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1. Introduction

Poisson Jump Models are popular in option pricing and risk management due
to the fact that they can capture the unexpected movement of the underlying asset’s
indexes being modeled. In other words, the models are capable of creating leptokurtic
distribution which are normally found in financial asset returns distribution while
ordinary diffusive models cannot. Until recently, most of the Poisson Jump Models are
modeled based on the constant arrival rate of the jump or jump intensity. However, it
has been found that asset’s returns jump movement are having the properties called
jump clustering and contagion effect. This has led to more studies toward conditional
jump intensity models.

As the jumps are introduced into the models to solve the extreme cases of asset’s
indexes movement, it is clearly important that the jumps introduced should provide
significant benefits to the model than without them. Furthermore, although in real life,
jumps rarely happen, they still cause great impact as they would happen during crises.
With the potential to create a huge amount of impact, it is essential to provide the jump
characteristics that are similar to the real-life asset’s jumps into the jump models.

Although some researchers have tried incorporating jump clustering and
contagion effect into the models, there are some existing limitations in their models.
This research will try to propose a multivariate jump diffusion models that could relax

some of those limitations.



2. Background

2.1 Definitions

Different researches might define jump clustering and contagion effect
differently. For this research, | define them like those as in the work of Ait-Sahalia,
Cacho-Diaz, and Laeven (2014). In particular, jump clustering is the cluster of jumps
in time series and the contagion effect is the contamination effect cross-sectionally
towards other assets. For example, in terms of asset returns modeling, when a jump
occurs, it changes the probability of the near next jump occurrence causing the
clustering of jumps in the asset return. Further, these jumps can change the probability
of another assets’ jump occurrence. This effect is referred as the contagion effect.

2.2 Variations of Jump Models

The most well-known jump model would be the jump diffusion model
introduced by Merton (1976). This type of model adds jump component to the diffusion
model. However, there are variations in jump components and variations in the
diffusion components. Some of the classification are being made in the survey by Sepp
(2003) and those variations are stochastic volatility jump diffusion model, jump
diffusion model with stochastic jump intensity, jump diffusion model with stochastic
volatility and stochastic jump intensity, and jump diffusion model with deterministic
volatility and jump intensity. Each variations also varies in the detailed components.
Although, there are pure jump models, | do not consider that variation because | would
like the jJump component to act as the trigger to an unexpected event. This research

would falls in the variation of jump diffusion model with stochastic jump intensity.



2.3 Variations of Jump Size

The most widely-used jump process is also from the model proposed by Merton
and it is known as the compound Poisson process Merton (1976). This process has taken
into account the amount of jumps from Poisson process and each of the jumps has a
random jump size. Merton also has been using the randomization of jump size in log-
normal form for asset’s return. This is one of the most popular jump size used due to
the fact that it is log-normally distributed like most of the return’s asset distribution
models so adding them up would create a nice form. Another popular type of jump size
studied by Kou (2002) is double exponential jumps, which are more flexible than log-
normal that it determines the heaviness of the left and right tails separately. Kou’s
model is demonstrated by Kou and Wang for an easy implementation on option pricing
Kou and Wang (2004). In the survey done by Sepp (2003), there is also a weighted
mixture of independent jumps where each independent jumps are given some amount
of different weight for the jump as a whole similar to the compound Poisson process.
This research will assume the log-normal return distribution.

2.4 Variations of Jump Intensity

Two of the most used variations of jJump intensity in similar type of research are
Cox process (also known as doubly stochastic intensity) introduced by Cox (1955) and
Hawkes process introduced by Hawkes (1971). The Cox process is referred to the
counting process where the jump intensity is some stochastic random variables.
However, in some of the works like the works of Basu and Dassios (2002) and Dario
and Simonis (2011), the jump intensity is not conditional on the prior jump intensity.
Still, there are works which have taken account for prior intensity like the model studied

by Fang (2000). The major difference between Cox process and Hawkes process



mentioned by Ait-Sahalia et al. (2014) is that Cox process does not depend on the
numbers of previous jumps while Hawkes process does.

This research will use the jump intensity that depends on the numbers of jumps
in the prior period so it should fall in the category of a Hawkes process. In fact, we
consider an extension of a Hawkes process.

2.5 Usefulness of EM algorithm

Couvreur (1997) describes the type of problem in maximum-likelihood
estimation that can be benefitted with the help of the Expectation-Maximization
algorithm or EM algorithm. EM algorithm is useful when we need to maximize the
likelihood of the problems with variables that are unobservable or “incomplete data”
problems. It is also useful in problems with many parameters to estimate. Couvreur
(1997) states its advantages as simplicity and ease of implementation with the main
drawback of possible slow convergence in some cases.

2.6 Concept of EM Algorithm

The main concept of the EM algorithm is to find the maximum likelihood
estimators through the use of 2-steps iterative methods: Expectation (E-Step) and
Maximization (M-Step). For easy implementation in these 2 steps, the EM algorithm
has the concept called ‘complete’ and ‘incomplete’ data. Let Y be a random variable
that is observable with probability density function P(y|I") where T is the unknown
parameters. Let Z be an unobservable variable or latent variable with probability density
function P(z|I"). The ‘complete’ data refersto {Y, Z} while the ‘incomplete’ data is {Y}.
In the EM algorithm, instead of maximizing the likelithood function of the ‘incomplete’
data L(T") = P(y|TI'), the algorithm first views the likelihood function of the ‘complete’

data L.(T') = P(y, z|T') = P(z|T)P(y|z,T).



In the E-Step, the expected complete-data log-likelihood Q(T|T®)) =
E[ln L.(T) [T®,y] is computed where p is the iteration number. In the M-Step, the

parameter T®+Y that maximizes Q(T|T™®) is determined; that isT®*D =

argmax

: Q(T|T®). Each iteration is the alternating computation of the M-Step and E-

Step until the convergence criteria are met. Under the regular condition, I' converges to

the maximum likelihood estimator.



3. Literature Review

3.1 Findings on Jump Effects

Many modelling researches have confirmed that there are effects on various
assets’ returns that provide characteristics like jump clustering effect and contagion
effect. Chan and Maheu (2002) show in their work that having conditional jump
intensity significantly outmatches constant jump intensity. Polson and Scott (2011)’s
analysis show that most existing volatility models are unable to explain some features
of contagion effects and there is a significant evidence on contagion effects during
major EU crisis periods. Their model also suggests another effect called directional
clustering in addition to the other two effects where they define them as the effect that
the shock of aggregate volatility provides specific directional bias in the signs of
country-level returns. Christoffersen, Kris, and Ornthanalai (2012) study using S&P500
index return and option data. They find evidence for time-varying jump intensities on
both data, but option data’s jumps are insignificant in low volatility regime.
Additionally, they find that jump intensities seem to depend on market risk level. Choe
and Lee (2013) test the models with various kinds of jump intensities and find
consistent evidence on the existence of conditional asymmetry, in which they refer to
as ‘the difference between the dependence structures of up and down movements on
past information’. Li and Zhang (2013) have additionally find that out-of-the-blue
jumps correlate with stock price level historical average while the past jump intensity
provides follow-on jumps (jump clustering) information. They also find that
conditional expected jump size is negatively associated with stock price level historical

average. Ait-Sahalia et al. (2014) show that the asset return model that considers jump



clustering and contagion effect has provided evidence on self-excitation and reflecting
across countries.

3.2 Findings on EM algorithm

Roche (2011) collects different variants of EM algorithm from various
researchers. Two main classifications are either deterministic or stochastic. Most of the
deterministic variants EM algorithm focus on speeding up algorithm by either
simplifying computations or increasing the rate of convergence. Stochastic variants on
the other hand focus on difficulties in implementation of either E-step or M-step in
standard EM algorithm by replacing with stochastic simulation. Although, stochastic
variants might take up more computation it does come with a nice trait that due to
stochastic simulation, there is lesser tendency to be trapped in local maxima or saddle
points.

3.3 Some Related Existing Models

Merton (1976)’s model provides one of the most adopted jump models. This
research is also one of the extension to Merton’s model so this section of literature
review would focus on the works relating to the research’s topic that are proposing the
extension of Merton’s model.

Chan and Maheu (2002) model their jumps similar to autoregressive model AR
(1) and called it ARJI. They also have the extension of stochastic volatility using
GARCH. Their work is an early development of jump model that provides insight to
the studies of jump clustering. So their model has yet to take account for the contagion
effect.

Ait-Sahalia et al. (2014) have created the multivariate jump diffusion process

model with stochastic volatility and conditional jump intensity. Their stochastic



volatility is based on Heston’s Model and their jump intensity iS based on Hawke’s
process, in which the jump size is double exponential. Their results show that there are
contagion effects across regions around the world. They use GMM method for fitting
the data. The benefits of their GMM are that the result’s estimation of moments can be
found in close-form, wrong assumption of parameters’ distributions are not crucial with
the known confidence level of distribution correctness, and the results can be
interpreted easily with the separation of different orders of moments. However, their
jump intensity rate dynamics cannot include some normal noises due to the fact that it
might cause a negative value on their jump intensity rate. They also assume that the
jump size of the jump intensity rate is both cross-sectionally and serially independent
from each other. On multivariate case, they have to assume some jump sizes of their
jump intensity rates to be 0 to still hold good tractability in their estimation while the
other jump sizes of their jump intensity rates are assumed to be some constant
parameters.

Polson and Scott (2011) study clustering, contagion, and directional effects on
EU crisis periods. They define each correlation of stochastic volatility in terms of across
time, cross-section, and upon volatility shocks to study the three effects. However, their
model does not study these effects in terms of jumps so it is quite different from the
model proposed by this research.

Duncan, Randal, and Thomson (2009) propose the EM algorithm to estimate
the maximum likelihood of the multivariate jump diffusion model (a variation of
Merton’s model) with EM algorithm. Their work show the simplicity of
implementation and also the better numerical properties compared to the conventional

numerical optimization while also lessening the sensitivity of starting value choices.



Nevertheless, their work uses a constant jump intensity, which means the jump
clustering and contagion effect are unaccounted for.

Some recent similar studies also extend the model for microstructure or high
frequency data. Carlsson, Foo, Lee, and Shek (2007) model the bivariate Hawkes
process for high frequency trade prediction. The model contains only the Hawkes
process, which is used to create signal to trigger buy and sell. Bacry, Delattre, Hoffman,
and Muzy (2013) study a new stochastic price model at tick-by-tick up to two assets at
once. They used Hawkes process as a self and mutually exciting intensities of jJumps.
They also account for the Epps effect (the correlation of the increments in microscopic
scales). Bacry and Jean-Francois (2013) then create the first model that accounts for
market price microstructure that includes random time arrival of price moves, discrete
price grid, high frequency mean reversion, and correlation functions at various time
scales. Their work mainly focuses on the microstructure in which they account for buy
and sell order execution effects. Fonseca and Zaartour (2014) later create the stock price
model with Hawkes process as an extension to Bacry et al. (2013)’s work to study lead-
lag correlation between two indexes in microstructure. Due to the fact, that the lead-lag
correlation only happens when the prices move in the same direction, they assume that
the two stocks would need to be positively correlated. Also, they only study the lead-
lag correlation in pair of indexes using a bivariate model. This research would not deal
with the microstructure data and will not discuss further about their work. One of the
reasons this research avoids microstructure data is because in dealing with the
contagion effects, it needs to take into account the asset returns from different regions
in which each countries’ market microstructure are not only different, but would also

need to compensate on time lag, which can be difficult at the microscopic level.
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3.4 Research Similarity

This research would be the extension to the work of Duncan et al. (2009). The
main extension is to change the constant jump intensity into conditional jump intensity
which would incorporate jump clustering and contagion effect. The conditional jump
intensity would be then be similar to the jumps from the work of Ait-Sahalia et al.
(2014), but this research proposes a model that is more applicable with multiple assets
with the help of EM algorithm. The variants of EM algorithm are developed with the

focus on easiness in implementation.
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4. Objective

The objective of this research is to create a multivariate jump diffusion model
incorporating jump clustering and contagion effects that can be fitted and is applicable
in a wide range of applications.

4.1 Contributions

This research provides three main contributions. The first contribution is that
the model relaxes the assumptions made from similar models. The main contributions
in the model would come from an extension to the work of Ait-Sahalia et al. (2014) in
three aspects. First, this research is modelling the jump intensity rates in logarithmic
form meaning that it can account for noises and would still make the jump intensity
rates non-negative. Second, this research is using the jump sizes of the jump intensity
rates that are cross-sectionally correlated. Third, the jump sizes of the jump intensities
are assumed to be multi-dimensional vectors of normal distributions instead of being
the constant parameters.

The second contribution is that it provides an estimation method for multivariate
jump diffusion model with conditional jump intensity that is applicable to multiple
assets by using the EM algorithm. The EM algorithm is a model-specific
implementation method that would require nontrivial work for the proposed model.
From the process of EM algorithm, it also provides the filtered and smoothed
probabilities of jJumps and jump intensities that can be computed as a byproduct. Also,
given the proposed model, all parameters are able to be obtained from the close-form
solutions at each step of the EM algorithm, which would require small effort in

computation.
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The last contribution is that it allows the analysis of asymmetry in contagion
effect across regions. Statistical tests can be done using the information matrix.

4.2 Possible Applications

This section lists some possible implementations from the research’s model,
however, these are not implemented in this research.
Portfolio Asset Allocation. With the model’s additional consideration on risk
involvement of jump clustering and contagion effects, the portfolio asset allocation’s
decision would be affected through the change of expected return and the contagion
and jump clustering risk.
Strategic Trading. Jump clustering and contagion effect might contain lead or lag
horizontally (across time) or cross-sectionally (across regions, industries, or considered
groups), which may in turn provide a high probability of successful strategic trading.
Risk Management. Forecasting of risk might be available if the estimated parameters
are good enough. Value-At-Risk will also change with jump clustering or contagion
effects.
Pricing Derivatives. Some extensions to the model to include the risk neutral measure
might be able to help price derivatives that account for jJump clustering and contagion

effects.
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5. Methodology

5.1 Model
Incorporating the jumps into the model creates the discontinuity in the
dynamics. By letting X; . denote the return of asset i at time ¢, the discrete-time of return
is then given as:
Xie =W + o AW, + X5, ZJA-in't Ok j i=1,..,n (1)
The model is divided into two parts like Merton’s model. The first part is the
diffusion term consisting of the drift term (y;) and the volatility (o;) where W, is a
standard Brownian motion. This research will refer to this diffusiontermas z; , = p; +
a;(W, — W,_,) allowing it to be normally distributed with mean y; and variance ¢7. X
denotes the covariance matrix of z, = [z, ..,2,.]. When no jump occurs,
equation(1) is left with only the diffusion term (X;, = z;,). This means that the return

is normally distributed during normal period with no jump.

The second part is the jump term (XX_, Z}A.Izvf't 0

i.k,j,t)- K is the number of types
of jumps. AN, is the number of jumps of type k in the time interval (t — 1, t], which
is assumed to be Poisson distributed with mean 4, . where 4, . is the jump intensity at
time t of jump type k. 6; ;. is the random jump size of asset i from jump type k of
each j jump at time ¢, which is assumed to be normally distributed with mean v; ; and
variance 67. 4, denotes the covariance matrix of 6y, ; = [0k j ¢ --» On ke jc], Which is
independent of j as jumps from the same type are independent and identically

distributed. When a jump of any type k occurs, the jump term will not be zero and this

makes the return have fat-tailed distribution.
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The jump intensity of jump process of type k at any time t is not constant and

follows the following equation:

_ _ai+biAV: . 1% . T1K ANkt 7 .
Aj,t+1 =e T Aj't k=1 l_[l=1 en],k,l,t ] = 1, ,K (2)

Equivalently, the log-intensity process follows the following equation:

AN ,
In Aj,t+1 = a]- + b]AVt + Cj In Aj,t + Zlk(zl Zl=1k’t r]j,k,l,t ] = 1, ey K (3)

where V; is a standard Brownian motion independent of W;. Letu;, = a; + b;j(V; —
V:—1) be normally distributed with mean a; and variance bjz. B denotes the covariance
matrix of u; = [uy, ..., ug ]. ;. acts as the diffusion term of jump intensity. ¢; is the
weight coefficient given to the jump intensity of previous time step. If ¢; is less than 1
when no jump of jump intensity occurs, the jump intensity tends to diminish to its mean
value implying that jump intensity process has mean-reverting property. n; ;. is the
random jump size of intensity of type j from the [*" jump of type k at time t, which is
assumed to be normally distributed with mean k; , and variance wﬁk. 0, denotes the
covariance matrix of 1, ;; = [N1k1er - Mk krel, Which is independent of [ as jumps
from the same type are independent and identically distributed. Assume that the log-

intensitiesattime 1 orInA; = [In4; 4, ...,In A ;] are jointly normally distributed with

. . AN . . .
mean vector a, and covariance matrix B,,. Zlezlzl"'t Njk.1e 1S the jump term in jump

intensity. n; ;.. represents the increase in the intensity of jump of type j when there is
a jump from type k. For j = k, this n; ; ,  represents the self-exciting effect leading to
jump clustering. Forj # k, n;x,. represents the contagion effect that causes an

alteration in the tendency to jump of a certain jump type j from jump type k.
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5.2 Estimation

5.2.1 Expectation (E-Step)
The parameters needed to estimate include:

I'={w2vA4xk102a,ByaB,c}
The complete data C is given as:

C ={X,Z,AN,0,1,A}

where each variable starts from time t = L until t=T.
X is the only observable data and is considered as incomplete data in this EM
algorithm. The E-Step calculates: Q(T|T®)) = E[ln L¢|T®, x4, ..., x7] where x,
represents the observed vector of returns at time ¢t. Let T denote the last time step, the

complete-data log-likelihood is given by:

InL; = —gln 2w — %lnIBOI —%(lnll —ay)'Byt(n A, — ay)
K(T —-1) T-1
—Tln 2T — In|B|
1 T K ANgi—1 !
- Ez ln At - a i~ Cln At—l B Z Z r]k,l,t—l B_l ln At - a
t=2 k=1 (=1
K ANge—1

_Cln/lj,t—l_z z Nk,1,t-1
k=1 1=1

T K
+ Z Z [—Ak,e + ANy In A e — In(AN;!)]

t=1k=1

T K ANk,t—l 1 1

- n ,

+ Z Z - Eln 2m — Elnlm —3 (Miere-1 — k) Q@ (Mipe—1 — Kk)]

t=2k=1 I[=1

T K ANge—q K 1 1
+ z Z —5In2r— oAl -2 (Bkre = i) A7 (Bhne — v")]

~
1l
=
=
1l
=
~
Il
=

nT

2~ Tiaisl ~2Y G- 5
-2 ——In 2t_lzt U Zy — U
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The conditional expectation in E-Step is given by:
Let X denotes x4, ..., x; and X, denotes x, ..., x;. The expected log-complete
likelihood is

K 1 1
Q(r|r®) = ——n2m - E1n|130| - E1E[(1n/11 —ay)'Byt(In A, — ag)|X]

K(T -1 T-1
_%1 27—

In|B|

K ANge-1

ZZ InA, —a—clni,_,; z z Mire—1 | B~ InA,

K ANge-1

—a—cln, - Z Z Mee-1 | 1X]
k=1 I=1

+E[XI_ XK —Ake + AN In A — In(AN ) [X]
—%ln 2T — %lnIQI

?:22 1ZAth 1 ,
5 (nk,l,t—l — ki) O (Mrpe—1 — Ki)
T K Ath 1 1 ! 1
+E [Zt 1 2= ey — 2w = SIn|Al = 5 (6re = Vi) A Ok — Vi) |X]
nT T 1 7 21 ()
——In2r — x| _E[E[ =1z =)' (z; — ) [X]

5.2.2 Optimization (M-Step)

The parameters’ values that maximizes Q(FlF(p)) in M-Step are given by:

:_Zt 1 E[z[X] :_Zt 1E[(ze — D) (z, — D' IX]

o S E[AN (Ok1e)[X] - E[ANk,t(gk,l,t — V) (B 1.t

D,

T TSI RN ] o I E[BN [X] ,

s ST E[ANy e —1 (k1,6-1)[X] q, = Ti= E[ANk,t—1(77k,1,t—1 — Rye) (M, 1,6-1 — Ric) |X]
e Si=2 E[ANy 1 |X] o 2i=2 E[ANy 1 ]X]

do = E[ln 4, |X] Bo = E[(In4; — @p)(In Ay — dp)'[X]

~ 1 5 1 ~ AN

a= EZLZ Efu|X] B = EZ{:Z E[(us — &) (u; — &)'[X]

e=c® +
E[XI_,diag(InA;_,)B *diag(In ;) [X] IE[Z _,diag(In,_1)B™*(u, — @) [X]

Note: diag(a) means the diagonal matrix wose diagonal elements are the elements in a.
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5.2.3 Auxiliary Probabilities

Let Normal(x; a, B) denote the probability density function at x of the multivariate
Normal random vector with mean vector a and covariance matrix B, and Poisson(n; 1)
the probability mass function at n of the Possion random variable with mean A. The
following probabilities are needed to compute the expectations of the complete-data
log-likelihood in the expectation step.

Forward probability:

Let a (A, AN, x¢|1X;—1) denote the likelihood of A;, AN;, x; given X;_, =

{x1 .., xt—1},and ai(a, b, c) = a; (A = a,AN; = b, x; = c| X;_1) Where t is the time
index. We have

0(1(7\, n, xl) = P(/11 = /1, ANl =n, xl)

K
= Normal(In}; ay, By) * H{Poisson(n; /11(,1)}
k=1

- Normal(x; u+ nv,Z + n4)

(XtO\, n, xt) = P(At = )L, ANt =n, xt|Xt_1)

K

= Z Normal(x; u+nv,Z + nd) - HPOiSSOH(Hk} M)

/'lt_l,m k=1

ar_1(Ae—q, m)
*Normal(InA;a+1InA,_; + mg,B+mf)  ———, t>1
1 P(xe—1]Xe-2)

2-Step probability:
Let (A, AN, A+411X) denote the likelihood of A, AN;, A4 given X = {x; ..., xr},
and (;(a,b,c) = (;(4; = a,AN; = b, A, = c| X) where t is the time index. We have

e n,r) = P(4; = L AN, = n, A4y = 1|X)
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B i (r,m) Normal(Inr;a + clnA + nk, B + n)a,;(A,n)
B Vera YspNormal(Inr;a + cIns + pk, B + p2)a,(s,p)
m

Backward probability:
Let y (4., AN,|X) denote the likelihood of A;, AN, given X = {x; ..., x;}, and

v:(a,b) = y.(1; = a,AN; = b| X) where t is the time index. We have

Oun) = P(Ly = A AN, = n|X) = — 2D

,n) = = A = nhn = —

T T ‘ S ar(r,5)

veun) = P(A; = L AN, = n|X) = Ect(x, n, 1), t<T
r

Probability of jumps given return:

Let P(AN; = n|X) denote the probability of AN, = n given X = {x; ..., x;}. We have

P(AN; =n|X) = ) P(A4; =AAN, =1n|X) = ) y:(A,n)
2 2
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6. Scope of the Project

6.1 Research

The research propose a model and its estimation in general form that can be
used for studying various type of assets. Sample data-fitting implementations will be
done with regional weekly stock index’s return which can be used to analyze for
existence of jump clustering and asymmetry in contagion effect across regions.

6.2 Data

The study will be divided into two parts. The first part uses weekly data on six
countries data while the second part uses daily data on two continents data.

For the first part, due to the fact that different markets open and close at different
time, this study will use the weekly US dollar MSCI gross return of different countries
to limit the effect of time difference. The study data involve 3 developed countries and
3 Asian emerging countries since the start of January 1999 until the end of June 2014.
The 6 countries are United States (US), Germany (DE), France (FR), Thailand (TH),
Indonesia (ID), and Philippines (PH). The data are obtained from Bloomberg database.

For the second part, daily US dollar MSCI gross return of United States (US)
and Latin America (LA) are used for the study. United States and Latin America are
mostly in the same time zone so there is no need to adjust for the time lag. The data

also start from January 1999 until the end of June 2015.
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7. Empirical Result

7.1 Multivariate case on weekly data

The test is setup with two types of jumps: jumps that occur only in developed
markets or developed jumps and jumps that occur only in emerging markets or
emerging jumps. However, jumps in one region may increase the likelihood of jumps
in the other region; that is, contagion effects across regions are allowed.

7.1.1 Data Summary

Table 1: Data summary statistics.

Standard . L.
Countries Mean Deviation Skewness EXCGS? Maximum Minimum
(%) (%) Kurtosis (%) (%)
= LSJ{::::' 0.0943 2.5848 -0.7829 6.4867 11.5827 -20.0473
§ Germany 0.0849 3.6607 -0.7891 4.9126 15.2032 -26.0641
e France 0.0816 3.3785 -0.9195 6.3240 13.8786 -26.6867
2 Thailand 0.2425 4.2405 -0.4726 4.1984 17.2644 -29.0259
g Indonesia | 0.2985 4.9469 -0.2280 2.8554 21.5421 -26.8420
= | Philippines | 0.1433 3.5105 -0.3025 2.7574 15.2418 -20.8028

Table 1 provides the summary statistics of the weekly MSCI return data. The
mean of the developed market return is lower than the mean of emerging markets.
The risk or the volatility in the developed market is lower than in the emerging
markets. Developed markets return are more negatively skewed and the tails are
fatter. Emerging markets return outliers are more spread out.

7.1.2 Result and Discussion

The parameters obtained from running the EM algorithm for 100 iterations are
in Table 2 and Table 3. Table 2 shows all the parameters related in the dynamics of the
return while Table 3 shows all the parameters related in the dynamics of the jump

intensity.
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Table 2: Obtained parameters on return dynamics from 100
iterations. The parameters’ name are highlighted in gray boxes while
their values are in the white boxes on their right.

usS DE FR TH ID PH
u 0.0023 0.0063 0.0059 0.0011 0.0015 0.0066
¥ (standard deviation) | 0.0192  0.0273  0.0257 0.0365 0.0410 0.0314
’g Us 1.0000 0.8080 0.8075 0.5253 0.4446 0.5079
= DE 1.0000 09326 05909 05178 0.5125
© FR 1.0000 05917 0.4825 0.5180
5 TH 1.0000 0.5804 0.5586
ﬁ/ ID 1.0000  0.5710
PH 1.0000
Developed Jump -0.0099 -0.0408 -0.0381
Y Emerging Jump 0.0122 0.0133 -0.0473
A (standard deviation) | 0.0324  0.0478 0.0430 0.0480 0.0626  0.0447
’g US 1.0000 0.6901 0.6941
= DE 1.0000 0.9270
© FR 1.0000
§ TH 1.0000 0.3818 0.0905
= ID 1.0000  0.2087
N PH 1.0000

Although data summary statistics from Table 1 shows that the mean of the return

is lower in developed markets, the parameter u (mean of the return diffusion term) from

Table 2 shows that developed markets have higher diffusion mean. This might be due

to the fact that emerging markets are more unpredictable and that the high mean in

statistics are mostly the numbers from the jump term instead. The fact is also confirmed

with the mean jump size (v) in emerging markets that shows some positive numbers.

The negative value of ‘v’ on developed type of jump implies that the jumps captured

from this run have negative expected jump sizes to the return whereas they are mixed

in emerging type of jump. The volatilities from diffusion term and jump size are both

higher in emerging markets and the jump sizes are less correlated among the countries

than in the developed markets.
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Table 3: Obtained parameters on jump intensity dynamics from 100

iterations.
Developed Jump Emerging Jump
a, -0.1397 -0.1637
B, (standard deviation) 0.0677 0.0780
. Developed Jump 1.0000 0.0740
iy (e Emerging Jump 1.0000
a -0.1437 -0.1656
B (standard deviation) 0.0663 0.0760
. Developed Jump 1.0000 0.0748
15 (BerTe Eilem) Emerging Jump 1.0000
c -0.0125 -0.0068
” Developed Jump 0.0114 0.0058
Emerging Jump 0.0038 0.0106
0 Developed jump (standard deviation) 0.0302 0.0337
0 Developed Developed Jump 1.0000 0.0605
Jump .
(correlation) Emerging Jump 1.0000
2 Emerging jump (standard deviation) 0.0304 0.0325
2 Emerging Developed Jump 1.0000 0.0639
Jump .
(correlation) Emerging Jump 1.0000

Table 3 shows the parameters from the log-intensity dynamic. The diffusion
term of jump intensities are slightly different both in terms of mean and volatility
between developed and emerging markets as can be seen in parameters a and B.
Negative ‘c’ implies that jump intensity has a mean-reverting property. The contagion
effect between the two types of jumps can be portrayed through the jump term of the
jump intensity and can be analyzed in the parameter x and 0. Positive ‘kx’ shows that
there are some self-exciting and contagion effects on the jump intensity. 2 shows a
slightly more volatile jump size of jump intensity in emerging markets than in
developed markets.

The EM algorithm in itself ensures that the likelihood increases in each
iterations. Figure 1 plots the log-likelihood obtained from each iteration run. It can also
be noticed that the log-likelihood converges really fast with 0.005% relative tolerance

within the first 100 iterations.



Log-likelihood

Return (Diffusion Term)

Return (Diffusion Term)

23

Figure 1: Log-likelihood of 100 iterations from EM algorithm.
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Figure 2: Return diffusion term for developed and emerging markets.
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Figure 2 plots the smoothed expectation of the diffusion term of returns obtained
from the model. The first plot (upper) shows the average of the diffusion term among
the 3 developed countries and the second plot (lower) shows the average of the diffusion
term among the 3 emerging countries. Most of the time, the graph shows the plot as a
white noise, which is to be expected from the diffusion term. As stated before, the return
diffusion term in emerging markets are more volatile than in developed countries as can
be easily seen from the graph.

Figure 3 plots the smoothed expectation of the jump term of returns obtained
from the average of 3 developed countries (upper plot) and the average of 3 emerging
countries (lower plot). The graphs show that the first relatively large movement happens
during 1999 to 2003. The second large movement starts from mid-2007 to almost 2010
and the third movement from 2010 to 2013 developed countries. The large jumps that
are found during these three periods might come from the Dot-Com Bubble, the 2008
Great Financial Crisis, and European sovereign debt crisis. During 2003 to 2007, the
graphs are almost flat. These graphs tell us that the jump term can capture some of the
unexpected movements of the returns to a certain degree. Comparing the graph of return
jump term between the developed jump type and emerging jump type from Figure 3
might not prove to be quite useful as it is the average plot. As stated earlier, the jumps
of emerging markets are more mixed and unpredictable. Average plot of emerging jump
type unfortunately cancels out making them look less volatile. Figure 9 in Appendix 2
shows each country’ plots, which is easier to notice the unpredictive nature in emerging

markets.
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Figure 3: Return jump term for developed and emerging markets.
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Figure 4: Expected jump intensity of each time-step t.
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Figure 4 shows the movements of the expected jump intensity during 1999 to

mid-2014. It shows higher rates during crises. After the rises of the rate, it stays high

for a certain amount of time before settling down again. This is caused by the jump

clustering effect and the mean-reverting property of the jump intensity in the model. It
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can also be seen that the rate increases significantly during mid-2007, which is around
the start of the Global Financial Crisis. The graph also shows that emerging jump
intensity is more random than in developed countries, which corresponds to the more

unpredictive nature of the emerging markets.

Table 4: Average values of the parameters.

Developed Emerging
Return Diffusion Mean 0.48 % 0.31%
Return Diffusion SD 2.41 % 3.63 %
REUT DUFiLEIO 0.85 0.52 0.57
Correlation
Return Jumps Mean -2.96 % -0.73 %
Return Jumps SD 4.11 % 5.18 %
Return Jumps 0.77 0 0.23
Correlation
Long-run Jump Intensity
(Diffusion Term) T S
Jump Intensity Half-Life 0.68 0.69

(week)

Table 4 shows the average values of the parameters on developed and emerging
jump types. For correlation, the values are the average among their own type and the
middle values show the average correlation between the two types. The result from the
return diffusion term shows lower return with higher risk in emerging markets.
Although this fact might be unsatisfactory to portfolio managers or investors who are
interested in emerging markets, but with the much lower correlation of return diffusion,
the emerging markets might have better diversification opportunities. Nevertheless, the

higher volatility in emerging markets might outdo the diversification opportunities. In
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emerging markets, the return jump means are much lower in magnitude (some countries
are actually positive). This tells us that there is less negative impact from emerging
jumps compared to developed jumps. Still, the jumps in emerging markets are more
unpredictable as can be seen in the return jump standard deviation. The return jump
correlation also shows that developed markets are more systemic whereas emerging
markets are more idiosyncratic. With the long-run jump intensity and their mean
reversion rate that are only slightly different between the two market types, the jump
terms might actually yield a better profit in emerging markets from similar number of
jumps. Combining with the early strange fact of high risk, low return in emerging
markets, this might prove to be that during normal time (diffusion term) or fundamental
base of the emerging markets might be worse in investing, but during unexpected event
(Jump term) or speculative nature of the emerging market might create a higher fortune
that comes with a greater risk involvement for speculative investing. This also aligns
with the data summary statistics fact from Table 1 that emerging markets can provide

higher return from higher risk.

Table 5: Jump clustering and contagion effects impact on other jumps.

To
Effects -
Developed Jump Emerging Jump
= Developed Jump 1.25% 0.68 %
o
Ll Emerging Jump 0.48 % 1.17 %

Table 5 shows the expected jump effects of a certain jump type to another jump
type. When the effect is transferred from a jump type to the same jump type, it is a self-
exciting effect that causes jump clustering. When the effect is transferred from a jump

type to another jump type, it is the contagion effect. The number shows that developed
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jump self-excites the jump intensity by 1.25%. On average, the self-excitation seems to
be small as the jump intensity is already high given the arrival of the first jump. The
number thus shows the addition to the already high jump intensity of the last period.
The contagion effect from developed jump type to emerging jump type is more than
emerging jump type to developed jump type. This makes sense since developed
countries should affect more to emerging countries than the other way around.
Emerging jump also self-excites itself less than developed jump self-excites itself as

emerging markets are less integrated among themselves.

Table 6: Parameters statistical significance on two-sided test.

Value Value
Parameters (Standard P-Value Parameters (Standard  P-Value
Error) Error)

Hus (328332) 0.0041% Ays,pe (8:88(1)1) 0.0000*
Kok (giggff) 0.0000~ Aysrr (0%000011) 0.0000*
Hrr (3288?1’) U ApgpE (gzgggg) 0.0000*
K (8881%) 0.4598 ApE Fr (888(1)2) 0.0000*
Hip (83312) ez ArrFR (88332) 0.0000*
i (8886132) 0.0000* AryrH (8g8§g) 0.0000*
Zysus (8:8883) 0.0000* Aruin (8:8832) 0.0000%
Zuspe (o000  ©-0000* Ary i e o2ss1
T Q% 0w | dpw 0 o
B Q% omwr | e 0 omwr
Zysip (8;8883) 0.0000* Apypy (8:88(2)2) 0.0000%
Zys,pH (8:8388) 0.0000* KpM.oM (gggg) 0.9999
ZpEpE (8;8883) 0.0000* KpM.EM (807'?:3555) 0.9999
Ioen  ooop 000" KEM DM (778009 0000
ZpETH (8:8888) 0.0000* KeMEM (13'79;(7)?6) 1.0000
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Table 6 (continued) : Parameters statistical significance on two-sided test.

Value Value
Parameters (Standard P-Value Parameters (Standard  P-Value
Error) Error)
Ioem oo | ©0000% Dowomon 0%, 1000
ZpEpH (8:8883) 0.0000% Qom-pmEm (103;8.010813) 1.0000
ZrrFR (8:8883) 0.0000% o J—— (22'5?_2316) 1.0000
It oo %-0000* Qewomow S0 1000
ZFRID (88888) 0.0000* Qpym-pmEM (1212 (1)(1)%8) 1.0000
Zomen  oon) 000" Qou-smen  (nrapey L0000
Zrurn (3;88% 0.0000* Aoy (ggjg%g) 0.9999
271D (8:8882) i/ Gogm (7-25.155778) 0.9998
Ziuen (oo  00000" Bop,, esoses L0000
Zip (gggéz) 000073 Bopm,em (92'39(2)233) 1.0000
Zwen goon) 00000 Bogu (sisonss) 10000
ZpupH (88838) 0.0000* apym (22%3%271) 0.9949
VDE (_gggg% PR Bom (3492004518) 0.9998
VFR (8833) 0.0000* Bpm,em (6%)_ ) p 10000
VTH (8283:2&) 0.0029* Bgu (22'70_8326) 1.0000
Vip ooy 000" Com G
VPH ((())ggZZS) 0.0000* CEm (3(;%%?2) 0.9998
Aysys ((g 6000011) 0.0000*

*Significance to 1% confidence level.

The statistical test result in Table 6 shows that the parameters involving in the
dynamics of the return are significant at 1% significant level while the parameters
involving the dynamics of the jump intensity are rather insignificant. This might tell that

the jumps of return are presented, however, the stochastic jump intensity might not be



30

required. Still, there are some insignificant value of the parameters in the dynamics of
the return like the pury, pyp, and Ary py. This might means that this sample study might
not correctly capture the jumps of certain emerging countries causing all jump

intensity’s parameters to be insignificant.

Table 7: Jump effects asymmetries statistical signficance on one-sided test.
Value

Interested Asymmetries (Standard Error) P-Value
Kpmem > KEmpm 0.0019 (151.6336) 0.5000
Kpm,pm > KpmEm 0.0057 (93.6454) 0.5000
Kpm,pm > Kempm 0.0076 (208.5249) 0.5000
Kemem = KpMEM 0.0048 (155.4664) 0.5000
Kemem > KEmpm 0.0068 (17.3127) 0.4998

The statistical test result in Table 7 shows that there are no statistical
significance evidences on contagion asymmetries or that jump clustering are stronger
than contagion effects. Due to the fact that parameters involving the study of the jump
effects are not significant statistically, jump effect asymmetries are not able to be

concluded.



7.2 Bivariate case on daily data

7.2.1 Data Summary

Table 8: Data summary statistics.

31

Standard

Data Mean Deviation Skewness Excess Maximum Minimum
(%) (%) Kurtosis (%) (%)
United | 4 194 1.2423 -0.1908  8.2015 11.0426 -9.5039
States
Latl_n 0.0414 1.7359 -0.3426 9.2237 15.3640 -15.0601
America

Table 1 provides the summary statistics of the daily MSCI return data. The

mean of the US market return is lower than the mean of LA market. The volatility in

the US market is lower than in the LA market. The LA market return is more

negatively skewed, the tails are fatter, and the return outliers are more spread out.

7.2.2 Result and Discussion

The parameters obtained from running the EM algorithm for 30 iterations are in

Table 9 and Table 10. Table 9 shows all the parameters related in the dynamics of the

return while Table 10 shows all the parameters related in the dynamics of the jump

intensity.

Table 9: Obtained parameters on return dynamics from 30 iterations.

us LA

ux104

0.4744 5.9485

X (standard deviation)

0.0111 0.0158

X (correlation)

0.7150

1%

0.0093 -0.0136

A (standard deviation)

0.0285 0.0382
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Table 10: Obtained parameters on jump intensity dynamics from 30

iterations.
US Jump LA Jump
a, -3.5858 -3.6324
B, (standard deviation) 0.0551 0.0769
B, (correlation) 0.4474
a -3.5856 -3.6356
B (standard deviation) 0.0550 0.0768
B (correlation) 0.4475
c x10* 0.5278 -9.1276
” US Jump 0.0045 0.0007
LA Jump 0.0103 0.0111
0 US jump (standard deviation) 0.0290 0.0407
2 US Jump (correlation) 0.6202
0 LA jump (standard deviation) 0.0286 0.0399
0 LA Jump (correlation) 0.6153
Long-run Jump Intensity 0.0265 0.0277
Jump Intensity Half-Life (day) 0.6925 0.6932

Table 9 shows that the mean of the diffusion is higher for Latin America with
higher volatility. The correlation between United States and Latin America is high
while the jump size in return is highly volatile. The US return has positive jump size
mean while the LA return has negative jump size mean with higher volatility.

Table 10 shows quite high correlation between the US jump intensity and LA
jump intensity on both B and . The jump size of jump intensity x shows that LA
jump type provides high likelihood for the next jump to the US and LA markets than
the US jump type. The long-run jump intensity and half-life are slightly different
between the two jump types.

Figure 5 plots the log-likelihood obtained from each iteration run on EM
algorithm. It can also be noticed that the log-likelihood converges really fast within the

first 30 iterations.
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Figure 6 plots the smoothed expectation of the diffusion term of returns obtained
from the model. The first plot (upper) shows the diffusion of the US market and the
second plot (lower) shows the diffusion term of the LA market. During 2008, it seems
that the jump term might not be able to capture all the high magnitude return from the
high varying jump size (v) requirement during the period reflecting in high diffusion.

Figure 7: Return jump term for US and LA.
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Figure 7 plots the smoothed expectation of the jump term of returns obtained
from the US market (upper plot) and the LA market (lower plot). The graph shows
similar result with the multivariate in Section 7.1 that it seems to be able to capture the
jumps during the three financial crises: Dot-Com Bubble, the 2008 Great Financial

Crisis, and European sovereign debt crisis.
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Figure 8: Expected jump intensity of each time-step t.
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Figure 8 shows the movements of the expected jump intensity during 1999 to
mid-2015. It shows higher rates during crises period. The LA intensity shows more

jumps of itself during other periods than the US jumps.

Table 11: Jump clustering and contagion effects impact on other jumps.

To
Effects
US Jump LA Jump
= US Jump 0.5511% 0.2100%
(@]
L LA Jump 1.1368% 1.2566%

Table 11 shows the expected jump effects of a certain jump type to another jump
type. The effect from the LA jump contributes largely to both US and LA jumps. The

self-exciting effect in the US shows a lot higher than the contagion while the contagion
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effect in from the LA market is high and is almost equal to its self-exciting effect. This
implies that the US market seems to react to most unexpected movements occurring in
the LA market while the LA market does not react much to the US market.

Table 12: Parameters statistical significance on two-sided test.

Value Value
(Standard (Standard
Parameters Error) x P-Value Parameters Error) x P-Value
10~4 104
0.4744 0 a -35857.9457 ;
Hus (0.0000) Oys (1.9602)
5.9485 0 a -36323.9296 0
Hia (0.0003) 014 (1.9857)
1.2283 30.3265
Zysus  (0.0001) : Boyg (0.0017) Y
1.2518 18.9442
Zysia  (0.0001) ) Boysa (0.001) 0
2.4959 59.1269
ZiaLa (0.0001) 0 Bo,, (0.0032) 0
92.55 § -35856.0675 0
Vus (0.0051) QAys (2.1602)
-135.7209 0 a -36356.3537 0
Via (0.0074) US,LA (2.0015)
8.122 30.2329
Ays (0.0004) 9 Bys (0.0016) 0
145716 18.889
A4 (0.0008) 2 Bys,a (0.001) 5
58.9283
Bia (0.0032) 0
Cus 0.5278 (0) 0
-9.1276 0
CLa (0.0005)
44.9446 0
Kys,us (0.0025)
; 6.9607 0
Us,LA (0.0004)
» 103.1982 0
LAUS (0.0056)
111.0987 0
KiaLa (0.0061)
8.4054
-QUS—US,US (0.0005) 0
7.3183
Nys_us,a (0.0004) 0
16.5644
Rys-1a,14 (0.0009) 0
8.1674
Rpa-ysus (0.0004) 0
7.017
L1a-vsa (0.0004) 0

15.9239
Dia-La14 (0.0009) 0
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The statistical test result in Table 12 shows that the parameters involving in the
dynamics of the return are significant at 1% significant. Significance in kyg ;s and
k1414 Shows the evidence of the self-exciting effect while significance in xyg ;4 and
K14,us Shows the evidence of the contagion effects. The test uses the covariance matrix
of the parameter estimates from the approximation of the information matrix. The

calculation detail can be found in Appendix 3.

Table 13: Jump effects asymmetries statistical signficance on one-sided test.

Interested Asymmetries (Stan dar(;/élrurir) % 104 P-Value
Kysia > Kraus -96.2375 (0) 0
Kysus > Kys,La 37.984 (0) 0
Kysus > Kraus -58.2536 (0) 0
Krara > Kys.ia 104.138 (0) 0
Kirara > Kraus 7.9005 (0) 0

The statistical test result in Table 13 shows that all asymmetries are significant.
Negative values means that the interested asymmetries are on the opposite direction.
The first asymmetry shows that the contagion from LA to US is greater than US to LA.
The second and third asymmetries show that the self-exciting effect in US is greater
than the contagion from US to LA, but lower than the contagion from LA to US. The
fourth and fifth asymmetries show that the self-exciting effect in LA is greater than the

contagion effects from both ways.
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8. Conclusion

This research develops a new financial model and its estimation method that
can handle a large number of assets and allows for self-exciting and contagion effects
with stochastic jJump intensity. The run on the model has good convergence rate on
both multivariate and bivariate cases.

In multivariate case, the model is able to capture large movements of return
through the jumps from conditional jump intensity and tends to show that jump
clustering and contagion effect seem to exist from graphical view. The analysis on
developed and emerging jump types show that developed jumps cause an impact to
emerging jumps more than the emerging jumps do to developed jumps. The
developed jump self-excites itself more than an emerging jump and the developed
jump has negative mean jump size on return whereas the emerging jump size on
return is mixed. However, the parameters involving with the jump intensity are not
statistically significant so stochastic jump intensity might not be needed. With the
same reason, the analysis on jump effects asymmetries provides no evidence
statistically.

In bivariate case, the model is able to show the statistical evidence on the jump
clustering and jump contagion effects along with their asymmetries. The US market
tends to react to most unexpected movements happening in the LA market while the

LA market does not react much to the US market’s unexpected movements.
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APPENDIX

Appendix 1: Detailed Derivation

Al.1 Complete likelihood

The complete likelihood is given by:

L, = P(X,Z,AN,8,1,A |T)
= P(Al,l' "ee ,AK’l)P(X, Z, AN, 6, T], 11'2, "ee 'AK,TIAIJI e IAK,I)

Let A, denote Ay ¢, ..., Ak ¢

Ni,1,c AENOLE Ny 412, o) Mic 1,2

O denote 0 11, s Oniern

z, denote zy 4, ... Zy

C, denote all information up to time ¢t then

- P(1y) 1_[ P(ANje 1|1 )P (X, Z, 8,1, ANy 5, o, AN 7 A 2 oy Ay 7| ANj 1, A1)

k—l
ANyt

—P(Al)ﬂP(ANkllzkl)ﬂp(elk,l,... ki) PCaser17n)

P(A12»-- AKT'ANRZ'-- ANkT'nlklz:---'nKle'Zl,Z'---'Zn,T'gl,k,j,Z:---'en,k,j,Tlcl)
Ath

= P() HP(ANkllzk ) 1_[ P(6ijn) - P(22)

ANt ANyt

'P(/12|C1)1_[P(ANk2|/1k2:C1) 1_[ P(Uklz|C1) 1_[ P(ij 2|C1) P(z;]Cy)

ANj ¢ ANj,t
PQrlCr 1)1_[P(ANkT|AkT,CT ) ﬂp(nmlcT D ﬂp(ek,TlcT )

P(ZT|CT—1)



Al.2 Complete log-likelihood

The complete log-likelihood is given by:
T

ln LC == z ln P(AtICt—l)

t=1

K
+ z In P(ANje| Ak er Coor)
k=1

ANk,t

+ ) {InP(selCos) + 10 P(Opel Coo)}| + 10 P21 Ceo)

where [z;]~Normal([u], [£])
[6k.1c|~Normal([v,], [Ac])
[M11.c]~Normal([x, ], [Q%])
[uc]~Normal([al], [B])
[In A;]~Normal([a,], [Bo])
2lInl, = —gln 2m — %1n|30| —~ % (In 1, — ag)'By*(InA; — ag)

K(T - 1)
-——

-1
In2m — In|B|

K ANkt

K ANge—1

_Cln/lj,t—l_z z Nk,1,t-1
k=1 1=1

T

)

=1

t

[~ Akt + ANt In 2y . — In(AN, ,!)]

T ANpt—q
+Z z [ " 27 — Sl
2 nczm 2 n
t=2k =1

H»ﬂxMx EM*

5 Mk, Lt— 1_Kk)Q (Uklt 1 Kk)]

N
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2
1 T
_EZ lnlt_a_cln).t 1 Z Z T]klt 1 B_l lnAt_a



L& Kk 1 1
+ Z z [_ Eln 2T — EIHIAI - E (ek,l,t - Vk)IA_l(Hk’l’t - Vk)]
t=1k=1 1=1 .
nT T 1
—71n 2m — Eln|2| - EZ(ZL“ - W'E(ze — )
t=1
Al.3 E-Step

The conditional expectation in E-Step is given by:
Q(T|T®) = E[InLc TP, xy, ..., x7]
Let X, denotes x;, ..., x; while X denotes x;, ..., xr

Note: most of the time, this research will omit I ®for better readability.

- K 1 1 L
Q(F|Fp ) = —Eln27r —§1n|Bo| —EIE[(ln/ll—ao) By "(InA; —ay)|X]
K(T —1)

m2r— Lt B
2 2

K ANge-1

ZZ lnlt_a_clnlt 1 Z Z nklt 1 B_l 1n/1t

K ANge-—1

—a—clniA,_; — z Z Miere-1 | 1X]
k=1 1=1

+[E[Z{=1 Yk=1—Ake + ANy In 2y — ln(ANk,t!) |X]

n 1
. ANk —7ln2n—7ln|Q|
tzzz 12 '
—7 (le,z,t—1 - Kk) Q (Uk,l,t—1 - Kk)

1 '
+E [Z’{ 12115 1 ZAth — —l 2T — ln|A| - ? (Hk_l_t - Vk) A_l(ek’l,t — Vk) |X]

1
—7ln 2 _§1n|2| —E[E[ t=1(ze = )'27(z — ) IX]

Al.4 M-Step

The parameters’ values that maximizes Q (I'|T®) in M-Step is given by:

Consider (4, 2);

1 _
Va= 0 - Va<§ZE[<Zt—ﬁ)'z-l(zt—mx])=

t=1

43
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!

IO (el ol V/ad o1
- V; EZ]EKZ 27 — X Zu) (Z 27 — X 2,u>|X =
t=1

from V4 (AX — b)'(AX — b) = 24'(AX — b)
T

> 2870 ) (Bl(z — IX]) =

i—Oai—LH—Z E[(ze — D)7z, — D)|X] | =0
95 a5\ 2= A BPE AT

fromVyIn|X| = (X~ 1) and VXaX = —(XYHab'(x 1)
- =T(E" 1T) + EERL (2 — Dz — D) IX]ED =0

~ 1
= = ) El(z — (e — 'I1X]
t=1

Consider (Vg, 4,);

T K
1 -
Vs, =0 — Vy, <_§Zz E Ath(let 1) B (B = %) |X]> =0

1k=1
T
1

- —E AthAk (eklt p— Vk)|X] —_ O

- Z ]E[ANk,t(ek,l,t J ﬁk)l)(] =0

t=1
T T

> ) E[AN (01 )[X] = ) E[AN B[]

= =1
Y11 E[AN; (6r1,6)|X]
{=1 E[AN, . [X]

—>1?k=

Vz,=0
- VAk( [Z 1Zk 1221

ANyt

1. 4 1 AN AT .
—7ln|Ak| — 7(9k,l,t - Vk) Ak 1(9k,l,t - Vk) |X]) =0

1 i
- - Ez E[AN, |X] (451

t=1
1 ~ ! !/ ~
+ EZ(A?) E [ANk,t(Hk,l,t ~ ) (Br, e — i) |X] (4’ =0
t=1

XA E AN (8ne = 9) (B — 91) [X]
B T E[AN,.|X]
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Consider (R, 21);

T
1
Ve, =0 - ka<_§zz]E[ et 1(77klt_’ck) Qi (nk”_’%k) |X]>:0

t=2 k=1
T
1

> _E —2ANg 18 (Uklt l_Kk)|X]_0

- Z re[mvk,t_l(nk,l,t_l — #)[X] = 0

t=2
T T
> ) E[AN e (e -)[X] = D B[N, (R[]
t=2

t=2
ook = Z?:z [E[ANk,t—1(77k,1,t—1)|X]
“ Ytz E[AN 1 [X]

= Vo, (E [ZLZZ 1ZAN“ 7 lnlﬂkl 2 (nklt 1~ Kk)lﬁk_l(nklt 1~ ’ek) |X])

T
Z [ANer [X] 22

’r
ZZ -le) E[Ath l(nklt 1—Kk)(77k1t 1 Kk) |X] (le) =0

{ » E [ANk_t—1(77k,1,t—1 - Kk)(nk,l,t—l - Kk) |X]
t=2 E[AN, 4 |X]

| (

Consider (d,, By, @, B);
. s —1 .
s 5 (vt~ 0 - ol -0
- E[(InA; —a)IX] =0

Vg, =0 — Vg (——ln|BO| ——[E[(lnll—ao) B, (lnll—a0)|X])
—(By™") + (By YVE[(n Ay — @o)(In Ay — o) [XI(By )’ =

0 - By =E[(InA; —ady)(nA; —ady)'|X]

l



K ANgt—1

T
. R
Va=0 > Va(-3El Z lnAt—d—cln/lt_l—E 2 Meries | B4 In2,
k=1 I1=1

t=2
K ANge—1

—a—InAj; 4 — Z Z Miere-1 |1X]) =0
k=1 1=1

- V; (—%[E[Zf=2(ut —a)' B~ (u, — @) |x]) =0

~

R Z E[(u, — &)|X] = 0
T

t=2
- a=mzm[ut|x]
t=2
T—1 .
V=0 - V3{ In|B|
1 T K ONgt—1
~E ) (A -a-¢lna., Z Z Mot | B[ 2,
t=2
K ANgit—1

—a—Cinde= ) D W |IX) =0
k=1 I[=1

T—1 . ~
~ Vg{-——M|B| - E[33L,0u — 0B (w - @) [x]} = 0
5 (=B + B YER e — @), — @) [XI(B™Y) = 0
T

~ 1
N mz E[(ur — @) (ur — @)'[X]
t=2

T —
Ve=0 - Vif- lnIBI

T
1
_ [E[EZ InA, — @ — diag(InA,_)¢

t=2
l

_Z Z Mereer | B~ Ind — @ — diag(In Ae_1)e
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- 2E[X],diag(InA,_1)B 'diag(In A,_,) |X]¢
— 2E |3, diag(n2,_)B~'(n A, — @ — Th_, T2 mjeyen) [X]
=0

- E[¥I_,diag(InA,_1)B*diag(In,_,) |X]é
— E[diag(In ;1) B~ (u; — @ + diag(In A,_;)cP)|X] = 0

- ¢=E[X,diag(In1,_1)B *diag(In1,_,) |X]

x E[X_, diag(InA;_1)B~*(u; — & + diag(In A,_1)cP) [X]
- é=c® ¢ (]E[ _,diag(InA,_;)B~*diag(In A,_,) |X]_1

x E[XT_, diag(InA,_1)B™*(u, — &) |X])

AL1.5 Further Derivation on Parameters Estimation for E-Step

Consider Forward probability: a(A;, ANy, x:1X¢—1)
a(Ay, ANy, x1) = P(44, ANy, x1)
K

= P(1y) H{P(ANk,1|/11)}P(x1|AN1:A1)
k=1

= PO | [{P(@Na[2:) P laN)
k=1

= Normal(In A;; ay, By) - H{Poisson(ANkll; /11(,1)}
k=1

K K
- Normal (xl; u+ Z ANy 1V, 2+ z ANk’lAk)
k=1 k=1
_ 1 o510 A1-a0)' B (in 21-ao) . 1_[ _ARIAANM
,/(2n)K|BO| ANy 1!
1 e 2(x1 u— 2k=1ANk‘lvk)’(Z+ZI,§=1ANkJAk)_l(xl—u—Zlkf;lANk_lvk)

J Q2r)M|E + TK_, ANy 14y |

Let a;(a, b, c) denotes a;(A; = a,AN; = b,x; = c) where t is the time
a;(An) = a(dy, ANy, x4)
a,(A,n) =a(i,n,x,)

= P(A, = A AN, = n, x,|x,)

al(ﬂll m)
= P(/lz == A,ANZ == n,x2|/11,AN1 m, X 1)
) ey
1,m
- Z P(AN, = n, x4, = A, A4, AN; = m, x,)P(A, = A|A,, AN,
Ay,m
al(lll m)
=mx)—

P(x,)
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- Z P(x,|AN, = n, A, = A, Ay, AN,
Ay,m
=m,x;) P(AN, = n|1, = A, A;,AN; = m, x;)
241 (All m)

P(x,)
Z P(x,|AN, = n) 1_[{10(A1vk2 = ngl, = )} P(A, = Ay, AN,

A,m
_ ) 6‘(1 (/11) m)
~ TP

Z Normal (xz, u+ Z nEVg, 2

/11m

P(/lz == }\l)ll,ANl =1m, xl)

+ nkAk> H{Pmsson(nk;Ak)}Normal(lnA; a+Iniy
k=1

aq (/11, m)

" P(xy)

IR

mgKyg ,B + Z mk.Qk)

OltO\, n) = P(/lt )L ANt =N, xt|Xt 1)
= Z P(At = )L, ANt —, n,xtllt_l,ANt_l

At-1.m

=m,X;—1) P(At—1, AN;—y = m|X¢_4)
= Z P(thANt == n,At = }\,At_l,ANt_l = m,Xt_l)

At_l,m

P(ANt = nllt = )\,At_l,ANt_l = m,Xt_l)

A (A -1 m)
P(he = Mheo1, BNy = mXe) =2
t—114t-2

= > PCxlaN, = H{P(AN“ = neliee = 1))

At’ 1,m

'P(At = 7\|7\t—1:ANt—1 = )

&
1l
[y

ap—q(A¢—q, m)

P(xt 11Xt-2)
a;(\,n) = z Normal(x.; p + Z n,v,Z+ Z n,4;) - HPOlSSOTl(nk, Ax)
lt 1,m
- Normal <ln)\; a+Ini_;+ Z mykKy,B + Z mk!)k)
k=1 k=1

_ ap—q(A¢—q, m)
P(xe—1|Xi—2)
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Consider Backward probability: y(4;, AN;|X)
Yr(A,n) = P(Ay = A, ANy = n|X)
_ P(Ar = A ANy = n,x7|X—1)
P(xr|X1-1)
ar(A,n)

" P(erXp_p)
ar(\,n)

B Zr,s ar(r,s)
yt(}\, n) = P(At = }\, ANt = an)

- z P(A = L AN, = 0,414 = r|X)

= i ¢t(An,r)

Consider 2-Step probability: {(A;, AN;, A¢411X)
ft(l, n, 1‘) = P(At = }\, ANt =11, At‘l’l = rlX)

= Z P(At = }\, ANt = 1’1,/1“,1 = I',ANt+1 = le)
m

= Z P(A; = A ANy = 0|41 =1, ANpyy = m, X)) Y41 (1, m)
m

[00]

Z P(At+1 = I‘,ANt+1 = mllt — )\, ANt — H,Xt)P(/lt = }\,ANt = ant)
P(At41 = 1,ANgy; = m[Xy)
( Poisson(m;r) )
- Normal(Inr;a + InX + YK_ ngry, B + XK., ne2y)
at(hﬂ n)

- PO Xy
- 2< e Rit) * Y41 (r, m)

YsplPoisson(m;r)

Yee1(r, m)
m

~—

-Normal(Inr;a +Ins + Zle Pxky,B + Zlk(=1 Pr{2k)

. at(s, p)
\ P(x¢[X¢-1) J

= (i Yer1 (T, m))

Normal(Inr;a + InA+ YX_ ngry, B + XK n 2, ) a (A, n)
YspNormal(Inr;a +1Ins+ YXX_; prky, B+ Xi—; prefli) (s, p)

Consider P(AN; = n|X);
P(AN, = n|X) = ZP(/% = L AN, = n|X) = Zyt(x, n)
A A



z:11 z:12]

. [S . . )
if [ 1] ~Normal with mean [”1] and variance matrix
H2 Xy1 2Ly

S2
then E[S,|S, = a] = uy + 215255 (a — 1)
and Var(S11S, = al = 211 — 1222, 251

Consider E[AN,,(X];
E[AN, . |X] = Z E[ANy ¢|ANy; = ng, X|P(ANy; = 0 |X)

n=0
[e9)

= z ng - P(ANk't = nk|X)

n=1

Consider E[z.|X];

(0]

E[Ztl)(] = ]E[ZtIANt = n,X]P(ANt =, an)

=
1l
o

E[z¢|AN; = n,x.]P(AN, = n|X)

I
NgE

=
I
o

From (A1) and (A2),
Elz|x,, AN, = n] = i+ £(& + nd) ™" (x, — (4 + n?))
VaT[Ztlxt, ANt = n] = 2 — 2(2 + nj)_li

Consider E[(z, — 1) (z; — 1)’ IX];
El(z, — @)(z, — )]
= E[(z¢ — @) (z; — )'|X, ANy = n] P(AN, = n[X)
n=0
= Bl(z — D)z — @' Ix, AN, = n] P(AN, = nlX)

n=0
where E[(z; — @) (z¢ — )'|x;, AN = 1]
_E [ Var(z;|x;, AN, = n)
+(E[z|x;, AN, =1n] — @) (E[z|x;, ANy = n] — '
=555 +nd)'8
+ (35 + nd) ™ (r - 2+ n9) ) (3(

~ @+ n9)))
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(A1)
(A2)

xt, ANL- = l’l]

$+nd) " (x,



o1

Consider E[ ANy, ¢ (6y.1.0)|X];
E[ AN (011)|X] = Z ANy . - E[ 04 1,¢|X ANk e = 0y ] - P(AN, . = ng|X)

Ng

= Z g E[ Op1¢|xe, ANy = ng] - P(ANy, = ng|X)

Ng

where ]E[ Hk‘l‘tlxt,ANk,t = nk] = f)k + Ak(i + nkjk)_l(xt - (,12 + nkﬁk ))

Consider E [ANk,t(Hk,Lt — D) (Bk1e — ﬁk)'| X] ;
[ANk (Brne — Vi) (B — 17k)’| ]
z Ath E [(Qk 1t~ Vk)(ek 1t~ Vk) |X Ath = nk] P(Ath = nk|X)

where E [(Gk 1t Vk)(gk 1,t Vk) |X Ath = nk]
=[E [Var(Hk,1,t|xt, nk)

+ ([E][Bk,l,tlxtr ] = 1) ([0 1, xe nie] = 17k)l|Xt: ANy ¢

- AAk(i + nkjk)_ljk
+ (A8 + medie) " (o = @+ ) ) (e + midi) (e
— @+ nyd)))’

Il
D,
=

Consider E[AN;,,_1 (Mi1.0)|X];
E[AN -1 (M) |X]

= > E[ANg e (71,0) X ANy = ] P(AN - = 1)

ng=0
o)

= > 0B 1 [ X AN ey = 1] P(ANg -y = 1)

0 ng - Z [E[ nk,1,t|X' ANy =Ny, A g = Tp, Age = Sk]

= E I'k,Sk

Me=1]- P(Ake-1 = Yoo Aot = Sk|X, ANy y—qg = 0y )P(ANy ;1 = ng|X))|
o Ny - Z [E[ 77k,1,t|ANk,t—1 =Ny, Agpm1 = Ty A = Sk]
_ Tk,Sk

- kzz:l P(Akr-1 = Ty AN r—q = Ny, Ay = 5i|X)
P(ANy ;-1 = ni|X)

Z [nk Z E[ k16| ANk -1 = N Apm1 = T Aier = Sk * Gr—1 (T N, i)
ng=1

T'k,Sk

P(ANk,t—l = ni|X)
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© Ny * ¢—1 (T, N, Sk)
_ . ~ /6 ~ \—1 . .
—Z -Z<Kk+.(2k(B+nk.Qk) (lnsk—c-lnrk—a—nk-lck)>
ng=1 1Sk

where the last eqution comes from (Al).

Consider E [ANk,t—1(77k,1,t—1 - ’ek)(nk,l,t—l - ’ek),| X]I
E [ANk,t—1(77k,1,t—1 - ’ek)(nk,l,t—l - ’ek),| X]

= Z E [ANk,t—1(77k,1,t—1 - ’ek)(nk,l,t—l - ’ek),| X, ANyt

ng=0
= 1y | (AN -y = nie[X)
= Z n - E [ (le,1,t—1 - ’ek)(r]k,l,t—l - ’ek)ll Xe, AN 1 = nk] P(ANy -1
ng=1
= n|X)
= z ng - Z E [ (Uk,1,t—1 7 ’%k)(nk,l,t—l = ’ek)l| ANy i1 =Ny, Agp—q
ng=1 I'k,Sk

=Ty, A = Sk]

'P(/lk,t—l =Ty, Ak = Sklx' ANy -1 = nk)P(ANk,t—l = nklx)]

- !
= Z Ny * z E [ (le,l,t—1 = ’%k)(nk,l,t—l i ’ek) | N, I, Sk] * Cp—1 (I, N, Sk)]
ng=1 I'k,Sk
where E [ (77k,1,t—1 - ’ek)(nk,l,t—l - ’ek),| AN t—1 =Ny, A1 =g, A = Sk] =
Var(mi,e-1|ANke—1 = N, Age—1 = Tie, e = Si)
E 4 (B[ 7k,1,6-1|ANk -1 = Nje, Aot = Ty Ae = S| = Rie) [ %) ANjee—q = 1
(B[ M 1,6-1|BNke—1 = e, Age—1 = Ties Asee = Sic| — Rie)’
= 0 — 0 (B + 0 ) 0y

+ (E[mi1,6-1|ANk -1 = Mgy A pmq = T, A = Si ]
- ’%k%([E[nk,l,t—llANk,t—l =Ny, A e—1 = Ty Aiee = Sk]
— %)

Consider E[In 4, |X];
E[ln A, |X] = Z E[lnA;|A, = r, AN, = n, 4, = 5,X]P(A; = 1, AN, = n, A, = s|X)

r,n,s

= Z E[lnA;|A; = r,AN; =n, A, =s]-{;(r,n,s)

r,n,s

= 2 InA-¢;(r,n,s) = Zlnr-zh(r,n)
r,n,s r n



Consider E[(InA; — dy)(InA; — @y)'|X];
E[(InA; — dp)(InA; — ap)'|X]
= > Elnd, - a)(in, — )14 = r,AN; = n,2, = 5,X]
r,n,s
" P(/ll == I‘,ANl == n,lz == SlX)
= Z ]E[(ln Al - ao)(ln/‘{l - ao)lll‘{l =T, AN]_ =1, ).2 == S] ) (1(1‘, n, S)
r,n,s
Where ]E[(ln/‘ll - ao)(lnll - ao)ll In Al =T, AN]_ =n, AZ = S]
=Var[lnA;|A; =r1,AN; = n, 1, =s]
+ (]E[lnllllll - r,ANl - n,/12 - S] - a,o)z
=0+ (Inr—ady)(nr—a,)’
= (Inr—a,)(nr — a,)’

~ E[(InA; —ap)(Ind; — ap)'|X] = Z(lnr — @o)(Inr —a,)" - ¢;(r,n,s)

r,n,s

- Z(lnr — d)(InA — )’ 'Eyl(r,n)

Consider E[u,|X];
E[uth] = Z ]E[utllt_l b d I‘,ANt_l = n,At = S,X]

r,n,s
) P(At—l =T, ANt—l = n,At =5 SlX)
= Z Eluglde—1 =1,AN;y =0, = 5] - 1 (1,0, 5)
r,n,s
- z (a+B(B+n2) "(ns—a—c:Ind=nk)) - Gy(rn,s)

rn,s

where the last equation comes from (Al).

Consider E[(u; — @) (u; — @)'|X];
E[(u; — @) (u, — @)'|X]
= z ]E[(ut - a)(ut - a)ll/lt—l =T ANt—l =n, At =S, X]
rn,s
*P(A¢—y =1,AN;_; = n,4; = s[X)
- Z E[(ut — @) (u — @)'|A4t—1 = 1,AN;y = 10,4, =5,X] - {;_1(r,1,5)

r,n,s

where E[(u; — @) (u; — @)'|A¢—; = r,AN,_; = n,A; = s5,X]
= Var[uy|A;—; =1r,AN;_; = n,1; = s]
+ (E[uede-1 = 1,AN;; = 1,4, = 5]
— @) (E[u¢|A;—y =1,AN;_y = 1,4, =s] — @)’
—B-B(B+n-0)"'B
+ (E[uede-1 = 1,AN;; = 1,4, = 5]
— @) (E[u¢|d;—y =1,AN;_y = 1,4, =s] — @)’
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Consider E[YT_, diag(In A,_,)B~diag(In ) [X] ;
E[XT_,diag(InA,_,)B*diag(In1,_,) [X]
T

- Z E[diag(in,—1)B~'diag(In A,_1)|X]

t=2

T
- Z z E[diag(in A,_)B"diag(n A,_|X, A_s = 1,AN;_; =1, = 5]
t=2r,n,s

) P(At—l =T, ANt—l = n,}\t = SlX)
T

- z Z E[diag(In,—1)B~ diag(In Ae_1)|Ar—y = 1,ANe_; =, = ]

t=2r,n,s
’ (t—l(rl n, S)
T

- zz E[diag(InA,—1)B~'diag(n A,_1)|Ar—s = 1,AN;_y =1, = 5]

t=2 rn
' Vt—l(rJ n) R R
where E[InA,_; B~'InA;_4 |4~y = r,AN,_; = n] = diag(Inr) * B~ * diag(Inr)

Consider E[YT_, diag(In A,_1) B~ (u, — &) |X];
E[Xf-, diag(In2,_1)B ™" (u, — @) [X]

T
- z Z E[diag(n A,_)B~"(u; — @)[X, Ay = 1,AN;_; = 1,2, = 5]
t=2r,n,s

) P(At—l =T, ANt—l = n,lt = SlX)
T

= Z Z E[diag(InA,_1)B~1(u; — 3)|X, A,y = 1,AN,_; = n, 4, = s]
t=2r,n,s

) P(At—l =T, ANt—l — n,lt = SlX)
T

- 2 Z E[diag(n,—1)B~* (ug — 3)| s = 1,AN,_, = 0,4, = ]
t=2r,n,s
) (t—1(r; n, S)
where IE[diag(ln Ae—1)B71(u, — ﬁ)|/1t_1 =1,AN;_; =n A = s] =diag(Inr) *
B+ E[(u; — @)|A; = 1, AN,y =10, A4 = 5]}
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Appendix 2: Other Graph Results

Figure 9: Return diffusion term for each countries data
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Figure 10: Return jump term for each countries data
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Appendix 3: Information Matrix Approximation

I(T) = —E [aa—r,zzlogP(X; ») |r]

Finite differences on derivative of bivariate functions according to Eberly (2003) is

82

used to approximate the Hessian matrix T log P(X; ).

Let f(x,y) be the incomplete-data log-likelihood where x and y are the parameters

in the I' parameter’s set.

Let F(x + h,y + k) means the incomplete-data log-likelihood of when x plus some

increment h and y plus some increment k while other parameters in the I'’s set

remains the same.
The partial derivative centered differences approximation are

F(x+h,y)—F(x—h,y)

fr(x,y) = h
F(x,y+k)—F(x,y—k
£(y) ~ (x,y + )Zk (x,y — k)

£ Goy) ~ F(x+h,y)— Zf;xz,y) +F(x—h,y)

F(x+hy+k)—F(x+hy—k)—Fx—hy+k)+F(x—hy—

57

k)

So the hessian matrix of the incomplete-data log-likelihood would be
[fr11"1 fr11“2 frlrn]

H(F):l fr,r, . fr?rnJ

fr,rn
2 1(T) = —H(T)

The covariance matrix of the parameters is I(I") ™!
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