𝑼𝑺 
0.4744 

(0.0000) 
0 𝒂𝟎𝑼𝑺 

-35857.9457 

(1.9602) 
0 

𝝁𝑳𝑨 
5.9485 

(0.0003) 
0 𝒂𝟎𝑳𝑨 

-36323.9296 

(1.9857) 
0 

𝜮𝑼𝑺,𝑼𝑺 
1.2283 

(0.0001) 
0 𝑩𝟎𝑼𝑺 

30.3265 

(0.0017) 
0 

𝜮𝑼𝑺,𝑳𝑨 
1.2518 

(0.0001) 
0 𝑩𝟎𝑼𝑺,𝑳𝑨 18.9442 

(0.001) 
0 

𝜮𝑳𝑨,𝑳𝑨 
2.4959 

(0.0001) 
0 𝑩𝟎𝑳𝑨 

59.1269 

(0.0032) 
0 

𝝂𝑼𝑺 
92.55 

(0.0051) 
0 𝒂𝑼𝑺 

-35856.0675 

(2.1602) 
0 

𝝂𝑳𝑨 
-135.7209 

(0.0074) 
0 𝒂𝑼𝑺,𝑳𝑨 

-36356.3537 

(2.0015) 
0 

𝜟𝑼𝑺 
8.122 

(0.0004) 
0 𝑩𝑼𝑺 

30.2329 

(0.0016) 
0 

𝜟𝑳𝑨 
14.5716 

(0.0008) 
0 𝑩𝑼𝑺,𝑳𝑨 

18.889 

(0.001) 
0 

   𝑩𝑳𝑨 
58.9283 

(0.0032) 
0 

   𝒄𝑼𝑺 0.5278 (0) 0 

   𝒄𝑳𝑨 
-9.1276 

(0.0005) 
0 

   𝜿𝑼𝑺,𝑼𝑺 
44.9446 

(0.0025) 
0 

   𝜿𝑼𝑺,𝑳𝑨 
6.9607 

(0.0004) 
0 

   𝜿𝑳𝑨,𝑼𝑺 
103.1982 

(0.0056) 
0 

   𝜿𝑳𝑨,𝑳𝑨 
111.0987 

(0.0061) 
0 

   𝜴𝑼𝑺−𝑼𝑺,𝑼𝑺 
8.4054 

(0.0005) 
0 

   𝜴𝑼𝑺−𝑼𝑺,𝑳𝑨 
7.3183 

(0.0004) 
0 

   𝜴𝐔𝐒−𝑳𝑨,𝑳𝑨 
16.5644 

(0.0009) 
0 

   𝜴𝑳𝑨−𝑼𝑺,𝑼𝑺 
8.1674 

(0.0004) 
0 

   𝜴𝑳𝑨−𝑼𝑺,𝑳𝑨 
7.017 

(0.0004) 
0 

   𝜴𝑳𝑨−𝑳𝑨,𝑳𝑨 
15.9239 

(0.0009) 
0 
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 The statistical test result in Table 12 shows that the parameters involving in the 

dynamics of the return are significant at 1% significant. Significance in 𝜅𝑈𝑆,𝑈𝑆 and 

𝜅𝐿𝐴,𝐿𝐴 shows the evidence of the self-exciting effect while significance in 𝜅𝑈𝑆,𝐿𝐴 and 

𝜅𝐿𝐴,𝑈𝑆 shows the evidence of the contagion effects. The test uses the covariance matrix 

of the parameter estimates from the approximation of the information matrix. The 

calculation detail can be found in Appendix 3. 

 

Table 13: Jump effects asymmetries statistical signficance on one-sided test. 

Interested Asymmetries 
Value 

(Standard Error) × 𝟏𝟎−𝟒 
P-Value 

𝜿𝑼𝑺,𝑳𝑨 > 𝜿𝑳𝑨,𝑼𝑺 -96.2375 (0) 0 

𝜿𝑼𝑺,𝑼𝑺 > 𝜿𝑼𝑺,𝑳𝑨 37.984 (0) 0 

𝜿𝑼𝑺,𝑼𝑺 > 𝜿𝑳𝑨,𝑼𝑺 -58.2536 (0) 0 

𝜿𝑳𝑨,𝑳𝑨 > 𝜿𝑼𝑺,𝑳𝑨 104.138 (0) 0 

𝜿𝑳𝑨,𝑳𝑨 > 𝜿𝑳𝑨,𝑼𝑺 7.9005 (0) 0 

 

The statistical test result in Table 13 shows that all asymmetries are significant. 

Negative values means that the interested asymmetries are on the opposite direction. 

The first asymmetry shows that the contagion from LA to US is greater than US to LA. 

The second and third asymmetries show that the self-exciting effect in US is greater 

than the contagion from US to LA, but lower than the contagion from LA to US. The 

fourth and fifth asymmetries show that the self-exciting effect in LA is greater than the 

contagion effects from both ways. 
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8. Conclusion 

This research develops a new financial model and its estimation method that 

can handle a large number of assets and allows for self-exciting and contagion effects 

with stochastic jump intensity. The run on the model has good convergence rate on 

both multivariate and bivariate cases. 

In multivariate case, the model is able to capture large movements of return 

through the jumps from conditional jump intensity and tends to show that jump 

clustering and contagion effect seem to exist from graphical view. The analysis on 

developed and emerging jump types show that developed jumps cause an impact to 

emerging jumps more than the emerging jumps do to developed jumps. The 

developed jump self-excites itself more than an emerging jump and the developed 

jump has negative mean jump size on return whereas the emerging jump size on 

return is mixed. However, the parameters involving with the jump intensity are not 

statistically significant so stochastic jump intensity might not be needed. With the 

same reason, the analysis on jump effects asymmetries provides no evidence 

statistically. 

In bivariate case, the model is able to show the statistical evidence on the jump 

clustering and jump contagion effects along with their asymmetries. The US market 

tends to react to most unexpected movements happening in the LA market while the 

LA market does not react much to the US market’s unexpected movements.
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APPENDIX 

 

 

 

Appendix 1: Detailed Derivation 

A1.1 Complete likelihood 

The complete likelihood is given by: 

 

𝐿𝑐 = 𝑃(X, Z, ∆N, θ, η, λ |Γ) 
      = 𝑃(𝜆1,1, … , 𝜆𝐾,1)𝑃(X, Z, ∆N, θ, η, 𝜆1,2, … , 𝜆𝐾,𝑇|𝜆1,1, … , 𝜆𝐾,1) 
 

Let 𝜆𝑡 denote 𝜆1,𝑡, … , 𝜆𝐾,𝑡 
       𝜂𝑘,𝑙,𝑡 denote 𝜂1,𝑘,𝑙,2, … , 𝜂𝐾,𝑘,𝑙,2 

       𝜃𝑘,𝑙,𝑡 denote 𝜃1,𝑘,𝑙,1, … , 𝜃𝑛,𝑘,𝑙,1 
       𝑧𝑡 denote 𝑧1,𝑡, … 𝑧𝑛,𝑡 
       𝐶𝑡 denote all information up to time 𝑡 then 

 

= 𝑃(𝜆1)∏𝑃(∆𝑁𝑘,1|𝜆𝑘,1)𝑃(X, Z, θ, η, ∆𝑁1,2, … , ∆𝑁𝐾,𝑇 , 𝜆1,2, … , 𝜆1,𝑇|∆𝑁𝑘,1, 𝜆1)

𝐾

𝑘=1

 

= 𝑃(𝜆1)∏𝑃(∆𝑁𝑘,1|𝜆𝑘,1)

𝐾

𝑘=1

∏𝑃(𝜃1,𝑘,𝑗,1, … , 𝜃𝑛,𝑘,𝑗,1)

∆𝑁𝑘,𝑡

𝑗=1

∙  𝑃(𝑧1,1, . . . , 𝑧𝑛,1)  

∙ 𝑃(𝜆1,2, … , 𝜆𝐾,𝑇 , ∆𝑁𝑘,2, . . . , ∆𝑁𝑘,𝑇 , 𝜂1,𝑘,𝑙,2, . . . , 𝜂𝐾,𝑘,𝑙,𝑇 , 𝑧1,2, … , 𝑧𝑛,𝑇 , 𝜃1,𝑘,𝑗,2, … , 𝜃𝑛,𝑘,𝑗,𝑇|𝐶1) 

= 𝑃(𝜆1)∏𝑃(∆𝑁𝑘,1|𝜆𝑘,1)

𝐾

𝑘=1

∏𝑃(𝜃𝑘,𝑗,1)

∆𝑁𝑘,𝑡

𝑗=1

∙  𝑃(𝑧1) 

 

     ∙ 𝑃(𝜆2|𝐶1)∏𝑃(∆𝑁𝑘,2|𝜆𝑘,2, 𝐶1)

𝐾

𝑘=1

∏𝑃(𝜂𝑘,𝑙,2|𝐶1)

∆𝑁𝑘,𝑡

𝑙=1

∙ ∏ 𝑃(𝜃𝑘,𝑗,2|𝐶1)

∆𝑁𝑘,𝑡

𝑗=1

∙  𝑃(𝑧2|𝐶1) 

                 ⋮ 

     ∙ 𝑃(𝜆𝑇|𝐶𝑇−1)∏𝑃(∆𝑁𝑘,𝑇|𝜆𝑘,𝑇 , 𝐶𝑇−1)

𝐾

𝑘=1

∏𝑃(𝜂𝑘,𝑙,𝑇|𝐶𝑇−1)

∆𝑁𝑘,𝑡

𝑙=1

∙ ∏ 𝑃(𝜃𝑘,𝑗,𝑇|𝐶𝑇−1)

∆𝑁𝑘,𝑡

𝑗=1

∙  𝑃(𝑧𝑇|𝐶𝑇−1) 
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A1.2 Complete log-likelihood 

The complete log-likelihood is given by: 

ln 𝐿𝑐 = ∑{ln 𝑃(𝜆𝑡|𝐶𝑡−1)

𝑇

𝑡=1

+∑[ln𝑃(∆𝑁𝑘,𝑡|𝜆𝑘,𝑡, 𝐶𝑡−1)

𝐾

𝑘=1

+ ∑ {ln𝑃(𝜂𝑘,𝑙,𝑡|𝐶𝑡−1) + ln𝑃(𝜃𝑘,𝑙,𝑡|𝐶𝑡−1)}

∆𝑁𝑘,𝑡

𝑙=1

] + ln 𝑃(𝑧𝑡|𝐶𝑡−1) } 

where [𝑧𝑡]~𝑁𝑜𝑟𝑚𝑎𝑙([𝜇], [Σ]) 

        [𝜃𝑘,𝑙,𝑡]~𝑁𝑜𝑟𝑚𝑎𝑙([𝜈𝑘], [Δ𝑘]) 

        [𝜂𝑘,𝑙,𝑡]~𝑁𝑜𝑟𝑚𝑎𝑙([𝜅𝑘], [Ω𝑘]) 

             [𝑢𝑡]~𝑁𝑜𝑟𝑚𝑎𝑙([𝑎], [𝐵]) 

        [ln 𝜆1]~𝑁𝑜𝑟𝑚𝑎𝑙([𝑎0], [𝐵0]) 

∴ ln 𝐿𝑐 = −
𝐾

2
ln 2𝜋 −

1

2
ln|𝐵0| −

1

2
(ln 𝜆1 − 𝑎0)

′𝐵0
−1(ln 𝜆1 − 𝑎0) 

                  −
𝐾(𝑇 − 1)

2
ln 2𝜋 −

𝑇 − 1

2
ln|𝐵|

−
1

2
∑(ln 𝜆𝑡 − 𝑎 − 𝑐 ln 𝜆𝑡−1 −∑ ∑ 𝜂𝑘,𝑙,𝑡−1

∆𝑁𝑘,𝑡−1

𝑙=1

𝐾

𝑘=1

)

′

𝐵−1(ln 𝜆𝑡 − 𝑎

𝑇

𝑡=2

− 𝑐 ln 𝜆𝑗,𝑡−1 −∑ ∑ 𝜂𝑘,𝑙,𝑡−1

∆𝑁𝑘,𝑡−1

𝑙=1

𝐾

𝑘=1

) 

                  +∑∑[−𝜆𝑘,𝑡 + ∆𝑁𝑘,𝑡 ln 𝜆𝑘,𝑡 − ln(∆𝑁𝑘,𝑡!)]

𝐾

𝑘=1

 

𝑇

𝑡=1

 

                 +∑∑ ∑ [−
𝑛

2
ln 2𝜋 −

1

2
ln|Ω|

∆𝑁𝑘,𝑡−1

𝑙=1

𝐾

𝑘=1

𝑇

𝑡=2

−
1

2
(𝜂𝑘,𝑙,𝑡−1 − 𝜅𝑘)

′
Ω−1(𝜂𝑘,𝑙,𝑡−1 − 𝜅𝑘)] 
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                 +∑∑ ∑ [−
𝐾

2
ln 2𝜋 −

1

2
ln|Δ| −

1

2
(𝜃𝑘,𝑙,𝑡 − 𝜈𝑘)

′
Δ−1(𝜃𝑘,𝑙,𝑡 − 𝜈𝑘)]

∆𝑁𝑘,𝑡

𝑙=1

𝐾

𝑘=1

𝑇

𝑡=1

 

                  −
𝑛𝑇

2
ln 2𝜋 −

𝑇

2
ln|Σ| −

1

2
∑(𝑧𝑡 − 𝜇)

′Σ−1(𝑧𝑡 − 𝜇)

𝑇

𝑡=1

 

 

A1.3 E-Step 

The conditional expectation in E-Step is given by: 

 

𝑄(Γ|Γ(𝑝)) =  𝔼[ln 𝐿𝐶|Γ
(𝑝), 𝑥1, … , 𝑥𝑇]   

Let Xt denotes 𝑥1, … , 𝑥𝑡 while X denotes 𝑥1, … , 𝑥𝑇 

Note: most of the time, this research will omit Γ(p)for better readability. 

𝑄(Γ|Γ(𝑝)) = −
𝐾

2
ln 2𝜋 −

1

2
ln|𝐵0| −

1

2
𝔼[(ln 𝜆1 − 𝑎0)

′𝐵0
−1(ln 𝜆1 − 𝑎0)|X] 

−
𝐾(𝑇 − 1)

2
ln 2𝜋 −

𝑇 − 1

2
ln|𝐵|

− 𝔼[
1

2
∑(ln 𝜆𝑡 − 𝑎 − 𝑐 ln 𝜆𝑡−1 −∑ ∑ 𝜂𝑘,𝑙,𝑡−1

∆𝑁𝑘,𝑡−1

𝑙=1

𝐾

𝑘=1

)

′

𝐵−1(ln 𝜆𝑡

𝑇

𝑡=2

− 𝑎 − 𝑐 ln 𝜆𝑡−1 −∑ ∑ 𝜂𝑘,𝑙,𝑡−1

∆𝑁𝑘,𝑡−1

𝑙=1

𝐾

𝑘=1

) |X]  

+𝔼[∑ ∑ −𝜆𝑘,𝑡 + ∆𝑁𝑘,𝑡 ln 𝜆𝑘,𝑡 − ln(∆𝑁𝑘,𝑡!)
𝐾
𝑘=1  𝑇

𝑡=1 |X] 

+𝔼[ ∑ ∑ ∑ {
−
𝑛
2 ln 2𝜋 −

1
2 ln

|Ω|

−
1
2 (𝜂𝑘,𝑙,𝑡−1 − 𝜅𝑘)

′
Ω−1(𝜂𝑘,𝑙,𝑡−1 − 𝜅𝑘)

}
∆𝑁𝑘,𝑡−1
𝑙=1

𝐾
𝑘=1

𝑇
𝑡=2 |X] 

+𝔼 [∑ ∑ ∑ −
𝐾
2 ln 2𝜋 −

1
2 ln

|Δ| −
1
2 (𝜃𝑘,𝑙,𝑡 − 𝜈𝑘)

′
Δ−1(𝜃𝑘,𝑙,𝑡 − 𝜈𝑘)

∆𝑁𝑘,𝑡
𝑙=1

𝐾
𝑘=1

𝑇
𝑡=1 |X] 

−
𝑛𝑇

2
ln 2𝜋 −

𝑇

2
ln|Σ| −

1

2
𝔼[∑ (𝑧𝑡 − 𝜇)

′Σ−1(𝑧𝑡 − 𝜇)
𝑇
𝑡=1 |X] 

 

A1.4 M-Step 

The parameters’ values that maximizes 𝑄(Γ|Γ(𝑝)) in M-Step is given by: 

 

Consider (𝜇̂, 𝛴̂); 

∇𝜇̂=  0  →   ∇𝜇̂ (
1

2
∑𝔼[(𝑧𝑡 − 𝜇̂)

′Σ̂−1(𝑧𝑡 − 𝜇̂)|X]

𝑇

𝑡=1

) = 0 
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                →   ∇𝜇̂ (
1

2
∑𝔼[(Σ̂−

1
2𝑧𝑡 − Σ̂

−
1
2𝜇)

′

(Σ̂−
1
2𝑧𝑡 − Σ̂

−
1
2𝜇) |X]

𝑇

𝑡=1

) = 0 

from ∇𝑋(𝐴𝑋 − 𝑏)′(𝐴𝑋 − 𝑏) = 2𝐴′(𝐴𝑋 − 𝑏) 

                →   2Σ̂−1∑(𝔼[(𝑧𝑡 − 𝜇̂)|X])

𝑇

𝑡=1

= 0 

                →   𝜇̂ =
1

𝑇
∑𝔼[𝑧𝑡|X]

𝑇

𝑡=1

 

 

𝜕

𝜕Σ̂
= 0  →   

𝜕

𝜕Σ̂
(−

𝑇

2
ln|Σ̂| −

1

2
∑𝔼[(𝑧𝑡 − 𝜇̂)

′Σ̂−1(𝑧𝑡 − 𝜇̂)|X]

𝑇

𝑡=1

) = 0 

from ∇𝑋 ln |𝑋| = (𝑋
−1)′ 𝑎𝑛𝑑 ∇𝑋𝑎′𝑋

−1𝑏 =  −(𝑋−1)′𝑎𝑏′(𝑋−1)′ 

                →   −𝑇(Σ̂−1)
′
+ (Σ̂−1)′𝔼[∑ (𝑧𝑡 − 𝜇̂)(𝑧𝑡 − 𝜇̂)

′𝑇
𝑡=1 |X](Σ̂−1)′ = 0 

                →   Σ̂ =
1

𝑇
∑𝔼[(𝑧𝑡 − 𝜇̂)(𝑧𝑡 − 𝜇̂)

′|X]

𝑇

𝑡=1

 

 

Consider (𝜈̂𝑘, 𝛥̂𝑘); 

∇𝜈̂𝑘= 0  →  ∇𝜈̂𝑘 (−
1

2
∑∑𝔼[∑ (𝜃𝑘,𝑙,𝑡 − 𝜈̂𝑘)

′
𝛥̂𝑘

−1
(𝜃𝑘,𝑙,𝑡 − 𝜈̂𝑘)

∆𝑁𝑘,𝑡
𝑙=1 |X]

𝐾

𝑘=1

𝑇

𝑡=1

) = 0 

                 →   −
1

2
∑𝔼[−2∆𝑁𝑘,𝑡𝛥̂𝑘

−1
(𝜃𝑘,1,𝑡 − 𝜈̂𝑘)|X]

𝑇

𝑡=1

= 0 

                 →   ∑𝔼[∆𝑁𝑘,𝑡(𝜃𝑘,1,𝑡 − 𝜈̂𝑘)|X]

𝑇

𝑡=1

= 0 

                 →   ∑𝔼[∆𝑁𝑘,𝑡(𝜃𝑘,1,𝑡)|X]

𝑇

𝑡=1

=∑𝔼[∆𝑁𝑘,𝑡(𝜈̂𝑘)|X]

𝑇

𝑡=1

 

                 →   𝜈̂𝑘  =  
∑ 𝔼[∆𝑁𝑘,𝑡(𝜃𝑘,1,𝑡)|X]
𝑇
𝑡=1

∑ 𝔼[∆𝑁𝑘,𝑡|X]
𝑇
𝑡=1

 

 

∇𝛥̂𝑘= 0  

→   ∇Δ̂𝑘 (𝔼 [∑ ∑ ∑ −
1
2 ln|𝛥̂𝑘| −

1
2 (𝜃𝑘,𝑙,𝑡 − 𝜈̂𝑘)

′
𝛥̂𝑘

−1
(𝜃𝑘,𝑙,𝑡 − 𝜈̂𝑘)

∆𝑁𝑘,𝑡
𝑙=1

𝐾
𝑘=1

𝑇
𝑡=1 |X]) = 0 

                 →   −
1

2
∑𝔼[∆𝑁𝑘,𝑡|X](𝛥̂𝑘

−1)′

𝑇

𝑡=1

+
1

2
∑(𝛥̂𝑘

−1)
′
𝔼 [∆𝑁𝑘,𝑡(𝜃𝑘,1,𝑡 − 𝜈̂𝑘)(𝜃𝑘,1,𝑡 − 𝜈̂𝑘)

′
|X] (𝛥̂𝑘

−1)′

𝑇

𝑡=1

= 0 

                 →   𝛥̂𝑘 =
∑ 𝔼 [∆𝑁𝑘,𝑡(𝜃𝑘,1,𝑡 − 𝜈̂𝑘)(𝜃𝑘,1,𝑡 − 𝜈̂𝑘)

′
|X]𝑇

𝑡=1

∑ 𝔼[∆𝑁𝑘,𝑡|X]
𝑇
𝑡=1
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Consider (𝜅̂𝑘, 𝛺̂𝑘); 

∇𝜅̂𝑘= 0  →  ∇𝜅̂𝑘 (−
1

2
∑∑𝔼[∑ (𝜂𝑘,𝑙,𝑡 − 𝜅̂𝑘)

′
𝛺̂𝑘

−1
(𝜂𝑘,𝑙,𝑡 − 𝜅̂𝑘)

∆𝑁𝑘,𝑡−1
𝑙=1 |X]

𝐾

𝑘=1

𝑇

𝑡=2

) = 0 

                 →   −
1

2
∑𝔼[−2∆𝑁𝑘,𝑡−1𝛺̂𝑘

−1
(𝜂𝑘,1,𝑡−1 − 𝜅̂𝑘)|X]

𝑇

𝑡=2

= 0 

                 →   ∑𝔼[∆𝑁𝑘,𝑡−1(𝜂𝑘,1,𝑡−1 − 𝜅̂𝑘)|X]

𝑇

𝑡=2

= 0 

                 →   ∑𝔼[∆𝑁𝑘,𝑡−1(𝜂𝑘,1,𝑡−1)|X]

𝑇

𝑡=2

=∑𝔼[∆𝑁𝑘,𝑡−1(𝜅̂𝑘)|X]

𝑇

𝑡=2

 

                 →   𝜅̂𝑘  =  
∑ 𝔼[∆𝑁𝑘,𝑡−1(𝜂𝑘,1,𝑡−1)|X]
𝑇
𝑡=2

∑ 𝔼[∆𝑁𝑘,𝑡−1|X]
𝑇
𝑡=2

 

 

∇𝛺̂𝑘= 0  

→   ∇𝛺̂𝑘 (𝔼 [∑ ∑ ∑ −
1
2 ln|𝛺̂𝑘| −

1
2 (𝜂𝑘,𝑙,𝑡−1 − 𝜅̂𝑘)

′
𝛺̂𝑘

−1
(𝜂𝑘,𝑙,𝑡−1 − 𝜅̂𝑘)

∆𝑁𝑘,𝑡−1
𝑙=1

𝐾
𝑘=1

𝑇
𝑡=2 |X])

= 0 

                   →   −
1

2
∑𝔼[∆𝑁𝑘,𝑡−1|X](𝛺̂𝑘

−1)′

𝑇

𝑡=2

+
1

2
∑(𝛺̂𝑘

−1)
′
𝔼 [∆𝑁𝑘,𝑡−1(𝜂𝑘,1,𝑡−1 − 𝜅̂𝑘)(𝜂𝑘,1,𝑡−1 − 𝜅̂𝑘)

′
|X] (𝛺̂𝑘

−1)′

𝑇

𝑡=2

= 0 

                 →   𝛺̂𝑘 =
∑ 𝔼 [∆𝑁𝑘,𝑡−1(𝜂𝑘,1,𝑡−1 − 𝜅̂𝑘)(𝜂𝑘,1,𝑡−1 − 𝜅̂𝑘)

′
|X]𝑇

𝑡=2

∑ 𝔼[∆𝑁𝑘,𝑡−1|X]
𝑇
𝑡=2

 

 

Consider (𝑎̂0, 𝐵̂0, 𝑎̂, 𝐵̂); 

∇𝑎̂0= 0  →   ∇𝑎̂0 (𝔼 [(ln 𝜆1 − 𝑎̂0)
′𝐵̂0

−1
(ln 𝜆1 − 𝑎̂0)|X]) = 0 

                 →   𝔼[(ln 𝜆1 − 𝑎̂0)|X] = 0 
                 →   𝑎̂0 = 𝔼[ln 𝜆1 |X] 
 

∇𝐵̂0= 0  →   ∇𝐵̂0 (−
1

2
ln|𝐵̂0| −

1

2
𝔼 [(ln 𝜆1 − 𝑎̂0)

′𝐵̂0
−1
(ln 𝜆1 − 𝑎̂0)|X]) = 0 

                 →   − (𝐵̂0
−1
)
′

+ (𝐵̂0
−1
)′𝔼[(ln 𝜆1 − 𝑎̂0)(ln 𝜆1 − 𝑎̂0)

′|X](𝐵̂0
−1
)′ =

0                 →   𝐵̂0 = 𝔼[(ln 𝜆1 − 𝑎̂0)(ln 𝜆1 − 𝑎̂0)
′|X] 
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∇𝑎̂= 0  →   ∇𝑎̂(−
1

2
𝔼[∑(ln 𝜆𝑡 − 𝑎̂ − 𝑐 ln 𝜆𝑡−1 −∑ ∑ 𝜂𝑘,𝑙,𝑡−1

∆𝑁𝑘,𝑡−1

𝑙=1

𝐾

𝑘=1

)

′

𝐵̂−1(ln 𝜆𝑡

𝑇

𝑡=2

− 𝑎̂ − ln 𝜆𝑗,𝑡−1 −∑ ∑ 𝜂𝑘,𝑙,𝑡−1

∆𝑁𝑘,𝑡−1

𝑙=1

𝐾

𝑘=1

) |X])  = 0 

               →   ∇𝑎̂ (−
1

2
𝔼[∑ (𝑢𝑡 − 𝑎̂)

′𝐵̂−1(𝑢𝑡 − 𝑎̂)
𝑇
𝑡=2 |X])  = 0 

               →   ∑𝔼[(𝑢𝑡 − 𝑎̂)|X]

𝑇

𝑡=2

= 0 

               →   𝑎̂ =
1

𝑇 − 1
∑𝔼[𝑢𝑡|X]

𝑇

𝑡=2

 

 

∇𝐵̂= 0  →   ∇𝐵̂{−
𝑇 − 1

2
ln|𝐵̂|

− 𝔼[
1

2
∑(ln 𝜆𝑡 − 𝑎̂ − 𝑐̂ ln 𝜆𝑡−1 −∑ ∑ 𝜂𝑘,𝑙,𝑡−1

∆𝑁𝑘,𝑡−1

𝑙=1

𝐾

𝑘=1

)

′

𝐵̂−1(ln 𝜆𝑡

𝑇

𝑡=2

− 𝑎̂ − 𝑐̂ ln 𝜆𝑡−1 −∑ ∑ 𝜂𝑘,𝑙,𝑡−1

∆𝑁𝑘,𝑡−1

𝑙=1

𝐾

𝑘=1

) |X]} = 0 

                →   ∇𝐵̂ {−
𝑇 − 1

2
ln|𝐵̂| − 𝔼 [

1
2
∑ (𝑢𝑡 − 𝑎̂)

′𝐵̂−1(𝑢𝑡 − 𝑎̂)
𝑇
𝑡=2 |X]} = 0 

                →   −(𝑇 − 1)(𝐵̂−1)
′
+ (𝐵̂−1)′𝔼[∑ (𝑢𝑡 − 𝑎̂)(𝑢𝑡 − 𝑎̂)

′𝑇
𝑡=2 |X](𝐵̂−1)′ = 0 

                →   𝐵̂ =
1

𝑇 − 1
∑𝔼[(𝑢𝑡 − 𝑎̂)(𝑢𝑡 − 𝑎̂)

′|X]

𝑇

𝑡=2

 

 

∇𝑐̂= 0  →   ∇𝑐̂{−
𝑇 − 1

2
ln|𝐵̂|

− 𝔼[
1

2
∑(ln 𝜆𝑡 − 𝑎̂ − 𝑑𝑖𝑎𝑔(ln 𝜆𝑡−1)𝑐̂

𝑇

𝑡=2

−∑ ∑ 𝜂𝑘,𝑙,𝑡−1

∆𝑁𝑘,𝑡−1

𝑙=1

𝐾

𝑘=1

)

′

𝐵̂−1(ln 𝜆𝑡 − 𝑎̂ − 𝑑𝑖𝑎𝑔(ln 𝜆𝑡−1)𝑐̂

−∑ ∑ 𝜂𝑘,𝑙,𝑡−1

∆𝑁𝑘,𝑡−1

𝑙=1

𝐾

𝑘=1

) |X]} = 0 
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                →   2𝔼[∑ 𝑑𝑖𝑎𝑔(ln 𝜆𝑡−1)𝐵̂
−1𝑑𝑖𝑎𝑔(ln 𝜆𝑡−1)

𝑇
𝑡=2 |X]𝑐̂

− 2𝔼 [∑ 𝑑𝑖𝑎𝑔(ln 𝜆𝑡−1)𝐵̂
−1(ln 𝜆𝑡 − 𝑎̂ − ∑ ∑ 𝜂𝑘,𝑙,𝑡−1

∆𝑁𝑘,𝑡−1
𝑙=1

𝐾
𝑘=1 )𝑇

𝑡=2 |X]

= 0 

                →   𝔼[∑ 𝑑𝑖𝑎𝑔(ln 𝜆𝑡−1)𝐵̂
−1𝑑𝑖𝑎𝑔(ln 𝜆𝑡−1)

𝑇
𝑡=2 |X]𝑐̂

− 𝔼[𝑑𝑖𝑎𝑔(ln 𝜆𝑡−1)𝐵̂
−1(𝑢𝑡 − 𝑎̂ + 𝑑𝑖𝑎𝑔(ln 𝜆𝑡−1)𝑐

(𝑝))|X] = 0 

 

                →   𝑐̂ = 𝔼[∑ 𝑑𝑖𝑎𝑔(ln 𝜆𝑡−1)𝐵̂
−1𝑑𝑖𝑎𝑔(ln 𝜆𝑡−1)

𝑇
𝑡=2 |X]

−1
 

× 𝔼[∑ 𝑑𝑖𝑎𝑔(ln 𝜆𝑡−1)𝐵̂
−1(𝑢𝑡 − 𝑎̂ + 𝑑𝑖𝑎𝑔(ln 𝜆𝑡−1)𝑐

(𝑝))𝑇
𝑡=2 |X] 

                →   𝑐̂ = 𝑐(𝑝) + (𝔼[∑ 𝑑𝑖𝑎𝑔(ln 𝜆𝑡−1)𝐵̂
−1𝑑𝑖𝑎𝑔(ln 𝜆𝑡−1)

𝑇
𝑡=2 |X]

−1
 

× 𝔼[∑ 𝑑𝑖𝑎𝑔(ln 𝜆𝑡−1)𝐵̂
−1(𝑢𝑡 − 𝑎̂)

𝑇
𝑡=2 |X]) 

 
A1.5 Further Derivation on Parameters Estimation for E-Step 

Consider Forward probability: 𝛼(𝜆𝑡, ∆𝑁𝑡, 𝑥𝑡|𝑋𝑡−1)  
𝛼(𝜆1, ∆𝑁1, 𝑥1) = 𝑃(𝜆1, ∆𝑁1, 𝑥1) 

= 𝑃(𝜆1)∏{𝑃(∆𝑁𝑘,1|𝜆1)}𝑃(𝑥1|∆𝑁1, 𝜆1)

𝐾

𝑘=1

                              

= 𝑃(𝜆1)∏{𝑃(∆𝑁𝑘,1|𝜆1)}𝑃(𝑥1|∆𝑁1)

𝐾

𝑘=1

  

= 𝑁𝑜𝑟𝑚𝑎𝑙(ln 𝜆1; 𝑎0, 𝐵0) ∙∏{𝑃𝑜𝑖𝑠𝑠𝑜𝑛(∆𝑁𝑘,1; 𝜆𝑘,1)}

𝐾

𝑘=1

∙ 𝑁𝑜𝑟𝑚𝑎𝑙 (𝑥1; 𝜇 +∑∆𝑁𝑘,1𝜈𝑘

𝐾

𝑘=1

, Σ +∑∆𝑁𝑘,1𝛥𝑘

𝐾

𝑘=1

)  

=
1

√(2𝜋)𝐾|𝐵0|
𝑒−

1
2
(ln𝜆1−𝑎0)

′𝐵0
−1(ln𝜆1−𝑎0) ∙∏

𝑒−𝜆𝑘,1𝜆𝑘,1
∆𝑁𝑘,1

∆𝑁𝑘,1!

𝐾

𝑘=1

∙
1

√(2𝜋)𝑛|Σ + ∑ ∆𝑁𝑘,1𝛥𝑘
𝐾
𝑘=1 |

𝑒−
1
2
(𝑥1−𝜇−∑ ∆𝑁𝑘,1𝜈𝑘

𝐾
𝑘=1 )

′
(Σ+∑ ∆𝑁𝑘,1𝛥𝑘

𝐾
𝑘=1 )

−1
(𝑥1−𝜇−∑ ∆𝑁𝑘,1𝜈𝑘

𝐾
𝑘=1 )

 

Let 𝛼𝑡(a, b, c) denotes 𝛼𝑡(𝜆1 = a, ∆𝑁1 = b, 𝑥1 = c) where t is the time 

𝛼1(λ, n) = 𝛼(𝜆1, ∆𝑁1, 𝑥1) 
𝛼2(λ, n) = 𝛼(λ, n, 𝑥2) 
                = 𝑃(𝜆2 = λ, ∆𝑁2 = n, 𝑥2|𝑥1) 

                = ∑ 𝑃(𝜆2 = λ, ∆𝑁2 = n, 𝑥2|𝜆1, ∆𝑁1 = m, 𝑥1)

𝜆1,m

𝛼1(𝜆1, m)

𝑃(𝑥1)
 

                = ∑ 𝑃(∆𝑁2 = n, 𝑥2|𝜆2 = λ, 𝜆1, ∆𝑁1 = m, 𝑥1)𝑃(𝜆2 = λ|𝜆1, ∆𝑁1
𝜆1,m

= m, 𝑥1)
𝛼1(𝜆1,m)

𝑃(𝑥1)
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                = ∑ 𝑃(𝑥2|∆𝑁2 = n, 𝜆2 = λ, 𝜆1, ∆𝑁1
𝜆1,m

= m, 𝑥1) 𝑃(∆𝑁2 = n|𝜆2 = λ, 𝜆1, ∆𝑁1 = m, 𝑥1) 

                           𝑃(𝜆2 = λ|λ1, ∆𝑁1 = m, 𝑥1)
𝛼1(𝜆1,m)

𝑃(𝑥1)
 

                = ∑ 𝑃(𝑥2|∆𝑁2 = n)∏{𝑃(∆𝑁𝑘,2 = n𝑘|𝜆2 = λ)}

𝐾

𝑘=1

𝑃(𝜆2 = λ|λ1, ∆𝑁1
𝜆1,m

= m)
𝛼1(𝜆1,m)

𝑃(𝑥1)
 

                = ∑ 𝑁𝑜𝑟𝑚𝑎𝑙 (𝑥2; 𝜇 +∑n𝑘𝜈𝑘

𝐾

𝑘=1

, Σ

𝜆1,m

+∑n𝑘𝛥𝑘

𝐾

𝑘=1

)∏{𝑃𝑜𝑖𝑠𝑠𝑜𝑛(n𝑘; λ𝑘)}

𝐾

𝑘=1

𝑁𝑜𝑟𝑚𝑎𝑙(ln λ ; 𝑎 + ln 𝜆1

+∑m𝑘𝜅𝑘

𝐾

𝑘=1

, 𝐵 +∑m𝑘𝛺𝑘

𝐾

𝑘=1

)
𝛼1(𝜆1,m)

𝑃(𝑥1)
 

𝛼𝑡(λ, n) = 𝑃(𝜆𝑡 = λ, ∆𝑁t = n, 𝑥𝑡|Xt−1) 

                = ∑ 𝑃(𝜆𝑡 = λ, ∆𝑁t = n, 𝑥𝑡|𝜆𝑡−1, ∆𝑁𝑡−1
𝜆𝑡−1,m

= m, X𝑡−1) 𝑃(𝜆𝑡−1, ∆𝑁𝑡−1 = m|Xt−1) 

                = ∑ 𝑃(𝑥t|∆𝑁𝑡 = n, 𝜆𝑡 = λ, 𝜆𝑡−1, ∆𝑁𝑡−1 = m, Xt−1)

𝜆𝑡−1,m

 

                                𝑃(∆𝑁𝑡 = n|𝜆𝑡 = λ, 𝜆𝑡−1, ∆𝑁𝑡−1 = m, X𝑡−1) 

                                𝑃(𝜆𝑡 = λ|λ𝑡−1, ∆𝑁𝑡−1 = m, Xt−1)
𝛼𝑡−1(𝜆𝑡−1, m)

𝑃(𝑥𝑡−1|Xt−2)
 

                = ∑ 𝑃(𝑥t|∆𝑁𝑡 = n)∏{𝑃(∆𝑁𝑘,𝑡 = n𝑘|𝜆𝑘,𝑡 = λ𝑘)}

𝐾

𝑘=1𝜆𝑡−1,m

∙ 𝑃(𝜆𝑡 = λ|λ𝑡−1, ∆𝑁𝑡−1 = m) ∙
𝛼𝑡−1(𝜆𝑡−1, m)

𝑃(𝑥𝑡−1|Xt−2)
 

𝛼𝑡(λ, n) = ∑ 𝑁𝑜𝑟𝑚𝑎𝑙(𝑥𝑡; 𝜇 +∑n𝑘𝜈𝑘

𝐾

𝑘=1

, Σ +∑n𝑘𝛥𝑘

𝐾

𝑘=1

)

𝜆𝑡−1,m

∙∏𝑃𝑜𝑖𝑠𝑠𝑜𝑛(n𝑘; λ𝑘)

𝐾

𝑘=1

 

                           ∙ 𝑁𝑜𝑟𝑚𝑎𝑙 (ln λ ; 𝑎 + ln 𝜆𝑡−1 +∑m𝑘𝜅𝑘

𝐾

𝑘=1

, 𝐵 +∑m𝑘𝛺𝑘

𝐾

𝑘=1

)

∙
𝛼𝑡−1(𝜆𝑡−1, m)

𝑃(𝑥𝑡−1|Xt−2)
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Consider Backward probability: 𝛾(𝜆𝑡, ∆𝑁𝑡|X) 
γ𝑇(λ, n) = 𝑃(𝜆𝑇 = λ, ∆𝑁𝑇 = n|X) 

                =
𝑃(𝜆𝑇 = λ, ∆𝑁𝑇 = n, 𝑥𝑇|Xt−1)

𝑃(𝑥𝑇|XT−1)
 

                =
𝛼𝑇(λ, n)

𝑃(𝑥𝑇|XT−1)
 

                =
𝛼𝑇(λ, n)

∑ 𝛼𝑇(r, s)r,s
 

γ𝑡(λ, n) = 𝑃(𝜆𝑡 = λ, ∆𝑁𝑡 = n|X) 

               =  ∑𝑃(𝜆𝑡 = λ, ∆𝑁𝑡 = n, 𝜆𝑡+1 = r|X)

∞

r

 

               =  ∑𝜁𝑡(

∞

r

λ, n, r) 

 

Consider 2-Step probability: 𝜁(𝜆𝑡, ∆𝑁𝑡, 𝜆𝑡+1|X) 
𝜁𝑡(λ, n, r) = 𝑃(𝜆𝑡 = λ, ∆𝑁𝑡 = n, 𝜆𝑡+1 = r|X) 

                   = ∑𝑃(𝜆𝑡 = λ, ∆𝑁𝑡 = n, 𝜆𝑡+1 = r, ∆𝑁𝑡+1 = m|X)

∞

m

 

                   = ∑𝑃(𝜆𝑡 = λ, ∆𝑁𝑡 = n|𝜆𝑡+1 = r, ∆𝑁𝑡+1 = m, Xt)γt+1(r,m)

∞

m

 

                   

= ∑
𝑃(𝜆𝑡+1 = r, ∆𝑁𝑡+1 = m|𝜆𝑡 = λ, ∆𝑁𝑡 = n, Xt)𝑃(𝜆𝑡 = λ, ∆𝑁𝑡 = n|Xt)

𝑃(𝜆𝑡+1 = r, ∆𝑁𝑡+1 = m|Xt)
γt+1(r,m)

∞

m

 

=∑

{
 
 
 
 

 
 
 
 

𝑃𝑜𝑖𝑠𝑠𝑜𝑛(m; r)

∙ 𝑁𝑜𝑟𝑚𝑎𝑙(ln r ; 𝑎 + ln λ + ∑ n𝑘𝜅𝑘
𝐾
𝑘=1 , 𝐵 + ∑ 𝑛𝑘𝛺𝑘

𝐾
𝑘=1 )

∙
𝛼𝑡(λ, n)
𝑃(𝑥𝑡|Xt−1)

∑ [𝑃𝑜𝑖𝑠𝑠𝑜𝑛(s,p m; r)

∙ 𝑁𝑜𝑟𝑚𝑎𝑙(ln r ; 𝑎 + ln s + ∑ p𝑘𝜅𝑘
𝐾
𝑘=1 , 𝐵 + ∑ p𝑘𝛺𝑘

𝐾
𝑘=1 )

∙
𝛼𝑡(s, p)

𝑃(𝑥𝑡|Xt−1)
]

∙ γt+1(r,m)

}
 
 
 
 

 
 
 
 

∞

m

 

= (∑γt+1(r,m)

∞

m

)

∙ (
𝑁𝑜𝑟𝑚𝑎𝑙(ln r ; 𝑎 + ln λ + ∑ n𝑘𝜅𝑘

𝐾
𝑘=1 , 𝐵 + ∑ 𝑛𝑘𝛺𝑘

𝐾
𝑘=1 )𝛼𝑡(λ, n)

∑ 𝑁𝑜𝑟𝑚𝑎𝑙(ln r ; 𝑎 + ln s + ∑ p𝑘𝜅𝑘
𝐾
𝑘=1 , 𝐵 + ∑ p𝑘𝛺𝑘

𝐾
𝑘=1 )𝛼𝑡(s, p)s,p

) 

 

Consider 𝑃(∆𝑁𝑡 = n|X); 

𝑃(∆𝑁𝑡 = n|X) =∑𝑃(𝜆𝑡 = λ, ∆𝑁𝑡 = n|X)

λ

 = ∑𝛾𝑡(λ, n)

λ
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if [
𝑆1
𝑆2
]~𝑁𝑜𝑟𝑚𝑎𝑙 with mean [

𝜇1
𝜇2
] and variance matrix [

Σ11 Σ12
Σ21 Σ22

] 

then  𝔼[𝑆1|𝑆2 = 𝑎] = 𝜇1 + Σ12Σ22
−1(𝑎 − 𝜇2) (A1) 

  and 𝑉𝑎𝑟(𝑆1|𝑆2 = 𝑎] =  Σ11 − Σ12Σ22
−1Σ21 (A2) 

 

Consider 𝔼[∆𝑁𝑘,𝑡X]; 

𝔼[∆𝑁𝑘,𝑡|X] = ∑𝔼[∆𝑁𝑘,𝑡|∆𝑁𝑘,𝑡 = n𝑘 , X]𝑃(∆𝑁𝑘,𝑡 = n𝑘|X)

∞

n=0

 

                      = ∑n𝑘 ∙ 𝑃(∆𝑁𝑘,𝑡 = n𝑘|X)

∞

n=1

 

 

Consider 𝔼[𝑧𝑡|X]; 

𝔼[𝑧𝑡|X] =  ∑𝔼[𝑧𝑡|∆𝑁𝑡 = n, X]𝑃(∆𝑁𝑡 = n|X)

∞

n=0

 

               =  ∑𝔼[𝑧𝑡|∆𝑁𝑡 = n, 𝑥𝑡]𝑃(∆𝑁𝑡 = n|X)

∞

n=0

 

 

From (A1) and (A2), 

𝔼[𝑧𝑡|𝑥𝑡 , ∆𝑁𝑡 = n] = 𝜇̂ + Σ̂(Σ̂ + n𝛥̂)
−1
(𝑥𝑡 − (𝜇̂ + n𝜈̂)) 

𝑉𝑎𝑟[𝑧𝑡|𝑥𝑡 , ∆𝑁𝑡 = n] = Σ̂ − Σ̂(Σ̂ + n𝛥̂)
−1
Σ̂ 

 

 

Consider 𝔼[(𝑧𝑡 − 𝜇̂)(𝑧𝑡 − 𝜇̂)
′|X]; 

𝔼[(𝑧𝑡 − 𝜇̂)(𝑧𝑡 − 𝜇̂)
′|X] 

=∑𝔼[(𝑧𝑡 − 𝜇̂)(𝑧𝑡 − 𝜇̂)
′|X, ∆𝑁𝑡 = n]

∞

n=0

𝑃(∆𝑁𝑡 = n|X)  

=∑𝔼[(𝑧𝑡 − 𝜇̂)(𝑧𝑡 − 𝜇̂)
′|𝑥𝑡 , ∆𝑁𝑡 = n]

∞

n=0

𝑃(∆𝑁𝑡 = n|X) 

where 𝔼[(𝑧𝑡 − 𝜇̂)(𝑧𝑡 − 𝜇̂)
′|𝑥𝑡, ∆𝑁𝑡 = n] 

= 𝔼 [
𝑉𝑎𝑟(𝑧𝑡|𝑥𝑡, ∆𝑁𝑡 = n)

+(𝔼[𝑧𝑡|𝑥𝑡 , ∆𝑁𝑡 = n] − 𝜇̂)(𝔼[𝑧𝑡|𝑥𝑡 , ∆𝑁𝑡 = n] − 𝜇̂)′
|𝑥𝑡, ∆𝑁𝑡 = n] 

= Σ̂ − Σ̂(Σ̂ + n𝛥̂)
−1
Σ̂

+ (Σ̂(Σ̂ + n𝛥̂)
−1
(𝑥𝑡 − (𝜇̂ + n𝜈̂))) (Σ̂(Σ̂ + n𝛥̂)

−1
(𝑥𝑡

− (𝜇̂ + n𝜈̂))) 
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Consider 𝔼[ ∆𝑁𝑘,𝑡(𝜃𝑘,1,𝑡)|X]; 

𝔼[ ∆𝑁𝑘,𝑡(𝜃𝑘,1,𝑡)|X] =  ∑∆𝑁𝑘,𝑡 ∙ 𝔼[ 𝜃𝑘,1,𝑡|X, ∆𝑁𝑘,𝑡 = n𝑘] ∙ ℙ(∆𝑁𝑘,𝑡 = n𝑘|X)

n𝑘

 

                                    =  ∑n𝑘 ∙ 𝔼[ 𝜃𝑘,1,𝑡|𝑥𝑡, ∆𝑁𝑘,𝑡 = n𝑘] ∙ ℙ(∆𝑁𝑘,𝑡 = n𝑘|X)

n𝑘

 

where 𝔼[ 𝜃𝑘,1,𝑡|𝑥𝑡, ∆𝑁𝑘,𝑡 = n𝑘] = 𝜈̂𝑘 + 𝛥̂𝑘(Σ̂ + n𝑘𝛥̂𝑘)
−1
(𝑥𝑡 − (𝜇̂ + n𝑘𝜈̂𝑘 )) 

 

Consider 𝔼 [∆𝑁𝑘,𝑡(𝜃𝑘,1,𝑡 − 𝜈̂𝑘)(𝜃𝑘,1,𝑡 − 𝜈̂𝑘)
′
| X] ; 

𝔼 [∆𝑁𝑘,𝑡(𝜃𝑘,1,𝑡 − 𝜈̂𝑘)(𝜃𝑘,1,𝑡 − 𝜈̂𝑘)
′
| X] 

= ∑∆𝑁𝑘,𝑡 ∙ 𝔼 [(𝜃𝑘,1,𝑡 − 𝜈̂𝑘)(𝜃𝑘,1,𝑡 − 𝜈̂𝑘)
′
| X, ∆𝑁𝑘,𝑡 = n𝑘] ∙ ℙ(∆𝑁𝑘,𝑡 = n𝑘|X)

n𝑘

 

where 𝔼 [(𝜃𝑘,1,𝑡 − 𝜈̂𝑘)(𝜃𝑘,1,𝑡 − 𝜈̂𝑘)
′
| X, ∆𝑁𝑘,𝑡 = n𝑘] 

= 𝔼 [𝑉𝑎𝑟(𝜃𝑘,1,𝑡|𝑥𝑡 , n𝑘)

+ (𝔼[𝜃𝑘,1,𝑡|𝑥𝑡 , n𝑘] − 𝜈̂𝑘)(𝔼[𝜃𝑘,1,𝑡|𝑥𝑡 , n𝑘] − 𝜈̂𝑘)
′
|X𝑡, ∆𝑁𝑘,𝑡

= 𝑛𝑘]                                                 

= 𝛥̂𝑘 − 𝛥̂𝑘(Σ̂ + n𝑘𝛥̂𝑘)
−1
𝛥̂𝑘

+ (𝛥̂𝑘(Σ̂ + n𝑘𝛥̂𝑘)
−1
(𝑥𝑡 − (𝜇̂ + n𝑘𝜈̂𝑘 ))) (𝛥̂𝑘(Σ̂ + n𝑘𝛥̂𝑘)

−1
(𝑥𝑡

− (𝜇̂ + n𝑘𝜈̂𝑘 ))) ′ 

 

Consider 𝔼[∆𝑁𝑘,𝑡−1(𝜂𝑘,1,𝑡)|X]; 

𝔼[∆𝑁𝑘,𝑡−1(𝜂𝑘,1,𝑡)|X] 

= ∑ 𝔼[∆𝑁𝑘,𝑡−1(𝜂𝑘,1,𝑡)|X, ∆𝑁𝑘,𝑡−1 = n𝑘]𝑃(∆𝑁𝑘,𝑡−1 = n𝑘|X)

∞

n𝑘=0

 

= ∑ n𝑘 ∙ 𝔼[ 𝜂𝑘,1,𝑡|X, ∆𝑁𝑘,𝑡−1 = n𝑘]𝑃(∆𝑁𝑘,𝑡−1 = n𝑘|X)

∞

n𝑘=1

 

= ∑ [
n𝑘 ∙ ∑ 𝔼[ 𝜂𝑘,1,𝑡|X, ∆𝑁𝑘,𝑡−1 = n𝑘, 𝜆𝑘,𝑡−1 = r𝑘 , 𝜆𝑘,𝑡 = s𝑘]

r𝑘,s𝑘

∙ 𝑃(𝜆𝑘,𝑡−1 = r𝑘, 𝜆𝑘,𝑡 = s𝑘|X, ∆𝑁𝑘,𝑡−1 = n𝑘)𝑃(∆𝑁𝑘,𝑡−1 = n𝑘|X)

]

∞

n𝑘=1

 

= ∑

[
 
 
 
 n𝑘 ∙ ∑ 𝔼[ 𝜂𝑘,1,𝑡|∆𝑁𝑘,𝑡−1 = n𝑘, 𝜆𝑘,𝑡−1 = r𝑘 , 𝜆𝑘,𝑡 = s𝑘]

r𝑘,s𝑘

∙
𝑃(𝜆𝑘,𝑡−1 = r𝑘, ∆𝑁𝑘,𝑡−1 = n𝑘 , 𝜆𝑘,𝑡 = s𝑘|X)

𝑃(∆𝑁𝑘,𝑡−1 = n𝑘|X)
𝑃(∆𝑁𝑘,𝑡−1 = n𝑘|X)

]
 
 
 
 ∞

n𝑘=1

 

= ∑ [n𝑘 ∙ ∑ 𝔼[ 𝜂𝑘,1,𝑡|∆𝑁𝑘,𝑡−1 = n𝑘, 𝜆𝑘,𝑡−1 = r𝑘, 𝜆𝑘,𝑡 = s𝑘]

r𝑘,s𝑘

∙ 𝜁𝑡−1(r𝑘, n𝑘, s𝑘)]

∞

n𝑘=1
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= ∑ [

n𝑘 ∙ 𝜁𝑡−1(r𝑘, n𝑘, s𝑘)

∙ ∑ (𝜅̂𝑘 + 𝛺̂𝑘(𝐵̂ + n𝑘𝛺̂𝑘)
−1
(ln s𝑘 − c ∙ ln r𝑘 − 𝑎̂ − n𝑘 ∙ 𝜅̂𝑘))

r𝑘,s𝑘

]

∞

n𝑘=1

 

where the last eqution comes from (A1). 

 

Consider 𝔼 [∆𝑁𝑘,𝑡−1(𝜂𝑘,1,𝑡−1 − 𝜅̂𝑘)(𝜂𝑘,1,𝑡−1 − 𝜅̂𝑘)
′
| X] ; 

𝔼 [∆𝑁𝑘,𝑡−1(𝜂𝑘,1,𝑡−1 − 𝜅̂𝑘)(𝜂𝑘,1,𝑡−1 − 𝜅̂𝑘)
′
| X] 

= ∑ 𝔼[ ∆𝑁𝑘,𝑡−1(𝜂𝑘,1,𝑡−1 − 𝜅̂𝑘)(𝜂𝑘,1,𝑡−1 − 𝜅̂𝑘)
′
| X, ∆𝑁𝑘,𝑡−1

∞

n𝑘=0

= n𝑘] 𝑃(∆𝑁𝑘,𝑡−1 = n𝑘|X) 

= ∑ n𝑘 ∙ 𝔼 [ (𝜂𝑘,1,𝑡−1 − 𝜅̂𝑘)(𝜂𝑘,1,𝑡−1 − 𝜅̂𝑘)
′
| 𝑥𝑡, ∆𝑁𝑘,𝑡−1 = n𝑘]

∞

n𝑘=1

𝑃(∆𝑁𝑘,𝑡−1

= n𝑘|X) 

= ∑ [n𝑘 ∙ ∑ 𝔼 [ (𝜂𝑘,1,𝑡−1 − 𝜅̂𝑘)(𝜂𝑘,1,𝑡−1 − 𝜅̂𝑘)
′
| ∆𝑁𝑘,𝑡−1 = n𝑘, 𝜆𝑘,𝑡−1

r𝑘,s𝑘

∞

n𝑘=1

= r𝑘, 𝜆𝑘,𝑡 = s𝑘]

∙ 𝑃(𝜆𝑘,𝑡−1 = r𝑘, 𝜆𝑘,𝑡 = s𝑘|X, ∆𝑁𝑘,𝑡−1 = n𝑘)𝑃(∆𝑁𝑘,𝑡−1 = n𝑘|X)] 

= ∑ [n𝑘 ∙ ∑ 𝔼 [ (𝜂𝑘,1,𝑡−1 − 𝜅̂𝑘)(𝜂𝑘,1,𝑡−1 − 𝜅̂𝑘)
′
| n𝑘, r𝑘, s𝑘] ∙ 𝜁𝑡−1(r𝑘, n𝑘, s𝑘)

r𝑘,s𝑘

]

∞

n𝑘=1

 

where 𝔼 [ (𝜂𝑘,1,𝑡−1 − 𝜅̂𝑘)(𝜂𝑘,1,𝑡−1 − 𝜅̂𝑘)
′
| ∆𝑁𝑘,𝑡−1 = n𝑘 , 𝜆𝑘,𝑡−1 = r𝑘 , 𝜆𝑘,𝑡 = s𝑘] =

 𝔼 [

𝑉𝑎𝑟(𝜂𝑘,1,𝑡−1|∆𝑁𝑘,𝑡−1 = n𝑘 , 𝜆𝑘,𝑡−1 = r𝑘 , 𝜆𝑘,𝑡 = s𝑘)

+
(𝔼[ 𝜂𝑘,1,𝑡−1|∆𝑁𝑘,𝑡−1 = n𝑘 , 𝜆𝑘,𝑡−1 = r𝑘 , 𝜆𝑘,𝑡 = s𝑘] − 𝜅̂𝑘)

∙ (𝔼[ 𝜂𝑘,1,𝑡−1|∆𝑁𝑘,𝑡−1 = n𝑘 , 𝜆𝑘,𝑡−1 = r𝑘 , 𝜆𝑘,𝑡 = s𝑘] − 𝜅̂𝑘)′

|𝑥𝑡 , ∆𝑁𝑘,𝑡−1 = n𝑘] 

= 𝛺̂𝑘 − 𝛺̂𝑘(𝐵̂ + n𝑘𝛺̂𝑘)
−1
𝛺̂𝑘

+ (𝔼[𝜂𝑘,1,𝑡−1|∆𝑁𝑘,𝑡−1 = n𝑘, 𝜆𝑘,𝑡−1 = r𝑘, 𝜆𝑘,𝑡 = s𝑘]

− 𝜅̂𝑘)(𝔼[𝜂𝑘,1,𝑡−1|∆𝑁𝑘,𝑡−1 = n𝑘, 𝜆𝑘,𝑡−1 = r𝑘 , 𝜆𝑘,𝑡 = s𝑘]

− 𝜅̂𝑘)′ 
 

Consider 𝔼[ln 𝜆1|X]; 

𝔼[ln 𝜆1|X] = ∑𝔼[ln 𝜆1|𝜆1 = r, ∆𝑁1 = n, 𝜆2 = s, X]𝑃(𝜆1 = r, ∆𝑁1 = n, 𝜆2 = 𝑠|X)

r,n,s

 

= ∑𝔼[ln 𝜆1|𝜆1 = r, ∆𝑁1 = n, 𝜆2 = s] ∙ 𝜁1(r, n, s)

r,n,s

 

= ∑ ln λ ∙ 𝜁1(r, n, s)

r,n,s

=∑ln r ∙∑𝛾1(r, n)

nr
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Consider 𝔼[(ln 𝜆1 − 𝑎̂0)(ln 𝜆1 − 𝑎̂0)
′|X]; 

𝔼[(ln 𝜆1 − 𝑎̂0)(ln 𝜆1 − 𝑎̂0)
′|X]                     

= ∑𝔼[(ln 𝜆1 − 𝑎̂0)(ln 𝜆1 − 𝑎̂0)
′|𝜆1 = r, ∆𝑁1 = n, 𝜆2 = s, X]

r,n,s

∙ 𝑃(𝜆1 = r, ∆𝑁1 = n, 𝜆2 = s|X) 

= ∑𝔼[(ln 𝜆1 − 𝑎̂0)(ln 𝜆1 − 𝑎̂0)
′|𝜆1 = r, ∆𝑁1 = n, 𝜆2 = s] ∙ 𝜁1(r, n, s)

r,n,s

 

where 𝔼[(ln 𝜆1 − 𝑎̂0)(ln 𝜆1 − 𝑎̂0)
′| ln 𝜆1 = r, ∆𝑁1 = n, 𝜆2 = s] 

= 𝑉𝑎𝑟[ln 𝜆1|𝜆1 = r, ∆𝑁1 = n, 𝜆2 = s]
+ (𝔼[ln 𝜆1|𝜆1 = r, ∆𝑁1 = n, 𝜆2 = s] − 𝑎̂0)

2 

= 0 + (ln r − 𝑎̂0)(ln r − 𝑎̂0)
′ 

= (ln r − 𝑎̂0)(ln r − 𝑎̂0)
′ 

∴ 𝔼[(ln 𝜆1 − 𝑎̂0)(ln 𝜆1 − 𝑎̂0)
′|𝑋] = ∑(ln r − 𝑎̂0)(ln r − 𝑎̂0)

′ ∙ 𝜁1(r, n, s)

r,n,s

=∑(ln r − 𝑎̂0)(ln λ − 𝑎̂0)
′ ∙∑𝛾1(r, n)

nr

 

 

Consider 𝔼[𝑢𝑡|X]; 

𝔼[𝑢𝑡|𝑋] = ∑𝔼[𝑢𝑡|𝜆𝑡−1 = r, ∆𝑁𝑡−1 = n, 𝜆𝑡 = s, X]

r,n,s

∙ 𝑃(𝜆𝑡−1 = r, ∆𝑁𝑡−1 = n, 𝜆𝑡 = s|X) 

= ∑𝔼[𝑢𝑡|𝜆𝑡−1 = r, ∆𝑁𝑡−1 = n, 𝜆𝑡 = s]

r,n,s

∙ 𝜁𝑡−1(r, n, s) 

= ∑(𝑎̂ + 𝐵̂(𝐵̂ + n𝛺̂)
−1
(ln s − 𝑎̂ − c ∙ ln λ − n𝜅̂))

r,n,s

∙ 𝜁𝑡−1(r, n, s) 

where the last equation comes from (A1). 

 

Consider 𝔼[(𝑢𝑡 − 𝑎̂)(𝑢𝑡 − 𝑎̂)
′|X]; 

𝔼[(𝑢𝑡 − 𝑎̂)(𝑢𝑡 − 𝑎̂)
′|X] 

= ∑𝔼[(𝑢𝑡 − 𝑎̂)(𝑢𝑡 − 𝑎̂)
′|𝜆𝑡−1 = r, ∆𝑁𝑡−1 = n, 𝜆𝑡 = s, X]

r,n,s

∙ 𝑃(𝜆𝑡−1 = r, ∆𝑁𝑡−1 = n, 𝜆𝑡 = s|X) 

= ∑𝔼[(𝑢𝑡 − 𝑎̂)(𝑢𝑡 − 𝑎̂)
′|𝜆𝑡−1 = r, ∆𝑁𝑡−1 = n, 𝜆𝑡 = s, X] ∙ 𝜁𝑡−1(r, n, s)

r,n,s

 

 

where 𝔼[(𝑢𝑡 − 𝑎̂)(𝑢𝑡 − 𝑎̂)
′|𝜆𝑡−1 = r, ∆𝑁𝑡−1 = n, 𝜆𝑡 = s, X] 

= 𝑉𝑎𝑟[𝑢𝑡|𝜆𝑡−1 = r, ∆𝑁𝑡−1 = n, 𝜆𝑡 = s]
+ (𝔼[𝑢𝑡|𝜆𝑡−1 = r, ∆𝑁𝑡−1 = n, 𝜆𝑡 = s]
− 𝑎̂)(𝔼[𝑢𝑡|𝜆𝑡−1 = r, ∆𝑁𝑡−1 = n, 𝜆𝑡 = s] − 𝑎̂)′ 

= 𝐵̂ − 𝐵̂(𝐵̂ + n ∙ 𝛺̂)
−1
𝐵̂

+ (𝔼[𝑢𝑡|𝜆𝑡−1 = r, ∆𝑁𝑡−1 = n, 𝜆𝑡 = s]
− 𝑎̂)(𝔼[𝑢𝑡|𝜆𝑡−1 = r, ∆𝑁𝑡−1 = n, 𝜆𝑡 = s] − 𝑎̂)′ 
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Consider 𝔼[∑ 𝑑𝑖𝑎𝑔(ln 𝜆𝑡−1)𝐵̂
−1𝑑𝑖𝑎𝑔(ln 𝜆𝑡−1)

𝑇
𝑡=2 |X]

−1
; 

𝔼[∑ 𝑑𝑖𝑎𝑔(ln 𝜆𝑡−1)𝐵̂
−1𝑑𝑖𝑎𝑔(ln 𝜆𝑡−1)

𝑇
𝑡=2 |X]

=∑𝔼[𝑑𝑖𝑎𝑔(ln 𝜆𝑡−1)𝐵̂
−1𝑑𝑖𝑎𝑔(ln 𝜆𝑡−1)|X]

𝑇

𝑡=2

=∑∑𝔼[𝑑𝑖𝑎𝑔(ln 𝜆𝑡−1)𝐵̂
−1𝑑𝑖𝑎𝑔(ln 𝜆𝑡−1)|𝑋, 𝜆𝑡−1 = r, ∆𝑁𝑡−1 = n, λt = 𝑠]

r,n,s

𝑇

𝑡=2

∙ 𝑃(𝜆𝑡−1 = r, ∆𝑁𝑡−1 = n, λt = 𝑠|X)

=∑∑𝔼[𝑑𝑖𝑎𝑔(ln 𝜆𝑡−1)𝐵̂
−1𝑑𝑖𝑎𝑔(ln 𝜆𝑡−1)|𝜆𝑡−1 = r, ∆𝑁𝑡−1 = n, λt = 𝑠]

r,n,s

𝑇

𝑡=2

∙ 𝜁𝑡−1(r, n, s)

=∑∑𝔼[𝑑𝑖𝑎𝑔(ln 𝜆𝑡−1)𝐵̂
−1𝑑𝑖𝑎𝑔(ln 𝜆𝑡−1)|𝜆𝑡−1 = r, ∆𝑁𝑡−1 = n, λt = 𝑠]

r,n

𝑇

𝑡=2

∙ 𝛾𝑡−1(r, n) 
where 𝔼[ln 𝜆𝑡−1 𝐵̂

−1 ln 𝜆𝑡−1 |𝜆𝑡−1 = r, ∆𝑁𝑡−1 = n] = 𝑑𝑖𝑎𝑔(ln r) ∗ 𝐵̂
−1 ∗ 𝑑𝑖𝑎𝑔(ln r) 

 

Consider 𝔼[∑ 𝑑𝑖𝑎𝑔(ln 𝜆𝑡−1)𝐵̂
−1(𝑢𝑡 − 𝑎̂)

𝑇
𝑡=2 |X]; 

𝔼[∑ 𝑑𝑖𝑎𝑔(ln 𝜆𝑡−1)𝐵̂
−1(𝑢𝑡 − 𝑎̂)

𝑇
𝑡=2 |X]

=∑∑𝔼[𝑑𝑖𝑎𝑔(ln 𝜆𝑡−1)𝐵̂
−1(𝑢𝑡 − 𝑎̂)|X, 𝜆𝑡−1 = r, ∆𝑁𝑡−1 = n, 𝜆𝑡 = s]

r,n,s

𝑇

𝑡=2

∙ 𝑃(𝜆𝑡−1 = r, ∆𝑁𝑡−1 = n, 𝜆𝑡 = s|X)

=∑∑𝔼[𝑑𝑖𝑎𝑔(ln 𝜆𝑡−1)𝐵̂
−1(ut − â)|X, 𝜆𝑡−1 = r, ∆𝑁𝑡−1 = n, 𝜆𝑡 = s]

r,n,s

𝑇

𝑡=2

∙ 𝑃(𝜆𝑡−1 = r, ∆𝑁𝑡−1 = n, 𝜆𝑡 = s|X)

=∑∑𝔼[𝑑𝑖𝑎𝑔(ln 𝜆𝑡−1)𝐵̂
−1(ut − â)|𝜆𝑡−1 = r, ∆𝑁𝑡−1 = n, 𝜆𝑡 = s]

r,n,s

𝑇

𝑡=2

∙ 𝜁𝑡−1(r, n, s) 

where 𝔼[𝑑𝑖𝑎𝑔(ln 𝜆𝑡−1)B̂
−1(ut − â)|𝜆𝑡−1 = r, ∆𝑁𝑡−1 = n, 𝜆𝑡 = s] = 𝑑𝑖𝑎𝑔(ln r) ∗

𝐵̂−1 ∗ 𝔼[(𝑢𝑡 − 𝑎̂)|𝜆𝑡 = r, ∆𝑁𝑡−1 = n, 𝜆𝑡+1 = s]}  
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Appendix 2: Other Graph Results 

Figure 9: Return diffusion term for each countries data 
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Figure 10: Return jump term for each countries data 
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Appendix 3: Information Matrix Approximation 

𝐼(Γ) =  −𝔼 [
𝜕2

𝜕Γ2
log 𝑃(𝑋; Γ) |Γ] 

Finite differences on derivative of bivariate functions according to Eberly (2003) is 

used to approximate the Hessian matrix 
𝜕2

𝜕Γ2
log 𝑃(𝑋; Γ). 

Let  𝑓(𝑥, 𝑦) be the incomplete-data log-likelihood where 𝑥 and 𝑦 are the parameters 

in the Γ parameter’s set. 

Let 𝐹(𝑥 + ℎ, 𝑦 + 𝑘) means the incomplete-data log-likelihood of when 𝑥 plus some 

increment ℎ and 𝑦 plus some increment 𝑘 while other parameters in the Γ’s set 

remains the same. 

The partial derivative centered differences approximation are 

𝑓𝑥(𝑥, 𝑦) ≈
𝐹(𝑥 + ℎ, 𝑦) − 𝐹(𝑥 − ℎ, 𝑦)

2ℎ
 

𝑓𝑦(𝑥, 𝑦) ≈
𝐹(𝑥, 𝑦 + 𝑘) − 𝐹(𝑥, 𝑦 − 𝑘)

2𝑘
 

𝑓𝑥𝑥(𝑥, 𝑦) ≈
𝐹(𝑥 + ℎ, 𝑦) − 2𝑓(𝑥, 𝑦) + 𝐹(𝑥 − ℎ, 𝑦)

ℎ2
 

𝑓𝑥𝑦(𝑥, 𝑦) ≈
𝐹(𝑥 + ℎ, 𝑦 + 𝑘) − 𝐹(𝑥 + ℎ, 𝑦 − 𝑘) − 𝐹(𝑥 − ℎ, 𝑦 + 𝑘) + 𝐹(𝑥 − ℎ, 𝑦 − 𝑘)

4ℎ𝑘
 

So the hessian matrix of the incomplete-data log-likelihood would be 

𝐻(Γ) =

[
 
 
 
𝑓Γ1Γ1 𝑓Γ1Γ2
 𝑓Γ2Γ2

… 𝑓Γ1Γ𝑛
 𝑓Γ2Γ𝑛

  
  

⋱ ⋮
 𝑓Γ𝑛Γ𝑛 ]

 
 
 

 

∴ 𝐼(Γ) =  −𝐻(Γ) 

The covariance matrix of the parameters is 𝐼(Γ)−1
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