การประเมินสมรรถนะของกระบวนการรวมของแก๊สซิฟิเคชั่นของถ่านไม้และรีฟอร์มเมอร์ ที่ดำเนินการด้วยคาร์บอนไดออกไซด์ที่วนกลับมาใช้ใหม่



บทคัดย่อและแฟ้มข้อมูลฉบับเต็มของวิทยานิพนธ์ตั้งแต่ปีการศึกษา 2554 ที่ให้บริการในคลังปัญญาจุฬาฯ (CUIR) เป็นแฟ้มข้อมูลของนิสิตเจ้าของวิทยานิพนธ์ ที่ส่งผ่านทางบัณฑิตวิทยาลัย

The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository (CUIR) are the thesis authors' files submitted through the University Graduate School.

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาวิศวกรรมเคมี ภาควิชาวิศวกรรมเคมี คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2557 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย PERFORMANCE EVALUATION OF COMBINED PROCESS OF CHARCOAL GASIFICATION AND REFORMER OPERATED WITH RECYCLED CO<sub>2</sub>

Mr. Paripat Kraisornkachit

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Engineering Program in Chemical Engineering Department of Chemical Engineering Faculty of Engineering Chulalongkorn University Academic Year 2014 Copyright of Chulalongkorn University

| Thesis Title      | PERFORMANCE |        | EVALUATIC      | ON OF      | COME              | BINED |
|-------------------|-------------|--------|----------------|------------|-------------------|-------|
|                   | PROCESS     | OF     | CHARCOAL       | GASIFIC    | ATION             | AND   |
|                   | REFORMER    | OPE    | RATED WITH     | RECYCLE    | D CO <sub>2</sub> |       |
| Ву                | Mr. Paripat | Krais  | ornkachit      |            |                   |       |
| Field of Study    | Chemical E  | Engine | eering         |            |                   |       |
| Thesis Advisor    | Professor S | Suttic | hai Assabumı   | rungrat, f | <sup>p</sup> h.D. |       |
| Thesis Co-Advisor | Supawat V   | ivanp  | atarakij, D.En | ıg.        |                   |       |

Accepted by the Faculty of Engineering, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

\_\_\_\_\_Dean of the Faculty of Engineering

(Professor Bundhit Eua-arporn, Ph.D.)

THESIS COMMITTEE

.....Chairman

(Associate Professor Anongnat Somwangthanaroj, Ph.D.)

\_\_\_\_\_Thesis Advisor

(Professor Suttichai Assabumrungrat, Ph.D.)

(Supawat Vivanpatarakij, D.Eng.)

.....Examiner

(Palang Bumroongsakulsawat, Ph.D.)

External Examiner

(Peangpit Glinrun, D.Eng.)

ปริพัตร์ ไกรศรขจิต : การประเมินสมรรถนะของกระบวนการรวมของแก๊สซิฟิเคชั่นของถ่าน ไม้และรีฟอร์มเมอร์ที่ดำเนินการด้วยคาร์บอนไดออกไซด์ที่วนกลับมาใช้ใหม่ (PERFORMANCE EVALUATION OF COMBINED PROCESS OF CHARCOAL GASIFICATION AND REFORMER OPERATED WITH RECYCLED CO<sub>2</sub>) อ.ที่ปรึกษา วิทยานิพนธ์หลัก: ศ. ดร. สุทธิชัย อัสสะบำรุงรัตน์, อ.ที่ปรึกษาวิทยานิพนธ์ร่วม: ดร. สุภวัฒน์ วิวรรธ์ภัทรกิจ, 112 หน้า.

การใช้งานแก๊สสังเคราะห์สามารถช่วยลดการใช้งานเชื้อเพลิงจากปิโตรเลียม โดยแก๊ส สังเคราะห์สามารถผลิตได้จากกระบวนการแก๊สซิฟิเคชันและเปลี่ยนรูป ในงานวิจัยนี้ศึกษาการ ประเมินผลของการรวมระบบแก๊สซิฟิเคชั่นและเปลี่ยนรูป ของถ่านไม้ด้วยการนำ CO2 กลับมาใช้ใหม่ โดยทำการศึกษาทั้งการใช้แบบจำลองและการทดสอบในห้องปฏิบัติการ จากการจำลองกระบวนการ ้ผลที่ได้พบว่า เมื่อเพิ่มอุณหภูมิทำให้ค่าร้อยละการเปลี่ยนแปลงของถ่านไม้สูงขึ้น การเพิ่มอัตราส่วน เชิงโมลของออกซิเจนต่อถ่านไม้ในสายป้อนที่เหมาะสมคือ 0.2 ทำให้ได้พลังงานจากระบบสูงที่สุด การ เพิ่มอัตราส่วนเชิงโมลของไอน้ำต่อถ่านไม้จะช่วยทำให้ได้ H<sub>2</sub> เป็นผลิตภัณฑ์มากขึ้น และการปรับ อัตราส่วนเชิงโมลของ CO2 ต่อถ่านไม้ สามารถช่วยปรับอัตราส่วนการปลดปล่อย CO2 และอัตราส่วน ของ แก๊สสังเคราะห์ได้ด้วย สำหรับเงื่อนไขที่ใช้อัตราส่วน O2/ไอน้ำ/CO2/ถ่าน ไม้ เป็น 0.2/1/1/1 จะ ให้ค่าประสิทธิภาพของแก๊สผลิตภัณฑ์สูงที่สุดที่ 0.742 ในส่วนของการทำการทดลองศึกษาผลการใช้ ตัวเร่งปฏิกิริยา พบว่าที่อุณหภูมิการทำปฏิกิริยา 800 องศาเซลเซียส จะทำให้ค่าร้อยละการ เปลี่ยนแปลงของถ่านไม้สูงที่สุด ผลของการใช้ตัวเร่งปฏิกิริยาเป็น Ni/SiO2 พบว่าเมื่อเพิ่มปริมาณของ Ni ในตัวเร่งปฏิกิริยาจะได้แก๊สผลิตภัณฑ์มากขึ้นเนื่องจากการเกิดปฏิกิริยา เปลี่ยนรูปของก๊าซขาออก มากขึ้น ส่วนผลการศึกษาอัตราส่วนการป้อนของ O2/ไอน้ำ/CO2/ถ่านไม้ ให้ผลเป็นไปตามแนวโน้ม เดียวกันกับผลจากการจำลองกระบวนการ ที่อัตราส่วนการป้อน CO<sub>2</sub> ต่อถ่านไม้เป็นศูนย์ ส่งผลให้ค่า ้ผลได้ของแก๊สผลิตภัณฑ์สูงที่สุด อย่างไรก็ตามการป้อนคาร์บอนไดออกไซด์เป็นการ ช่วยในการลดการ ปลดปล่อยก๊าซเรือนกระจกและสามารถปรับอัตราส่วนของแก๊สสังเคราะห์ได้

| ภาควิชา    | วิศวกรรมเคมี | ลายมือชื่อนิสิต            |
|------------|--------------|----------------------------|
| สาขาวิชา   | วิศวกรรมเคมี | ลายมือชื่อ อ.ที่ปรึกษาหลัก |
| ปีการศึกษา | 2557         | ลายมือชื่อ อ.ที่ปรึกษาร่วม |
|            |              |                            |

# # 5670274021 : MAJOR CHEMICAL ENGINEERING

KEYWORDS: GASIFICATION / REFORMING / CARBON DIOXIDE USAGE

PARIPAT KRAISORNKACHIT: PERFORMANCE EVALUATION OF COMBINED PROCESS OF CHARCOAL GASIFICATION AND REFORMER OPERATED WITH RECYCLED CO<sub>2</sub>. ADVISOR: PROF. SUTTICHAI ASSABUMRUNGRAT, Ph.D., CO-ADVISOR: SUPAWAT VIVANPATARAKIJ, D.Eng., 112 pp.

Using syngas as fossil fuel offers the benefit in term of suppress consumption of petroleum fuel. Gasification and reforming process can be used for syngas production. This work investigated the combined of gasifier and reformer process of charcoal with recycled CO2. The investigation was carried on both simulation and experimental. The simulation results show that carbon conversion depended on operating temperature. The effect of O<sub>2</sub> in feed stream offered more heat obtained from process which optimum at  $O_2/B = 0.2$ . At higher S/B in feed stream led to more  $H_2$  in syngas product. And the effect of  $CO_2/B$  feed ratio affect on both of CO<sub>2</sub> emr and syngas ratio. For feed ratio  $O_2/S/CO_2/B = 0.2/1/1/1$  offered the highest Cold Gas Efficiency (CGE) of 0.742. From experimental study, the operating temperature of 800 °C was observed for the highest carbon conversion. For the effect of Ni/SiO<sub>2</sub> catalysts, increasing Ni% loading offered more product gas due to the reforming reaction of gas product. Varying of O2/S/CO2/B feed ratio showed in similar trend of product gas mole fraction to the simulation result. For condition of  $CO_2/B$  ratio = 0, provided the highest for syngas yield. However, using  $CO_2$  was beneficial in reducing GHG emissions and adjusting syngas ratio.

| Department:     | Chemical Engineering | Student's Signature    |
|-----------------|----------------------|------------------------|
| Field of Study: | Chemical Engineering | Advisor's Signature    |
| Academic Year:  | 2014                 | Co-Advisor's Signature |
|                 |                      |                        |

#### ACKNOWLEDGEMENTS

This thesis consumed huge amount of inner and outer strength. Implementation would not have been possible if the author did not have a support from this people. Therefore the author would like to sincere gratitude to all of them.

First, the author would like to thank to his advisor, Professor Suttichai Assabumrungrat, Ph.D., for his suggestions and motivations. His suggestions ehchanced the author knowlegde and his motivations improved the author to be hardworking person.

Secondly, the author would like to sincere grateful to his co-advisor, Supawat Vivanpatarakij, D.Eng., for providing necessary guidance concerning thesis implementation.

Moreover, the author would like to thank to Thailand Research Fund for support this thesis.

Finally, sincere gratitude to the author family for their encouragement, adoration and inspiration. The author dedicate this thesis to his family.

Chulalongkorn University

# CONTENTS

| Pag                                  | e |
|--------------------------------------|---|
| THAI ABSTRACTiv                      |   |
| ENGLISH ABSTRACTv                    |   |
| ACKNOWLEDGEMENTSvi                   |   |
| CONTENTSvii                          |   |
| LIST OF TABLESx                      |   |
| LIST OF FIGURES                      |   |
| CHAPTER 1 INTRODUCTION               |   |
| 1.1 Rationale                        |   |
| 1.2 Objective                        |   |
| 1.3 Scopes of work                   |   |
| CHAPTER 2 THEORY                     |   |
| 2.1 Gasification process             |   |
| 2.1.1 Types of gasifiers             |   |
| 2.1.2 Process zones                  |   |
| 2.1.3 Gasification reaction9         |   |
| 2.2 Reforming process                |   |
| 2.2.1 Steam reforming10              |   |
| 2.2.2 Partial oxidation              |   |
| 2.2.3 $CO_2$ reforming               |   |
| 2.3 CO <sub>2</sub> recycled process |   |
| CHAPTER 3 LITERATURE REVIEWS         |   |
| 3.1 Gasification process             |   |

# Page

| 3.2 Reforming process                                                | 20 |
|----------------------------------------------------------------------|----|
| CHAPTER 4 EXPERIMENTAL AND MODELING                                  | 26 |
| 4.1 Materials preparation and characterization                       | 26 |
| 4.1.1 Biomass                                                        | 26 |
| 4.2 Simulation of combined gasifier and reformer                     | 26 |
| 4.2.1 Process description                                            | 27 |
| 4.2.2 System modeling                                                |    |
| 4.3 Reaction study                                                   |    |
| 4.3.1 Procedure                                                      |    |
| 4.3.2 Catalysts and characterization                                 |    |
| 4.3.3 Product analysis                                               |    |
| CHAPTER 5 RESULTS AND DISCUSSION                                     |    |
| 5.1 Charcoal characterization                                        |    |
| 5.2 Characterization of fresh catalysts                              |    |
| 5.4.1 X-Ray Diffraction (XRD)                                        |    |
| 5.4.2 BET surface area measurement                                   |    |
| 5.4.3 Hydrogen temperature programmed reduction ( $H_2$ -TRP)        |    |
| 5.4.4 Scanning Electron Microscopy (SEM)                             |    |
| 5.3 Model validation                                                 | 41 |
| 5.4 Thermodynamic analysis of combined gasifier and reformer process | 43 |
| 5.3.1 Effect of gasifier temperature                                 |    |
| 5.3.2 Effect of reformer temperature                                 |    |
| 5.3.3 Effect of $O_2/B$ feed ratio                                   | 45 |

# Page

ix

| 5.3.4 Effect of <i>S/B</i> feed ratio                | 47  |
|------------------------------------------------------|-----|
| 5.3.5 Effect of $CO_2/B$ feed ratio                  | 48  |
| 5.5 Reaction study of combined gasifier and reformer | 59  |
| 5.5.1 Effect of temperature                          | 59  |
| 5.5.2 Effect of Ni% loading on catalysts             | 62  |
| 5.5.3 Effect of $O_2/B$ feed ratio                   | 66  |
| 5.5.4 Effect of S/B ratio                            | 68  |
| 5.5.5 Effect of $CO_2/B$ feed ratio                  | 71  |
| 5.6 Comparison of model and experimental             | 76  |
| CHAPTER 6 CONCLUSIONS AND RECOMMENDATIONS            | 78  |
| 6.1 Conclusions                                      | 78  |
| 6.2 Recommendation                                   | 79  |
| REFERENCES                                           | 80  |
| APPENDIX A                                           | 87  |
| APPENDIX B                                           | 91  |
| APPENDIX C                                           | 98  |
| APPENDIX D                                           | 104 |
| APPENDIX E                                           | 110 |
| APPENDIX F                                           | 111 |
| VITA                                                 | 112 |

# LIST OF TABLES

| Table 2.1 Qualification of each gasifier                                                               | 7   |
|--------------------------------------------------------------------------------------------------------|-----|
| Table 3.1 Summarized of gasification catalysts                                                         | 19  |
| Table 3.2 Summarized of dry reforming catalysts                                                        | 24  |
| Table 4.1 Inlet conditions of feedstock and reaction agents                                            | 27  |
| Table 4.2 Input data of charcoal                                                                       | 29  |
| Table 4.3 Range of studied parameters                                                                  | 29  |
| Table 4.4 Operating conditions                                                                         | 32  |
| Table 4.5 Operating conditions of Gas Chromatography                                                   | 33  |
| Table 5.1 Proximate and ultimate analysis of charcoal                                                  | 36  |
| Table 5.2 Physical properties of catalysts                                                             | 38  |
| <b>Table 5.3</b> Model validation of gasifier (biomass $CH_{1.4}O_{0.6}$ , $CO_2/C = 0.5$ , P = 1 atm) | 41  |
| Table 5.4 Model validation of reformer ( $CH_4/CO_2 = 1.43$ , P = 1 atm)                               | 42  |
| Table 5.5 Summary of simulation with various conditions                                                | 57  |
| Table 5.6 Effect of reaction temperature on product gas composition                                    | 60  |
| Table 5.7 Effect of Ni% loading on product gas compositions                                            | 63  |
| Table 5.8 Effect of O2/B feed ratio on product gas composition                                         | 67  |
| Table 5.9 Effect of S/B feed ratio on product gas composition                                          | 69  |
| Table 5.10 Effect of $CO_2/B$ feed ratio on product gas composition                                    | 73  |
| Table 5.11 Syngas ratio on various feed ratio                                                          | 76  |
| Table B.1 H <sub>2</sub> peak area and mole on time                                                    | 93  |
| Table B.2 CO peak area and mole on time                                                                | 94  |
|                                                                                                        | 0.4 |

| Table B.4 $CH_4$ peak area and mole on time                               | 97  |
|---------------------------------------------------------------------------|-----|
| Table C.1 Mole of product gas from gas chromatography and volumetric flow |     |
| rate of product gas on sampling times                                     | 98  |
| Table C.2 Molar flow rate of product gas on sampling time                 | 100 |
| Table C.3 Total mole of product gas on sampling time range                | 101 |



จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University Page

# LIST OF FIGURES

| Page                                                                                                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 2.1 Block diagram of gasification process                                                                                                                                                                     |
| Figure 2.2 Schematic of gasifiers                                                                                                                                                                                    |
| Figure 2.3 Various zones of updraft gasifier                                                                                                                                                                         |
| Figure 2.4 Simplified flow sheet of CO <sub>2</sub> removal by amine absorption process12                                                                                                                            |
| Figure 3.1 Standard Gibbs free energy changes of gasification reactions                                                                                                                                              |
| Figure 4.1 Process flow diagram of combined gasifier and reformer                                                                                                                                                    |
| Figure 4.2 Schematic of reaction study                                                                                                                                                                               |
| Figure 5.1 XRD patterns of SiO <sub>2</sub> and Ni/SiO <sub>2</sub> with various percentages loading (a)<br>SiO <sub>2</sub> , (b) 5%Ni/SiO <sub>2</sub> , (c) 10%Ni/SiO <sub>2</sub> and (d) 15%Ni/SiO <sub>2</sub> |
| Figure 5.2 H <sub>2</sub> -TPR profiles of catalysts                                                                                                                                                                 |
| Figure 5.3 SEM images of fresh catalysts                                                                                                                                                                             |
| Figure 5.4 Effect of gasification temperature on carbon conversion ( $O_2/B = 0.5$ , $CO_2/B$ and $S/B = 1$ )                                                                                                        |
| <b>Figure 5.5</b> Effect of reformer temperature on (a) product gases and (b) $CO_2$ emr<br>and total heat ( $T_g$ = 600 °C, $O_2/B$ = 0.5, $CO_2/B$ and $S/B$ = 1)                                                  |
| <b>Figure 5.6</b> Effect of $O_2/B$ feed ratio on (a) product gases and (b) $CO_2$ emr and total heat ( $T_g = 600$ °C, $T_r = 700$ °C, $CO_2/B$ and $S/B = 1$ )                                                     |
| <b>Figure 5.7</b> Effect of <i>S/B</i> feed ratio on (a) product gases and (b) $CO_2$ emr and total heat ( $T_g = 600$ °C, $T_r = 700$ °C, $CO_2/B = 1$ and $O_2/B = 0.5$ )                                          |
| <b>Figure 5.8</b> Effect of $CO_2/B$ feed ratio on (a) product gases and (b) $CO_2$ emr and total heat ( $T_g$ = 600 °C, $T_r$ = 700 °C, $S/B$ = 1 and $O_2/B$ = 0.5)                                                |
| <b>Figure 5.9</b> Effect of $CO_2/B$ feed ratio on (a) product gases and (b) $CO_2$ emr and total heat ( $T_g = 600$ °C, $T_r = 700$ °C, $S/B = 1$ and $O_2/B = 0.2$ )                                               |

| <b>Figure 5.10</b> Effect of $CO_2/B$ feed ratio on (a) product gases and (b) $CO_2$ emr and total heat ( $T_g = 600$ °C, $T_r = 700$ °C, $S/B = 0.4$ and $O_2/B = 0.5$ )                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 5.11 Effect of $CO_2/B$ feed ratio on (a) product gases and (b) $CO_2$ emr and<br>total heat ( $T_g$ = 600 °C, $T_r$ = 700 °C, $S/B$ = 0.4 and $O_2/B$ = 0.2)                                            |
| <b>Figure 5.12</b> Effect of $CO_2/B$ feed ratio on (a) product gases and (b) $CO_2$ emr and total heat ( $T_g$ = 600 °C, $T_r$ = 700 °C, $S/B$ = 0.8 and $O_2/B$ = 0.2)                                        |
| Figure 5.13 Effect of operating temperature on moles fraction of product gases,<br>$O_2/CO_2/S/B = 0.5/1/1/1$ and Non-catalyst (excluding H <sub>2</sub> O and CO <sub>2</sub> )61                              |
| Figure 5.14 Effect of reaction temperature on carbon conversion and product gas yield, $O_2/CO_2/S/B = 0.5/1/1/1$ and Non-catalyst                                                                              |
| <b>Figure 5.15</b> Mole fractions of product gases for catalysts with different loading, T<br>= 800 °C and $O_2/CO_2/S/B = 0.5/1/1/1$ (excluding H <sub>2</sub> O and CO <sub>2</sub> )                         |
| Figure 5.16 Carbon conversions of various catalysts, $T = 800$ °C and $O_2/CO_2/S/B$<br>= 0.5/1/1/1                                                                                                             |
| Figure 5.17 Effect of $O_2/B$ ratio on carbon conversions and product gas yield, T = 800 °C, $CO_2/S/B = 1/1/1$ and used 10%Ni/SiO <sub>2</sub>                                                                 |
| <b>Figure 5.18</b> Effect of <i>S/B</i> feed ratio on mole fraction of product gases, T = 800 °C,<br>$O_2/CO_2/B = 0.5/1/1$ and used 10%Ni/SiO <sub>2</sub> (excluding H <sub>2</sub> O and CO <sub>2</sub> )70 |
| <b>Figure 5.19</b> Effect of <i>S/B</i> feed ratio on carbon conversion and product gas yield, T = 800 °C, $O_2/CO_2/B = 0.5/1/1$ and used 10%Ni/SiO <sub>2</sub>                                               |
| <b>Figure 5.20</b> Effect of $CO_2/B$ feed ratio on mole fraction of product gases on, T =                                                                                                                      |

- 800 °C,  $O_2/S/B = 0.5/1/1$  and used 10%Ni/SiO<sub>2</sub> (excluding H<sub>2</sub>O and

Figure 5.21 Effect of CO2/B feed ratio on carbon conversion and product gas yield, T = 800 °C,  $O_2/S/B$  = 0.5/1/1 and used 10%Ni/SiO<sub>2</sub>.....75

Page

xiv

| Figure 5.22 Raw result of product gas from experiment (T = 800 °C, non-catalyst                                    |    |
|--------------------------------------------------------------------------------------------------------------------|----|
| and $O_2/S/CO_2/B = 0.5/1/1/1)$ 7                                                                                  | 7  |
| <b>Figure A.1</b> Process flow diagram of combined gasifier and reformer ( $T_g$ = 600 °C,                         |    |
| $T_r = 700 \text{ °C and } O_2/S/CO_2/B = 0.5/1/1/1) \dots 8$                                                      | 7  |
| Figure B.1 The calibration curve of H <sub>2</sub> 9                                                               | 1  |
| Figure B.2 The calibration curve of CO9                                                                            | 2  |
| Figure B.3 The calibration curve of CO <sub>2</sub> 9                                                              | 2  |
| Figure B.4 The calibration curve of CH <sub>4</sub> 9                                                              | 3  |
| Figure D.1 Raw result of product gas from experiment (T = 400 $^{\circ}$ C, non-catalyst                           |    |
| and $O_2/S/CO_2/B = 0.5/1/1/1)$                                                                                    | 4  |
| <b>Figure D.2</b> Raw result of product gas from experiment (T = 600 °C, non-catalyst                              |    |
| and $O_2 / S / CO_2 / B = 0.5 / 1 / 1 / 1)$                                                                        | 4  |
| Figure D.3 Raw result of product gas from experiment (T = 800 °C, non-catalyst<br>and $O_2/S/CO_2/B = 0.5/1/1/1$ ) | )5 |
| <b>Figure D.4</b> Row result of product as from experiment $(T = 800.9C, 506Ni/SiO)$                               |    |
| and $O_2/S/CO_2/B = 0.5/1/1/1)$                                                                                    | 15 |
| Figure D.5 Raw result of product gas from experiment (T = 800 °C, 10%Ni/SiO <sub>2</sub>                           |    |
| and $O_2/S/CO_2/B = 0.5/1/1/1$                                                                                     | 6  |
| Figure D.6 Raw result of product gas from experiment (T = 800 °C, 15%Ni/SiO <sub>2</sub>                           |    |
| and $O_2/S/CO_2/B = 0.5/1/1/1$ )                                                                                   | 6  |
| Figure D.7 Raw result of product gas from experiment (T = 800 °C, 10%Ni/SiO <sub>2</sub>                           |    |
| and $O_2/S/CO_2/B = 0/1/1/1$ )                                                                                     | 7  |
| Figure D.8 Raw result of product gas from experiment (T = 800 °C, 10%Ni/SiO <sub>2</sub>                           |    |
| and $O_2/S/CO_2/B = 0.5/0/1/1$ )                                                                                   | 7  |

XV

| Figure D.9 Raw result of product gas from experiment (T = 800 °C, $10\%$ Ni/SiO <sub>2</sub> |    |
|----------------------------------------------------------------------------------------------|----|
| and $O_2/S/CO_2/B = 0.5/2/1/1$ )                                                             | 08 |
| Figure D.10 Raw result of product gas from experiment (T = 800 °C, 10%Ni/SiO <sub>2</sub>    |    |
| and $O_2/S/CO_2/B = 0.5/1/0/1$ )                                                             | 08 |
| Figure D.11 Raw result of product gas from experiment (T = 800 °C, 10%Ni/SiO <sub>2</sub>    |    |
| and $O_2/S/CO_2/B = 0.5/1/0.5/1$ )                                                           | 09 |
| Figure D.12 Raw result of product gas from experiment (T = 800 °C, 10%Ni/SiO <sub>2</sub>    |    |

and *O*<sub>2</sub>/*S*/*CO*<sub>2</sub>/*B* = 0.5/1/1.5/1).....109



จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

# CHAPTER 1 INTRODUCTION

#### 1.1 Rationale

Global warming and energy crisis are among important issues. Biomass is wellknown as renewable energy with high energy yield and to suppress consumption of petroleum [1]. Synthesis gas (syngas) consists of carbon monoxide and hydrogen. Controllable syngas ratio can be used in different applications such as electrical energy source [2, 3], fuel cell [4, 5] and other downstream processes [6, 7].

Gasification process can utilize many types of gasifying agent. Air is the cheapest gasifying agent but provides the low heating value of syngas due to impurity of nitrogen. Therefore, enriched oxygen in air leads to increase in heating value of syngas product [8]. Steam has been used as gasifying agent. The higher steam content and reaction temperature produce syngas product with more hydrogen yield [9, 10]. However, increasing steam and reaction temperature are required more energy to process. Carbon dioxide as a gasifying agent was recently presented the most benefit before emission to the atmosphere. Furthermore, using  $CO_2$  as gasifying agent offers several advantages such as producing more reactive char for better efficiency of gasification process, and adding  $CO_2$  involved in adjusting syngas ratio with more flexible for syngas application [11, 12].

Gasifier effluents are fed to reforming process for upgrading products. There are many types of reforming reactions. Steam reforming is a well-known technology that reforms light-hydrocarbons into syngas product. Higher steam as reforming agent offers higher  $H_2$  yield of syngas product due to steam reforming and water gas shift reaction [13]. Additionally, the advantage of steam reforming, fed excessive steam, is reducing coke formation. Although steam reforming is the most feasible and provides high hydrogen yield, but it is highly endothermic reaction and required heat for generating steam which causes high fuel consumption [14]. Dry reforming uses  $CO_2$  to reform light-hydrocarbon into syngas product. This reaction not only reduces

greenhouse gas emission, but also it can produce alternative energy. Propane dry reforming was studied [15]. Increasing molar CO<sub>2</sub>/Propane feed ratio lead to decrease intermediate methane [15]. Furthermore, increasing CO<sub>2</sub> can also increase carbon conversion to reach 100% and offer higher cold gas efficiency (CGE) of syngas product [12]. Syngas ratio ( $H_2/CO$ ) can be adjusted by varying CO<sub>2</sub> as well as temperature and pressure [11], and also reduce methane emission [16-19]. Several catalysts were used for upgrading gas products. Fe/CaO was reported to provide a high percentage of carbon conversion but it showed medium cold gas efficiency [20], Rh/CeO<sub>2</sub>/SiO<sub>2</sub> provides a higher carbon conversion and cold gas efficiency but also higher cost And dolomite provide a low carbon conversion and cold gas efficiency [14]. Nickel catalyst is the most widely used in the industry and it gives an appropriate in performance and cost price, Ni/ $\gamma$  Al<sub>2</sub>O<sub>3</sub> gives the moderate conversion but syngas ratio over 2 [21]. Activated carbon gives lower conversion and syngas ratio over 3 [20]. Catalytic activity of Ni on various supporters can be rearranged, Ni/Y-zeolite(CBV500)<Ni/H-ZSM-5(CBV2030E)<Ni/CeO<sub>2</sub>/SiO<sub>2</sub> [19] [22].

Many researchers studied the combined process of gasification and catalytic reformer using steam and air as reaction agents. The experiments revealed that addition of catalytic bed unit offers product gases yield higher than using a single gasification unit [14, 23-25], but only a few studies observe the combined gasifier and reformer process using a set of  $O_2$ -steam- $CO_2$  as reaction agents [12]. Using the charcoal as biomass is beneficial in term of lower volatile matters and more fixed carbon than fresh biomass which offers reduction in tar and heavy molecular-weight hydrocarbons [26, 27]. In this work, combined biomass gasifier with reformer using steam-oxygen as agent and recycled  $CO_2$  was studied to determine its product gas compositions, cold gas efficiency and  $CO_2$  emission. The simulations were carried out using Aspen Plus software. The effects of various operating parameters such as temperatures of gasifier and reformer, molar feed ratio of steam-oxygen- $CO_2$ , were considered in terms of product gas composition, syngas ratio, cold gas efficiency (CGE), net heat required and  $CO_2$  emission. Reaction experiments were also studied;

using combined fixed bed of charcoal and Ni/SiO<sub>2</sub> catalyst in a quartz tube reactor representing gasification and dry reforming processes under reaction agents O<sub>2</sub>, steam and CO<sub>2</sub>. Several values of reaction temperature, molar feed ratio of steam-oxygen- $CO_2$  and percentage of Nickel metal catalyst loading were studied to determine their influence on product gases composition, carbon conversion, hydrogen yield, syngas ratio and cold gas efficiency (CGE).

# 1.2 Objective

To investigate the performance of combined process of gasifer and reformer using recycled  $CO_2$  for syngas production.



จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

## 1.3 Scopes of work

- 1) Simulation of combined gasifier and reformer using Aspen Plus to specify suitable operating condition for the laboratory studies.
- 2) Literature survey of the information of various catalysts suitable for reforming reaction.
- 3) Characterization of catalysts by using X-ray diffraction (XRD), Scaning Electron Microscope (SEM), BET surface area measurement and H<sub>2</sub> temperature programmed reduction (H<sub>2</sub>-TPR) to observe the physical and chemical properties.
- 4) Characterization of charcoal, represented biomass, by using proximate and ultimate analysis to investigate the physical properties.
- 5) Investigation of several operating conditions including %Ni loading, reaction temperature and feed ratio for combined biomass gasification and reforming reaction.



# CHAPTER 2 THEORY

### 2.1 Gasification process

Gasification is a commonly process that converts organic compounds or fossil fuel materials based carbonaceous into various gas products, such as hydrogen (H<sub>2</sub>), carbon monoxide (CO), methane (CH<sub>4</sub>), char, tar (higher hydrocarbon compound) and etc.. Figure 2.1 shows block diagram of gasification process. The process occurs at high reaction temperature with air or steam using as gasifiying agents without completely combustion. Main desirable products are H<sub>2</sub> and CO, called "syngas". The advantage of gasification process is the more potential efficiency of using syngas than original fuel direct combustion. Syngas has been used in various processes for example as raw material of methanol synthesis, Fischer-Tropsch process or burn directly in gas engine as renewable energy.



Figure 2.1 Block diagram of gasification process.

## 2.1.1 Types of gasifiers

There are several common types of gasifiers that provide different usage. Some of them are shown in Figure 2.2. Summary of gasifiers in term of features, advantages and disadvantages are shown in Table 2.1.



Updraft gasifier operates by flowing air at the bottom through biomass bed for gasification then produce gases flow out at the top of gasifier. For downdraft gasifier, air is introduced above the oxidation zone at the middle of gasifier then the gasified gases are discharged at top of reactor. Crossdraft gasifier is adapted for using charcoal as biomass. Introduced air and discharged gas products occur at the bottom of column. Fluidized bed gasifier is a widely-used type because it gives a high efficiency in view of controlling a temperature and yield of products. Air is blown with solid particles for a minimum limitation velocity through a bed to make the

suspension state then reacts with biomass. Product gases are fed through an internal cyclone to separate a solid phase recycle back to column at the top.

| Gasifier type          | Advantages                   | Disadvantages             |
|------------------------|------------------------------|---------------------------|
| Updraft gasifier       | - High thermal efficiency    | - Sensitive with tar and  |
|                        | - Slight slag formation      | moisture content of fuel  |
|                        | - Time lagging in st         |                           |
|                        |                              | step                      |
|                        |                              | - High pressure drop      |
| Downdraft gasifier     | - Practical to charcoal dust | - Scale limitation        |
|                        | and tar content fuel         | - Inappropriate for small |
|                        | - Adjustable to gas          | particle size of fuel     |
|                        | production to load           | - High pressure drop      |
| Crossdraft gasifier    | - Be able to operate in      | - High slag formation     |
|                        | small scale                  | - High pressure drop      |
| C                      | - Flexible gas production    | (                         |
|                        | - Fast response time to      |                           |
|                        | load                         |                           |
| Fluidized bed gasifier | - Low pressure drop          | - High tar content of     |
|                        | - Slight slag formation      | product gases             |
|                        | - Easy control of            |                           |
|                        | temperature                  |                           |

 Table 2.1 Qualification of each gasifier [28]

# 2.1.2 Process zones

Four mechanisms of gasifier process are determined in:

- I. Drying III. Combustion
- II. Pyrolysis IV. Reduction

The assumption is supposed for gasification process zones separation occurs in fundamentally different thermal and chemical reactions. Figure 2.3 illustrated the updraft gasifier in different zones and temperatures.



Figure 2.3 Various zones of updraft gasifier [28]

### 2.1.3 Gasification reaction

The main reaction for gasification is generally occurred in combustion and reduction zone.

### I. Combustion or oxidation zone

Biomass, normally consists of carbon, hydrogen and oxygen elements, is completely oxidized by  $O_2$  in air to produce carbon dioxide and water. For complete combustion carbon dioxide is generated from carbon element and water is generated from hydrogen, usually in form of steam. Combustion is an exothermic reaction and theoretical reaction temperature is above 1300 °C [29]. The main reactions are:

$$C + O_2 \rightarrow CO_2$$
  $\Delta H_r = -393 \text{ MJ/kmol}$  (2.1)

$$2H_2 + O_2 \rightarrow 2H_2O$$
  $\Delta H_r = -242 \text{ MJ/kmol}$  (2.2)

### II. Reaction zone

Partial oxidation products; water, carbon dioxide and partially combusted product; is flowed into next zone of reduction. Temperature in a reduction zone is usually 600 – 900 °C and the main reactions are listed below (Eqs. 2.3-2.7).

| $C + CO_2 \leftrightarrow 2CO$ | $\Delta H_r = 164.9 \text{ MJ/kmol}$ | (2.3) |
|--------------------------------|--------------------------------------|-------|
|                                |                                      |       |

 $C + H_2O \leftrightarrow CO + H_2$   $\Delta H_r = 122.6 \text{ MJ/kmol}$  (2.4)

 $CO + H_2O \leftrightarrow CO_2 + H_2$   $\Delta H_r = -42 \text{ MJ/kmol}$  (2.5)

$$C + 2H_2 \leftrightarrow CH_4$$
  $\Delta H_r = -75 \text{ MJ/kmol}$  (2.6)

$$CO_2 + H_2 \leftrightarrow CO + H_2O$$
  $\Delta H_r = 42.3 \text{ MJ/kmol}$  (2.7)

### III. Pyrolysis and drying zone

Biomass entering gasifier is dried in drying zone which temperature about 200 – 400 °C. Moisture content, carbon dioxide and acetic acid are discharged from biomass in drying zone. Temperature range of 400 – 600 °C causes the pyrolysis zone

take place. In this zone many quantities of tar, hydrogen, carbon dioxide and some methyl alcohol are produced.

## 2.2 Reforming process

Reforming process is a method for producing hydrogen, carbon monoxide or useful products from reforming the hydrocarbon fuels commonly with steam (steam reforming), oxygen (partial oxidation) or carbon dioxide (dry reforming).

#### 2.2.1 Steam reforming

The general reaction is hydrocarbon reacted with steam to produce syngas (Eq. 2.8). The reaction between steam and methane (Eq 2.9) is a highly endothermic reaction, for thermodynamically, higher temperature and steam to methane ratio, nevertheless, lower pressure offers methane conversion increased [30]. The main steam reforming reactions are listed below:

$$C_n H_m + n H_2 O \leftrightarrow n CO + (n + 0.5m) H_2$$
(2.8)

$$CH_4 + H_2O \leftrightarrow CO + 3H_2 \qquad \Delta H_r = 206 \text{ MJ/kmol}$$
 (2.9)

Operating at excess steam, more than theoretical requirement, assist in improvement of  $H_2$  yield and reduction of coke formation on catalyst [30]. There are many metal catalysts used in reforming reaction such as nickel, ceria, molybdenum carbide and tungsten carbide [30].

#### 2.2.2 Partial oxidation

Alternatively process, catalytic partial oxidation used for  $H_2$  and CO production from hydrocarbon fuel using in fuel cell applications such as solid oxide fuel cells and polymer electrolyte membrane fuel cells. Water gas shift reaction is followed by the catalytic partial oxidation in order to improve  $H_2$  content of gas products. There are several metal catalysts used in this reaction such as Nickel, Iron and Cobalt. The main reaction is informed by Eq. 2.10 and the side reactions such as combustion (2.11), Water gas shift (2.12), methane steam reforming (2.13), CO<sub>2</sub>

reforming (2.14), Methane decomposition (2.16) and reverse Boudouard reaction (2.17) are listed below [31]:

$$C_nH_mO_p + q(O_2 + 3.76N_2) \longrightarrow wCO + xCO_2 + yH_2 + zH_2O + (3.76q)N_2$$
 (2.10)

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$
Combustion(2.11) $CO + H_2O \leftrightarrow CO_2 + H_2$ Water gas shift(2.12) $CH_4 + H_2O \leftrightarrow CO + 3H_2$ Methane steam reforming(2.13) $CH_4 + CO_2 \leftrightarrow 2CO + 2H_2$  $CO_2$  reforming(2.14) $CO + H_2 \leftrightarrow C + H_2O$ Carbon steam reforming(2.15) $CH_4 \leftrightarrow C + 2H_2$ Methane decomposition(2.16) $2CO \leftrightarrow CO_2 + C$ Boudouard(2.17) $CO + 0.5O_2 \rightarrow CO_2$  $CO_2$  formation(2.18) $H_2 + 0.5O_2 \rightarrow H_2O$  $H_2O$  formation(2.19)

2.2.3 CO<sub>2</sub> reforming

Dry reforming, alternatively name of  $CO_2$  reforming, is an environmentally reaction due to use the greenhouse gases,  $CO_2$  and  $CH_4$ , in the reaction.  $H_2$  and COare the main products. The water gas shift reaction is also a side reaction that support in improving the  $H_2$  content of product gases. Because of the highly endothermic reaction, catalysts such as nickel, cobalt, rhodium and platinum are necessary for the reaction. The main reactions are listed below [32]:

| $CH_4 + CO_2 \leftrightarrow 2CO + 2H_2$ | $\Delta H_r = 247.2 \text{ MJ/kmol}$ | (2.14) |
|------------------------------------------|--------------------------------------|--------|
| $CO + H_2O \leftrightarrow CO_2 + H_2$   | $\Delta H_r = -42.1 \text{ MJ/kmol}$ | (2.12) |

### 2.3 CO<sub>2</sub> recycled process

 $CO_2$  is captured and recycled back for reducing the emission of  $CO_2$  to atmosphere.  $CO_2$  recycled process is regularly conducted by amine absorption. Simplified flow sheet is shown in Figure 2.4.





#### **Chulalongkorn University**

 $CO_2$  enrich gas enters absorber at the bottom of column to remove  $CO_2$  by counter current flow with lean amine solution which enters the column at the top.  $CO_2$  reacts with amine and dissolves into liquid phase. Sweet gas, slightly  $CO_2$ contained gas, flows out at the top of column. Rich amine solution leaves absorber column at the bottom subsequently reduces pressure to an almost atmospheric and separates gases in the flash column. The liquid stream is fed to heat exchanger for pre-heat before enters the stripper in order to regenerate. Stripper temperature is up to 125 °C for purges acid gases, including  $CO_2$ , from the rich amine solution and flow out at the top of column. Regenerated amine solution leaves column at the bottom adjusted to the suitable pressure and temperature conditions for recycled to the absorber. Energy required for  $CO_2$  capture by amine process is 3 MJ/kg  $CO_2$  captured [33].

Amine absorption process efficiency is approximately 90% and used the energy required of  $CO_2$  captured process for calculation including recycled process as in the present work.



จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

# CHAPTER 3 LITERATURE REVIEWS

#### 3.1 Gasification process

Gasification is the thermo-chemical conversion of biomass to syngas and other products, consist of H<sub>2</sub>, CO, CO<sub>2</sub>, CH<sub>4</sub>, H<sub>2</sub>O, char, tar (high molecular hydrocarbon) and etc. Gasification oxidizing agents were air, O<sub>2</sub>, steam and CO<sub>2</sub>. Air is the cheapest and easy to use due to availability. However, the produced gases have a low calorific value (Udomsirichakorn and Salam [34]). Xiong et al. [35] investigated the effect of air quantity by experimental study on biomass gasification using fluidized bed. Pine sawdust was used as biomass feed at rate of 0.512 kg/h for gasification at temperature 800 °C with steam at rate 0.8 kg/h and air in various feed rate. Results showed that the large amount of air fed degraded the product gases because of oxidation reaction. Increasing of air lead to increase in O<sub>2</sub>, therefore rising of CO<sub>2</sub> via oxidation reaction cause to low quality of product gases. Brown et al. [36] conducted the experiment study of air-blown gasifier, results are shown that only airblown gasifier produce gas products at low H<sub>2</sub> concentrations. While tar steam reformer unit was introduced, tars and hydrocarbon were reformed to increase H<sub>2</sub> content in product gases. At high tar steam reforming temperature and low space velocity, the results offered the higher of H<sub>2</sub> content. And steam is required for improving the quality of syngas product and water- gas shift reaction (Eq 3.1), steam shows an important role in producing the  ${\rm H}_2$  content in syngas product.

$$CO + H_2O \leftrightarrow CO_2 + H_2 \qquad \Delta H_r = -41.1 \text{ MJ/kmol} \qquad (3.1)$$

Steam gasification of legume straw and pine sawdust in a free-fall reactor was investigated [10]. The effects of *S/B* feed ratio, reactor temperature on product gases yield and compositions were considered. The results showed that increasing reactor temperature from 750 °C to 850 °C and *S/B* feed ratio offer not only beneficial in the higher of  $H_2$  content in the product gases but also lower of generated tar. Furthermore, water-gas shift reaction is reversed at the higher temperature range

from 730 °C to 930 °C due to endothermic behavior [37]. The experiment was conducted using interconnected fluidized bed investigated a steam gasification of pine wood. The results also showed that CO is increasing with reaction temperature. At *steam/biomass* of 1.4,  $H_2$  yield is reached the maximum value at reaction temperature of 820 °C because the excess of steam fed to reactor. Because of the behavior of water-gas shift reaction, which acting in forward or reverse reaction, is depending on *steam/biomass* ratio and reaction temperature. Figure 3.1 indicated that at the temperature above 800 °C water-gas shift acting to be a reverse reaction.



Figure 3.1 Standard Gibbs free energy changes of gasification reactions [37]

 $CO_2$  gasification is recently attractive because using the recycled  $CO_2$  offers reducing in  $CO_2$  emission. Effect of temperature on characteristic of cardboard and paper gasification with  $CO_2$  was investigated by Ahmed and Gupta [38]. The results showed that increasing reactor temperature offers higher of CO in product due to reverse Boudouard's reaction (Eq. 3.2), increased in fraction of H<sub>2</sub> at the initial of time on stream and required more  $CO_2$  because of endothermic of reverse Boudouard's reaction (Eq. 3.2).

$$C + CO_2 \leftrightarrow 2CO$$
  $\Delta H_r = 172 \text{ MJ/kmol}$  (3.2)

Enhancing syngas via catalyst occurred by used catalysts to decompose the residue tar and hydrocarbon. Biomass gasification with Fe/CaO catalyst in a fluidized bed reactor was studied by Wey et al. [20]. The experiments were conducted using saw dust as biomass and air as gasifying agent. Effect of Fe percentage loading on CaO supporter was studied on 0%, 10%, 15% and 20% Fe loading. Results showed loading Fe on CaO made Ca<sub>2</sub>Fe<sub>2</sub>O<sub>5</sub> form on catalyst particles that improved the decomposition of tar cause to increase in H<sub>2</sub> yield. At 15% of Fe loading and reaction temperature 660 °C, the reaction offer the highest carbon conversion of 97% and cold gas efficiency (CGE) of 57.8%. Bilbao et al. [39] were investigated the fluidized bed gasification of pine sawdust by used CO<sub>2</sub> as gasifying agent on Ni/Al catalyst. Catalyst weight/biomass flow rate (W/mb) was studied by fixed reaction temperature at 700 °C and atmospheric pressure. At operating condition of CO2/biomass feed ratio around 1, the results showed increasing in W/mb ratio offers higher both conversion of CO<sub>2</sub> and syngas yield. Consequently, it offers lower of CH<sub>4</sub> and long-chained hydrocarbon. The problem of Ni/Al catalyst is stability. For reaction time above 40 min the activity of catalyst was dropped due to coke formation. Tomishige et al. [14] have studied cedar wood as biomass gasification with fluidized bed reactor. Effect of various metal catalysts with CeO<sub>2</sub>/SiO<sub>2</sub> support were investigated on product gases formation rate and coke yield. The results showed in case of syngas formation rate the highest is Pt>PD>Ru=Ni and coke yield is Ru>Pt=Pd>Ni. Furthermore, the commercial catalysts G-91 (14% Ni, 65-70% Al<sub>2</sub>O<sub>3</sub>, 10-14% CaO and 1.4-1.8% K<sub>2</sub>O) and dolomite (21% MgO, 30% CaO, 0.7% SiO<sub>2</sub>, 0.1% Fe<sub>2</sub>O<sub>3</sub> and 0.5% Al<sub>2</sub>O<sub>3</sub>) were also investigated. The results showed higher formation rate of syngas and cold gas efficiency followed by Rh>G-91>Dolomite. Summarize of gasification catalysts list in Table 3.1.

Renganathan *et al.* [12] have studied a thermodynamic analysis of carbonaceous feedstock gasification using  $CO_2$  utilization. Performances of gasification using  $CO_2$ ,  $CO_2$ +steam and  $CO_2+O_2$  are thermodynamically simulated carried on Aspen Plus software. These results were reported in term of product gases composition, cold gas efficiency (CGE) and carbon conversion. At first condition using

only CO<sub>2</sub> as gasifying agent, increasing in reaction temperature for CO<sub>2</sub>/carbon of feedstock ( $CO_{2}/C$ ) feed ratio of 0.5 the carbon conversion was reached 100% at around 800 °C. CO mole fraction ( $y_{CO}$ ) rise with reaction temperature increased. On the other hand, H<sub>2</sub> mole fraction ( $y_{H2}$ ) almost constant due to the endothermic reaction of reverse Boudouard's reaction (BD) (Eq. 3.2) and reverse of water-gas shift reaction (rWGS) (Eq. 3.1), and CGE increase reaching maximum value then constant at 1.2. Effect of CO<sub>2</sub> flow rate was investigated, for rising of  $CO_2/C$ , carbon conversion take to 100% at  $CO_2/C$  ratio of 0.3, CGE and  $y_{CO}$  increased but  $y_{H2}$  decreased. The reason is the more CO<sub>2</sub> lead the reaction BD and rWGS shift to product. Second condition using CO<sub>2</sub> and steam as gasifying agents at reaction temperature of 850 °C, introducing more steam lead carbon conversion reaching 100% and also CGE achieve the maximum boundary value at the lower of  $CO_2/C$  ratio. In any of  $CO_2/C$  value increase in percentage of steam cause rising of  $y_{H2}$  but dropping in  $y_{CO}$  due to forward shift reaction of WGS and the steam reforming reaction in Eq. 3.3.

$$C + H_2O \leftrightarrow CO + H_2 \qquad \Delta H_r = 131 \text{ MJ/kmol}$$
(3.3)

For third condition using gasifying agents as  $CO_2$  and  $O_2$  at temperature of 850 °C, inlet more of  $O_2/C$  is leaded carbon conversion reaching 100%, however, CGE increased to maximum value at the initial of  $CO_2/C$  ratio then decrease rapidly by rising of  $CO_2/C$ . Correspond to  $y_{CO}$  in any of  $O_2/C$ ,  $y_{CO}$  reach maximum at initial of  $CO_2/C$  ratio follow by decreasing of  $y_{CO}$  in higher  $CO_2/C$ . This is the effect of oxidation reaction which  $O_2$  is reacted with carbon easier than  $CO_2$ . And  $y_{H2}$  decreased by increasing either of  $CO_2/C$  and  $O_2/C$ .

Combined of biomass gasification with porous ceramic reformer was investigated by Gao *et al.* [23]. This work is using steam and oxygen as reaction agents in updraft fixed-bed gasifier then connected with porous ceramic (mainly consist of SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub> and MgO) reformer for H<sub>2</sub> production. The results reveal that H<sub>2</sub> composition increased with reaction temperature, but slightly decrease in CO composition because the endothermic behavior of reforming reaction. Increased of O<sub>2</sub> feed ratio from 0 to 0.3 causes the H<sub>2</sub> composition drop for 47% and CO increased at first phase then decreased with O<sub>2</sub> feed ratio. The presence of O<sub>2</sub> in feed stream affect to the product gases was inferred that the higher of  $O_2$  ratio favor the combustion reaction (Eq. 3.4) more than the reforming (Eq. 3.3) and water gas shift reaction (Eq. 3.1). The effect of steam/biomass ratio was also studied; the product gases were increasing with steam/biomass ratio from 1 to 3.5 that because reforming reaction (Eq. 3.3) and water gas shift reaction (Eq. 3.1) takes an important role in the process.

$$C + O_2 \leftrightarrow CO_2$$
  $\Delta H_r = -393.5 \text{ MJ/kmol}$  (3.4)

Finally, effect of porous ceramic reforming was studied. As the result, the tar of installed ceramic porous case was less than the case of without ceramic porous. So, installed the ceramic porous unit was improved the H<sub>2</sub> content in product gases by catalytic cracking of tar and heavy hydrocarbon. According to Wu and Williams [24] experiment the combined of steam gasification of polypropylene with fixed-bed catalytic reformer. Using the various nickel catalysts compared to sand bed, representing to non-catalyst, and the results reveal that more gases yield was produced by using nickel bed catalysts. And effect of steam feed was also observed. Feeding steam into system was not only upgraded the gas yield but also both reduced the coke and solid residue of reaction.

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

 Table 3.1 Summarized of gasification catalysts

| Metal              | Support                            | Operating<br>Temperature<br>(°C) | Conditions                                | Carbon<br>Conversion<br>(%) | CGE<br>(%) |
|--------------------|------------------------------------|----------------------------------|-------------------------------------------|-----------------------------|------------|
| Fe <sup>[20]</sup> | CaO                                | 660                              | -15 % Fe/CaO ratio<br>-Biomass is Sawdust | 97                          | 57.8       |
| -                  | CaO <sup>[20]</sup>                | 660                              | -Biomass is Sawdust                       | 74.2                        | 45.5       |
| Rh <sup>[14]</sup> | CeO <sub>2</sub> /SiO <sub>2</sub> | 550                              | -60 % mass of CeO <sub>2</sub>            | 88                          | 55         |
|                    |                                    | 600                              | -Biomass is Cedar                         | 97                          | 71         |
|                    |                                    | 650                              | Wood                                      | 99                          | 77         |
|                    |                                    | 700                              |                                           | 99                          | 82         |
| Pt <sup>[14]</sup> | -                                  | 550                              | -Using dual-bed                           | 48                          | -          |
|                    |                                    | 600                              | reactor                                   | 66                          | -          |
|                    |                                    | 650                              | -Biomass is Cedar                         | 76                          | -          |
| Pd <sup>[14]</sup> | 4                                  | 550                              | เกวิทยาลัย                                | 55                          | -          |
|                    | Ch                                 | 600                              | University                                | 69                          | -          |
|                    |                                    | 650                              |                                           | 73                          | -          |
| Ru <sup>[14]</sup> |                                    | 550                              |                                           | 45                          | -          |
|                    |                                    | 600                              |                                           | 61                          | -          |
|                    |                                    | 650                              |                                           | 57                          | -          |
| Ni <sup>[14]</sup> |                                    | 550                              | -1.2x10-4 mol/gcat                        | 50                          | -          |
|                    |                                    | 600                              | of Ni                                     | 64                          | -          |
|                    |                                    | 650                              |                                           | 73                          | -          |

| Metal                    | Support                                                                | Operating<br>Temperature<br>(°C) | Conditions        | Carbon<br>Conversion<br>(%) | CGE<br>(%) |
|--------------------------|------------------------------------------------------------------------|----------------------------------|-------------------|-----------------------------|------------|
| Dolomite <sup>[14]</sup> | hite <sup>[14]</sup> - 550 -Biomass is Cedar<br>600 Wood<br>650<br>700 | -Biomass is Cedar                | 43                | 12                          |            |
|                          |                                                                        | 600                              | Wood              | 48                          | 17         |
|                          |                                                                        | 650                              |                   | 75                          | 32         |
|                          |                                                                        | 700                              | ) я.,             | 89                          | 50         |
| G-91 <sup>[14]</sup>     | -                                                                      | 550                              | -Biomass is Cedar | 54                          | 22         |
|                          |                                                                        | 600                              | Wood              | 73                          | 41         |
|                          |                                                                        | 650                              |                   | 79                          | 52         |
|                          |                                                                        | 700                              |                   | 89                          | 69         |

Table 3.1 Summarized of gasification catalysts (cont'd)

#### 3.2 Reforming process

There are mainly two types of reforming process to convert higher hydrocarbons to light hydrocarbon and/or hydrogen, including steam reforming and dry reforming. The widely used reactions of hydrocarbon such as  $CH_4$ , tar, and etc. with steam called steam reforming or  $CO_2$  called dry reforming for produce syngas.

Non-catalytic steam reforming of natural gas for  $H_2$  production was conducted by Karim and Metwally [40]. They conclude that the non-catalytic reaction is favored for high temperature above 1500 °C. The reaction is rarely sensitive with pressure but sensitive with steam/methane ratio. Furthermore, addition the small amount of  $O_2$  to reaction was improved in reduces the energy input to complete the reaction.

For reducing steam reforming temperature, catalyst was used for improve this disadvantage. Nickel was a widely-used due to performance and price. Park *et al.* [41] studied the various types of support with Ni metal catalyst using in steam reforming

of tar. Benzene was used as tar from biomass gasification process for this study. The effects of temperature (550 °C, 600 °C and 700 °C), Ni loading (5%, 10% and 15%), reaction time (1 to 5 hour) and support including  $\gamma$  -Al<sub>2</sub>O<sub>3</sub>, ZrO<sub>2</sub>, CeO<sub>2</sub>, and bi-support CeO<sub>2</sub>(75%)-ZrO<sub>2</sub>(25%) were examined. Results indicated that all of catalysts at low temperature (<700 °C) give low level of benzene conversion and the suitable reaction temperature is over 700 °C due to endothermic reaction of steam reforming. Condition of supports, the activity orders follow by Ni/CeO<sub>2</sub>-ZrO<sub>2</sub> > Ni/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub> > Ni/CeO<sub>2</sub> > Ni/ZrO<sub>2</sub> which the reason explained by the redox characteristic of bifunctional support. Ni metal loading of 15% gives the highest activity. Time on stream was studied for evaluate the stability, Ni/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub> showed the lowest stability due to conversion decreased rapidly after 5 h and Ni/CeO<sub>2</sub>-ZrO<sub>2</sub> gives the highest stability. Mirodatos et al. [42] have investigated the reforming of biomass for H<sub>2</sub> production in fuel cell applications using Ni-Cu/SiO<sub>2</sub> catalyst. Ethanol was used as biomass for studied the effect of several operating parameters including reaction temperature, Steam/Ethanol feed ratio and O<sub>2</sub>/Ethanol feed ratio. Ni-Cu/SiO<sub>2</sub> catalyst was prepared by impregnation method using Ni(NO<sub>3</sub>)<sub>2</sub>·6H<sub>2</sub>O and Cu(NO<sub>3</sub>)<sub>2</sub>·3H<sub>2</sub>O as precursor on commercial Silica support. The results revealed that in O<sub>2</sub> absence and Steam/Ethanol ratio of 3.7 conditions, increasing reaction temperature give selectivity of, H<sub>2</sub> and CO higher but CO<sub>2</sub>, CH<sub>4</sub> and coke lower. At reaction of 600 °C is presented to be the suitable for reforming reaction. Then rising of Steam/Ethanol feed ratio is focused cause to increase in H<sub>2</sub> selectivity but decrease in CH<sub>4</sub> selectivity, coke formation and lower of CO in product, the appropriate Steam/Ethanol ratio is 3.6. Presence of O<sub>2</sub> was also examined; the highest of H<sub>2</sub> selectivity and the lowest of coke formation is occurred at O<sub>2</sub>/Ethanol ratio of 0.4, therefore adding small amount of O<sub>2</sub> improved both of activity and stability. Vicente et al. [43] investigated the performance and coke formation of ethanol steam reforming with Ni/SiO<sub>2</sub> catalyst, using fluidize bed reactor with vary the operating condition of reaction temperature, catalyst weight and steam/biomass ratio. Results shown that increasing the reaction temperature, catalyst weight and steam/biomass ratio offer to produce more ethanol conversion and H<sub>2</sub> yield. Coke formation on catalyst was also reduced by using higher of steam/biomass feed ratio.
Dry reforming, used CO<sub>2</sub> as reaction agent, was an interesting process for reduced the global warming issued. Bermudez et al. [21] studies parameters of Ni/ $\gamma$  Al<sub>2</sub>O<sub>3</sub> as catalyst for CO<sub>2</sub> reforming by using coke oven gas (COG). Presence of H<sub>2</sub> in feed, temperature, volumetric hourly space velocity (VHSV) and catalyst deactivation were investigated. The results shown feed stream that have only CH<sub>4</sub> gave methane and carbon dioxide conversion higher than feed stream that have  $H_2$ because 2 reasons (i) equilibrium shifted to reactants side of the CO<sub>2</sub> reforming reaction and (ii) reverse water gas shift reaction had more effect than CO<sub>2</sub> reforming reaction. Temperature unaffected the H<sub>2</sub>/CO ratio however increasing the reaction temperature gave methane and carbon dioxide conversion increased and the highest conversion reach 100% at temperature 1000 °C. Effect of VHSV indicated that increasing VHSV caused reverse water gas shift increased. In term of R parameter increasing of temperature caused R parameter increased but increasing the VHSV caused R parameter decreased. Catalyst deactivation was effected when reaction processed over 50 hour. Bermudez et al. [44] studies dry reforming of coke over gases (COG) for produce syngas which use in methanol synthesis. Activated carbon was used as catalysts, the CO2 reforming reaction carried out in a fixed-bed quartz reactor under atmospheric pressure. Controlled reaction temperature, 800 °C, 900 °C and 1000 °C respectively, and volumetric hourly space velocity (VHSV) was studies. The results showed that as increasing temperature caused the conversion increased become greater, 80% for methane and 95% for carbon dioxide. Thus water was decreased and completely disappears at 1000 °C H<sub>2</sub>/CO ratio fall but R parameter rose that appropriate for methanol synthesis. At low volumetric hourly space velocity (VHSV), the ratio of H<sub>2</sub>/CO was decreased and R parameter was increased, it possible to produce a syngas which appropriate for methanol production. So at high temperature and VHSV not greater than 1.5 Lg<sup>-1</sup>h<sup>-1</sup>, the activated carbon was a good catalyst for dry reforming of COG to produce a syngas for methanol synthesis. Taufiq-Yap et al. studies supporter for nickel catalyst that using in methane dry reforming process to produce syngas. CeO<sub>2</sub>/SiO<sub>2</sub> is support that was investigated by varied percent weight of CeO<sub>2</sub> loading; 0 (pure SiO<sub>2</sub>), 3, 9, 18, 30, and 100 (pure CeO<sub>2</sub>) wt.% respectively. Gas mixture feed has CH<sub>4</sub>/CO<sub>2</sub> ratio equivalent and operated at temperature vary from 100 to 800 °C. Results shown that 9 and 18 wt.% loading of  $CeO_2$  were the best condition by they gave approximately same number that is the highest CH<sub>4</sub> and CO<sub>2</sub> conversion, and the highest stability which reaction time at 600 min. CH<sub>4</sub> has a higher conversion than CO<sub>2</sub> because reverse Boudouard reaction and methane decomposition which are side reaction were take place and it cause  $H_2/CO$ ratio close to unity. Fakeeha et al. [22] compared zeolite-supported of Ni metal catalysts for dry reforming of methane in term of stabilities. Using Ni/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub> (SA-6175), Ni/Y-zeolite (CBV500), and Ni/H-ZSM-5 (CBV2030E) as competitor for analyze. Dry reforming perform in reactor, at 101.3 kPa, various temperature, 500, 600, and 700 °C, equivalent feed ratio of CH<sub>4</sub> and CO<sub>2</sub>. It found that using Ni/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub> as catalyst gave CO<sub>2</sub> conversion higher than CH<sub>4</sub> conversion at all calcination and reaction temperature because reverse water gas shift reaction is resulting the syngas ratio lower than one, confirming Bermudez et al. [21] studies Ni/H-ZSM-5 is the optimum catalyst in term of high stability, low carbon deposition, and syngas ratio close to unity. Zhang and Li [45] studied the coke resistant of core-shell Ni@SiO<sub>2</sub> catalyst in dry reforming of methane reaction. The catalyst exhibits the higher coke resistant for CH<sub>4</sub>/CO<sub>2</sub> feed ratio = 1:1, operating temperature above 850 °C and 39 hours reaction, the carbon deposition on catalyst was 0.5 %wt. Ni/SiO2 was also interested by other experiment. Li et al. [46] studied the syngas production by methane dry reforming combined with partial oxidation with Ce-promoted Ni/SiO<sub>2</sub> catalyst. Reaction experiment using fix-bed reactor with  $CH_4/CO_2/O_2$  feed ratio = 40/20/10. Adding Ce to Ni/SiO<sub>2</sub> was able to improve the conversion, H<sub>2</sub> selectivity and syngas ratio for reaction time 360 min, but at reaction time of 180 min, for non Ce doping Ni/SiO<sub>2</sub> offer the low different of results value compared to doping Ce catalysts. Summarized of dry reforming catalysts is list in Table 3.2.

 Table 3.2 Summarized of dry reforming catalysts

| Metal                               | Support                            | Operating<br>Temperature<br>(°C) | Conditions                                                                             | CH <sub>4</sub><br>conversi<br>on (%) | CO <sub>2</sub><br>conversi<br>on (%) | H <sub>2</sub> /CO<br>ratio |
|-------------------------------------|------------------------------------|----------------------------------|----------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------|-----------------------------|
| Ni <sup>[21]</sup>                  | $\gamma Al_2O_3$                   | 800                              | -VHSV 0.75<br>Lg <sup>-1</sup> h <sup>-1</sup><br>-CH <sub>4</sub> /CO <sub>2</sub> =1 | 87                                    | 95                                    | 2.25                        |
| Activated<br>carbon <sup>[44]</sup> | -                                  | 800                              | -VHSV 0.75<br>Lg <sup>-1</sup> h <sup>-1</sup><br>-CH <sub>4</sub> /CO <sub>2</sub> =1 | 30                                    | 68                                    | 3.09                        |
| Ni <sup>[45]</sup>                  | SiO <sub>2</sub>                   | 850                              | -Core-shell<br>catalyst<br>-CH <sub>4</sub> /CO <sub>2</sub> =1                        | 55                                    | 70                                    | 0.7                         |
| Ni <sup>[46]</sup>                  | SiO <sub>2</sub>                   | 850                              | -CH <sub>4</sub> /CO <sub>2</sub> =2                                                   | 70                                    | 40                                    | 1.05                        |
| Ni <sup>[19]</sup>                  | SiO <sub>2</sub>                   | 800                              | -CH <sub>4</sub> /CO <sub>2</sub> =1<br>-5wt.% of Ni                                   | 96                                    | 92                                    | 1.22                        |
| Ni <sup>[19]</sup>                  | CeO <sub>2</sub> /SiO <sub>2</sub> | 800                              | -CH <sub>4</sub> /CO <sub>2</sub> =1<br>-18wt.% of<br>CeO <sub>2</sub><br>-5wt.% of Ni | 97                                    | 97                                    | 1.14                        |

| Metal              | Support               | Operating<br>Temperature<br>(°C) | Conditions                                                      | CH <sub>4</sub><br>conversi<br>on (%) | CO <sub>2</sub><br>conversi<br>on (%) | H <sub>2</sub> /CO<br>ratio |
|--------------------|-----------------------|----------------------------------|-----------------------------------------------------------------|---------------------------------------|---------------------------------------|-----------------------------|
| Ni <sup>[22]</sup> | Y-zeolite<br>(CBV500) | 700                              | -CH <sub>4</sub> /CO <sub>2</sub> =1<br>-Calcine                | 65                                    | 64                                    | 0.97                        |
|                    |                       |                                  | temp 700 °C                                                     |                                       |                                       |                             |
| Ni <sup>[22]</sup> | H-ZSM-5<br>(CBV2030E) | 700                              | -CH <sub>4</sub> /CO <sub>2</sub> =1<br>-Calcine<br>temp 700 °C | 77                                    | 83                                    | 0.98                        |

Table 3.2 Summarized of dry reforming catalysts (cont'd)

According to gasification and reforming catalysts,  $Ni/SiO_2$  was selected for representing of both processes catalyst. The main reasons are inexpensive, commercial available, the satisfied performance, widely-used in industrial and suitable for used in combined gasification and reforming processes. The catalyst preparation procedure is explained in the next chapter.

Chulalongkorn University

## CHAPTER 4

## EXPERIMENTAL AND MODELING

Experimental and simulation methods were described in this chapter by divided into 3 sections. Section 4.1 explains feedstock preparation and characterization. Simulation of combined gasifier with reformer is described in section 4.2. Finally, details of reaction study are provided in section 4.3.

#### 4.1 Materials preparation and characterization

## 4.1.1 Biomass

A charcoal was used for representing biomass, because it shows lower volatile matter than fresh sawdust [27]. Mangrove charcoal was chosen to represent as biomass in Thailand. The samples were sieved to get samples with mesh sizes between 16-20 mesh. Consequently, characterizations of charcoal were carried out to determine weight percentage of components (including carbon, hydrogen, nitrogen and oxygen) and percentage of physical properties (including moisture, volatile matter, fixed carbon and ash) by using ultimate and proximate analysis methods, respectively.

CHULALONGKORN UNIVERSITY

## 4.2 Simulation of combined gasifier and reformer

The simulation used Aspen Plus software. The main purpose was to find out the possible boundary of operating condition for experimental study.

## 4.2.1 Process description



Figure 4.1 Process flow diagram of combined gasifier and reformer

Combined gasification with reforming system composes of gasifier, reformer and  $CO_2$  separation unit. Biomass represented by charcoal is used as feedstock for utilization with inlet reaction agents of steam and oxygen. Produced carbon dioxide is later recycled back to the process for use as reaction agent. Process flow diagram is illustrated in Figure 4.1 and conditions of feedstock and reaction agents are summarized in Table 4.1.

| Table 4.1 | Inlet conditions | of feedstock | and | reaction | agents |
|-----------|------------------|--------------|-----|----------|--------|

| Feedstock                              | Charcoal |
|----------------------------------------|----------|
| Inlet temperature of biomass and $O_2$ | 25 °C    |
| Inlet temperature of CO <sub>2</sub>   | 150 °C   |
| Inlet temperature of steam             | 327 ℃    |
| Pressure                               | 1 atm    |
|                                        |          |

Charcoal was fed to the gasifer, separated into two reactors (RGibbs and RYield). RYield reactor is used for breaking charcoal down to elements containing carbon, hydrogen, oxygen and nitrogen. Consequently, the elements are fed to RGibbs reactor for gasification process with other reaction agents. Subsequently, gasifier effluent is directly fed to reformer modeled by using a REquil reactor in order to upgrade syngas product. The product is treated in the CO<sub>2</sub> absorption unit for eliminating CO<sub>2</sub> out of the product stream, for this step heat required is 3 MJ/kg CO<sub>2</sub> captured. Finally, the CO<sub>2</sub> is recycled to RGibbs for use as reaction agents again. CO<sub>2</sub> capturing stream is installed in order to adjust the CO<sub>2</sub>/Biomass feed ratio.

#### 4.2.2 System modeling

Modeling of gasification process can be done by using each stoichiometric or non-stoichiometric approach, called Gibbs minimization approach. Set of reactions and extent of reaction are known parameters for the case of stoichiometric approach. For non-stoichiometric approach, only the expected product gas components are defined. Many researches confirm that the Gibbs minimization method give good agreement of results as the experimental results [47-49].

Charcoal used as unconventional component in Aspen Plus is fed to RYield reactor for breaking down to elements has input data as listed in Table 4.2. The high heating value of charcoal using the correlation provided by Channiwala and Parikh [49] is shown in Eq. 4.1.

HHV (MJ/kg) = 
$$0.3491x_{C} + 1178.3x_{H} - 0.1034x_{O}$$
 (4.1)

Carbon conversion of simulation process is calculated by Eq. 4.2.

Carbon conversion = 
$$\frac{(C_{in} - C_{out})}{C_{in}} \times 100$$
 (4.2)

Table 4.2 Input data of charcoal

| Variable                              | Data               |
|---------------------------------------|--------------------|
| Feed rate                             | 100 kg/h           |
| Stream class                          | MIXCINC            |
| Properties                            | PENG-ROB           |
| Valid phases                          | Vapor-Liquid       |
| Enthalpy                              | HCOALGEN (6 1 1 1) |
| Density                               | DCOALIGT           |
|                                       |                    |
| Table 4.3 Range of studied parameters |                    |

| Gasifier temperature               | 200-800 °C  |
|------------------------------------|-------------|
| Reformer temperature               | 500-1,000 ℃ |
| $O_2$ /Biomass ratio ( $O_2$ /B)   | 0-0.5       |
| Steam/Biomass ratio ( <i>S/B</i> ) | 0-1         |
| $CO_2/Biomass ratio (CO_2/B)$      | 0-1         |

MULALUNGKUKN UNIVEKSIIY

Table 4.3 shows the range of studied parameters including gasification temperature, reforming temperature,  $O_2/B$  feed ratio, S/B feed ratio and  $CO_2/B$  feed ratio. This work was simulated under isothermal condition.  $O_2/B$  was set in the range of 0 to 0.5 for assuring the partial oxidation occurred. Figure 4.1, cooler 1 was installed to reduce temperature of syngas product to 30 °C and cooler 2 set for removing heat from  $CO_2$  stream in order to obtain the temperature at value of 150 °C. Long-chained hydrocarbon compounds are neglected for this work.

Performances were evaluated in terms of efficiency and  $CO_2$  emission. Efficiency ordinarily reported as cold gas efficiency (CGE) parameter, total net heat of process, and also product gases composition. CGE was defined by Ghassemi and Shahsavan-Markadeh [50] as the following equation (4.3):

$$CGE = \frac{M_{syngas}LHV_{syngas}}{M_{biomass}LHV_{biomass}}$$
(4.3)

$$LHV_{biomass} = \frac{M_{biomass} HHV_{biomass} - 0.5M_{H}L_{298}}{M_{biomass}}$$
(4.4)

$$LHV_{syngas} = \frac{n_{c0}H_{c0,298}^{0} + n_{H_{2}}H_{H_{2},298}^{0} + n_{CH_{4}}H_{CH_{4},298}^{0}}{M_{syngas}}$$
(4.5)

Where M<sub>syngas</sub> = Mass flow rate of syngas (kg/h)

M<sub>biomass</sub> = Mass flow rate of biomass (kg/h)
LHV<sub>syngas</sub> = Lower heating value of syngas (MJ/kg)
LHV<sub>biomass</sub> = Lower heating value of biomass (MJ/kg)
HHV<sub>biomass</sub> = Higher heating value of biomass (MJ/kg)
M<sub>H</sub> = Mass flow rate of atomic hydrogen in biomass (kg/h)
L<sub>298</sub> = Latent heat of water at standard condition 298 K (MJ/kg)
n<sub>i</sub> = Molar flow rate of i component in syngas product (kmol/h)
H<sup>0</sup><sub>1,298</sub> = Heat of combustion of i component in syngas product (MJ/kmol)

 $CO_2$  emission is evaluated in the proposed parameter.  $CO_2$  emission ratio ( $CO_2$ emr) is a fraction of  $CO_2$  emission to total  $CO_2$  produced by process, shown in Eq. 4.6.  $CO_2$  emission ratio value is varied between nearly 0 to 1, lower value indicated less emission, nevertheless, higher value indicated the more  $CO_2$  emission to atmosphere.

$$CO_2$$
 emission ratio  $(CO_2 emr) = \frac{CO_2 emission}{CO_2 total}$  (4.6)

#### 4.3 Reaction study

All of reaction agents ( $O_2$ , steam and  $CO_2$ ) were fed simultaneously to the reactor for investigating the effect of feed ratio. This section describes the apparatus, procedure and studied parameters of reaction study. Schematic of reaction study set was illustrated in Figure 4.2.

## 4.3.1 Procedure

CO<sub>2</sub> (purity 99.8%) was fed at 0.12 ml/s directly from a cylinder instead of recycled process gas due to limitation of equipment. Argon (purity 99.99%) was fed at 2 ml/s as carrier gas in the system added with O<sub>2</sub> (purity 99.99%) with a feed rate of 0.06 ml/s as reaction agent. Steam was generated using water pumped through the syringe pump of 0.3 ml/h and heated up by heating tape to 180 °C. Quartz tube (ID. 8 mm) was used as reactor filled with 2 stages of packed bed, the first stage was a 1 g of charcoal used as biomass with 0.05 g of packed quartz wool and the second was 0.2 g of Ni/SiO<sub>2</sub> catalyst with 0.05 g of packed quartz wool. Gasification and reforming process occurred simultaneous in the same quartz tube reactor for production of syngas. Developed combine gasification with reforming in the same reactor offered the advantage in term of reducing the energy requirement. Furnace was heated up temperature to reach 400 °C, 600 °C and 800 °C for studying the effect of temperature on charcoal gasification. Then the optimum temperature was fixed to study the percentage of Ni loading on catalysts following 5%, 10% and 15%. Finally the effect of  $O_2/H_2O/CO_2$  feed ratio was also investigated. Product gases are later introduced to steam trap for removing water and residue tar before being fed into gas chromatography that was used for analyzing the product gases composition. Table 4.4 summarizes the operating condition of reaction study. All of conditions in reaction study were fixed for 3 hours to achieve the feed ratio conditions.





| Table 4.4 Operating c | conditions |
|-----------------------|------------|
|-----------------------|------------|

| % Ni loading | 5 - 15 %     |
|--------------|--------------|
| Temperature  | 400 – 800 °C |
| Pressure     | Atmosphere   |

Table 4.4 Operating conditions (cont'd)

| 0-0.5 |
|-------|
| 0-2   |
| 0-1.5 |
|       |

#### Table 4.5 Operating conditions of Gas Chromatography

| Gas chromatography   | Shimadzu GC        |
|----------------------|--------------------|
| Detector             | TCD                |
| Carrier gas          | Ar (purity 99.99%) |
| Column temperature   | 70 °C              |
| Injector temperature | 100 °C             |
| Detector temperature | 70 °C              |
| Current              | 70 mA              |
|                      | 2                  |

## 4.3.2 Catalysts and characterization

Ni/SiO<sub>2</sub> catalysts were used in this experiment with various percentages of nickel loading by 5%, 10% and 15%. Nickel(II) nitrate hexahydrate (Sigma-Aldrich) solution, dissolved with distillate water, is used as precursor for impregnation on the commercially available silica sand (SiO<sub>2</sub>) (Sigma-Aldrich) as supporter. Consequently, the catalysts were dried at 105 °C overnight in order to evaporate water. Subsequently, calcination was able to remove the volatile compound under condition of air with temperature of 500 °C for 4 hours.

Prepared catalysts were characterized by X-ray diffraction (XRD) techniques to observe the XRD peak pattern which indicated the presence of metal catalyst and support element using X-ray diffractometer SIEMENS D 5000. The results were shown in a range of  $2\theta$  of 20° and 80°.

BET surface area measurement (BET) technique was conducted by BET Micromeritrics ASAP 2020 using 0.1 g of sample to obtain surface area and pore volume of prepared catalysts.

Scanning Electron Microscope (SEM) is used for investigating the morphology and also measuring the particle size of prepared catalysts analyzed by Hitachi S-3400N with accelerating voltage of 15kV.

 $H_2$  temperature-programmed reduction ( $H_2$ -TPR) was used for investigating the optimum reduction temperature of catalysts before using in the reaction study by Micrometrics Chemisorb 2750. Catalyst sample of 0.1 g was packed with quartz wool of 0.03 g in U-tube quartz reactor, then removed the moisture content from catalyst particle by using N<sub>2</sub> gas with heating to 200 °C and held for 1 hour. Subsequent, the catalyst was cooled down to ambient temperature and heated up to 800 °C under 25 ml/min of 10% H<sub>2</sub>/Ar for temperature programmed reduction. Hydrogen gas used in this step was observed by thermal conductivity detector (TCD) and plot versus temperature.

Thermal gravimetric analysis (TGA) is used for analyzing the coke formation of spent catalysts. Using Mettler-Toledo TGA/SDTA for investigated the percentage of weight loss by carbon on catalysts combustion versus temperature.

4.3.3 Product analysis **CHULALONGKORN UNIVERSITY** 

Effect of reaction temperature was studied by controlling furnace temperature at 400 °C, 600 °C and 800 °C. Percentages of nickel loading on catalyst were varied at 5%, 10% and 15% in order to obtain the optimum condition for the following parameter. Finally, out of optimum %Ni loading and reaction temperature then the several of reaction agents to biomass feed ratio,  $O_2/B$ , S/B and  $CO_2/B$ , were studied.

Product gases were investigated using gas chromatography (TCD) equipment (detailed in Table 4.5). Carbon conversion is calculated using carbon balance of  $CO_2$ , CO, CH<sub>4</sub> and charcoal method by Eq. 4.5 [14].

Carbon conversion (%) = 
$$\frac{\text{formation of } (\text{CO} + \text{CO}_2 + \text{CH}_4)}{\text{feeding of } (\text{Carbon} + \text{CO}_2)} \times 100$$
(4.5)

 $\rm H_2$  and CO yields from experimental were reported by proportion of total mole of  $\rm H_2$  and CO to gram of biomass used by Eq. 4.6 [9].



จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

# CHAPTER 5 RESULTS AND DISCUSSION

## 5.1 Charcoal characterization

In order to study the combined gasifier with reformer process, characterization of raw material charcoal was tested by proximate and ultimate analysis and the results are presented in Table 5.1. Data from proximate and ultimate analysis were used for this study in both of simulation and experiment.

| Proximate (wt%)             |  |        |
|-----------------------------|--|--------|
| Moisture                    |  | 5.30   |
| Volatile matters            |  | 36.26  |
| Fixed carbon                |  | 56.40  |
| Ash                         |  | 2.05   |
| Ultimate (wt%)              |  |        |
| С                           |  | 66.46  |
| Н                           |  | 4.37   |
| O (balance)                 |  | 29.14  |
| Ν                           |  | 0.03   |
| High heating value (MJ/kg)ª |  | 50.581 |

## Table 5.1 Proximate and ultimate analysis of charcoal

<sup>a</sup> calculated using correlation proposed by Channiwala and Parikh [49]

## 5.2 Characterization of fresh catalysts

Before reaction test, characterization of catalysts were conducted by X-Ray Diffraction (XRD), BET surface area measurement, hydrogen temperature programmed reduction ( $H_2$ -TRP) and Scanning Electron Microscopy (SEM).

## 5.4.1 X-Ray Diffraction (XRD)

The XRD peaks of Ni/SiO<sub>2</sub> catalysts with varying loading percentage of Ni from 5%, 10% and 15% were illustrated in Figure 5.1. The diffraction peaks of NiO on catalysts were observed at degree of 37.2°, 43.3 ° and 62.9 ° for 3 types of catalysts as reported by Taufiq-Yap *et al.* [19] and Wang *et al.* [51]. NiO degree shows higher peaks with increasing of %Ni loading.



Figure 5.1 XRD patterns of SiO<sub>2</sub> and Ni/SiO<sub>2</sub> with various percentages loading (a) SiO<sub>2</sub>, (b) 5%Ni/SiO<sub>2</sub>, (c) 10%Ni/SiO<sub>2</sub> and (d) 15%Ni/SiO<sub>2</sub>

## 5.4.2 BET surface area measurement

Surface area results of catalysts are shown in Table 5.2. Increasing in %Ni loading on support results in reduction of surface area (SiO<sub>2</sub> > 5%Ni/SiO<sub>2</sub> > 10%Ni/SiO<sub>2</sub> > 15%Ni/SiO<sub>2</sub>, respectively).

Table 5.2 Physical properties of catalysts

| Catalysts              | Surface area (m <sup>2</sup> /g) |
|------------------------|----------------------------------|
| SiO <sub>2</sub>       | 5.47                             |
| 5%Ni/SiO <sub>2</sub>  | 3.82                             |
| 10%Ni/SiO <sub>2</sub> | 3.28                             |
| 15%Ni/SiO <sub>2</sub> | 2.22                             |

5.4.3 Hydrogen temperature programmed reduction (H<sub>2</sub>-TRP)



Figure 5.2 H<sub>2</sub>-TPR profiles of catalysts

 $H_2$ -TPR analysis was conducted for the catalysts. Reducibility of NiO on support was presented as TPR profile as shown in Figure 5.2. The main reduction peaks of catalysts were observed clearly for temperature around 350 °C to 400 °C. The results are in agreement with Taufiq-Yap *et al.* [19] and Wang *et al.* [51].

## 5.4.4 Scanning Electron Microscopy (SEM)

To understand the influence of %Ni loading on SiO<sub>2</sub> support, catalysts were characterized using SEM as shown in Figure 5.3. The morphology of Ni/SiO<sub>2</sub> with various %Ni loading was observed and compared to SiO<sub>2</sub>. Higher %Ni loading shows higher of NiO sites as seen in Figure 5.3(d). 5%Ni/SiO<sub>2</sub> displayed the slightly difference with SiO<sub>2</sub> support as in Figures 5.3(a) and (b).



(a) SiO<sub>2</sub>



(b) 5%Ni/SiO<sub>2</sub>



(c) 10%Ni/SiO<sub>2</sub>



(d) 15%Ni/SiO<sub>2</sub>

Figure 5.3 SEM images of fresh catalysts

Chulalongkorn University

## 5.3 Model validation

Before studying the simulation, the model was verified by comparing the gasifier model with Renganathan [12] and Chaiwatanodom [11]. The differences were less than 10%, revealing the good agreement of this model as shown in Table 5.3.

|                  | [12]   | [11]   | This work | %error [12] | %error [11]        |
|------------------|--------|--------|-----------|-------------|--------------------|
| T = 800 °C       |        |        |           |             |                    |
| yH <sub>2</sub>  | 0.3070 | 0.3098 | 0.3108    | 1.23        | 0.32               |
| уСО              | 0.6000 | 0.5978 | 0.5977    | 0.39        | 0.02               |
| yCO <sub>2</sub> | 0.0980 | 0.0901 | 0.0892    | 8.99        | 1.01               |
| yCH <sub>4</sub> | 0.0000 | 0.0430 | 0.0023    | n/a         | 94.54 <sup>ª</sup> |
| T = 1000 °C      |        |        | N.        |             |                    |
| yH <sub>2</sub>  | 0.2900 | 0.3025 | 0.3036    | 4.68        | 0.35               |
| уСО              | 0.6250 | 0.6241 | 0.6238    | 0.19        | 0.05               |
| yCO <sub>2</sub> | 0.0810 | 0.0733 | 0.0726    | 10.38       | 0.97               |
| yCH <sub>4</sub> | 0.0000 | 0.0587 | 0.0000    | n/a         | n/a                |
| T = 1200 °C      |        |        |           |             |                    |
| yH <sub>2</sub>  | 0.2900 | 0.2943 | 0.2957    | 1.95        | 0.46               |
| уСО              | 0.6500 | 0.6429 | 0.6424    | 1.18        | 0.08               |
| yCO <sub>2</sub> | 0.0670 | 0.0628 | 0.0620    | 7.49        | 1.31               |
| yCH <sub>4</sub> | 0.0000 | 0.0710 | 0.0000    | n/a         | n/a                |

Table 5.3 Model validation of gasifier (biomass  $CH_{1.4}O_{0.6}$ ,  $CO_2/C = 0.5$ , P = 1 atm)

<sup>a</sup> Neglect due to insignificant value

|                                    | [52]  | This work | %error [52] |  |
|------------------------------------|-------|-----------|-------------|--|
| T = 800 °C                         |       |           |             |  |
| H <sub>2</sub> (kmol/kmol biogas)  | 0.900 | 0.830     | 7.77        |  |
| CO (kmol/kmol biogas)              | 0.630 | 0.690     | 9.52        |  |
| CO2 (kmol/kmol biogas)             | 0.036 | 0.039     | 8.33        |  |
| CH₄ (kmol/kmol biogas)             | 0.020 | 0.018     | 10.00       |  |
| T = 900 °C                         |       |           |             |  |
| H <sub>2</sub> (kmol/kmol biogas)  | 0.970 | 0.907     | 6.49        |  |
| CO (kmol/kmol biogas)              | 0.705 | 0.770     | 9.22        |  |
| CO <sub>2</sub> (kmol/kmol biogas) | 0.010 | 0.011     | 10.00       |  |
| CH4 (kmol/kmol biogas)             | 0.008 | 0.007     | 8.75        |  |
| T = 1000 °C                        |       |           |             |  |
| H <sub>2</sub> (kmol/kmol biogas)  | 0.990 | 0.903     | 8.78        |  |
| CO (kmol/kmol biogas)              | 0.741 | 0.776     | 4.95        |  |
| CO <sub>2</sub> (kmol/kmol biogas) | 0.000 | 0.002     | n/a         |  |
| CH₄ (kmol/kmol biogas)             | 0.000 | 0.000     | n/a         |  |

**Table 5.4** Model validation of reformer ( $CH_4/CO_2 = 1.43$ , P = 1 atm)

## 5.4 Thermodynamic analysis of combined gasifier and reformer process

The simulation results of combined gasifier and reformer process using various reaction agents are reported below.

## 5.3.1 Effect of gasifier temperature

The simulations were proceeded to study the conversion of carbon at different gasifier temperatures. Figure 5.4 illustrates that the gasifier temperature ( $T_g$ ) of 600 °C offers the maximum conversion of charcoal to reach 100%. Due to endothermic reaction of reverse boudouard and steam reforming, increasing reaction temperature leaded to higher conversion accordingly to standard Gibbs free energy changes of gasification reactions [37]. The calculation was showed in appendix A.



Figure 5.4 Effect of gasification temperature on carbon conversion  $(O_2/B = 0.5, CO_2/B \text{ and } S/B = 1)$ 

#### 5.3.2 Effect of reformer temperature

Previously, the gasifier temperature ( $T_g$ ) of 600 °C offers the carbon conversion reaching maximum, this condition is used for studying the reforming temperature ( $T_r$ ) parameter. Figure 5.5(a) shows the effect of reformer temperature on product gases composition, cold gas efficiency (CGE) and syngas ratio (H<sub>2</sub>/CO). Higher reformer temperature offers the lower trend of H<sub>2</sub> and CH<sub>4</sub> composition, but rising of CO. They are mainly explained by endothermic reverse water gas shift and methane reforming reaction. So, syngas ratio is presented in downtrend. CGE is reached the maximum value of 0.51 at 700 °C of reformer. CO<sub>2</sub> emr, the emission ratio of CO<sub>2</sub> to atmosphere, also reduced with higher reformer temperature due to endothermic of reverse boudouard reaction. Total heat required for process is calculated by the difference between heat supplied to each unit in the process and enthalpy of syngas. The minus value means that there is net heat generated from the process. The total heat obtained from process increases with reformer temperature as illustrated in Figure 5.5(b).



(a) Product gas compositions, CGE and  $H_2$ /CO ratio Note \*excluding  $H_2$ O and CO<sub>2</sub>



(b) CO<sub>2</sub> emr and total heat

Figure 5.5 Effect of reformer temperature on (a) product gases and (b) CO<sub>2</sub> emr and total heat ( $T_g = 600$  °C,  $O_2/B = 0.5$ ,  $CO_2/B$  and S/B = 1)

5.3.3 Effect of  $O_2/B$  feed ratio

Gasifier temperature ( $T_g$ ) of 600 °C and reformer temperature ( $T_r$ ) of 700 °C were used as standard condition for the next simulation part. *S/B* and *CO*<sub>2</sub>/*B* feed ratio were both fixed as 1 for studying the effect of oxygen feed ratio. *O*<sub>2</sub>/*B* feed ratio was used at maximum of 0.5 to make the partial oxidation reaction possible. CGE reached the maximum for the *O*<sub>2</sub>/*B* ratio of 0.2 then dropped with higher feed ratio because at higher *O*<sub>2</sub>, combustion reaction is more favorable than partial oxidation reaction. The product gases composition is reported in Figure 5.6(a). The CO<sub>2</sub> emr value becomes higher with increasing *O*<sub>2</sub>/*B* ratio, and the total heat increased with presence of *O*<sub>2</sub> due to exothermic reaction and optimum at *O*<sub>2</sub>/*B* ratio of 0.2 as displayed in Figure 5.6(b).





**Figure 5.6** Effect of  $O_2/B$  feed ratio on (a) product gases and (b)  $CO_2$  emr and total heat ( $T_g$  = 600 °C,  $T_r$  = 700 °C,  $CO_2/B$  and S/B = 1)

## 5.3.4 Effect of S/B feed ratio

Figure 5.7(a) indicates the higher H<sub>2</sub>/CO ratio in the product with increasing molar *S/B* feed ratio from 0 to 1, agreeing with Wei *et al.* [10], because of steam reforming and water gas shift reaction. For *S/B* ratio approximately 0.4, CGE achieved the highest at 0.511 and stayed stable.  $CH_4$  was found to be insignificantly small amount. It can also indicate that water gas shift reaction plays an important role in increasing of  $CO_2$  composition, causing  $CO_2$  emr rising up from 0.21 to 0.32, this was also reported by Wei *et al.* [10]. Total heat obtained from process increased with introduced steam by feed ratio from 0 to 0.4, nevertheless, *S/B* feed ratio beyond 0.4 pulled down the heat obtained due to the increased demand for the steam generating unit as shown in Figure 5.7(b).



(a) Product gas compositions, CGE and  $H_2$ /CO ratio Note \*excluding  $H_2$ O and CO<sub>2</sub>



(b) CO<sub>2</sub> emr and total heat

**Figure 5.7** Effect of *S/B* feed ratio on (a) product gases and (b)  $CO_2$  emr and total heat ( $T_g = 600$  °C,  $T_r = 700$  °C,  $CO_2/B = 1$  and  $O_2/B = 0.5$ )

5.3.5 Effect of  $CO_2/B$  feed ratio

This simulation part is investigated the effect of  $CO_2/B$  ratio. This step is divided into sub-parts for studying the best condition of both  $O_2/B$  and S/B affecting to  $CO_2/B$  ratio.

Before investigating the effect of  $O_2/B$  and S/B feed ratio on  $CO_2/B$ , standard conditions of both  $O_2/B$  and S/B were set as 0.5 and 1, respectively. The results are illustrated in Figure 5.8 as follows. For Figure 5.8(a), increasing in  $CO_2/B$  ration offers lower of H<sub>2</sub> with greater CO because higher CO<sub>2</sub> in feed shifts the reverse boudouard reaction to produce more CO, similar to the reverse water gas shift reaction, resulting in higher and lower in constant rate of CO and H<sub>2</sub>, respectively. This results in a relatively constant CGE value at about 0.51 but the H<sub>2</sub>/CO ratio could be varied in a range of 1 - 1.9. The results are in good agreement of trend with Chaiwatanodom [11].





**Figure 5.8** Effect of  $CO_2/B$  feed ratio on (a) product gases and (b)  $CO_2$  emr and total heat ( $T_g$  = 600 °C,  $T_r$  = 700 °C, S/B = 1 and  $O_2/B$  = 0.5)

The CO<sub>2</sub> emr decreased from 1 to 0.42 when increasing  $CO_2/B$  feed ratio from 0 to 1, indicating that more recycle of CO<sub>2</sub> back to process can reduce the CO<sub>2</sub> emission. However, heat obtained from the process also reduced from 2,011 MJ/hr to 1,552 MJ/hr by supplying to the CO<sub>2</sub> capture and recycle processes as displayed in Figure 5.8(b).

The next sub-part focued on the effect of  $CO_2/B$  ratio at the best condition of  $O_2/B$  feed ratio of 0.2 with S/B = 1. The results are shown in Figure 5.9. Trends are almost similar to  $O_2/B$  of 0.5. Except to CGE, the higher of CGE (indicated more efficiency of syngas product) obtained from  $O_2/B$  ratio of 0.2 higher than  $O_2/B$  ratio 0.5 by 0.51 to 0.77. Product gas compositions and syngas ratio are less difference from the previous condition as below in Figure 5.9(a).



(a) Product gas compositions, CGE and  $H_2$ /CO ratio Note \*excluding  $H_2$ O and CO<sub>2</sub>



(b) CO<sub>2</sub> emr and total heat

Figure 5.9 Effect of  $CO_2/B$  feed ratio on (a) product gases and (b)  $CO_2$  emr and total heat ( $T_g$  = 600 °C,  $T_r$  = 700 °C, S/B = 1 and  $O_2/B$  = 0.2)

For  $CO_2/B$  nearly 1, the  $CO_2$  emr value of 0.13 is less than condition of  $O_2/B = 0.5$  because more  $O_2$  in feed stream produced more  $CO_2$  causing to more emission of  $CO_2$  from the process. However, net heat which obtained in this case was lower than the previous condition for  $CO_2/B$  ratio less than 0.8. This indicated that for  $O_2/B$  ratio of 0.2 condition, the  $CO_2/B$  ratio greater than 0.8 did not only offer high value of CGE and net heat obtained from process but also reduced in cost of  $O_2$  feed and also  $CO_2$  emission as shown in Figure 5.9(b).

Next sub-part is focused on the condition at the ratios of S/B = 0.4 and  $O_2/B = 0.5$ . The product gas compositions, syngas ratio, CGE, CO<sub>2</sub> emr and net heat which obtained from process were shown in Figure 5.10 as follows.





Figure 5.10 Effect of  $CO_2/B$  feed ratio on (a) product gases and (b)  $CO_2$  emr and total heat ( $T_g = 600$  °C,  $T_r = 700$  °C, S/B = 0.4 and  $O_2/B = 0.5$ )

Figure 5.10(a) shows the product gas compositions. H<sub>2</sub> decreased with increasing  $CO_2/B$  ratio but CO increased due to the same reason of the previous condition. However in this case, the composition of H<sub>2</sub> was lower than the previous because the lower of steam for reforming with charcoal in the feed and the CO composition was higher because lower of steam caused the reverse boudouard reaction more preferred. CGE reached the maximum at  $CO_2/B$  of 0.8. For CO<sub>2</sub> emr and net heat shown in Figure 5.10(b), the lowest CO<sub>2</sub> emr achieved was of 0.24 and the net heat obtained was 1,680 MJ/hr for  $CO_2/B = 1$ . This indicates that lowering the  $O_2/B$  suitable for reducing the CO<sub>2</sub> emr while the lowering the *S/B* ratio is suitable for reducing the process.

For the best condition of each  $O_2/B$  and S/B feed ratio, the next sub-part study focused on the condition at  $O_2/B$  and S/B of 0.2 and 0.4, respectively. The effect of  $CO_2/B$  ratio was shown in Figure 5.11.







(b) CO<sub>2</sub> emr and total heat

**Figure 5.11** Effect of  $CO_2/B$  feed ratio on (a) product gases and (b)  $CO_2$  emr and total heat ( $T_g = 600$  °C,  $T_r = 700$  °C, S/B = 0.4 and  $O_2/B = 0.2$ )

In contrast, the ratio of  $CO_2/B$  in this case reached the maximum value of 0.8 because the lack of steam and  $O_2$  from feed stream. *S/B* ratio of 0.4 and  $O_2/B$  ratio of 0.2 are not able to produce enough  $CO_2$  for supplying to the process for the condition of  $CO_2/B$  ratio higher than 0.8. Figure 5.11(a) shows the similar trend of product gas compositions as the previous condition, however, the CGE is lower than the previous condition because lower syngas was produced. The lack of reaction agents caused the lower yield of produced syngas. The  $CO_2$  emr shows the lowest value of 0.11 when  $CO_2/B$  ratio is 1. Considering the net heat obtained, this condition also provides the lowest net heat of 1,229 MJ/hr because of low syngas yield.

From all of the previous conditions, the optimum condition in terms of  $CO_2$  emr, CGE and net heat obtained is proposed as  $O_2/B$  of 0.2 and S/B of 0.8. The results were shown in Figure 5.12.





**Figure 5.12** Effect of  $CO_2/B$  feed ratio on (a) product gases and (b)  $CO_2$  emr and total heat ( $T_g = 600$  °C,  $T_r = 700$  °C, S/B = 0.8 and  $O_2/B = 0.2$ )

Figure 5.12(a) shows the similar trend of gas products, but the optimum of this case acquired from the high CGE was almost equal to the case of  $CO_2/B = 1$ ,  $O_2/B = 0.2$  and S/B = 1. However, the lower S/B of 0.8 in this case offers lower cost in steam generation. Considering  $CO_2$  emr, this case offers the value of 0.10 (Figure 5.12(b)), which was lower than the case of  $CO_2/B = 1$ ,  $O_2/B = 0.2$  and S/B = 1. Although, the highest net heat obtained from the process, acquired from the case of  $CO_2/B = 1$ ,  $O_2/B = 0.2$  and S/B = 1. Although the highest net heat obtained from the process, acquired from the case of  $CO_2/B = 1$ ,  $O_2/B = 0.5$  and S/B = 0.4, is 1,680 MJ/hr but CGE is 0.51 which is lower than that of the present case ( $CO_2/B = 1$ ,  $O_2/B = 0.8$ ) of 0.67 (net heat obtained is 1,468 MJ/hr). Summary of all condition is provided in Table 5.5 as below.



CHULALONGKORN UNIVERSITY

| Table 5.5 Summary of simulation v | with various conditions |     |                     |   |
|-----------------------------------|-------------------------|-----|---------------------|---|
| Condition                         | H <sub>2</sub> /CO      | CGE | CO <sub>2</sub> emr | Z |
| Combined gasifier and reformer    |                         |     |                     |   |

| Net heat obtained (MJ/hr) |                                | 2,011                      | 1,552                      | 1,614                      | 1,680                        | 1,229                          | 1,520                          | 1,468                        |
|---------------------------|--------------------------------|----------------------------|----------------------------|----------------------------|------------------------------|--------------------------------|--------------------------------|------------------------------|
| CO <sub>2</sub> emr       |                                | 1.00                       | 0.32                       | 0.13                       | 0.24                         | 0.11                           | 0.16                           | 0.11                         |
| CGE                       |                                | 0.512                      | 0.512                      | 0.769                      | 0.511                        | 0.476                          | 0.659                          | 0.676                        |
| H <sub>2</sub> /CO        |                                | 1.91                       | 1.00                       | 0.95                       | 0.57                         | 0.75                           | 0.97                           | 0.86                         |
| Condition                 | Combined gasifier and reformer | $O_2/S/CO_2/B = 0.5/1/0/1$ | $O_2/S/CO_2/B = 0.5/1/1/1$ | $O_2/S/CO_2/B = 0.2/1/1/1$ | $O_2/S/CO_2/B = 0.5/0.4/1/1$ | $O_2/S/CO_2/B = 0.2/0.4/0.8/1$ | $O_2/S/CO_2/B = 0.2/0.8/0.8/1$ | $O_2/S/CO_2/B = 0.2/0.8/1/1$ |

 $^{\ast}$  O\_{2}/S/CO\_{2}/B means molar feed ratio of O\_{2}, Steam and CO\_{2} on biomass
Table 5.5 Summary of simulation with various conditions (cont'd)

| Condition                    | H <sub>2</sub> /CO | CGE   | CO <sub>2</sub> emr | Net heat obtained (MJ/hr) |
|------------------------------|--------------------|-------|---------------------|---------------------------|
| Without reformer             |                    |       |                     |                           |
| $O_2/S/CO_2/B = 0.5/1/1/1$   | 1.41               | 0.505 | 0.36                | 1,405                     |
| $O_2/S/CO_2/B = 0.2/1/1/1$   | 1.21               | 0.742 | 0.23                | 1,234                     |
| $O_2/S/CO_2/B = 0.5/0.4/1/1$ | 0.73               | 0.502 | 0.29                | 1,507                     |
| $O_2/S/CO_2/B = 0.2/0.8/1/1$ | 1.10               | 0.655 | 0.20                | 1,158                     |
| Gasifier without CO2 recycle | งาวิท<br>เ Un      |       |                     |                           |
| $O_2/S/CO_2/B = 0.5/1/0/1$   | 2.66               | 0.498 | 1.00                | 2,266                     |
|                              | (<br>(<br>(<br>(   | -     |                     |                           |

 $^{*}$  O\_2/S/CO2/B means molar feed ratio of O2, Steam and CO2 on biomass

### 5.5 Reaction study of combined gasifier and reformer

This part studied the effects of temperature, %Ni loading and feed ratios on product gas compositions, carbon conversion and product gas yield.

### 5.5.1 Effect of temperature

In order to find out the suitable reaction temperature, tests at various reaction temperatures were conducted. Reaction temperatures of 400 °C, 600 °C and 800 °C were investigated, using only 1 g of charcoal in the quartz tube reactor with feeds of  $O_2$ ,  $CO_2$  and steam at a ratio of  $O_2/CO_2/S/B = 0.5/1/1/1$ . Product gas compositions (excluding H<sub>2</sub>O and CO<sub>2</sub>) are listed in Table 5.6 as follow.



Chulalongkorn University

Table 5.6 Effect of reaction temperature on product gas composition

| l <sub>2</sub> O and CO <sub>2</sub> ) | CH <sub>4</sub>  | 42.09    | 41.03 | 1           | 1     | n/a   | n/a   | n/a   | n/a    | n/a   | n/a   | n/a    | n/a |
|----------------------------------------|------------------|----------|-------|-------------|-------|-------|-------|-------|--------|-------|-------|--------|-----|
| ition (%mol) (excluding F              | 0                | 33.26    | 34.15 | 56.74       | 57.94 | 56.16 | 52.72 | 40.80 | 1      | 87.17 | 75.47 | 1      | I   |
| Gas compos                             | H2               | 24.64    | 24.81 | 43.25       | 42.05 | 43.83 | 47.18 | 59.20 | 100.00 | 12.83 | 24.52 | 100.00 | I   |
| Time                                   | (mim)            | 30       | 60    | 120         | 180   | 30    | 60    | 120   | 180    | 30    | 60    | 120    | 180 |
| Reaction                               | temperature (°C) |          | 400   | )<br>)<br>- |       |       | UUY   |       |        |       | 800   | )      |     |
| Biomass                                |                  | Charcoal |       |             |       |       |       |       |        |       |       |        |     |

The results showed at reaction temperatures of 400 °C and 600 °C, 1 g of charcoal was not completely used after 180 minutes of reactions. However, all charcoal was reacted at reaction temperatures of 800 °C after 120 minutes as observed by no product gas produced anymore (the actual feed ratio is  $O_2/CO_2/S/B$  = 0.33/0.66/0.66/1). The mole fractions of product gases at those operating temperatures (excluding H<sub>2</sub>O and CO<sub>2</sub>) were displayed in Figure 5.13.



Figure 5.13 Effect of operating temperature on moles fraction of product gases,  $O_2/CO_2/S/B = 0.5/1/1/1$  and Non-catalyst (excluding H<sub>2</sub>O and CO<sub>2</sub>)

Mole fraction of product gases at 800 °C contained higher CO than  $H_2$ , this is because reverse water gas shift and boudouard reaction are preferred at higher temperature, leading to more CO produced [53]. Carbon conversion and product gas yield were also reported in Figure 5.14.



Figure 5.14 Effect of reaction temperature on carbon conversion and product gas yield,  $O_2/CO_2/S/B = 0.5/1/1/1$  and Non-catalyst

Carbon conversion increased with operating temperature from 40% at 400 °C to 77% at 800 °C. Gas yield was calculated by moles of product gas from experiment divided by gram of used biomass. Increasing reaction temperature offers more carbon conversion and product gas yield. For 800 °C, carbon conversion reaches the maximum of 77%, moreover,  $H_2$  and CO yield also reaches the maximum.

#### 5.5.2 Effect of Ni% loading on catalysts

From the result of the highest carbon conversion, the operating temperature of 800 °C and  $O_2/CO_2/S/B$  feed ratio of 0.5/1/1/1 were fixed to study the effect of Ni% loading on catalysts. There values of Ni% loading of 5%Ni/SiO<sub>2</sub>, 10%Ni/SiO<sub>2</sub> and 15%Ni/SiO<sub>2</sub> were used for evaluating the performance of combined gasifier and reformer process. Product gas compositions are presented in Table 5.7 as follows.

| ing $H_2O$ and $CO_2$ ) | CH <sub>4</sub> | n/a   | e/u        | n/a | n/a      | n/a        | n/a   | n/a   | n/a   | n/a   | n/a                    | n/a   | n/a |
|-------------------------|-----------------|-------|------------|-----|----------|------------|-------|-------|-------|-------|------------------------|-------|-----|
| ition (%mol) (excludi   | 0               | 87.92 | 77.28      | n/a | n/a      | 87.13      | 76.23 | 67.10 | 53.62 | 88.39 | 83.47                  | 67.31 | n/a |
| Gas compos              | H2              | 12.08 | 22.72      | n/a | n/a      | 12.87      | 23.77 | 32.90 | 46.38 | 11.61 | 16.53                  | 32.69 | n/a |
| Time                    | (min)           | 30    | 60         | 120 | 180      | 30         | 60    | 120   | 180   | 30    | 60                     | 120   | 180 |
| Catalvsts               |                 |       | 506Ni/SiO. |     |          | 10%Ni/SiO2 |       |       |       |       | 15%Ni/SiO <sub>2</sub> | 7))   |     |
| Biomass                 |                 |       |            |     | Charcoal |            |       |       |       |       |                        |       |     |

Table 5.7 Effect of Ni% loading on product gas compositions

For the cases of 10%Ni/SiO<sub>2</sub> and 15%Ni/SiO<sub>2</sub>, 1g of charcoal was completely used. However, 5%Ni/SiO<sub>2</sub> reached complete reaction at 100 minutes (the actual feed ratio is  $O_2/CO_2/S/B = 0.27/0.55/0.55/1$ ).



Figure 5.15 Mole fractions of product gases for catalysts with different loading, T = 800 °C and  $O_2/CO_2/S/B = 0.5/1/1/1$  (excluding H<sub>2</sub>O and CO<sub>2</sub>)

Adding the catalysts was able to improve the performance of the process by increasing  $H_2$  and CO contents. The effects of different Ni% loading were conducted for 3 hours. However, only slight changes in mole fraction of the product gases were observed (Figure 5.15) because the amount of  $H_2$  and CO increased in almost proportional ratio.

Therefore, adding reforming catalysts in the reactor could improve the performance by upgrading syngas product as observed in increasing of product gas yield with higher Ni% loading (Figure 5.16). Then, carbon conversion was also investigated and the results were displayed in Figure 5.16.



Figure 5.16 Carbon conversions of various catalysts, T = 800 °C and  $O_2/CO_2/S/B = 0.5/1/1/1$ 

Carbon to gas conversion was calculated by total moles of carbon atom in gas product divided by moles of 1 g charcoal. So, increasing in carbon conversion is due to increase of CO in syngas product as presented in Figure 5.16. By the reason in quantity of syngas product compared to percentage of Ni loading and carbon conversion, so the optimum catalyst is 10%Ni/SiO<sub>2</sub>.

Then, the further studied using 10%Ni/SiO<sub>2</sub> catalyst and operating temperature of 800 °C were conducted. The results of the effects of  $O_2/B$ , S/B and  $CO_2/B$  were described as follows.

#### 5.5.3 Effect of $O_2/B$ feed ratio

The presence of  $O_2$  in feed stream offers both advantage and disadvantage. On one hand, higher  $O_2$  causes the reaction preferably to combustion from partial oxidation reaction which means that more  $CO_2$  was produced than CO. On the other hand, introducing  $O_2$  can be reduced heat supplying to the reactor due to the exothermic of combustion reaction [35]. Figure 5.17 shows the total moles of product gas, represented product gas yield, after 3 hours of reaction time, introducing  $O_2$  from ratio 0 to 0.5 could slightly improve the CO via partial oxidation reaction. Product gas composition with time on stream is shown in Table 5.8.



Table 5.8 Effect of O2/B feed ratio on product gas composition

| H <sub>2</sub> O and CO <sub>2</sub> ) | CH4   | n/a   | n/a   | n/a   | n/a      | n/a   | n/a   | n/a   | n/a   |
|----------------------------------------|-------|-------|-------|-------|----------|-------|-------|-------|-------|
| tion (%mol) (excluding                 | CO    | 85.50 | 75.67 | 68.93 | 66.95    | 87.13 | 76.23 | 67.10 | 53.62 |
| Gas composi                            | H2    | 14.50 | 24.33 | 31.07 | 33.05    | 12.87 | 23.77 | 32.90 | 46.38 |
| Time                                   | (mim) | 30    | 60    | 120   | 180      | 30    | 60    | 120   | 180   |
| 0./R ratio                             |       |       | C     |       |          |       | 0.5   |       |       |
| Biomass                                |       |       |       |       | Charcoal |       |       |       |       |



Figure 5.17 Effect of  $O_2/B$  ratio on carbon conversions and product gas yield, T = 800 °C,  $CO_2/S/B = 1/1/1$  and used 10%Ni/SiO<sub>2</sub>

Introducing the  $O_2$  can improve the process performance as observed in Figure 5.17, by increasing  $O_2/B$  ratio from 0 to 0.5 increased the carbon conversion by 17%.

#### 5.5.4 Effect of S/B ratio

The effect of S/B feed ratio was also investigated in the experimental studies. S/B feed ratios were varied by 0, 1 and 2. All the results indicated that 1 g of charcoal was completely used in 3 hours reaction time. The product gas composition is listed in Table 5.9 as below.

| <sub>2</sub> O and CO <sub>2</sub> ) | CH4    | n/a   | n/a   | n/a   | n/a    | n/a      | n/a   | n/a   | n/a   | n/a   | n/a   | n/a   | n/a |
|--------------------------------------|--------|-------|-------|-------|--------|----------|-------|-------|-------|-------|-------|-------|-----|
| ition (%mol) (excluding H            | CO     | 86.80 | 84.58 | 79.72 | I      | 87.13    | 76.23 | 67.10 | 53.62 | 85.33 | 60.78 | 49.09 | I   |
| Gas compos                           | H2     | 13.20 | 15.42 | 20.28 | 100.00 | 12.87    | 23.77 | 32.90 | 46.38 | 14.67 | 39.22 | 50.91 | I   |
| Time                                 | (mim)  | 30    | 60    | 120   | 180    | 30       | 60    | 120   | 180   | 30    | 60    | 120   | 180 |
| S/B                                  | )<br>} |       | C     | )     |        | L        |       |       |       |       | ~     | 1     |     |
| Biomass                              |        |       |       |       |        | Charcoal |       |       |       |       |       |       |     |

Table 5.9 Effect of S/B feed ratio on product gas composition



Figure 5.18 Effect of S/B feed ratio on mole fraction of product gases, T = 800 °C,  $O_2/CO_2/B = 0.5/1/1$  and used 10%Ni/SiO<sub>2</sub> (excluding H<sub>2</sub>O and CO<sub>2</sub>)

Figure 5.18 shows the effect of *S/B* ratio on product gas mole fractions. This can be observed that higher *S/B* ratio offers higher mole fraction of  $H_2$  because more steam shifts the steam reforming [15] and water gas shift reaction also plays an important role in decreasing of CO [10], according to the product gas yield (Figure 5.19).



Figure 5.19 Effect of S/B feed ratio on carbon conversion and product gas yield, T = 800 °C,  $O_2/CO_2/B = 0.5/1/1$  and used  $10\%\text{Ni/SiO}_2$ 

Figure 5.19 shows that the carbon conversion increased from 77% to 94% by increasing *S/B* ratio from 0 to 2. However, the product gas yield of  $H_2$  increased from *S/B* ratio 0 to 2 due to water gas shift reaction [10]. But, CO yield was observed for the maximum at *S/B* ratio of 1. In overview, in this case of the experimental studies shows poor performance in syngas production due to presence of CO<sub>2</sub> in the feed stream compared to other research with no CO<sub>2</sub> in feed stream [10].

## 5.5.5 Effect of $CO_2/B$ feed ratio

The effect of  $CO_2/B$  ratio is another interesting parameter. The higher  $CO_2/B$  ratio indicated the case with more  $CO_2$  recycled back to the process. This offers an advantage in utilizing  $CO_2$  instead of emitting it to atmosphere. Results of product gas composition are shown in Table 5.10 as below.







Table 5.10 Effect of CO<sub>2</sub>/B feed ratio on product gas composition

| ig $H_2O$ and $CO_2$ ) | CH4            | n/a   | n/a   | n/a   | n/a      | n/a   | n/a   | n/a   | n/a   |
|------------------------|----------------|-------|-------|-------|----------|-------|-------|-------|-------|
| ition (%mol) (excludin | CO             | 61.99 | 40.16 | 40.78 | 33.72    | 85.33 | 83.26 | 79.04 | 70.83 |
| Gas composi            | H <sub>2</sub> | 38.01 | 59.84 | 59.22 | 66.28    | 14.67 | 16.74 | 20.96 | 29.17 |
| Time                   | (min)          | 30    | 60    | 120   | 180      | 30    | 60    | 120   | 180   |
| <i>COAB</i> ratio      |                |       | C     | )     |          |       | 0.5   | 2     |       |
| Biomass                | )              |       |       |       | Charcoal |       |       |       |       |

Table 5.10 Effect of  $CO_{\mathbb{Z}}/B$  feed ratio on product gas composition (cont'd)

| i        | :           | Time  | Gas composi | tion (%mol) (excluding H | <sup>1</sup> <sub>2</sub> O and CO <sub>2</sub> ) |
|----------|-------------|-------|-------------|--------------------------|---------------------------------------------------|
| blomass  | LU⊉∕B ratio | (min) | H2          | 0                        | CH <sub>4</sub>                                   |
|          |             | 30    | 12.87       | 87.13                    | n/a                                               |
|          |             | 60    | 23.77       | 76.23                    | n/a                                               |
|          | 1           | 120   | 32.90       | 67.10                    | n/a                                               |
| Charcoal |             | 180   | 46.38       | 53.62                    | n/a                                               |
| 5        |             | 30    | 18.28       | 81.72                    | n/a                                               |
|          | ر<br>بر     | 60    | 25.56       | 74.44                    | n/a                                               |
|          | )           | 120   | 33.08       | 66.92                    | n/a                                               |
|          |             | 180   | 34.78       | 65.22                    | n/a                                               |

According to the previous work of Wang *et al.* [15] on the effect of  $CO_2$  to propane molar feed ratio, the results indicated that moles of  $H_2$  in product gas were close in both cases of  $CO_2$  to propane molar ratio 1 and 3. The results from this study, as shown in Figure 5.20, show the similar trend.

For  $CO_2/B$  ratio of 0, this can represented the main reaction consisting of steam and partial oxidation. This offered the highest H<sub>2</sub> in syngas product and also high CO. But in term of CO<sub>2</sub> emission, this offers the low performance. The suitable ratio was  $CO_2/B = 1$  due to the highest moles of H<sub>2</sub> and CO in product gas. Carbon conversion and product gas yield were also investigated as presented in Figure 5.21.

And Figure 5.21 also reported that product gas yield for the case of  $CO_2/B$  ratio of 0 shows the highest but dropped with the addition of  $CO_2$  in the feed stream. The highest carbon conversion was observed in the case of  $CO_2/B$  ratio 1; this can be inferred that charcoal was converted into syngas product.



Figure 5.21 Effect of  $CO_2/B$  feed ratio on carbon conversion and product gas yield, T = 800 °C,  $O_2/S/B$  = 0.5/1/1 and used 10%Ni/SiO<sub>2</sub>

| Conditions                   | H <sub>2</sub> /CO |
|------------------------------|--------------------|
| $O_2/S/CO_2/B = 0.5/1/1/1$   | 0.32               |
| $O_2/S/CO_2/B = 0/1/1/1$     | 0.34               |
| $O_2/S/CO_2/B = 0.5/0/1/1$   | 0.21               |
| $O_2/S/CO_2/B = 0.5/2/1/1$   | 0.56               |
| $O_2/S/CO_2/B = 0.5/1/0/1$   | 1.44               |
| $O_2/S/CO_2/B = 0.5/1/0.5/1$ | 0.22               |
| $O_2/S/CO_2/B = 0.5/1/1.5/1$ | 0.37               |

Table 5.11 Syngas ratio on various feed ratio

Finally, Syngas ratio was also observed in all of studied cases. Table 5.11 shows that syngas ratio from various  $O_2/B$  was not much different. By increasing S/B ratio, syngas ratio becomes higher. When increasing  $CO_2/B$  ratio, syngas ratio can be adjusted in wider range than being adjusted by steam and  $O_2$  (0.2-1.4).

### 5.6 Comparison of model and experimental

For case of reaction temperature 800 °C, the mole fraction of product gas from experimental was calculation using raw data as shown in Figure 5.22. Comparison of product gas mole fraction on different percentage from modeling and experimental was conducted to investigate the different of modeling and experimental.



**Figure 5.22** Raw result of product gas from experiment  $(T = 800 \text{ °C}, \text{ non-catalyst and } O_2/S/CO_2/B = 0.5/1/1/1)$ 

For experimental, the product gas mole fraction was calculated as  $y_{H2} = 0.222$ and  $y_{CO} = 0.778$ , for modeling,  $y_{H2} = 0.434$  and  $y_{CO} = 0.566$ . Then calculate the different percentage between modeling and experimental of H<sub>2</sub> was 48.85% and CO was 37.45%.

#### **CHAPTER 6**

### CONCLUSIONS AND RECOMMENDATIONS

In this work, the performance of combined gasifier and reformer using charcoal was evaluated on product gas composition,  $CO_2$  emr, CGE, carbon conversion, product gas yield and  $H_2$ /CO ratio. The effects of temperature, feed ratio and Ni% loading on catalyst were considered. The conclusions and recommendations for future work were listed below.

#### 6.1 Conclusions

1. The thermodynamic analysis results indicated that the suitable operating temperature was 700 °C because this temperature offered the highest CGE and optimum net heat obtained from process. The suitable  $O_2/B$  and S/B feed ratios were at 0.2 and 0.4, respectively, which are considered in terms of CGE and net heat obtained. Increasing  $CO_2/B$  ratio decreased the CO<sub>2</sub> emr, but lower net heat and H<sub>2</sub> content in syngas product were also obtained. H<sub>2</sub>/CO ratio was easier adjusted by altering the  $CO_2/B$  in the feed stream.

2. The results of the experimental study showed the good agreement with thermodynamic analysis simulation. This can be observed from the trend of the results. Higher operating temperature leaded to more carbon conversion and syngas product. Results of  $O_2/B$  feed ratio deviated slightly from simulation results. The H<sub>2</sub> content in syngas product increased with increasing *S/B* ratio. The higher *CO*<sub>2</sub>/*B* feed ratio offered increasing of CO and decreased H<sub>2</sub>. Moreover, the H<sub>2</sub>/CO ratio can be adjusted from 0.2 to 1.4 by varying the *CO*<sub>2</sub>/*B* feed ratio.

3. Catalyst characterization revealed that higher Ni% loading on SiO<sub>2</sub> caused reduction in surface area of catalyst as observed by BET method. From the results of H<sub>2</sub>-TPR peaks, the suitable reducing temperature was in range of 350 °C – 400 °C. 10%Ni/SiO<sub>2</sub> was the optimum catalyst according to the suitable syngas product.

### 6.2 Recommendation

1. From the reaction studied, using the mass flow controller offered the higher accurate in adjusting flow rate than using the needle valve.

2. Gas chromatography should examine the light hydrocarbons, this offers higher accurate in calculating carbon conversion.

3. The size of quartz tube reactor affects the height of charcoal pack bed, bigger quartz tube reactor offers the shorter pack bed, leading to reduce error in temperature profile of furnace.

4. The effect of catalyst support should be considered.

5. Split furnace to two units can be improved in controlling temperature profile of reactor.



CHULALONGKORN UNIVERSITY

#### REFERENCES

- [1] McKendry, P. Energy production from biomass (part 1) overview of biomass. <u>Bioresource Technology</u> 83 (2002): 37-46.
- [2] Cocco, D., Serra, F., and Tola, V. Assessment of energy and economic benefits arising from syngas storage in IGCC power plants. <u>Energy</u> 58 (2013): 635-643.
- [3] Sorgenfrei, M. and Tsatsaronis, G. Design and evaluation of an IGCC power plant using iron-based syngas chemical-looping (SCL) combustion. <u>Applied</u> <u>Energy</u> 113 (2014): 1958-1964.
- [4] Khine, M.S.S., Chen, L., Zhang, S., Lin, J., and Jiang, S.P. Syngas production by catalytic partial oxidation of methane over (La0.7A0.3)BO3 (A = Ba, Ca, Mg, Sr, and B = Cr or Fe) perovskite oxides for portable fuel cell applications. <u>International Journal of Hydrogen Energy</u> 38(30) (2013): 13300-13308.
- [5] Hackett, G.A., et al. Performance of solid oxide fuel cells operated with coal syngas provided directly from a gasification process. <u>Journal of Power Sources</u> 214 (2012): 142-152.
- [6] Mondal, P., Dang, G.S., and Garg, M.O. Syngas production through gasification and cleanup for downstream applications — Recent developments. <u>Fuel</u> <u>Processing Technology</u> 92(8) (2011): 1395-1410.
- [7] H.C., B. and M.J., C. CO2 as a Carbon Neutral Fuel Source via Enhanced Biomass Gasification. <u>Environment Science Technology</u> 43 (2009): 9030-9037.
- [8] Cheng, G., et al. Gasification of biomass micron fuel with oxygen-enriched air: Thermogravimetric analysis and gasification in a cyclone furnace. <u>Energy</u> 43(1) (2012): 329-333.
- [9] Moghtaderi, B. Effects of controlling parameters on production of hydrogen by catalytic steam gasification of biomass at low temperatures. <u>Fuel</u> 86(15) (2007): 2422-2430.
- [10] Wei, L., Xu, S., Zhang, L., Liu, C., Zhu, H., and Liu, S. Steam gasification of biomass for hydrogen-rich gas in a free-fall reactor. <u>International Journal of</u> <u>Hydrogen Energy</u> 32(1) (2007): 24-31.

- [11] Chaiwatanodom, P., Vivanpatarakij, S., and Assabumrungrat, S. Thermodynamic analysis of biomass gasification with CO2 recycle for synthesis gas production. <u>Applied Energy</u> 114 (2014): 10-17.
- [12] Renganathan, T., Yadav, M.V., Pushpavanam, S., Voolapalli, R.K., and Cho, Y.S. CO2 utilization for gasification of carbonaceous feedstocks: A thermodynamic analysis. <u>Chemical Engineering Science</u> 83 (2012): 159-170.
- [13] Antzara, A., Heracleous, E., Bukur, D.B., and Lemonidou, A.A. Thermodynamic analysis of hydrogen production via chemical looping steam methane reforming coupled with in situ CO2 capture. <u>International Journal of Greenhouse Gas Control</u> 32 (2015): 115-128.
- [14] Tomishige, K., Asadullah, M., and Kunimori, K. Syngas production by biomass gasification using Rh/CeO2/SiO2 catalysts and fluidized bed reactor. <u>Catalysis</u> <u>Today</u> 89(4) (2004): 389-403.
- [15] Wang, X., Wang, N., Zhao, J., and Wang, L. Thermodynamic analysis of propane dry and steam reforming for synthesis gas or hydrogen production. <u>International Journal of Hydrogen Energy</u> 35(23) (2010): 12800-12807.
- [16] Pompeo, F., Nichio, N.N., Souza, M.M.V.M., Cesar, D.V., Ferretti, O.A., and Schmal, M. Study of Ni and Pt catalysts supported on **α**-Al2O3 and ZrO2 applied in methane reforming with CO2. <u>Applied Catalysis A: General</u> 316(2) (2007): 175-183.
- [17] Liu, D., Quek, X.-Y., Wah, H.H.A., Zeng, G., Li, Y., and Yang, Y. Carbon dioxide reforming of methane over nickel-grafted SBA-15 and MCM-41 catalysts. <u>Catalysis Today</u> 148(3-4) (2009): 243-250.
- [18] Horváth, A., et al. Sol-derived AuNi/MgAl2O4 catalysts: Formation, structure and activity in dry reforming of methane. <u>Applied Catalysis A: General</u> 468 (2013): 250-259.
- [19] Taufiq-Yap, Y.H., Sudarno, Rashid, U., and Zainal, Z. CeO2–SiO2 supported nickel catalysts for dry reforming of methane toward syngas production. <u>Applied Catalysis A: General</u> 468 (2013): 359-369.
- [20] Huang, B.-S., Chen, H.-Y., Chuang, K.-H., Yang, R.-X., and Wey, M.-Y. Hydrogen production by biomass gasification in a fluidized-bed reactor promoted by an

Fe/CaO catalyst. <u>International Journal of Hydrogen Energy</u> 37(8) (2012): 6511-6518.

- [21] Bermúdez, J.M., Fidalgo, B., Arenillas, A., and Menéndez, J.A. CO2 reforming of coke oven gas over a Ni/YAl2O3 catalyst to produce syngas for methanol synthesis. <u>Fuel</u> 94 (2012): 197-203.
- [22] Fakeeha, A.H., Khan, W.U., Al-Fatesh, A.S., and Abasaeed, A.E. Stabilities of zeolite-supported Ni catalysts for dry reforming of methane. <u>Chinese Journal</u> <u>of Catalysis</u> 34(4) (2013): 764-768.
- [23] Gao, N., Li, A., Quan, C., and Gao, F. Hydrogen-rich gas production from biomass steam gasification in an updraft fixed-bed gasifier combined with a porous ceramic reformer. <u>International Journal of Hydrogen Energy</u> 33(20) (2008): 5430-5438.
- [24] Wu, C. and Williams, P.T. Hydrogen production by steam gasification of polypropylene with various nickel catalysts. <u>Applied Catalysis B:</u> <u>Environmental</u> 87(3-4) (2009): 152-161.
- [25] Wu, C., Wang, Z., Huang, J., and Williams, P.T. Pyrolysis/gasification of cellulose, hemicellulose and lignin for hydrogen production in the presence of various nickel-based catalysts. <u>Fuel</u> 106 (2013): 697-706.
- [26] Puig-Arnavat, M., Bruno, J.C., and Coronas, A. Review and analysis of biomass gasification models. <u>Renewable and Sustainable Energy Reviews</u> 14(9) (2010): 2841-2851.
- [27] Gujar, A.C., Baik, J., Garceau, N., Muradov, N., and T-Raissi, A. Oxygen-blown gasification of pine charcoal in a top-lit downdraft moving-hearth gasifier. <u>Fuel</u> 118 (2014): 27-32.
- [28] Rajvanshi, A.K. <u>Biomass Gasification</u>. Alternative Energy in Agriculture. Vol. II. India: CRC Press, 1986.
- [29] Schapfer, P. and Tobler, J. <u>Theoretical and Practical Investigations Upon the</u> <u>Driving of Motor Vehicles with Wood Gas</u>. 1937.
- [30] Rostrup-Nielsen, J.R. and Hansen, J.B. Steam Reforming for Fuel Cells. (2011): 49-71.
- [31] Smith, M.W. and Shekhawat, D. Catalytic Partial Oxidation. (2011): 73-128.

- [32] Gao, J., Hou, Z., Lou, H., and Zheng, X. Dry (CO2) Reforming. (2011): 191-221.
- [33] Peters, L., Hussain, A., Follmann, M., Melin, T., and Hägg, M.B. CO2 removal from natural gas by employing amine absorption and membrane technology—A technical and economical analysis. <u>Chemical Engineering</u> <u>Journal</u> 172(2-3) (2011): 952-960.
- [34] Udomsirichakorn, J. and Salam, P.A. Review of hydrogen-enriched gas production from steam gasification of biomass: The prospect of CaO-based chemical looping gasification. <u>Renewable and Sustainable Energy Reviews</u> 30 (2014): 565-579.
- [35] Lv, P.M., Xiong, Z.H., Chang, J., Wu, C.Z., Chen, Y., and Zhu, J.X. An experimental study on biomass air-steam gasification in a fluidized bed. <u>Bioresour Technol</u> 95(1) (2004): 95-101.
- [36] Zhang, R., Cummer, K., Suby, A., and Brown, R.C. Biomass-derived hydrogen from an air-blown gasifier. <u>Fuel Processing Technology</u> 86(8) (2005): 861-874.
- [37] Song, T., Wu, J., Shen, L., and Xiao, J. Experimental investigation on hydrogen production from biomass gasification in interconnected fluidized beds. <u>Biomass and Bioenergy</u> 36 (2012): 258-267.
- [38] Ahmed, I. and Gupta, A.K. Characteristics of cardboard and paper gasification with CO2. <u>Applied Energy</u> 86(12) (2009): 2626-2634.
- [39] Garcia, L., Salvador, M.L., Arauzo, J., and Bilbao, R. CO2 as a gasifying agent for gas production from 2 pine sawdust at low temperatures using a Ni-Al coprecipitated catalyst. <u>Fuel Processing Technology</u> 69 (2001): 157-174.
- [40] Karim, G.A. and M.M., M. A kinetic investigation of the reforming of natural gas for the production of hydrogen. <u>Hydrogen Energy</u> 5 (1979): 293-304.
- [41] Park, H.J., et al. Steam reforming of biomass gasification tar using benzene as a model compound over various Ni supported metal oxide catalysts. <u>Bioresource Technology</u> 101 Suppl 1 (2010): S101-3.
- [42] Fierro, V., Klouz, V., Akdim, O., and Mirodatos, C. Oxidative reforming of biomass derived ethanol for hydrogen production in fuel cell applications. <u>Catalysis Today</u> 75 (2002): 141-144.

- [43] Vicente, J., Ereña, J., Montero, C., Azkoiti, M.J., Bilbao, J., and Gayubo, A.G. Reaction pathway for ethanol steam reforming on a Ni/SiO2 catalyst including coke formation. <u>International Journal of Hydrogen Energy</u> 39(33) (2014): 18820-18834.
- [44] Bermúdez, J.M., Fidalgo, B., Arenillas, A., and Menéndez, J.A. Dry reforming of coke oven gases over activated carbon to produce syngas for methanol synthesis. <u>Fuel</u> 89(10) (2010): 2897-2902.
- [45] Zhang, J. and Li, F. Coke-resistant Ni@SiO2 catalyst for dry reforming of methane. <u>Applied Catalysis B: Environmental</u> 176-177 (2015): 513-521.
- [46] Li, B., Xu, X., and Zhang, S. Synthesis gas production in the combined CO2 reforming with partial oxidation of methane over Ce-promoted Ni/SiO2 catalysts. <u>International Journal of Hydrogen Energy</u> 38(2) (2013): 890-900.
- [47] Rulerk, D., Assabumrungrat, S., and Vivanpatarakij, S. <u>Removal of tar from</u> <u>biomass gasification process by steam reforming over nickel catalysts</u>. Master of Engineering, Chemical Engineering Chulalongkorn University, 2011.
- [48] Rodrigues, R., Secchi, A.R., Marcílio, N.R., and Godinho, M. Modeling of biomass gasification applied to a combined gasifier- combustor unit equilibrium and kinetic approaches. <u>10th International Symposium on Process Systems Engineering</u> (2009).
- [49] Channiwala, S.A. and Parikh, P.P. A unified correlation for estimating HHV of solid liquid and gaseous fuels. <u>Fuel</u> 81 (2002): 1051-1063.
- [50] Ghassemi, H. and Shahsavan-Markadeh, R. Effects of various operational parameters on biomass gasification process; a modified equilibrium model. <u>Energy Conversion and Management</u> 79 (2014): 18-24.
- [51] Wang, Y., Wu, R., and Zhao, Y. Effect of ZrO2 promoter on structure and catalytic activity of the Ni/SiO2 catalyst for CO methanation in hydrogen-rich gases. <u>Catalysis Today</u> 158(3-4) (2010): 470-474.
- [52] Gopaul, S.G. and Dutta, A. Dry reforming of multiple biogas types for syngas production simulated using Aspen Plus: The use of partial oxidation and hydrogen combustion to achieve thermo-neutrality. <u>International Journal of</u> <u>Hydrogen Energy</u> 40(19) (2015): 6307-6318.

- [53] Franco, C., Pinto, F., Gulyurtlu, I., and Cabrita, I. The study of reactions influencing the biomass steam gasification process. <u>Fuel</u> 82 (2003): 835-842.
- [54] Smith, J.M., Van Ness, H.C., and Abbott, M.M. <u>Introduction to Chemical</u> <u>Engineering Thermodynamics</u>, ed. 7th. McGraw-Hill Science.



จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University



## APPENDIX A

# Calculation of carbon conversion, CGE, CO2 emr and Total net heat in simulation studied



**Figure A.1** Process flow diagram of combined gasifier and reformer ( $T_g = 600$  °C,  $T_r = 700$  °C and  $O_2/S/CO_2/B = 0.5/1/1/1$ )

For the studied in effect of gasifier temperature, the carbon conversion was calculated using difference of carbon feed rate from stream 1 and stream 2 (Figure A.1) divided by carbon feed rate from stream 1 them multiply by 100 (Eq. 4.2) as showed below.

# A.1 Carbon conversion from condition: $T_g = 400$ °C and $O_2/S/CO_2/B = 0.5/1/1/1$

| Carbon inlet from stream 1 | = 5.127 kmol/hr                            |
|----------------------------|--------------------------------------------|
| Carbon outlet from steam 2 | = 1.098 kmol/hr                            |
| Carbon conversion          | $= \frac{5.127 - 1.098}{5.127} \times 100$ |
| Carbon conversion          | = 78.58 %                                  |

# A.2 CGE from condition: $T_g$ = 600 °C, $T_r$ = 700 °C and $O_2/S/CO_2/B$ = 0.5/1/1/1

For studied in effect of reformer temperature, before calculating CGE, the parameters HHV, LHV of biomass and LHV of syngas needed to know. The HHV of biomass was calculated using data from table 5.1 and Eq. 4.1 as showed below.

HHV<sub>biomass</sub> calculation

So,

$$X_c = 0.6646$$
  
 $X_H = 0.0437$   
 $X_O = 0.2914$   
HHV<sub>biomass</sub> = (0.6646 × 0.03491) +(0.0437 × 1178.3) -(0.2914 × 0.10 34)

Then, LHV of biomass was calculated using Eq. 4.4

#### LHV<sub>biomass</sub> calculation

M<sub>biomass</sub> from stream Biomass (Figure A.1) = 100 kg/hr

$$M_{H} = X_{H} \times M_{biomass} = 0.0437 \times 100 = 4.37 \text{ kg-H/hr}$$

 $L_{298} = 2.44 \text{ MJ/kg}$ 

[54]

$$LHV_{biomass} = \frac{(100 \times 51.48) - (0.5 \times 4.37 \times 2.44)}{100}$$

So, LHV<sub>biomass</sub> = 51.43 MJ/kg

Then, LHV of syngas was calculated using Eq. 4.5

#### LHV<sub>syngas</sub> calculation

$$n_{CO} \text{ from stream syngas (Figure A.1) = 4.95 kmol/hr}$$

$$n_{H2} \text{ from stream syngas (Figure A.1) = 5.08 kmol/hr}$$

$$n_{CH4} \text{ from stream syngas (Figure A.1) = 0 kmol/hr}$$

$$H_{CO,298}^{0} = 283 \text{ MJ/kmol}$$

$$H_{H2,298}^{0} = 242 \text{ MJ/kmol}$$

$$H_{CH4,298}^{0} = 520 \text{ MJ/kmol}$$

$$(H_{1,298}^{0} \text{ is obtained from [54]})$$

$$M_{syngas} = (4.95 \times 28.01) + (5.08 \times 2.00) = 148.90 \text{ kg/hr}$$

$$LHV_{syngas} = \frac{(4.95 \times 283) + (5.08 \times 242) + (0 \times 520)}{148.90}$$

So, LHV<sub>syngas</sub> = 17.66 MJ/kg

CGE was calculated using mass flow rate and lower heating value of biomass and syngas (Eq. 4.3) as showed below.

CGE calculation

GHULALUNGKUKN UNIVERS

 $CGE = \frac{148.90 \times 17.66}{100 \times 51.43}$ 

So, CGE = 0.511

# A.3 CO<sub>2</sub> emr from condition: $T_g$ = 600 °C, $T_r$ = 700 °C and $O_2/S/CO_2/B$ = 0.5/1/1/1

 $CO_2$  emr was calculated using Eq. 4.6 as following step.  $CO_2$  emission is the amounts of  $CO_2$  in stream  $CO_2$  Capture and Syngas Product (Figure A.1). However,  $CO_2$  total is the amounts of  $CO_2$  from stream 3 (Figure A.1).

CO<sub>2</sub> emr calculation

 $CO_2$  emission = 2.41 kmol/hr

 $CO_2$  total = 7.54 kmol/hr

$$CO_2 \text{ emr} = \frac{2.41}{7.54}$$

So,  $CO_2 \text{ emr} = 0.32$ 

A.4 Total net heat from condition:  $T_g = 600$  °C,  $T_r = 700$  °C and  $O_2/S/CO_2/B = 0.5/1/1/1$ 

Total net heat was calculated by summation of net heat from all units in the process. Energy required from  $CO_2$  capture process is 3 MJ/kg- $CO_2$  captured [33] and  $CO_2$  captured flow rate from stream 4 (Figure A.1) is 298.77 kg/hr

$$Q_A = 896.31 \text{ MJ/hr}$$
  
 $Q_s = 289.13 \text{ MJ/hr}$   
 $Q_G = -787.52 \text{ MJ/hr}$   
 $Q_E = 113.02 \text{ MJ/hr}$   
 $Q_{C1} = -454.20 \text{ MJ/hr}$   
 $Q_{C2} = -182.75 \text{ MJ/hr}$ 

So, Total net heat = 896.31 + 289.13 + (-787.52) + 113.02 + (-454.20) + (-182.75)

So, Total net heat = -126.00 MJ/hr

## APPENDIX B

## Calibration curve and calculation of product gas mole

Appendix B shows the calibration curve that used for calculate the mole of product gas. Product gases consist of  $H_2$  and CO; however, by-product gases consist of  $CO_2$  and  $CH_4$ . The samplings of pure gases were used for make the calibration curve of TCD gas chromatography.

## B.1 Calibration curve



Figure B.1 The calibration curve of H<sub>2</sub>



Figure B.3 The calibration curve of CO<sub>2</sub>



Figure B.4 The calibration curve of CH<sub>4</sub>

# B.2 Calculation of product gas mole

Case: operating temperature 400 °C, non-catalyst and  $O_2/S/CO_2/B = 0.5/1/1/1$ 

Table B.1  $H_2$  peak area and mole on time

| Time (min) CHUL | $H_2$ peak area | H <sub>2</sub> mole (x10 <sup>-6</sup> ) |
|-----------------|-----------------|------------------------------------------|
| 10              | 1522            | 0.170644                                 |
| 20              | 1893            | 0.171814                                 |
| 30              | 1412            | 0.170297                                 |
| 40              | 1762            | 0.171401                                 |
| 50              | 929             | 0.168773                                 |
| 60              | 807             | 0.168388                                 |
| 70              | 995             | 0.168981                                 |
| 80              | 1987            | 0.172111                                 |
| Time (min) | $H_2$ peak area | H <sub>2</sub> mole (x10 <sup>-6</sup> ) |
|------------|-----------------|------------------------------------------|
| 90         | 948             | 0.168833                                 |
| 100        | 892             | 0.168656                                 |
| 110        | 938             | 0.168801                                 |
| 120        | 823             | 0.168438                                 |
| 130        | 748             | 0.168201                                 |
| 140        | 909             | 0.168709                                 |
| 150        | 871             | 0.16859                                  |
| 160        | 1866            | 0.171729                                 |
| 170        | 879             | 0.168615                                 |
| 180        | 893             | 0.168659                                 |

Table B.1  $\rm H_2$  peak area and mole on time (cont'd)

For 10 minute,

 $H_2$  peak area = 1522

From figure B.1,  $H_2$  mole =  $3.155 \times 10^{-6}$  (area) +  $1.658 \times 10^{-1}$ 

So,  $H_2 \text{ mole} = (3.155 \times 10^{-6} \times 1522) + (1.658 \times 10^{-1}) = 0.170644 \times 10^{-6}$ 

# Table B.2 CO peak area and mole on time

| Time (min) | CO peak area | CO mole (x10 <sup>-6</sup> ) |
|------------|--------------|------------------------------|
| 10         | 5803         | 0.347251                     |
| 20         | 3291         | 0.256661                     |
| 30         | 2547         | 0.22983                      |
| 40         | 3725         | 0.272312                     |

| Time (min) | CO peak area | CO mole (x10 <sup>-6</sup> ) |
|------------|--------------|------------------------------|
| 50         | 2353         | 0.222834                     |
| 60         | 2601         | 0.231777                     |
| 70         | 1802         | 0.202963                     |
| 80         | 3198         | 0.253307                     |
| 90         | 3857         | 0.277072                     |
| 100        | 2386         | 0.224024                     |
| 110        | 2697         | 0.235239                     |
| 120        | 2301         | 0.220959                     |
| 130        | 1496         | 0.191928                     |
| 140        | 2381         | 0.223844                     |
| 150        | 6148         | 0.359692                     |
| 160        | 3496         | 0.264054                     |
| 170        | 6234         | 0.362794                     |
| 180        | 2619         | 0.232427                     |

Table B.2 CO peak area and mole on time (cont'd)

For 10 minute,

CO peak area = 5803

From figure B.2, CO mole =  $3.606 \times 10^{-5}$  (area) +  $1.379 \times 10^{-1}$ 

So, CO mole =  $(3.606 \times 10^{-5} \times 5803) + (1.379 \times 10^{-1}) = 0.347251 \times 10^{-6}$ 

| Table B.3 ( | CO <sub>2</sub> pe | ak area | and | mole | on time |
|-------------|--------------------|---------|-----|------|---------|
|-------------|--------------------|---------|-----|------|---------|

| Time (min) | CO <sub>2</sub> peak area CO <sub>2</sub> mole (x1 |          |
|------------|----------------------------------------------------|----------|
| 10         | 175123                                             | 9.124952 |
| 20         | 179462                                             | 9.346492 |
| 30         | 181619                                             | 9.456624 |
| 40         | 186867                                             | 9.724575 |
| 50         | 184263                                             | 9.59162  |
| 60         | 183539                                             | 9.554655 |
| 70         | 182534                                             | 9.503341 |
| 80         | 184356                                             | 9.596369 |
| 90         | 186979                                             | 9.730293 |
| 100        | 188216                                             | 9.793452 |
| 110        | 191504                                             | 9.96133  |
| 120        | 194500                                             | 10.1143  |
| 130        | 193341                                             | 10.05512 |
| 140        | 197786                                             | 10.28208 |
| 150        | 198269                                             | 10.30674 |
| 160        | 199804                                             | 10.38511 |
| 170        | 199282                                             | 10.35846 |
| 180        | 199085                                             | 10.3484  |

For 10 minute,

 $CO_2$  peak area = 175123

From figure B.3,  $CO_2$  mole =  $5.105 \times 10^{-5}$  (area) +  $1.835 \times 10^{-1}$ 

So,  $CO_2$  mole =  $(5.105 \times 10^{-5} \times 175123) + (1.835 \times 10^{-1}) = 9.124952 \times 10^{-6}$ 

| Tab | le | B.4 | $CH_4$ | peak | area | and | mo | le | on | time |
|-----|----|-----|--------|------|------|-----|----|----|----|------|
|-----|----|-----|--------|------|------|-----|----|----|----|------|

| Time (min) | CH₄ peak area | CH <sub>4</sub> mole (x10 <sup>-6</sup> ) |
|------------|---------------|-------------------------------------------|
| 10         | 2578          | 0.301217                                  |
| 20         | 3146          | 0.308327                                  |
| 30         | 1749          | 0.29084                                   |
| 40         | 834           | 0.279386                                  |
| 50         | 434           | 0.274379                                  |
| 60         | 765           | 0.278523                                  |
| 70         | 501           | 0.275218                                  |

For 10 minute,

 $CH_4$  peak area = 2578

From figure B.3,  $CH_4$  mole =  $1.251 \times 10^{-5}$  (area) +  $2.689 \times 10^{-1}$ 

So,

 $CH_4$  mole =  $(1.251 \times 10^{-5} \times 2578) + (2.689 \times 10^{-1}) = 0.301217 \times 10^{-6}$ 

จุหาลงกรณ์มหาวิทยาลัย Chulalongkorn University

#### APPENDIX C

# Calculation of product gas yield and carbon conversion

The calculation was showed in case of using 10%Ni/SiO<sub>2</sub>, operating temperature 800 °C and  $O_2/S/CO_2/B = 0.5/1/1/1$ . Details of calculation on product gas yield and carbon conversion were showed below.

# C.1 Product gas yield

 Table C.1 Mole of product gas from gas chromatography and volumetric flow rate of product gas on sampling times

| Sampling<br>times (min) | Flow rate<br>(mL/s) | Mole of $H_2$ | Mole of CO | Mole of CO <sub>2</sub> |
|-------------------------|---------------------|---------------|------------|-------------------------|
| 10                      | 0.38                | 0.4104        | 2 4545     | 9 1465                  |
|                         | 0.50                | 0.1101        | 2.1313     | 7.1103                  |
| 20                      | 0.38                | 0.3274        | 2.4161     | 10.5767                 |
| 30                      | 0.37                | 0.2849        | 1.9299     | 10.9656                 |
| 40                      | 0.40                | 0.2861        | 1.6086     | 11.2152                 |
| 50                      | 0.40                | 0.3500        | 1.4028     | 11.7206                 |
| 60                      | 0.41                | 0.4263        | 1.3677     | 11.9389                 |
| 70                      | 0.42                | 0.6396        | 1.3124     | 11.9536                 |
| 80                      | 0.43                | 0.4107        | 1.3092     | 11.8164                 |
| 90                      | 0.43                | 0.5037        | 1.1899     | 11.6898                 |
| 100                     | 0.41                | 0.3631        | 0.9360     | 11.5575                 |
| 110                     | 0.41                | 0.4116        | 0.9005     | 11.5326                 |
| 120                     | 0.39                | 0.4297        | 0.8766     | 11.7515                 |
| 130                     | 0.39                | 0.4031        | 0.8227     | 11.7724                 |

**Table C.1** Peak area of product gas from gas chromatography and volumetric flowrate of product gas on sampling times (cont'd)

| Sampling    | Flow rate | Peak area of   | Peak area of | Peak area of    |
|-------------|-----------|----------------|--------------|-----------------|
| times (min) | (mL/s)    | H <sub>2</sub> | CO           | CO <sub>2</sub> |
| 140         | 0.40      | 0.3601         | 0.5857       | 12.1097         |
| 150         | 0.38      | 0.3139         | 0.6270       | 12.2573         |
| 160         | 0.37      | 0.2767         | 0.4994       | 12.3414         |
| 170         | 0.37      | 0.1999         | 0.4638       | 12.5347         |
| 180         | 0.37      | 0.1689         | 0.1952       | 12.9367         |

For sampling times of 10 min (Table C.1)

Mole fraction of H<sub>2</sub> = 
$$\frac{0.4104}{0.4104 + 2.4545 + 9.1465} = 0.0342$$
  
Mole fraction of CO =  $\frac{2.4545}{0.4104 + 2.4545 + 9.1465} = 0.2043$   
Mole fraction of CO<sub>2</sub> =  $\frac{9.1465}{0.4104 + 2.4545 + 9.1465} = 0.7615$   
From ideal gas law, PV=nRT  
P = 1 atm  
V = 0.38 mL/s (Table B1)  
R = 0.08206 L·atm/K·mol  
T = 303.15 K  
 $1 \times 0.38 \times 10^{-3}$ 

So,  $n = \frac{1 \times 0.38 \times 10}{0.08206 \times 303.15} = 1.53 \times 10^{-5} \text{ mol/s}$ 

Then, calculate the molar flow rate of each component using mole fraction and molar flow rate of mixture gas Molar flow rate of  $H_2 = 0.0342 \times 1.53 \times 10^{-5} = 5.22 \times 10^{-7}$  mol/s Molar flow rate of CO =  $0.2043 \times 1.53 \times 10^{-5} = 3.12 \times 10^{-6}$  mol/s Molar flow rate of CO<sub>2</sub> =  $0.7615 \times 1.53 \times 10^{-5} = 1.16 \times 10^{-5}$  mol/s

The molar flow rate of product gas on each sampling time was presented in Table C.2 as below.

| Sampling times | Flow rate of $H_2$    | Flow rate of CO       | Flow rate of            |
|----------------|-----------------------|-----------------------|-------------------------|
| (min)          | (mol/s)               | (mol/s)               | CO <sub>2</sub> (mol/s) |
| 10             | 5.22×10 <sup>-7</sup> | 3.12×10 <sup>-6</sup> | 1.16×10 <sup>-5</sup>   |
| 20             | 3.76×10 <sup>-7</sup> | 2.77×10 <sup>-6</sup> | 1.21×10 <sup>-5</sup>   |
| 30             | 3.22×10 <sup>-7</sup> | 2.18×10 <sup>-6</sup> | 1.24×10 <sup>-5</sup>   |
| 40             | 3.51×10 <sup>-7</sup> | 1.97×10 <sup>-6</sup> | 1.38×10 <sup>-5</sup>   |
| 50             | 4.18×10 <sup>-7</sup> | $1.67 \times 10^{-6}$ | $1.40 \times 10^{-5}$   |
| 60             | 5.12×10 <sup>-7</sup> | 1.64×10 <sup>-6</sup> | 1.43×10 <sup>-5</sup>   |
| 70             | 7.77×10 <sup>-7</sup> | 1.59×10 <sup>-6</sup> | 1.45×10 <sup>-5</sup>   |
| 80             | 5.24×10 <sup>-7</sup> | $1.67 \times 10^{-6}$ | $1.51 \times 10^{-5}$   |
| 90             | 6.51×10 <sup>-7</sup> | 1.54×10 <sup>-6</sup> | $1.51 \times 10^{-5}$   |
| 100            | 4.66×10 <sup>-7</sup> | 1.20×10 <sup>-6</sup> | 1.48×10 <sup>-5</sup>   |
| 110            | 5.28×10 <sup>-7</sup> | 1.16×10 <sup>-6</sup> | 1.48×10 <sup>-5</sup>   |
| 120            | 5.16×10 <sup>-7</sup> | 1.05×10 <sup>-6</sup> | 1.41×10 <sup>-5</sup>   |
| 130            | 4.86×10 <sup>-7</sup> | 9.92×10 <sup>-7</sup> | 1.42×10 <sup>-5</sup>   |
| 140            | 4.43×10 <sup>-7</sup> | 7.21×10 <sup>-7</sup> | 1.49×10 <sup>-5</sup>   |

Table C.2 Molar flow rate of product gas on sampling time

| Sampling times | Flow rate of $H_2$    | Flow rate of CO       | Flow rate of            |
|----------------|-----------------------|-----------------------|-------------------------|
| (min)          | (mol/s)               | (mol/s)               | CO <sub>2</sub> (mol/s) |
| 150            | 3.63×10 <sup>-7</sup> | 5.66×10 <sup>-7</sup> | $1.42 \times 10^{-5}$   |
| 160            | 3.14×10 <sup>-7</sup> | 5.23×10 <sup>-7</sup> | $1.40 \times 10^{-5}$   |
| 170            | 2.25×10 <sup>-7</sup> | 2.18×10 <sup>-7</sup> | $1.41 \times 10^{-5}$   |
| 180            | 1.89×10 <sup>-7</sup> | 5.66×10 <sup>-7</sup> | $1.45 \times 10^{-5}$   |

 Table C.2 Molar flow rate of product gas on sampling time (cont'd)

# 11/20

Total mole of each product gas was calculated using integral of each molar flow rate (mlo/s) with sampling time (s) by Trapezoidal rule (Eq. C.1) [54]. The example of calculation was showed as follow.

$$\int_{a}^{b} f(x)dx = (b-a) \left[ \frac{f(a) + f(b)}{2} \right]$$
(C.1)

At sampling time 10 minute (600 sec), H<sub>2</sub> flow rate =  $5.22 \times 10^{-7}$  mol/s

At sampling time 20 minute (1200 sec),  $H_2$  flow rate =  $3.76 \times 10^{-7}$  mol/s

Mole of  $H_2$  from 10 minute to 20 minute was

$$= (1200 - 600) \left[ \frac{(5.22 \times 10^{-7}) + (3.76 \times 10^{-7})}{2} \right]$$

So, Mole of  $H_2$  from 10 minute to 20 minute = 0.000269 mole- $H_2$  and other results are showed in Table C.3.

| Time range (min) | Total mole of $H_2$ | Total mole of CO | Total mole of $CO_2$ |
|------------------|---------------------|------------------|----------------------|
|                  | (mole/g-biomass)    | (mole/g-biomass) | (mole/g-biomass)     |
|                  |                     |                  |                      |
| 10 - 20          | 0.000269            | 0.001768         | 0.007128             |
| 20 - 30          | 0.000209            | 0.001485         | 0.007351             |
|                  |                     |                  |                      |

| Time range (min) | Total mole of $H_2$ | Total mole of CO | Total mole of $CO_2$ |
|------------------|---------------------|------------------|----------------------|
|                  | (mole/g-biomass)    | (mole/g-biomass) | (mole/g-biomass)     |
| 30 - 40          | 0.000202            | 0.001245         | 0.007839             |
| 40 – 50          | 0.000231            | 0.001094         | 0.008323             |
| 50 - 60          | 0.000279            | 0.000995         | 0.008495             |
| 60 – 70          | 0.000387            | 0.000970         | 0.008652             |
| 70 – 80          | 0.000390            | 0.000980         | 0.008881             |
| 80 - 90          | 0.000353            | 0.000963         | 0.009056             |
| 90 - 100         | 0.000335            | 0.000821         | 0.008974             |
| 100 - 110        | 0.000298            | 0.000707         | 0.008884             |
| 110 - 120        | 0.000313            | 0.000662         | 0.008672             |
| 120 – 130        | 0.000301            | 0.000613         | 0.008492             |
| 130 - 140        | 0.000279            | 0.000514         | 0.008734             |
| 140 - 150        | 0.000242            | 0.000434         | 0.008730             |
| 150 - 160        | 0.000203            | 0.000388         | 0.008454             |
| 160 - 170        | 0.000162            | 0.000327         | 0.008436             |
| 170 - 180        | 0.000124            | 0.000222         | 0.008578             |
| Summation        | 0.00457             | 0.01430          | 0.14513              |

Table C.3 Total mole of product gas on sampling time range (cont'd)

Finally, summation of total mole of product gas in each sampling time (Table C.3) is product gas yield.

H<sub>2</sub> yield = 0.00457 mole/g-biomass

CO yield = 0.01430 mole/g-biomass

# C.2 Carbon conversion

Calculation of carbon conversion was used Eq. 4.5. Formation of CO and  $CO_2$  obtained from table C.3. Details were showed below.

Formation of CO = 0.01430 moles-CO

Formation of  $CO_2 = 0.14513$  moles- $CO_2$ 

Feeding of Carbon from biomass (1 gram) = 0.05533 moles-Carbon

Feeding of  $CO_2 (CO_2/B = 1/1) = 0.05533$  moles- $CO_2$ 

So, Carbon conversion =  $\frac{(0.01430 + 14513 - 0.05533)}{(0.05533 + 0.05533)} \times 100 = 94.08\%$ 



จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University



**Figure D.2** Raw result of product gas from experiment  $(T = 600 \text{ }^\circ\text{C}, \text{ non-catalyst and } O_2/S/CO_2/B = 0.5/1/1/1)$ 



Figure D.4 Raw result of product gas from experiment (T = 800 °C, 5%Ni/SiO<sub>2</sub> and  $O_2/S/CO_2/B = 0.5/1/1/1$ )



Figure D.6 Raw result of product gas from experiment (T = 800 °C, 15%Ni/SiO<sub>2</sub> and  $O_2/S/CO_2/B = 0.5/1/1/1$ )



Figure D.8 Raw result of product gas from experiment (T = 800 °C, 10%Ni/SiO<sub>2</sub> and  $O_2/S/CO_2/B = 0.5/0/1/1$ )







Figure D.12 Raw result of product gas from experiment  $(T = 800 \text{ °C}, 10\% \text{Ni/SiO}_2 \text{ and } O_2/S/CO_2/B = 0.5/1/1.5/1)$ 

# APPENDIX E

## Nomenclature

| Н <sub>i,298</sub>               | Heat of combustion of i component (MJ/kmol)                              |  |
|----------------------------------|--------------------------------------------------------------------------|--|
| $\Delta H_r$                     | Heat of reaction at standard condition 298 K (MJ/kmol)                   |  |
| L <sub>298</sub>                 | Latent heat of vaporization of water at standard condition 298 K (MJ/kg) |  |
| М                                | Mass flow rate (kg/hr)                                                   |  |
| $M_H$                            | Mass flow rate of atomic hydrogen in biomass (kg-H/hr)                   |  |
| n <sub>i</sub>                   | Molar flow rate of i component (kmol/hr)                                 |  |
| $T_g$                            | Gasifier temperature (°C)                                                |  |
| T <sub>r</sub>                   | Reformer temperature (°C)                                                |  |
| Ун2, Усо                         | Mole fraction of H <sub>2</sub> and CO (-)                               |  |
| СО <sub>2</sub> /В               | Mole of $CO_2$ as reaction agent per mole of carbon in biomass (-)       |  |
| H <sub>2</sub> /CO               | Molar ratio of H <sub>2</sub> to CO in product syngas (-)                |  |
| <i>O</i> <sub>2</sub> / <i>B</i> | Mole of $O_2$ as reaction agent per mole of carbon in biomass (-)        |  |
| S/B                              | Mole of steam as reaction agent per mole of carbon in biomass (-)        |  |
|                                  |                                                                          |  |

#### Abbreviations

- CGE Cold gas efficiency (-)
- CO<sub>2</sub> emr CO<sub>2</sub> emission ratio (-)
- HHV Higher heating value (MJ/kg)
- LHV Lower heating value (MJ/kg)

# APPENDIX F

#### List of Publication

#### Proceeding

Paripat Kraisornkachit, Supawat Vivanpatarakij and Suttichai Assabumrungrat, "SIMULATION OF COMBINED BIOMASS GASIFIER AND REFORMER FOR SYNGAS PRODUCTION ENHANCED BY USING CO<sub>2</sub> RECYCLE" Proceeding of the 9<sup>th</sup> PACCON 2015, Amari Watergate Hotel Bangkok, Thailand, January 21-23, 2015.



จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

#### VITA

Mr. Paripat Kraisornkachit was born June 12, 1991 in Bangkok, Thailand. He finished high school from Sri Ayudhya School, Bangkok, Thailand, 2009. He received his Bachelor Degree in Chemical Engineering from Kasetsart University in 2013. He was now studying Master Degree at Department of Chemical Engineering, Chulalongkorn University, Thailand.



จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University