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CHAPTER I 

INTRODUCTION 

 

Salinity is a major abiotic stress in plant agriculture worldwide. Almost 71% of 

the earth’s area is occupied by saline water. Due to the influence of salinization, 

alkalization and waterlogging about 95 million hectares of land worldwide is afflicted 

to high salinity. Salt-affected soils cause great economic losses by unacceptable yield 

reduction and in some cases, being far from any reasonable utilization.  

Rice (Oryza sativa L.) is an important food crop for the entire world population. 

Especially, jasmine rice ‘Khao Dok Mali 105’ (KDML 105), a well known fragrant 

Thai rice, is an indica variety originally from Thailand. The grain is characterized by 

its unique appearance, cooking quality and aroma. Because of its characteristic shiny 

white color, resembling that of a jasmine flower, its soft texture and aromatic fragrance 

when cooked, it is increasingly in demand around the world. However, grain yield is 

limited because of its moderately salt-sensitive (Maas 1977).  

Saline soil is enriched with salts which are readily water-soluble i.e. sodium 

chloride (NaCl), sodium sulfate (Na2SO4), calcium chloride (CaCl2), and magnesium 

chloride (MgCl2). It is a major barrier to rice cultivation, reducing productivity 

(Shannon et al. 1998). Sodium chloride salt is a small molecule when oxidized to 

sodium ions (Na+) and chloride ions (Cl-), which is easily absorbed by root cells and 

transferred to plant overall through its xylem vascular tissues (Maathuis and Amtmann 

1999; Rodriguez-Navarro and Rubio 2006; Tester and Davenport 2003). Na+ ions are 

well known as causing toxic damage to plant cells by both ionic and osmotic effects, 
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causing growth retardation, and low productivity (Chinnusamy et al. 2005; Mansour 

and Salama 2004). In addition, effects in plants experiencing salt stress are enhanced 

generation of reactive oxygen species (ROS) including superoxide radical (O2
•−), 

hydrogen peroxide (H2O2), hydroxyl radical (•OH) and singlet oxygen (1O2) leading to 

oxidative stress. Excess of ROS triggers phytotoxic reactions such as lipid peroxidation, 

inactivating enzymes, protein degradation, denaturing DNA molecules and eventually, 

cell death (Bor et al. 2003; Jiang and Zhang 2001). 

   

Reactive Oxygen Species (ROS) 

 ROS are a group of free radicals, reactive molecules, and ions that are derived 

from O2. It has been estimated that about 1% of O2 consumed by plants is diverted to 

produce ROS (Asada 2006) in various subcellular loci such as chloroplasts, 

mitochondria, peroxisomes. ROS are well recognized for playing a dual role as both 

deleterious and beneficial species depending on their concentration in plants. At high 

concentration ROS cause damage to biomolecules, whereas at low/moderate 

concentration it acts as secondary messenger in intracellular signalling cascades that 

mediate several responses in plant cells. 

 O2 itself is a totally harmless molecule as in its ground state it has two unpaired 

electrons with parallel spin which makes it paramagnetic and, hence, unlikely to 

participate in reactions with organic molecules unless it is activated (Apel and Hirt 

2004). Activation of O2 may occur by two different mechanisms: (i) absorption of 

sufficient energy to reverse the spin on one of the unpaired electrons and (ii) stepwise 

monovalent reduction. In the former, 1O2 is formed, whereas in latter, O2 is sequentially 

reduced to O2
• −, H2O2, and •OH. Activation of O2 occurs by two different mechanisms. 
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Stepwise monovalent reduction of O2 leads to formation of O2
•−, H2O2, and •OH, 

whereas energy transfer to O2 leads to formation of 1O2. O2
•− is easily dismutated to 

H2O2 either non-enzymatically or by superoxide dismutase (SOD) catalyzed reaction 

to H2O2. H2O2 is converted to H2O by catalase (CAT), guaiacol peroxidase (GPX), and 

ascorbate peroxidase (APX) (Sharma et al. 2012) (Figure 1.1). 

 

 

Figure 1.1 Schematic representation of generation of reactive oxygen 

species (ROS) in plants (Sharma et al. 2012).  

 The major site of superoxide radical (O2
•−) production is the reaction centers of 

photosystem I (PSI) and a photosystem II (PSII) in chloroplast thylakoids. In 

mitochondria, complex I, II and complex III in the electron transport chain (ETC) 

contribute to superoxide radical production. The terminal oxidases-cytochrome c 

oxidase and the alternative oxidase react with O2, four electrons are transferred and H2O 



 

 

4 

is released. There is situation when O2 can react with other ETC components and there 

in only one electron transferred with the result of O2
•− release. It has been shown that 

in plants 1-2% of O2 consumption leads to O2
•− production (Puntarulo et al. 1988).  

Singlet oxygen is the first excited electronic state of O2. Insufficient energy 

dissipation during photosynthesis can lead to formation of chlorophyll (Chl) triplet 

state. And the Chl triplet state can react with 3O2 to give up very reactive singlet 

oxygen. It has been proved that singlet oxygen formation during photosynthesis can 

have damaging effect on PSI and PSII and on whole machinery of photosynthesis. 

Hydroxyl radicals (•OH) are the highest reactive ROS. It can be produced from 

O2
•− and H2O2 at neutral pH and ambient temperature by iron-catalyzed. 

H2O2 is produced by univalent reduction of O2
•−. H2O2 is moderately reactive 

(Table 1.1). It has been proved that excess of H2O2 leads to oxidative stress. This 

molecule may also inactivate enzymes by oxidizing their thiol groups. Moreover, H2O2 

play dual role in plants. At low concentration it can act as a signal molecule involved 

in acclimatory signaling triggering tolerance to different biotic and abiotic stresses. At 

high concentration it leads to programmed cell death (Quan et al. 2008). It has been 

proved that H2O2 act as a key regulator of in a wide range of physiological processes 

like photorespiration and photosynthesis (Noctor and Foyer 1998b), stomatal 

movement (Bright et al. 2006), cell cycle (Mittler 2006) and growth and development 

(Foreman et al. 2003). H2O2 is taking as a second messenger for signals generated by 

means of ROS due to its relatively long life and high permeability across membranes. 

Many of the general stress genes are regulated by a signaling pathways using H2O2 as 

the messenger (Moller and Sweetlove 2010). 
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Table 1.1 Key reactive oxygen species (ROS), their properties, and main 

scavenging systems in plant cells 

 

ROS 

Half-life 

and 

ability 

 

Mode of action 

 

Cellular sources 

Main 

scavenging 

system 

Superoxide  

radical (O2
•−) 

1 µs,  

30 nm 

Reacts with double 

bond-containing 

compounds such 

as iron-sulphur 

(Fe-S) clusters of 

proteins; reacts 

with nitric oxide 

(NO) to form 

peroxynitrite 

(ONOO-) 

Formed in many 

photooxidation 

reactions 

(flavoprotein, 

redox cycling). 

Mehler reaction in 

chloroplasts, 

mitochondrial 

electron transport 

chains (ETCs) 

reactions, 

glyoximal 

photorespiration, 

peroxisomes, and 

plasma membrane. 

NADPH oxidase 

in membranes. 

Xanthine oxidase 

and membrane 

polypeptides in 

peroxisomes. 

Reactions of ozone 

(O3) in apoplastic 

space 

Superoxide 

dismutases 

(SODs) 

Hydroxyl 

radical (•OH)  

1 ns,  

1 nm 

Extremely reactive 

with protein, 

lipids, DNA, and 

other 

macromolecules 

Reaction of H2O2 

with O2
•− (Haber-

Weiss reaction), 

reactions of H2O2 

with Fe2+ (Fenton 

reaction). 

Decomposition of 

O3 in apoplastic 

space 

Flavonoids, 

prevention 

of •OH 

formation 

by 

sequencing 

Fe 

Hydrogen 

peroxide 

(H2O2) 

1 ms, 

1 µm 

Oxidized proteins; 

reacts with O2
•− in 

a Fe-catalyzed 

reaction to form 
•OH  

ETCs of 

mitochondria, 

chloroplasts, 

endoplasmic 

reticulum, and 

plasma membrane. 

Photorespiration, 

Catalase, 

various 

peroxidases

, 

peroxiredo

xins, and 

flavonoids 
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fatty acid β-

oxidation, urate 

oxidase, and 

MnSOD in 

peroxisomes 

Singlet oxygen 

(1O2) 

1 µs,  

30 nm 

Directly oxidized 

protein, 

polyunsaturated 

fatty acids, and 

DNA 

Photoinhibition, 

photosystem II 

electron transfer 

reactions in 

chloroplasts 

Carotenoid

s and α-

tocopherols 

 

Sites of production of ROS 

 ROS are produced in both unstressed and stressed cells at several locations in 

chloroplasts, mitochondria, plasma membranes, peroxisomes, apoplast, endoplasmic 

reticulum, and cell walls (Blokhina and Fagerstedt 2010; Hossain et al. 2011; Mhamdi 

et al. 2010a) (Figure 1.2). ROS are always formed by the inevitable leakage of electrons 

onto O2 from the electron transport activities of chloroplasts, mitochondria, and plasma 

membranes or as a byproduct of various metabolic pathways localized in different 

cellular compartments. 

 

http://www.hindawi.com/journals/jb/2012/217037/fig2/
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Figure 1.2 Sites of production of reactive oxygen species (ROS) at several 

location in plants (Blokhina & Fagerstedt, 2010; Hossain, Hasanuzzaman, & 

Fujita, 2011; Mhamdi et al., 2010).  

ROS and Oxidative Damage to Biomolecules 

Production and removal of ROS must be strictly controlled in order to avoid oxidative 

stress. When the level of ROS exceeds the defense mechanisms, a cell is said to be in a 

state of “oxidative stress”. However, the equilibrium between production and 

scavenging of ROS is perturbed under a number of stressful conditions such as salinity, 

drought, high light, toxicity due to metals, pathogens, and so forth. Enhanced level of 

ROS can cause damage to biomolecules such as lipids, proteins and DNA (Figure 1.3). 

These reactions can alter intrinsic membrane properties like fluidity, ion transport, loss 

of enzyme activity, protein cross-linking, inhibition of protein synthesis, DNA damage, 

and so forth ultimately resulting in cell death. 
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Figure 1.3 Reactive oxygen species (ROS) induced oxidative damage to 

lipids, proteins, and DNA (Sharma et al. 2012). 

Lipids 

When ROS level reaches above threshold, enhanced lipid peroxidation takes 

place in both cellular and organellar membranes, which, in turn, affect normal cellular 

functioning. Lipid peroxidation aggravates the oxidative stress through production of 

lipid-derived radicals that themselves can react with and damage proteins and DNA. 

The level of lipid peroxidation has been widely used as an indicator of ROS mediated 

damage to cell membranes under stressful conditions. Increased peroxidation 

(degradation) of lipids has been reported in plants growing under environmental 

stresses (Sharma and Shanker Dubey 2005; Tanou et al. 2009). Increase in lipid 

peroxidation under these stresses parallels with increased production of ROS. 

Malondialdehyde (MDA) is one of the final products of peroxidation of unsaturated 
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fatty acids in phospholipids and is responsible for cell membrane damage (Halliwell 

1989). Two common sites of ROS attack on the phospholipid molecules are the 

unsaturated (double) bond between two carbon atoms and the ester linkage between 

glycerol and the fatty acid. The polyunsaturated fatty acids (PUFAs) present in 

membrane phospholipids are particularly sensitive to attack by ROS. A single •OH can 

result in peroxidation of many polyunsaturated fatty acids because the reactions 

involved in this process are part of a cyclic chain reaction. The overall process of lipid 

peroxidation involves three distinct stages: initiation, progression, and termination 

steps. The initial phase of lipid peroxidation includes activation of O2 which is rate 

limiting. O2
•− and •OH can react with methylene groups of PUFA forming conjugated 

dienes, lipid peroxy radicals and hydroperoxides (Smirnoff 1995). 

Proteins 

Proteins are the most abundant cellular component oxidized by ROS 

constituting up to 68% of the oxidized molecules in the cell (Rinalducci et al. 2008). 

Protein oxidation is a covalent modification induced by ROS or by products of 

oxidative stress. Protein oxidation mostly is irreversible, however, a few involving 

sulfur-containing amino acid are reversible (Ghezzi and Bonetto 2003). The most 

susceptible residues to oxidation are the sulphur containing cysteine and methionine. 

The thiol of cysteine may be oxidized by hydroxyl radicals, superoxide and hydrogen 

peroxide to a disulfide that can be readily reversible. Oxidation of methionine in many 

proteins has little effect on protein structure and function.  

DNA 
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Due to biotic and abiotic stresses DNA is exposed to damage. Endogenously 

generated damage to DNA is known as “spontaneous DNA damage”, which is produced 

by reactive metabolites (•OH, O2
•− and NO•). High level of ROS can influence on 

damage to cell structures, nucleic acids, lipids and proteins. It has been considered that 

one of the most reactive is •OH causing damage to all components of DNA molecules. 

This molecule damages purine, pyrimidine and deoxyribose backbone. 1O2 damages 

guanine, and H2O2 and O2
•− do not react at all. Result of DNA damage can be various 

physiological effects like reduced protein synthesis, cell membrane destruction, 

damage to photosynthetic proteins what consequently leads to growth and development 

disorders (Britt 1999). 

A wide range of unfavorable environmental conditions like mentioned drought, 

extreme temperatures, salt stress etc. can induce stresses that alter seriously plant 

metabolism and may increase production of ROS (H2O2, O2
•− ,1O2, 

•OH) inducing an 

oxidative stress in organelles. Plants are unable to escape exposure to these 

environmental constraints and evolved mechanisms in order to survive. To prevent 

appearance of these toxic compounds and their consequences plants have a variety of 

constitutively expressed antioxidant defense mechanisms to scavenge the ROS 

generated.  

 

Physiological and Biochemical Mechanisms of Salt Tolerance 

 Plants develop various physiological and biochemical mechanisms in order to 

survive in soils with high salt concentration. Principle mechanisms include, but are not 

limited to, activation of antioxidant enzyme and synthesis of antioxidant compounds 
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and ion homeostasis and compartmentalization. Research advances elucidating these 

mechanisms are discussed below. 

Antioxidative Defense System in Plants 

 Plants possess complex antioxidative defense system comprising of 

nonenzymatic and enzymatic components to scavenge ROS. In plant cells, specific 

ROS producing and scavenging systems are found in different organelles such as 

chloroplasts, mitochondria, and peroxisomes. ROS-scavenging pathways from 

different cellular compartments are coordinated (Pang and Wang 2008). Under normal 

conditions, potentially toxic oxygen metabolites are generated at a low level and there 

is an appropriate balance between production and quenching of ROS. The balance 

between production and quenching of ROS may be perturbed by a number of adverse 

environmental factors, giving rise to rapid increases in intracellular ROS levels (Noctor 

et al. 2002) , which can induce oxidative damage to lipids, proteins, and nucleic acids. 

In order to avoid the oxidative damage, higher plants raise the level of endogenous 

antioxidant defense (SHARMA 2010). Given the challenge imposed by plant oxygen-

evolving capability, each organelle or compartment has evolved mechanisms for the 

elimination of excess ROS accumulation (Figure 1.4). 
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Figure 1.4 Distribution of the main antioxidant resources in plant cell 

(Racchi 2013). 

Nonenzymatic Components of Antioxidative Defense System 

The non-enzymatic antioxidants refer to the biological activity of numerous 

vitamins, secondary metabolites and other phytochemicals aimed to protect plants 

against ROS activity. Among the most important non-enzymatic antioxidants are 

ascorbic acid (AsA), glutathione (GSH), carotenoids, flavonoids, etc. 

Ascorbic acid (vitamin C) 

Ascorbic acid is the most abundant, powerful and water soluble antioxidant 

which minimizes or prevents damage caused by ROS in plants. Ascorbic acid is one of 

the most studied one and has been detected in majority of plant cell types, organelles 
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and apoplast (Smirnoff 2000). Ascorbic acid reacts not only with H2O2, but also with 

O2
•−, •OH and lipid hydroperoxidases. In turf grass, ascorbic acid concentration 

significantly increases during water deficiency (Hong-Bo et al. 2006). Ascorbic acid 

can also directly scavenge 1O2, O2
•− and •OH and regenerate tocopherol from 

tocopheroxyl radicals providing membrane protection. Moreover, antioxidants like 

ascorbic acid and glutathione are involved in neutralization of secondary products of 

ROS reaction. Fundamental role of ascorbic acid in the plant defense system is to 

protect metabolic processes against H2O2. And also ascorbic acid reacts non-

enzymatically with superoxide, hydrogen peroxide and singlet oxygen (Smirnoff 2000). 

Glutathione (GSH) 

Glutathione (GSH) is a tripeptide (α-glutamyl-cysteinyl-glycine), which is 

considered as the most important intracellular defense against ROS-induced oxidative 

damage. Glutathione has been detected in all cell compartments such as cytosol, 

chloroplasts and endoplasmatic reticulum (Foyer and Noctor 2003). Glutathione is the 

major source of non-protein thiol groups. The nucleophilic nature of the thiol group is 

important in the formation of mercaptide bonds with metals for reacting with selected 

electrophiles. Glutathione is involved in control of H2O2 levels. The change in the ratio 

of its reduced (GSH) to oxidized (GSSG) form during the degradation of H2O2 is very 

important in certain signaling pathway. It has been considered that GSH/GSSG ratio, 

indicative of the cellular redox balance, may be involved in ROS perception (Li and Jin 

2007). Glutathione is important in plant chloroplasts because it helps to protect the 

photosynthetic apparatus from oxidative damage. 

Carotenoids 
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Carotenoids are pigments that are found in plants and microorganisms. There 

are over 600 carotenoids in nature. Carotenoids are lipid soluble antioxidants that plays 

multitude of function in plant metabolism including oxidative stress tolerance. 

Carotenoids take part in three different functions in plants. First one, they absorb the 

light at wavelength between 400 and 550 nm and transfer it to the Chl. Secondly, they 

protect photosynthetic apparatus by quenching a triplet sensitizer (Chl3), 1O2 and other 

harmful free radicals which are naturally formed during photosynthesis (an antioxidant 

function). Thirdly, they are important for the PSI assembly and the stability of light of 

light harvesting complex protein as well as thylakoid membrane stabilization (structural 

function) (Siefermann-Harms 1987). 

Enzymatic Components 

The enzymatic components of the antioxidative defense system comprise of 

several antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), 

guaiacol peroxidase (POX), enzymes of ascorbate-glutathione (AsA-GSH) cycle such 

as ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), 

dehydroascorbate reductase (DHAR), and glutathione reductase (GR) (Noctor and 

Foyer 1998a). These enzymes operate in different subcellular compartments and 

respond in concert when cells are exposed to oxidative stress.  

Table 1.2 Major ROS scavenging antioxidant enzymes. 

Enzymatic antioxidants Enzyme code Reaction catalyzed 

Superoxide dismutase (SOD) EC 1.15.1.1 O2
•− + O2

•− + 2H+ → 

2H2O2 + O2 

Catalase (CAT) EC 1.11.1.6 H2O2 → H2O + ½O2 

Ascorbate peroxidase (APX) EC 1.11.1.11 H2O2 + AsA → 2H2O + 

DHA 
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Guaiacol peroxidase (POX) EC 1.11.1.7 guaiacol + 4H2O2 → 

tetraguaiacol + 8H2O 

Monodehydroascorbate reductase 

(MDHAR) 

 

EC 1.6.5.4 

 

MDHA + NAD(P)H → 

AsA + NAD(P)+ 

Dehydroascorbate reductase (DHAR) EC 1.8.5.1 DHA + 2GSH → AsA 

+GSSG 

Glutathione reductase (GR) EC 1.6.4.2 GSSG + NAD(P)H → 

2GSH + NAD(P)+ 

 

Superoxide Dismutase 

Superoxide dismutase (SOD, EC 1.15.1.1) is the primary scavenger in the 

detoxification of active oxygen species in plants discovered by Irwin Fridovich and Joe 

McCord (McCord and Fridovich 1969). SOD constitutes the first line of defense against 

ROS. Specialization of function among SODs may be due to combination of the 

influence of subcellular localization of the enzyme and upstream sequences in genomic 

sequence. SOD remove O2
•− by catalyzing its dismutation, one O2

•− is reduced to H2O2 

and another to O2 (Table 1.2). SODs are metalloproteins and based on their metal 

cofactor they are classified into three known types: the copper/zinc (Cu/ZnSOD), the 

manganese (MnSOD) and the iron (FeSOD) that are localized in different cellular 

compartment (Mittler 2002). The activity of SOD isoenzymes can be detected by 

negative staining and identified on the base of their sensitivity to KCN and H2O2. 

Cu/ZnSOD is sensitive to both inhibitors; the MnSOD is resistant on both inhibitors, 

whereas FeSOD is resistant to KCN and sensitive to H2O2. The distribution of SOD 

isoenzymes is also distinctive. The Cu/ZnSOD is found in the cytosolic fraction and 

also in chloroplasts in higher plants. MnSOD is found in the mitochondria of eukaryotic 

cells and in peroxisomes. And the FeSOD is usually present in chloroplasts, but they 

are not often found in plants. The up regulation of SODs has been observed in plants 
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subjected to both abiotic (Boguszewska et al. 2010) and biotic stresses (Torres 2010). 

Overexpression of SODs in transgenic plants resulted in higher salt or drought tolerance 

(Badawi et al. 2004). Thus, SOD have a critical role in the survival of plants under 

environmental stresses.  

Catalase 

Among antioxidant enzymes, catalase (CAT, EC 1.11.1.6) was the first enzyme 

to be discovered and characterized. It is a ubiquitous tetrameric heme-containing 

enzyme that catalyzes the dismutation of two molecules of H2O2 into water and oxygen. 

It has high specificity for H2O2, but weak activity against organic peroxides. Plants 

contain several types of H2O2-degrading enzymes, however, CATs are unique as they 

do not require cellular reducing equivalent. CATs have a very fast turnover rate, but a 

much lower affinity for H2O2 than APX. The peroxisomes are major sites of 

H2O2 production. CAT scavenges H2O2 generated in this organelle during 

photorespiratory oxidation, β-oxidation of fatty acids, and other enzyme systems such 

as XOD coupled to SOD (Corpas et al. 2008; Scandalios et al. 1997). Though there are 

frequent reports of CAT being present in cytosol, chloroplast, and mitochondria, the 

presence of significant CAT activity in these is less well established (Mhamdi et al. 

2010b). To date, all angiosperm species studied, contain three CAT genes. Willekens 

et al. (Willekens et al. 1995) proposed a classification of CAT based on the expression 

profile of the tobacco genes. Class I CATs are expressed in photosynthetic tissues and 

are regulated by light. Class II CATs are expressed at high levels in vascular tissues, 

whereas Class III CATs are highly abundant in seeds and young seedlings. 
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H2O2 has been implicated in many stress conditions. When cells are stressed for 

energy and are rapidly generating H2O2 through catabolic processes, H2O2 is degraded 

by CAT in an energy efficient manner (Mallick and Mohn 2000). Environmental 

stresses cause either enhancement or depletion of CAT activity, depending on the 

intensity, duration, and type of the stress (Han et al. 2009; Moussa and Abdel-Aziz 

2008; Sharma and Shanker Dubey 2005). In general, stresses that reduce the rate of 

protein turnover also reduce CAT activity. Stress analysis revealed increased 

susceptibility of CAT-deficient plants to paraquat, salt and ozone, but not to chilling 

(Willekens et al. 1997). Overexpression of a CAT gene from Brassica 

juncea introduced into tobacco, enhanced its tolerance to Cd induced oxidative stress 

(Guan et al. 2009). 

Ascorbate Peroxidase 

Ascorbate peroxidase (APX, EC 1.11.1.11) exists as isoenzymes and plays an 

important role in the metabolism of H2O2 in higher plants. It is clear that a high level 

of endogenous ascorbate is essential to maintain effectively the antioxidant system that 

protects plants from oxidative damage due to biotic and abiotic stresses. APX is 

involved in scavenging of H2O2 into water-water and ascorbate-glutathione cycles and 

utilizes ascorbate as an electron donor. There are five different isoforms of APX base 

on the localization: thylakoid tAPX, glyoxysome membrane APX (gmAPX), 

chloroplast stromal soluble form (sAPX) and cytosolic form of APX (cAPX). It has 

been shown enhanced expression of APX in plants growing under unfavorable 

environmental conditions.  

Glutathione Reductase 
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Glutathione reductase (GR, EC 1.6.4.2) is a flavoprotein oxidoreductase. It is 

an enzyme that is thought to play an essential role in defence system against ROS (Gill 

and Tuteja 2010b). Reducing glutathione disulfide (GSSG) to the sulfhydryl form 

(GSH), which is an important cellular antioxidant in defense against ROS, it sustains 

the reduced status of GSH. Glutathione disulfide contains of two GSH linked by a 

disulphide bridge which can be converted back to GSH by GR (Reddy 1986). GR is 

localized mainly in chloroplasts and small amount of this enzyme has been found in 

mitochondria and cytosol. By catalyzing the reduction of GSH, GR is an enzyme 

involved in regulation of cell energy metabolism. GR catalyzes the NADPH-dependent 

reduction of disulfide bond of GSSG what is important in the maintaining of GSH pool. 

Increased level of GR has been observed in plants subjected to metal, drought and salt 

stresses. 

 

Figure 1.5 ROS and antioxidants defense mechanism (Gill and Tuteja 

2010a). 
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Ion Homeostasis and Salt Tolerance 

Maintaining ion homeostasis by ion uptake and compartmentalization is not 

only crucial for normal plant growth but is also an essential process for growth during 

salt stress. (Hasegawa 2013; Niu et al. 1995; Serrano et al. 1999). Irrespective of their 

nature, both glycophytes and halophytes cannot tolerate high salt concentration in their 

cytoplasm. Hence, the excess salt is either transported to the vacuole or sequestered in 

older tissues which eventually are sacrificed, thereby protecting the plant from salinity 

stress (Reddy et al. 1993; Zhu 2003).  

Major form of salt present in the soil is NaCl, so the main focus of research is 

the study about the transport mechanism of Na+ ion and its compartmentalization. The 

Na+ ion that enters the cytoplasm is then transported to the vacuole via 

Na+/H+ antiporter. Two types of H+ pumps are present in the vacuolar membrane: 

vacuolar type H+-ATPase (V-ATPase) and the vacuolar pyrophosphatase (V-PPase) 

(Dietz et al. 2001; Otoch et al. 2001; Wang et al. 2001). Of these, V-ATPase is the most 

dominant H+ pump present within the plant cell. During nonstress conditions it plays 

an important role in maintaining solute homeostasis, energizing secondary transport 

and facilitating vesicle fusion. Under stressed condition the survivability of the plant 

depends upon the activity of V-ATPase (Dietz et al. 2001). In a study performed by De 

Lourdes Oliveira Otoch and workers (2001) in hypocotyls of Vigna 

unguiculata seedlings, it was observed that the activity of V-ATPase pump increased 

when exposed to salinity stress, activity of V-PPase was inhibited, whereas in the case 

of halophyte Suaeda salsa, V-ATPase activity was upregulated and V-PPase played a 

minor role (Wang et al. 2001). 
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Salt Overly Sensitive pathway (SOS) 

The SOS signalling pathway (Figure 1.6) consists of three major proteins, 

SOS1, SOS2, and SOS3-SOS2, which encodes a plasma membrane Na+/H+ antiporter, 

is essential in regulating Na+ efflux at cellular level. Overexpression of this protein 

confers salt tolerance in plants (Shi et al. 2000). The interaction between SOS2 and 

SOS3 protein results in the activation of the kinase (Guo et al. 2004). The activated 

kinase then phosphorylates SOS1 protein thereby increasing its transport activity 

(Quintero et al. 2002). Besides conferring salt tolerance it also regulates pH 

homeostasis, membrane vesicle trafficking, and vacuole functions (Oh et al. 2010; 

Quintero et al. 2011). Thus with the increase in the concentration of Na+ there is a sharp 

increase in the intracellular Ca2+ level which in turn facilitates its binding with SOS3 

protein. The SOS3 protein then interacts and activates SOS2 protein by releasing its 

self-inhibition. The SOS3-SOS2 complex is then loaded onto plasma membrane where 

it phosphorylates SOS1 (Figure 1.6). The phosphorylated SOS1 results in the increased 

Na+ efflux, reducing Na+ toxicity (Martínez-Atienza et al. 2007). 

 

http://www.hindawi.com/journals/ijg/2014/701596/fig1/
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Figure 1.6 Model of SOS pathway for salinity stress responses 

(Chinnusamy et al. 2004). 

 

Roles of Ca2+ in plants 

 Calcium (Ca2+) is an element that is crucial for numerous biological functions. 

In addition to its key roles in the structural integrity of the cell wall and the membrane 

system, it has been shown to act as an intracellular regulator in many aspects of plant 

growth and development including stress responses (White and Broadley 2003). An 

increased cytosolic Ca2+ has dual roles in regulating H2O2 homeostasis (Figure 1.7), 

initiating the stress signal transduction pathways for stress tolerance. Ca2+ release can 

be primarily from an extracellular source (apoplastic space) as the addition of EGTA 

or BAPTA blocks calcineurin mediated activity (Figure 1.8). Furthermore, calcium-

binding proteins (calcium sensors) can provide an additional level of regulation in 
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calcium signaling. These sensor proteins recognize and decode the information 

provided in the calcium signatures and relay the information downstream to initiate a 

phosphorylation cascade, leading to regulation of gene expression. However, as high 

Ca2+ concentrations can be toxic to cellular energy metabolism (Wu et al. 1996).  

 

 

Figure 1.7 Model showing Ca2+-triggered changes leading to the positive 

and negative regulation of H2O2 level in plants. For positive regulation, 

extracellular signals trigger an influx of Ca2+, which increases the generation of 

H2O2. This may occur by activating NADPH oxidase, which has affinity to Ca2+, 

and increasing the production of NADPH by means of CaM-regulated NAD 

kinase. For negative regulation, Ca2+ binds to CaM, and the Ca2+/CaM complex 
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stimulates the catalytic activity of catalase, leading to the rapid degradation of 

H2O2. The increase in H2O2 can boost the Ca2+ influx by activating the calcium 

channel (Yang and Poovaiah 2002). 

 

 

Figure 1.8 Regulation of ion (e.g., Na+, K+, and Ca2+) homeostasis by SOS 

and related pathways in relation to salinity stress tolerance (Tuteja 2007). 

 

Ca2+-modulated proteins 

Ca2+-dependent modulation of cellular processes occurs via intracellular Ca2+-

binding proteins, also known as Ca2+ sensors, of which calmodulin (CaM) is one of the 

best characterized. CaM has no catalytic activity of its own but, upon binding Ca2+, it 
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activates numerous target proteins involved in a variety of cellular processes. Recent 

reviews on CaM summarize the roles of CaM as a Ca2+ signal transducer in plants 

(Snedden and Fromm 1998; Zielinski 1998) and animals (Chin and Means 2000; Van 

Eldik and Watterson 1998). In addition, a number of recent reviews are available on the 

subject of other families of important Ca2+ sensors present in plants, such as the Ca2+-

dependent (CaM-independent) protein kinases (CDPKs) (Harmon et al. 2000) and 

annexins, whose association with membranes through binding of anionic phospholipids 

is Ca2+ dependent (Hofmann et al. 2000). A brief account of the important features of 

CaM as a Ca2+ transducer is presented below. 

This study focuses on calmodulin, an essential Ca2+ transducer in eukaryotic 

cells and its functions in plants.  

 

Calmodulin 

Calmodulin is a protein that function as intracellular transducers of Ca2+ signals 

contain a common structural motif, the ‘EF hand’ (Strynadka and James 1989), which 

is a helix-loop-helix structure that binds a single Ca2+ ion. These motifs typically occur 

in closely linked pairs, interacting through antiparallel β-sheets (Strynadka and James 

1989). This arrangement is the basis for cooperativity in Ca2+ binding. The superfamily 

of EF-hand proteins is divided into several classes based on differences in number and 

organization of EF-hand pairs, amino acid sequences within or outside the motifs, 

affinity to Ca2+ and/or selectivity and affinity to target proteins (Crivici and Ikura 1995; 

Strynadka and James 1989). CaM is an acidic EF-hand protein present in all eukaryotes. 

The CaM prototype is composed of 148 amino acids arranged in two globular domains 
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connected with a long flexible helix. Each globular domain contains a pair of intimately 

linked EF hands (Figure 1.9a). 

 

 

Figure 1.9 Three-dimensional structure of calmodulin (CaM). (a) Crystal 

structure of Ca2+/CaM. (b) Solution structure of Ca2+/CaM-peptide complex.    

α-helices are shown as cylinders (violet in CaM, light blue in the target peptide); 

β-sheets are indicated as deep purple arrows, and Ca2+ ions as spheres in light 

brown. The structural images were created with the Insight II software 

(BIOSYM Technology, San Diego, CA, USA) using the Brookhaven data base 

structure codes 3CLN and 2BBM, respectively. The structural images show 

only the backbones of CaM and the peptide (i.e. no side chains) (Snedden and 

Fromm 1998). 
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CaM and plant responses to environmental stimuli 

In view of the role Ca2+ plays in mediating plant responses to biotic (Levine et 

al. 1996) and abiotic (Knight 1999) stimuli, it is not surprising that CaM, as an 

important cellular Ca2+ receptor, is involved in mediating these responses.  

Calcium signals decoding elements and plant salt resistance 

When Ca2+ is in deficit, plants are more susceptible to damage by low pH or 

high salt. Numerous results suggest that external and apoplastic Ca2+ directly alleviates 

symptoms produced by ion stresses or mineral toxicities, such as proton, Na+, Al3+, and 

Cl- toxicities, and Ca2+ also helps to establish a favorable K+: Na+ ratio under salt stress 

(Plieth 2005). 

It is suggested that intracellular calcium signaling through a calcineurin-like 

pathway mediates the beneficial effect of calcium on plant salt tolerance (Liu and Zhu 

1998). A salt stress induced Ca2+-dependent signaling network was described and 

illustrated in detail to mediate Na+ homeostasis and salt tolerance, indicating that 

Ca2+ transporters are closely related to plant salt tolerance. It was also suggested that 

CaM activation might be necessary in calcium promotion of the accumulation of proline 

in fig calli, and the addition of calcium to media alleviated the inhibition of fig callus 

growth under salt stress demonstrating that CaM might act jointly with Ca2+ under the 

support of calcium signals decoding elements in plant responses to salt stress (Wang et 

al. 1999). It was found that in barley roots, the activation of tonoplast H+-ATPase and 

the regulation of Na+ and K+ uptake under NaCl stress may be related to Ca2+-CaM 

system, showing that calcium signals decoding elements may participate in the process 
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of plant signaling responses to salt stress through accordingly regulating cytosolic 

Ca2+ concentration (Song et al. 2008).  

Metabolic regulation by CaM 

CaM appears to play a signalling role in several metabolic pathways. Plants are 

unique among eukaryotes in producing their own carbohydrates from inorganic carbon, 

the synthesis of which is controlled by developmental as well as environmental signals. 

Studies have implicated Ca2+/CaM in phototransduction pathways that control 

chloroplast development (Bowler and Chua 1994). This developmentally regulated 

process establishes the machinery for the photosynthetic activity of plants whereby 

carbon is fixed into sugars. In addition, CaM was also suggested to participate in sugar 

sensing and sugar signal transduction (Smeekens and Rook 1997).  

A previous study by Saeng-ngam and workers (2012), the transgenic rice plants 

containing OsCaM1-1 gene under the control of 35SCaMV promoter (35SCaMV-

OsCaM1-1) were constructed by Agrobacterium-mediated transformation via 

pCAMBIA1301 plasmid. Three transgenic rice lines harboring the 35SCaMV-

OsCam1-1 and transgenic lines harboring the T-DNA from pCAMBIA1301 alone as 

negative controls have been produced. Therefore the aim of this study is to demonstrate 

that OsCaM1-1 gene causes protection of plant cells against salt stress in the transgenic 

rice plants overexpressing OsCaM1-1 gene under the control of 35SCaMV promoter 

compared to the control of transgenic rice plants that harbor the T-DNA alone without 

the inserted gene as well as the wild-type KDML 105 plants, with special regard to 

changes in antioxidant enzymes like SOD, CAT and also enzymes of AsA-GSH cycle 
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(APX and GR), as well as ROS scavenging activity, photosynthetic pigment contents, 

lipid peroxidation and growth.  
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Confirmation of the over-expression level of OsCaM1-1 gene in transgenic rice 

plants 

 A previous study by Takpirom, the over-expressed of OsCaM1-1 gene regulated 

by 35SCaMV in the transgenic rice plants was confirmed by performing northern blot 

analysis of total RNA (Figure 1.10). 

 

 

 

Figure 1.10 RNA blot analysis and quantitative comparison of OsCaM1-1 

gene under in vitro normal growth condition of wild-type plants, two 

independent control rice plants lines and three transgenic rice plants. Each lane 

was loaded with total RNA isolated from leaves. RNA was analyzed by gel blot 

hybridization with a denatured 32P-oligolabeled OsCaM1-1 probe. An ethidium 

bromide-staning gel of each analysis is shown under its corresponding 

autoradiography (Takpirom, 2007). 
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Objectives of the thesis 

Evaluate the antioxidative systems, growth, photosynthetic pigments, lipid 

peroxidation and scavenging activity in transgenic rice Oryza sativa L. ‘KDML105’ 

overexpressing OsCaM1-1 to comparison with the control transgenic lines and wild-

type plants. 
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CHAPTER II 

MATERIALS AND METHODS 

 

2.1 Materials 

 2.1.1 Rice seeds 

Rice Oryza sativa L. cultivar Khao Dok Ma Li 105 (KDML 105) and 

transgenic rice plants overexpressing OsCaM1-1 gene. 

2.1.3 Instruments 

Autoclave:  Labo Autoclave MLS-3020 (Sanyo Electric Co., Ltd.,       

Japan) 

Automatic micropipette:  Pipetman P2, P20, P100, P200, P1000  (Gilson  

Medical Electronics S.A., France) 

Balance:  Sartorius CP423s (Scientific Promotion Co. USA) 

Centrifuge 5804R  (Eppendorf, Germany) 

Centrifuge Sorvall Legend XTR (Thermo Scientific, USA) 

CentriVap Concentrator (Labconco, USA) 

-20 ºC Freezer (Sharp, Japan) 

Forma -86C ULT Freezer (Thermo Electron Corporation, USA) 

Forma ClassII, A2 Biological safety cabinet (Thermo Electron  

Corporation, USA) 

Microwave oven (Panasonic, Japan) 

Mixer Mill MM400 (Retsch®, Germany) 
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60 ºC Oven (Memmert, Germany) 

Oven Series8000 (Contherm, New Zealand) 

Plant Growth Chamber (Human Lab, South Korea) 

pH meter:  pH900  (Precisa, Germany) 

Spectrophotometer:  DU®640 (Beckman Coulter, USA) 

-80 ºC Ultra low temperature freezer (New Brunswick Scientific,  

England) 

Vibro shaker (Labinco BV, Netherlands) 

Vortex mixer:  Model K 550-GE (Scientific Inc., USA) 

2.1.4 Inventory supplies 

Cryo kit for cooling the grinding jars with liquid nitrogen  (Retsch®,  

Germany) 

Filter paper:  Whatman No.1 (Whatman International Ltd., England) 

Grinding balls, 2 mm Ø, stainless steel (Retsch®, Germany) 

Grinding jar, PTFE 1.5 ml (Retsch®, Germany) 

Microcentrifuge tube 1.5 ml (Axygen Heyward, USA) 

Pipette tips 100, 1000 µl (Axygen Heyward, USA) 

2.1.5 Chemicals and reagents 

  Agar (Bacteriological grade) (Criterion Chemical LLC, USA) 

  Albumin, Bovine serum (Sigma Chemical Co., USA) 

  Ammonium dihydrogen orthophosphate (BDH laboratory  

reagent, England) 
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  Ammonium sulfate (Carlo Erba Reagenti, Italy) 

  L-ascorbic acid, 99% (Aldrich, Germany) 

  Boric acid (Univar, Australia) 

  Calcium chloride dihydrate (for analysis) (Carlo Erba  

Reagenti, Italy) 

  Calcium nitrate-4-hydrate, 98% (Riedel-deHaën®, Germany) 

  Casein hydrolysate (Himedia laboratories Pvt, Ltd., India) 

  Cobaltous chloride hexahydrate (Fluka, Switzerland) 

  Copper(II) sulfate  (Carlo Erba Reagenti, Italy) 

  Coomassie® Brilliant Blue G-250 (Fluka, Switzerland) 

  N,N-Dimethylformamide  (Carlo Erba Reagenti, Italy) 

  2,2-diphenyl-1-picryl-hydrazyl-hydrate (Sigma-Aldrich,  

Germany) 

Dithiothreitol (Bio Basic Inc., Canada) 

  Ethanol, absolute (BDH, England) 

  Etylenediaminetetraacetic acid disodium salt (EDTA) (Carlo  

Erba Reagenti, Italy) 

Gallic acid (Sigma Chemical Company Co., USA) 

L-glutamine (Phyto Technology LaboratoriesTM, USA) 

  Guaiacol (Sigma-Aldrich, Germany) 

  Hydrochloric acid (Merck, Germany) 

  Hydrogen peroxide (Sigma Chemical Co., USA) 

  Iron(II) sulphate (Carlo Erba Reagenti, Italy) 

  Magnesium chloride (Carlo Erba Reagenti, Italy) 
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Magnesium sulfate (Sigma Chemical Co., USA) 

  Manganese(II) sulfate (Sigma Chemical Co., USA) 

  Methanol (Merck, Germany) 

  L-methionine (Sigma-Aldrich, Germany) 

  Myo-inositol (Sigma-Aldrich, Germany) 

  Nicotinic acid (Sigma-Aldrich, Germany) 

  Nitroblue tetrazolium (NBT) (Fermentas, Inc., USA) 

  Phosphoric acid, 85% (Lab Scan, Ireland) 

  Potassium chloride (Carlo Erba Reagenti, Italy) 

  Potassium dihydrogen phosphate (Carlo Erba Reagenti, Italy) 

  di-Potassium hydrogen phosphate (Carlo Erba Reagenti, Italy) 

  Potassium iodide (Sigma Chemical Co., USA) 

  Potassium nitrate (Carlo Erba Reagenti, Italy) 

  L-proline (Phyto Technology LaboratoriesTM, USA) 

  Protease inhibitor mix (GE Healthcare, England) 

  Pyridoxine (Sigma Chemical Co., USA) 

  Riboflavin, 98% (Sigma Chemical Co., USA) 

  Sodium carbonate, anhydrous (Carlo Erba Reagenti, Italy) 

  Sodium chloride (Carlo Erba Reagenti, Italy) 

  Sodium dihydrogen phosphate (Carlo Erba Reagenti, Italy) 

  di-Sodium hydrogen phosphate  (Carlo Erba Reagenti, Italy) 

  Sodium hypochlorite (Haiter, Thailand) 

  Sodium molybdate (Sigma Chemical Co., USA) 

  Sucrose (Carlo Erba Reagenti, Italy) 



 

 

35 

  Thiamine (Sigma Chemical Co., USA) 

  2-Thiobarbituric acid (Sigma-Aldrich, Germany) 

  Titanium(IV) chloride (Merck, Germany)  

  Trichloroacetic acid (Carlo Erba Reagenti, Italy) 

  Zinc sulfate (Sigma Chemical Co., USA) 

2.2 Growth conditions and treatments 

 The KDML 105 cultivar rice seeds were obtained from Department of 

Agriculture, Ministry of Agriculture and Cooperatives (Bangkok, Thailand). 

Transgenic rice plants containing OsCaM1-1 gene under the control of 35SCaMV 

promoter (35SCaMV-OsCaM1-1) were constructed by Agrobacterium-mediated 

transformation via pCAMBIA1301 plasmid. Three putative transgenic rice lines 

harboring the 35SCaMV-OsCaM1-1 and the putative transgenic line harboring the T-

DNA from pCAMBIA1301 alone as negative control were kindly provided by the 

research group “Special Task Force for Activating Research (STAR): Biochemical and 

Molecular Mechanisms of Rice in Changing Environments” by the Ratchadaphisek-

sompot Endowment Fund, Chulalongkorn University.  Seeds of the transgenic rice 

plants overexpressing OsCaM1-1, the control (negative control transgenic line), and 

wild-type KDML105 were generated as described below. 

Rice seeds were dehusked and sterilized with 70% (v/v) ethanol for one minute 

and then with 35% (w/v) sodium hypochlorite for 20 minutes. The seed were rinsed 

three times with sterile water and germinated in nutrient broth medium (NB) (Li et al. 

1993) containing 0.8% (w/v) agar at 25-28 °C under 16 h light (200 µmole m-2 sec-1)/ 

8 h dark photo period. After 7 days, germinated seeds were transferred to and grown in 
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Limpinuntana’s nutrient solution (Limpinuntana 1978) (Appendix A) for 35 days. After 

42 days, the seedlings were transferred to pots filled with sandy loam consisting about 

10% clay soil and nitrogen/ phosphorus/potassium fertilizer (15: 15: 15) and grown for 

4 months in the greenhouse. The seeds were harvested and dried at 60°C for 3 days in 

the incubator in order to decrease the moisture content. Refrigerated the seeds at 4 °C 

to use in experiments. 

For the experiments, rice seeds were dehusked and sterilized with 70% (v/v) 

ethanol for one minute and then with 35% (w/v) sodium hypochlorite for 20 minutes. 

The seed were rinsed three times with sterile water and germinated in NB medium 

containing 0.8% (w/v) agar at 25-28 °C under 16 h light (200 µmole m-2 sec-1)/ 8 h dark 

photo period. After 7 days, germinated seeds were transferred to and grown in 

Limpinuntana’s nutrient solution for 14 days. For the exposure to salt stress, the 3-

week-old seedlings were supplemented with 0, 50, 100, 150 or 200 mM NaCl. The 

leaves of 3-week-old seedlings were harvested after 3 days of salt stress and then stored 

at -80 °C until biochemical analyses (H2O2 content, the relative growth rate (RGR) of 

shoot and root, relative water content (RWC), the leaf chlorophyll a, b and carotenoid 

contents, lipid peroxidation, DPPH radical scavenging activity and antioxidant enzyme 

activities) were done. 

2.3 Measurement of H2O2 content 

The H2O2 level was modified from method those described by Patterson (1984). 

For H2O2 extraction, 0.05 g of leaves were ground to fine powder by Mixer Mill 

MM400 at a frequency of 35 Hz for one minute, two times. Then, 1 ml of 50 mM 

potassium phosphate buffer, pH 7.0 was added, and centrifuged (6,000 xg, 25°C, 15 
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min). 0.9 ml of supernatant was mixed with 0.3 ml of 1% v/v TiCl4 in conc. HCl, then 

incubated at room temperature for 15 min. The content of H2O2 was measured by 

monitoring the A410 of the titanium-peroxide complex. Absorbance values were 

calibrated to a standard curved generated with known concentrations of H2O2. 

2.4 Antioxidant enzyme extracts and assay 

Enzyme extracts for evaluating the superoxide dismutase (SOD), catalase 

(CAT), ascorbate peroxidase (APX) and glutathione reductase (GR) activities were 

prepared by first freezing 0.1 g leaf samples were ground to fine powder by Mixer Mill 

MM400 and extracted with 1 ml of ice-cold 0.1 M sodium phosphate buffer, pH 7.5, 

containing 0.5 mM ethylenediamine- tetraacetic acid (EDTA), 5 mM dithiothreitol, and 

1 µl/ml protease inhibitor, with the addition of 5 mM ascorbic acid in the case of APX 

and GR assay. The homogenates were centrifuged (15,000 xg, 4 ºC, 20 min) prior to 

harvesting the supernatant as the enzyme extract. 

2.4.1 Superoxide dismutase activity 

 SOD activity was assayed according to the method of Beauchamp and Fridovich 

(1971) by monitoring the inhibition of photochemical reduction of nitro blue 

tetrazolium (NBT) to formazan. The 1.2 ml reaction mixture contained 50 mM 

potassium phosphate buffer (pH 7.8), 13 mM methionine, 50 mM sodium carbonate, 

75 µM NBT, 2µM riboflavin, 0.1 mM EDTA, and 50 µg enzyme. The reaction mixtures 

were illuminated for 15 min at a light. One unit of SOD activity was defined as the 

amount of enzyme required to cause 50% inhibition of the reduction of NBT monitored 

at 560 nm.  
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2.4.2 Catalase activity  

 CAT activity was measured following Aebi (1984) by monitoring the decline 

of absorbance at 240 nm due to decomposition of H2O2. The 1.2 ml reaction mixture 

contained 50 mM potassium phosphate buffer (pH 7.0), 50 µg enzyme, and 17 mM 

H2O2 was added to start reaction. The extinction coefficient value of 39.4 mM-1cm-1 

was used for calculations. 

2.4.3 Ascorbate peroxidase activity 

APX activity was assayed according to the method Nakano and Asada (1981) 

by monitoring the rate of ascorbate oxidation at 290 nm. The 1.2 ml reaction mixture 

contained 50 mM potassium phosphate buffer (pH 7.0), 0.5 mM ascorbic acid, 50 µg 

enzyme, and 0.1 mM H2O2 was added to start reaction. The extinction coefficient value 

of 2.8 mM-1cm-1 was used for calculations. 

2.4.4 Glutathione reductase activity 

 The method of GR activity assay were modified from those described by 

Sherwin and Farrant (1998). GR activity was assayed by monitoring the decrease of 

absorbance at 340 nm due to reduction of GSSG to GSH. The 1.2 ml reaction mixture 

contained 50 mM potassium phosphate buffer (pH 7.5), 3 mM MgCl2, 0.1 mM EDTA, 

0.15 mM NADPH, and 50 µg enzyme. The reaction was initiated by addition of 10 mM 

GSSG. The extinction coefficient value of 6.22 mM-1cm-1 was used for calculations. 
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2.5 Measurement of photosynthetic pigments  

 Total chlorophyll, chlorophyll a, b and carotenoids were extracted in     1 ml of 

N,N-dimethylformamide (DMF) by grinding 0.05 g of leaves to fine powder with Mixer 

Mill MM400 at a frequency of 35 Hz for one minute, two times. The homogenate was 

centrifuged (5,000 xg, 10 min, 4 ºC) and the absorbance of the resulting supernatant 

was taken at 461, 647 and 664 nm. Total chlorophyll, chlorophyll a, b and carotenoid 

contents were calculated according to modified method of Arnon (1949): 

Total chlorophyll (a and b) (mg/l) = 17.90 (A647) + 8.08 (A664) 

Chlorophyll a (mg/l) = 12.70 (A664) - 2.79 (A647) 

Chlorophyll b (mg/l) = 20.70 (A647) – 4.62 (A664) 

     Carotenoids (mg/l) = A461 x 200  

 The pigment concentrations were calculated in mg/g FW of sample. 

2.6 Measurement of lipid peroxidation 

 Lipid peroxidation was estimated measuring the formation of malondialdehyde 

(MDA), a breakdown product of lipid peroxidation, with 2-thiobarbituric acid (TBA) 

according to De Vos and workers (1989). 0.1 g of leaves were ground to fine powder 

by Mixer Mill MM400 at a frequency of 35 Hz for one minute, two times. Then, 1 ml 

of 0.1% trichloroacetic acid (TCA) was added and centrifuged (14,000 rpm, 25 °C, 15 

min). After centrifugation, 0.3 ml of the supernatant was mixed with 0.75 ml 0.25% 

TBA in 10% TCA. The absorbance of resulting supernatant was taken at 532 and 600 
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nm. MDA content was determined by subtracting absorbance of supernatant at 600 nm 

from that of 532 nm and using absorbance coefficient of 155 mM-1cm-1 and was 

expressed as µmol per g fresh weight of sample. 

2.7 Measurement of DPPH radical scavenging activity 

The measurement of the DPPH radical scavenging activity was performed 

according to methodology described by Brand-Williams and workers (1995). 0.1 g of 

leaves were ground to fine powder by Mixer Mill MM400 at a frequency of 35 Hz for 

one minute, two times. Then, 1.0 ml of absolute methanol was added and evaporated 

by centrivap concentrator. The samples were reacted with the stable DPPH radical in 

an ethanol solution. The reaction mixture consisted of adding 0.5 ml of sample, 3 ml of 

absolute ethanol and 0.3 ml of DPPH radical solution 0.5 mM in ethanol. When DPPH 

reacts with an antioxidant compound, which can donate hydrogen, it is reduced. The 

changes in color (from deep violet to light yellow) were read at 517 nm after 30 min of 

reaction using a spectrophotometer. The mixture of ethanol and sample without DPPH 

radical solution serve as blank. The control solution was prepared by mixing ethanol 

and DPPH radical solution. The scavenging activity percentage (AA%) was calculated 

follows: 

 

 

(A
control

 – A
test

) 

A
control

 

AA%    = x 100 
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2.8 Growth measurement 

Growth measurements, plants removed from the nutrient solutions, and shoots 

were separated from the roots and washed carefully with deionized water (Maiti et al. 

1996). Shoot and root fresh weight (FW) and shoot and root dry weight (DW) of 

stressed and non stressed plants in saline conditions were determined. Shoot and root 

samples dried in an oven at 60°C for 72 h. to determine dry mater. 

2.9 Measurement of relative growth rate (RGR) 

The samples were randomly selected and oven-dried at 60 °C for 72 h for 

determination of dry weight. RGR was determined following the method outlined by 

Gardner (1985). RGR was calculated from the increase in dry weight of plants at the 

beginning and end of salt treatment, using the equation: 

       RGR = (lnWf – lnWi) / (tf – ti) 

where, Wf and Wi are the shoot and root dry weight of plant, tf and ti are the 

times and subscripts denote initial and final sampling that is, day 0 (before salt stress 

treatment) and day 3 (after 3 days salt stress treatment). 

2.10 Measurement of relative water content (RWC) 

 To determine relative water content (RWC), plants from each treatment 

conditions were randomly selected and the method described by Whetherley and Barrs 

(1962) was followed. About 0.1 g leaf sample was cut into smaller pieces and weighed 

to determine initial weight (Wi). The leaf samples were then floated in freshly de-

ionized water for 12 h and weighed thereafter to determine fully turgid weight (Wf). 
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The sample was oven-dried at 60˚C for 3 days and the dry weight was obtained (Wd). 

The relative water content (RWC) was determined using the following formula: 

 

RWC = [(Wi – Wd)/(Wf – Wd)] x 100 

2.11 Protein content  

Protein concentrations in enzyme extract were measured according to the 

method of Bradford (1976), using different known concentrations of bovine serum 

albumin as the standard protein for calibration. 

2.12 Statistical analysis 

  The significance of differences between mean values was compared by 

Duncan’s test. Differences at p < 0.05 were considered significant. 
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CHAPTER III 

RESULTS 

 

3.1 Effect of salt stress on H2O2 content 

 The effects of salt stress on H2O2 content in the transgenic rice plants 

overexpressing OsCaM1-1 gene under the control of 35SCaMV promoter, the control 

(negative control transgenic line) and wild-type KDML105 were determined. Figure 

3.1A showed H2O2 contents of all plants determined on various treatment time levels 

(0, 1, 2, 3, 4 days). At different treatment time levels, all plants with 150 mM NaCl 

treatment showed an increase in H2O2 content with increasing time except on day 4. 

The highest value was observed on day 3. Based on these results, duration time of 3 

days was selected for further evaluation of the plant’s responses to high salinity. Figure 

3.1B shows H2O2 content of all plants were determined on various concentrations of 

NaCl (0, 50, 100, 150 and 200 mM) for 3 days. The H2O2 contents in all plants increased 

with increasing salinity levels. They showed the highest value at 150 mM NaCl. 

However in all plants, they were decreased rapidly under 200 mM NaCl. Significantly 

decrease H2O2 content on day 4 after treated with 150 mM NaCl and 200 mM NaCl for 

3 days, maybe due to salt stress-induced cell death. 
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Figure 3.1 Effect of high salinity on H2O2 content in leaves of the three 

transgenic ‘KDML 105’ rice Oryza sativa L. overexpressing OsCaM1-1 gene 

( ,      , ) compare to the control transgenic (       ) and wild-type plants    

( ) after expose to salt stress (150 mM NaCl) at different treatment time (0, 

1, 2, 3 and 4 days)(A) and to different treatment solutions (0, 50, 100, 150 and 

200 mM NaCl) for 3 days (B). 
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3.2 Effect of salt stress on antioxidant enzymes 

Antioxidative enzymes are one of the response mechanisms against 

environmental stresses. As such, their activity profiles are important in the evaluation 

of tolerance mechanisms. To determine the response of transgenic rice plants 

overexpressing the OsCaM1-gene, the control transgenic and wild-type plants to salt 

induced oxidative stress, SOD, CAT, APX and GR activities were measured in leaves 

of seedlings grown either in normal growing conditions (0 mM NaCl treatment) or 

under salt stress (150 mM NaCl treatment). 

 SOD activities of the OsCaM1-1 overexpressing rice plants, control transgenic 

and wild-type KDML 105 under the effect of salt stress and normal growing conditions 

are shown in Figure 3.2A. The SOD activities were increased by high salinity. Under 

salt stress, the SOD was increased significantly in the OsCaM1-1 overexpressing rice 

plants (42.2, 39.7 and 40.8 µmole/min/mg protein, respectively). These transgenic 

plants had increased SOD activity about 53% when compared to plants in normal 

growing conditions. While the control transgenic and wild-type plants, the SOD was 

increased slightly about 9%.  

 Salt treatment also increased significantly CAT activity in the three transgenic 

OsCaM1-1 overexpressing rice plants. These transgenic plants had increased CAT 

activity about 33%. On the other hand, the control transgenic and wild-type plants 

exhibited significant decrease in CAT activity under salt stress about 24% in 

comparison with that of the non-salinized plants (Figure 3.2B). 

 The analysis of the activity of APX in transgenic rice plants overexpressing the 

OsCaM1-1 gene showed significantly high activity under high salinity when compared 

to those of the control transgenic and wild-type plants (Figure 3.2C). In addition, APX 
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activities of the transgenic plants under salt stress were increased significantly about 

70-85% when compared to without salt stress, while that of the control transgenic and 

wild-type plants were increased about 20 and 38%, respectively. 

 An increase in GR activity was observed in all plants under salt stress (Figure 

3.2D). The transgenic rice plants overexpressing the OsCaM1-1 gene were higher GR 

activity under saline conditions than the control transgenic and wild-type plants. GR 

activities of the transgenic plants under salt stress were increased about 65-82% when 

compared to non-salinized plants, while that of the control transgenic and wild-type 

plants were increased about 46 and 36%, respectively. 
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Figure 3.2 Effect of high salinity on activity levels of SOD (A), CAT (B), 

APX (C) and GR (D)  in leaves of the three transgenic ‘KDML 105’ rice Oryza 

sativa L. overexpressing OsCaM1-1 gene compare to the control transgenic 
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and wild-type plants after expose to salt stress (0, 150 mM NaCl) for 3 days. 

Data are shown as the ± SD, and were derived from five replicates. Means with 

a different letter are significantly different at p < 0.05 according to Duncan’s 

test. 
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3.3 Effect of salt stress on photosynthetic pigments  

Photosynthetic pigment contents (chlorophyll a, b and carotenoids)  were 

extracted and determined from transgenic rice plants overexpressing the OsCaM1-1 

gene, the control and wild-type KDML105 plants, which grown either in normal 

growing conditions (0 mM NaCl treatment) or under salt stress (150 mM NaCl 

treatment).  Salinity were had an effect on total chlorophyll, chlorophyll a and b and 

carotenoid contents. All photosynthetic pigments were higher in the OsCaM1-1 

overexpressing rice plants, grown under salt stress than in the control and wild-type 

plants (Figure 3.3). The results showed total chlorophyll (Figure 3.3A), chlorophyll a 

(Figure 3.3B) and b (Figure 3.3C) and carotenoid contents (Figure 3.3D) under salt 

stress decreased about 5, 9, 16 and 3% in transgenic plants respectively, in the control 

about 24, 33, 40 and 20%, in the wild-type about 27, 40, 40 and 19% when comparison 

with non-salinized plants. 
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Figure 3.3 Effect of high salinity on total chlorophyll (A), chlorophyll a 

(B), chlorophyll b (C) and carotenoid (D) contents of t he  t h ree  t r ansgen i c 

‘KDML 105’ rice Oryza sativa L. overexpressing OsCaM1-1 gene compare to 
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the control transgenic and wild-type plants after expose to salt stress (0, 150 

mM NaCl) for 3 days. Data are shown as the ± SD, and were derived from five 

replicates. Means with a different letter are significantly different at p < 0.05 

according to Duncan’s test. 
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3.4 Effect of salt stress on lipid peroxidation 

Malonaldehyde (MDA) content was an important indicator to measure lipid 

peroxidation. MDA content were extracted and determined from the OsCaM1-1 

overexpressing rice plants, the control and wild-type KDML105 plants, which grown 

under without and with high salinity (150 mM NaCl) condition. Salt stress affected 

MDA content, they were significantly higher in the control transgenic and wild-type 

(0.046 and 0.048 µmole/g FW, respectively) than the OsCaM1-1 overexpressing rice 

plants (0.031-0.035 µmole/g FW). Under high salinity, MDA contents in transgenic 

plants increased about 49% while that of the control transgenic and wild-type plants 

were increased about 97% as compared to non-salinized plants (Figure 3.4). 
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Figure 3.4 Effect  of  high sal ini ty on lipid peroxidation of the three 

transgenic ‘KDML 105’ rice Oryza sativa L. overexpressing OsCaM1-1 gene 

compare to the control transgenic and wild-type plants after expose to salt 

stress (0, 150 mM NaCl) for 3 days. Data are shown as the ± SD, and were 

derived from five replicates. Means with a different letter are significantly 

different at p < 0.05 according to Duncan’s test. 
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3.5 Effect of salt stress on DPPH radical scavenging activity 

 DPPH assay is rapid and sensitive way to survey the antioxidant activity of a 

specific compounds or plant extracts. The effect of salt stress on DPPH radical 

scavenging activity in the transgenic rice plants overexpressing OsCaM1-1 gene under 

the control of 35SCaMV promoter, the control and wild-type plants were determined. 

Under salt stress, statistically significant increase of DPPH scavenging activity was 

observed in the OsCaM1-1 overexpressing rice plants (about 70-77%) while it 

increased slightly in the control transgenic (about 13%) and wild-type plants (about 

12%) in comparison with the without salt (Figure 3.5).  
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Figure 3.5 Effect of high salinity on DPPH radical scavenging activity of 

the three transgenic ‘KDML 105’ rice Oryza sativa L. overexpressing 

OsCaM1-1 gene compare to the control transgenic and wild-type plants after 

expose to salt stress (0, 150 mM NaCl) for 3 days. Data are shown as the ± SD, 

and were derived from five replicates. Means with a different letter are 

significantly different at p < 0.05 according to Duncan’s test. 
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3.6 Effect of salt stress on growth 

 Salt stress (150 mM NaCl) significantly decreased shoot fresh and dry weight 

of the transgenic rice plants overexpressing OsCaM1-1 gene under the control of 

35SCaMV promoter, the control and wild-type in comparison with the control without 

salt. The transgenic rice plants protected their growth performances under saline stress, 

while the control and wild-type had high reductions in their shoot fresh and dry weight. 

Salt stress caused about 31% reductions in shoot fresh weight in the transgenic rice 

plants and about 62% reductions in control and wild-type. The weight of dry shoot was 

reduced about 12% in the transgenic rice plants and about 34% in the control and wild-

type. However, there is no statistically significant difference between the two 

conditions in fresh and dry weight of root in all plants (Figure 3.6). 
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Figure 3.6 Effect of high salinity on shoot fresh weight (A), root fresh 

weight (B), including shoot dry weight (C) and root dry weight (D) of the three 

transgenic ‘KDML 105’ rice Oryza sativa L. overexpressing OsCaM1-1 gene 
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compare to the control transgenic and wild-type plants after expose to salt stress 

(0, 150 mM NaCl) for 3 days. Data are shown as the ± SD, and were derived 

from five replicates. Means with a different letter are significantly different at  

p < 0.05 according to Duncan’s test. 
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3.7 Effect of salt stress on relative growth rate 

 Relative growth rate (RGR) of shoots and roots in the transgenic rice plants 

overexpressing OsCaM1-1 gene under the control of 35SCaMV promoter, the control 

and wild-type were determined under 0 mM NaCl treatment and salt stress (150 mM 

NaCl) condition. The RGR of shoots and roots of all plants decreased significantly, 

except in transgenic rice plants, decreased slightly under high salinity. Moreover, the 

RGR of shoot in transgenic rice plants were higher than the control and wild-type under 

salt stress (Figure 3.7A).  

Besides, results also showed that overexpression of OsCaM1-1  gene in the 

KDML105 rice cultivar was found to grow and enhance the plant adaptation to salt 

stress better than the control and wild-type.  The three transgenic lines overexpressing 

OsCaM1-1 gene show less differences in growth and development than the control 

and wild-type. The transgenic plants increased vigour, whereas the control and wild-

type displayed reduced vigour with many wilting leaves (Figure 3.8). 
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Figure 3.7 Effect of high salinity on the relative growth rate (RGR) in 

shoot (A) and root (B) of the three transgenic ‘KDML 105’ rice Oryza sativa 

L. overexpressing OsCaM1-1 gene compare to the control transgenic and wild-

type plants after expose to salt stress (0 and 150 mM NaCl) for 3 days. Data 

are shown as the ± SD, and were derived from five replicates. Means with a 

different letter are significantly different at p < 0.05 according to Duncan’s test. 

 

 

 

0

0.03

0.06

0.09

0.12

0.15

0.18

0.21

0.24

0.27

T
h

e 
re

la
ti

v
e 

g
ro

w
th

 r
a

te
 o

f 

(g
·g

-1
·d

-1
) 

T
h

e 
re

la
ti

v
e 

g
ro

w
th

 r
a
te

 o
f 

sh
o
o
t 

(g
·g

-1
·d

-1
) 

 

b 

A 

B 

b 
b b 

b 
b 

b 
b 

a a 

b,c,d 
c,d,e d,e 

d,e e 

a a 

a,b 
a,b a,b,c 

0 

T
h

e 
re

la
ti

v
e 

g
ro

w
th

 r
a
te

 o
f 

r
o
o
t 

(g
·g

-1
·d

-1
) 

 



 

 

61 

 

 

 

 

 

 

 

 

Figure 3.8 The phenotype comparison of the three transgenic ‘KDML 105’ 

rice Oryza sativa L. overexpressing OsCaM1-1 gene compare to the control 

transgenic and wild-type plants under normal (0 mM NaCl) (A) and salt-stress 

conditions (150 mM NaCl) (B) for 3 days. 
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3.8 Effect of salt stress on relative water content 

Relative water content in leaves of transgenic rice plants overexpressing 

OsCaM1-1 gene, the control and wild-type plants were determined. Fresh leaf was 

measured from plant grown either in normal growing condition (0 mM NaCl treatment) 

or under salt stress (150 mM NaCl treatment). Relative water content in the leaves of 

the control and wild-type plants grown under salt stress decreased significantly (about 

46%) while RWC in the OsCaM1-1 overexpressing rice plants decreased slightly (about 

17%) (Figure 3.9) when compared to without salt stress. 
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Figure 3.9 Effect of high salinity on relative water content (RWC) of the 

three transgenic ‘KDML 105’ rice Oryza sativa L. overexpressing OsCaM1-1 

gene compare to the control transgenic and wild-type plants after expose to salt 

stress (0, 150 mM NaCl) for 3 days. Data are shown as the ± SD, and were 

derived from five replicates. Means with a different letter are significantly 

different at p < 0.05 according to Duncan’s test. 
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CHAPTER IV 

DISCUSSION 

 

To examine the effect of OsCaM1-1 overexpression in transgenic rice and 

involved in salt tolerance mechanisms, three transgenic rice harboring the 35SCaMV-

OsCaM1-1 and the transgenic line harboring T-DNA from pCAMBIA1301 alone as 

negative control have been examined the effect of salt stress compared to wild-type 

plants. The results showed that the H2O2 content, lipid peroxidation, DPPH radical 

scavenging activity, RGR, and activities of antioxidant enzymes (SOD, APX and GR) 

in all plants were increased, while the CAT activity (except in the control and wild-type 

plants), RWC and photosynthetic pigments were decreased under salt stress. H2O2 

content in all plants increased with increasing level of the NaCl treatments and exposure 

time, the findings of this study indicated that exposure time salinity level were two 

important factors affecting the plant development under salinity condition. 

In many plant (such as tobacco, citrus, wheat and soybean) reports, it was 

observed that production of ROS increased under saline conditions (Hasegawa et al. 

2000) and ROS-mediated membrane damage has been demonstrated to be a major 

cause of the cellular toxicity by salinity in different crop plants such as rice, tomato, 

citrus, pea and mustard (Ahmed 2009; Dionisio-Sese and Tobita 1998; Gueta-Dahan et 

al. 1997; Mittova et al. 2004). Salt stress produced ion leakage, indicating injury to 

membrane integrity, which could be affected by ROS formed during leaf 

photosynthesis or respiration, enhancing lipid peroxidation of the membranes (Lechno 

et al. 1997; Savoure´ A 1999). Lipid peroxidation measured as MDA content is 
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considered to be indicator of oxidative damage from stress. Here, lipid peroxidation 

(MDA content) was increased by salinity in all plants, which is consistent with previous 

reports in cotton (Meloni et al. 2003) and N.plumbaginifolia (Savoure´ A 1999). 

Most crops do not grow well on soils that contain salts. One reason is that salt 

causes a reduction in rate and amount of water that plant roots can take up from the soil. 

Excess salt concentration also enhances the osmotic potential of soil matrix which 

restricts the water uptake by plants. 

H2O2 has important role in redox signaling in regulating normal processes, 

including oxidative stress (Rhee 2006). H2O2, a product of SOD reaction was a strong 

oxidant and it initiates localized oxidative damage leading to disruption of metabolic 

function and losses of cellular integrity at sites where it accumulates. Excessive levels 

of H2O2 could be minimized through the activities of CAT and different peroxidases. 

While mitochondria and plastids are the major sources of H2O2 in the cells, peroxisomes 

and glyoxisomes also contain SOD, CAT and APX, which are responsible for its 

production and scavenging (Jimenez et al. 1997; Yamaguchi et al. 1995). CAT and 

APX, two potential scavengers of H2O2, maintain its level and prevented uncontrolled 

export of this toxic species from organelles to cytosol and competed to remove H2O2 

(Valyova et al. 2012). GR, one of the important enzymes in ascorbate-glutathione cycle, 

catalyzes the NADPH-dependent reduction of oxidized glutathione and is important in 

protecting many plants from oxidative stress caused by salt stress (Foyer et al. 1991). 

SOD activity level was found to correlate with the change in the H2O2 content. These 

results suggest that H2O2 increase probably results from the association of increased 

SOD (which produces H2O2), APX (which remove H2O2) and GR activities but not 

CAT activity, in addition to other possible mechanisms not investigated in the present 
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experiment. Increased SOD, GR and APX activities agree with previous reports in 

moderately salinity tolerant wheat genotype (Sairam et al. 2005) and in pea leaves 

(Hernández and Almansa 2002), whereas in tobacco cultivar By-2, where salt stress had 

no effect on SOD activity (Hoque et al. 2007). Some reports showed that salt stresses 

results in an increase in the CAT activity, such as in the wild salt-tolerance tomato 

(Lycopersicon pennellii) (Mittova et al. 2004) and sea plantain (Plantago maritima) 

(Sekmen et al. 2007). But some reports agree with results showing, a decreased CAT 

activity in the rice cultivar Dongjin seedlings under drought stress (Lee et al. 2001), 

mung bean (Vigna radiata) (Hossain et al. 2011) and tobacco cultivar By-2 (Hoque et 

al. 2007) under salt stress (Hasanuzzaman et al. 2011). So an increased H2O2 generation 

in the leaves of salt-stressed rice plants may function in the signaling of oxidative stress, 

which leads to induction of some enzymes. 

Although salinity treatments caused significant increase in H2O2 content and 

lipid peroxidation in plants, but the transgenic rice improved growth under salinity by 

alleviating oxidative stress, H2O2 content and lipid peroxidation decreased while DPPH 

radical scavenging activity, RGR, photosynthetic pigments and activities of antioxidant 

enzymes associated with the H2O2 scavenging system increased when compared to the 

control transgenic and wild-type plants. This suggests that OsCaM1-1 could protect the 

plants from toxic effects of NaCl by reducing the H2O2 content. Overexpression of 

OsCaM1-1 gene in transgenic rice plants has showed improvement in protection against 

oxidative stress. The results show that enzyme activities include SOD, APX and GR in 

all plants were increased by salinity and were higher in transgenic plants than the 

control transgenic and wild-type KDML105 plants. CAT was also increased in 

transgenic plants under salinity but it decreased in control and wild-type. The 



 

 

67 

decreasing of CAT by salt stress in the control and wild-type plants may indicate that 

the plant is not able to maintain protection against active oxygen under salt stress 

particularly at high salt concentrations and may be due to salt stress-induced damage to 

the enzyme. Further, overexpression of OsCaM1-1 gene may induce cooperation of 

protective enzymes such as SOD, CAT, and APX to eliminate ROS which increased by 

salt stress and keep a homeostasis between producing and cleaning of ROS and reduce 

the level of free radicals. This way, injury to cells could be decreased or avoided 

increasing ROS. 

In this study, GR activity was also increased in all plants, particularly higher in 

transgenic plants when compared to control and wild-type under salt stress. This result 

suggests that OsCaM1-1 gene may help transgenic plants more active in exhibiting 

ascorbate-glutathione cycle and reducing H2O2. 

Photosynthetic pigments, chlorophyll content such as total chl, chl a and chl b 

and also carotenoid contents were decreased in all plants due to salt stress, but no 

significant changes in the transgenic plants when compared to the control and wild-type 

plants. The effect of salinity on photosynthetic pigment contents as depletion may be 

considered to be a result of the increasing activity of the chlorophyll-degrading enzyme 

chlorophyllase (Reddy 1986) leading to degradation of β-carotene and formation of 

zeaxanthins, which are apparently involved in protection against photoinhibition 

(Sharma and Hall 1991). Rice plants overexpressing the OsCaM1-1 gene show 

enhanced tolerance to salinity stress, as indicated by the higher chlorophyll and 

carotenoid contents. These results may suggest that OsCaM1-1 gene protect 

photosynthetic apparatus from salt induced oxidative stress and helps the transgenic 

plants maintain their photosystem better than the control and wild-type. The chlorophyll 
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content was protected probably because of the high antioxidant enzyme activities that 

prevented degradation of leaf chlorophyll (Sevengor 2011). 

Furthermore, the loss of chlorophylls under salt stress could be related to 

photoinhibition or ROS formation, as demonstrated by the increased lipid peroxidation 

(Kato and Shimizu 1985). The significant raise in MDA content in the control and wild-

type may be due to decrease of salt dependant up regulation of its antioxidant enzyme 

system under salinity stress. However, the three transgenic plants overexpressing 

OsCaM1-1 gene showed lesser MDA levels than the control and wild-type plants. This 

result shows that overexpression of OsCaM1-1 gene had higher capacity for the 

scavenging of ROS generated by salinity than the control and wild-type. Scavenging of 

DPPH free radical is the basis of a common antioxidant assay (Sharma and Bhat 2009). 

Here, DPPH radical scavenging activity showed a capacity of plants to fight stress, 

especially the OsCaM1-1 overexpressing plants. Overexpression of OsCaM1-1 gene 

may promote the transgenic plants by induced scavenging activity to increase the 

antioxidant capacity to detoxify ROS. The RGR of the OsCaM1-1 overexpressing 

plants was found to be maintained better than that of the control and wild-type plants 

when grown under salt stress. These results indicate that overexpression of the 

OsCaM1-1 gene also helps improve growth and salt stress tolerant in transgenic plants. 

Besides, one of the early symptoms of salinity stress in plant tissue is the 

decrease of RWC. Extent of salt-induced effects on RWC has been used as one the vital 

water relation parameters for assessing degree of salt tolerance in plants (Noreen and 

Ashraf 2008; Siddiqi et al. 2009). RWC in the leaves of plants grown under salinity 

stress decreased significantly in all plants compared to those grown in non-saline 

conditions. This reduction of RWC in stressed plants may be associated with a decrease 
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in plant vigor and was observed in many plant species such as rice and kidney bean 

(Halder and Burrage 2003; Lopez et al. 2002). However, the three transgenic plants 

overexpressing OsCaM1-1 showed less decline in RWC than the control and wild-type 

plants. These results suggest that plants overexpression of the OsCaM1-1 helps plants 

maintain ability to absorb more water from the nutrient. 

Previous report has shown that OsCaM1-1 mRNA levels strongly increased in 

response to salt treatment (Phean-o-pas et al. 2005). And Saeng-ngam and workers 

(2012) also showed that OsCaM1signaling is likely to play an important role in ABA 

biosynthesis (ABA levels have been reported to be key messengers in salt-stress 

responses (Ghassemian et al. 2008; Guo et al. 2008; Hong-Bo et al. 2008; Mahajan et 

al. 2008)) and the level of OsCaM1-1 gene expression, presumably contribute to salt 

resistance in rice. These results suggest that the OsCaM1-1 gene product functions as a 

sensor for salt stress-induced calcium signals that helps the plant to cope with salt stress. 

The results showed that at high salinity, the three transgenic plants overexpressing 

OsCaM1-1 gene had significantly higher scavenging activity than the control and wild-

type, indicating that the transgenic plants still have more capacity to cope with salt 

stress. 
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CHAPTER V 

CONCLUSIONS 

 

 Calcium signaling has been implicated in transducing signals from 

environmental changes into adaptive responses in plants. However, the mechanisms of 

how calcium signals are used to mediate stress responses have not been fully 

understood. Here, another possible roles of the OsCaM1-1 gene which its expression is 

highly induced were investigated the antioxidative system. Transgenic rice plants 

overexpressing OsCaM1-1 gene exhibited higher in antioxidant enzyme activities, 

photosynthetic pigments, ROS scavenging activity including growth rate and RWC 

than the control and wild-type KDML105 plants under salinity. The results obtained 

here suggested that the OsCaM1-1 gene product may function as sensor for salt stress-

induced calcium signals that lead to increasing the activity of antioxidant system, which 

in turn helps the plant has a better protection against salt stress.  
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APPENDIX A 

      Chemical solution 

1.  Extraction buffer 

 H2O2 extraction buffer 

 0.05 M Potassium phosphate buffer, pH 7.0 

   KH2PO4    0.68 g 

   K2HPO4    0.87 g 

Adjust pH utilizing both solutions, and make up the volume to 100 ml 

with distilled water.   

 Antioxidant enzyme extraction buffer 

 0.5 M Sodium phosphate buffer, pH 7.5 

   NaH2PO4    6.0 g 

   Na2HPO4    7.1 g 

Adjust pH utilizing both solutions, and make up the volume to 100 ml 

with distilled water. 

 1 mM EDTA 

   EDTA     0.04 g 

  Dissolve in distilled water and make up the volume to 100 ml. 
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 1 M DTT 

   DTT     0.15 g 

  Dissolve in distilled water and make up the volume to 1 ml. 

 5 mM Ascorbic acid 

   Ascorbic acid    0.09 g 

  Dissolve in distilled water and make up the volume to 100 ml. 

 Working solution: 

  0.5 M Sodium phosphate buffer, pH 7.5   20 ml 

  1 mM EDTA       50 ml 

  1 M DTT       50 µl 

  5 mM Ascorbic acid      20 ml 

  Protease inhibitor    100 µl 

Make up the volume to 100 ml with distilled water and store at 4 °C. 

2.  Measurement of H2O2 content 

 1% TiCl4 in conc. HCl 

   TiCl4     0.58 ml 

  conc. HCl           99.42 ml 

Prepare on ice in the fume hood and store at 4 °C in a dark place. 

3.  Antioxidant enzyme assay 
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0.5 M Potassium phosphate buffer, pH 7.0 

   KH2PO4    6.8 g 

   K2HPO4    8.7 g 

Adjust pH utilizing both solutions, and make up the volume to 100 ml 

with distilled water. 

0.5 M Potassium phosphate buffer, pH 7.8 

   KH2PO4    6.8 g 

   K2HPO4    8.7 g 

Adjust pH utilizing both solutions, and make up the volume to 100 ml 

with distilled water. 

 10 mM GSSG 

   GSSG     0.006 g 

Dissolve in distilled water and make up the volume to 1 ml and store at 

4 °C in a dark place. 

 1 M H2O2 

   30% H2O2    1.01 ml 

Dissolve in distilled water and make up the volume to 10 ml and store 

at 4 °C in a dark place. 
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 133.3 mM Methionine 

   L-Methionine    2.0 g 

  Dissolve in distilled water and make up the volume to 100 ml. 

 30 mM MgCl2 

   MgCl2     0.3 g 

  Dissolve in distilled water and make up the volume to 100 ml. 

1.5 mM NADPH 

  NADPH    0.001 g 

Dissolve in distilled water and make up the volume to 1 ml and store at 

4 °C in a dark place. 

7.5 mM NBT 

   NBT     0.006 g 

  Dissolve in distilled water and make up the volume to 1 ml. 

 0.5 M Na2CO3 

   Na2CO3    5.3 g 

  Dissolve in distilled water and make up the volume to 100 ml. 

 0.2 mM Riboflavin 

   Riboflavin    0.008 g 
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Dissolve in distilled water and make up the volume to 100 ml and in a 

dark place. 

4.  Measurement of DPPH radical scavenging activity 

 0.5 mM DPPH 

   DPPH     0.02 g 

Dissolve in absolute ethanol and make up the volume to 100 ml and store 

at 4 °C in a dark bottle. 

5.  Preparation for protein determination by Bradford (1976) 

 Bradford solution 

  Coomassie Brilliant Blue (G250)  0.02 g 

  Absolute ethanol       10 ml  

 Stir the solution in Erlenmeyer flask protected from light for 2 hours 

then add 20 ml of 85% phosphoric acid. Bring the volume to 200 ml with 

distilled water and filter through Whatman filter paper. Store the solution in a 

brown glass bottle (usable for several weeks).  
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6.  Preparation of NB medium 

Reagents:  

        Final concentrations (1X) 

 100X NB Nitrate stock 1 L 

  (NH4)2SO4    46.3 g  (463 mg/l) 

  KNO3     283.0 g  (2,830 

mg/l) 

 100X NB Sulfate stock 1 L 

  MgSO4.7H2O    18.5 g  (185 mg/l) 

  MnSO4.H2O     1.0 g  (10 mg/l) 

  ZnSO4.7H2O    200 mg  (2 mg/l) 

  CuSO4.5H2O     2.5 mg        (0.025 mg/l) 

 100X NB Halide stock 1 L 

  CaCl2.2H2O    16.6 g  (166 mg/l) 

  KI     75.0 mg  (0.75 mg/l) 

  CoCl2.6H2O      2.5 mg           (0.025 mg/l) 
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100X NB PBMO stock 1 L 

  KH2PO4    46.0 g  (460 mg/l) 

  H3BO3     300 mg  (3 mg/l) 

  Na2MoO4    25.0 mg  (0.25 mg/l) 

 100X NB NaFeEDTA stock 1 L 

  FeSO4.7H2O    2.78 g  (27.8 mg/l) 

  Na2EDTA    3.78 g  (37.8 mg/l) 

 Nicotinic acid stock (1 mg/ml) 

Dissolve 100 mg of nicotinic acid in sterilized deionized H2O, adjust 

volume to 100 ml. Filter sterilize the solution. 

 Pyridoxine stock (1 mg/ml) 

Dissolve 100 mg of pyridoxine in sterilized deionized H2O, adjust 

volume to 100 ml. Filter sterilize the solution. 

 Thiamine stock (1 mg/ml) 

Dissolve 1 g of thiamine in sterilized deionized H2O, adjust volume to 

100 ml. Filter sterilize the solution. 

 Mix the followings: 
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 Final concentrations (1X) 

 100X NB Nitrate stock    10 ml    

 100X NB Sulfate stock    10 ml 

 100X NB Halide stock    10 ml 

 100X NB PBMO stock    10 ml 

 100X NB NaFeEDTA stock     10 ml 

 Myo-inositol     100 mg  (100 mg/l) 

 Nicotinic acid stock (1 mg/ml)     1 ml  (1 mg/l) 

 Pyridoxine stock (1 mg/ml)         1 ml  (1 mg/l) 

 Thiamine stock (1mg/ml)      1 ml  (10 mg/l) 

 Casein hydrolysate    300 mg  (300 mg/l) 

 L-Proline     500 mg  (500 mg/l) 

 L-Glutamine     500 mg  (500 mg/l) 

 Sucrose      30 g  (30 g/l) 

  Adjust to pH 5.8 and add 8.0 g of agar, then make up the volume to 1 L 

with distilled water. Finally, autoclave for 20 minutes at 121 °C. 
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7.  Limpinuntana’s nutrient solution 

 Reagents: 

        Final concentrations (1X) 

 300X Solution A (1 L) 

  KNO3     30.333 g  (0.10 g/l) 

  Ca(NO3)2.4H2O   47.230 g  (0.16 g/l) 

 300X Solution B (1 L) 

  MgSO4.7H2O    12.324 g  (41 mg/l) 

  NH4H2PO4    11.502 g  (38 mg/l) 

  NaCl     16.577 g  (55 mg/l) 

 300X Solution C (1 L)    

  FeSO4.7H2O    6 g   (20 mg/l) 

  Na2EDTA    8 g   (27 mg/l) 

 300X Solution D (1 L) 

  MnCl2.4H2O    0.4323 g  (1.44 mg/l) 

  H3BO3     0.3420 g  (1.14 mg/l) 

  Na2MoO4.2H2O   0.0075 g           (0.025 mg/l) 
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  ZnSO4.7H2O    0.0264 g           (0.088 mg/l) 

  CuSO4.5H2O    0.0117 g           (0.039 mg/l) 

1X Limpinuntana’s solution (300 ml) 

Mix solution A, B, C and D together (1 ml each), then add deionized 

water to 300 ml and autoclave for 20 minutes at 121 °C. 
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APPENDIX B 

Calculations 

1.  SOD activity 

              Specific activity       =                      1 

      

One unit of SOD activity was defined as the amount of enzyme required 

to cause 50% inhibition of the reduction of NBT monitored at 560 nm. 

For example:  

SOD activity of wild-type KDML105 plants under without salt (0 mM NaCl) for 3 days 

A560 control = 0.9473,  A560 sample  = 0.6554 

              Specific activity       =                      1 

       

       =      1.38 U/ 0.05 mg protein 

SOD specific activity for 1 mg protein is   27.66  U/mg protein  

 

 

 

 

x  A560 (sample) 
    A560 (control) /2 

x 0.6554 
   0.9473 /2 



 

 

99 

2.  CAT activity 

  Specific activity     =       A240/min x total volume x 1,000 

   

One unit of CAT activity was defined as the amount of enzyme to reduce 

1µmol of H2O2 per min at 240 nm (ɛ = 39.4 mM-1cm-1).  

For example:  

CAT activity of wild-type KDML105 plants under without salt (0 mM NaCl) for 3 days 

A240/min   = 0.1692 

  Specific activity     =            0.1692 x 1.2 ml x 1,000 

   

        =       103.07 µmol/min/mg protein 

 

 

 

 

 

 

 

ɛ x protein content (0.05 mg) 

39.4 mM-1cm-1 x 0.05 mg 
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3.  APX activity 

  Specific activity    =   A290/min x total volume x 1,000 

 

One unit of APX activity was defined as the amount of enzyme to 

oxidize 1 μmol of ascorbate per min at 290 nm (ɛ = 2.8 mM-1cm-1). 

For example:  

APX activity of wild-type KDML105 plants under without salt (0 mM NaCl) for 3 days 

A290/min   = 0.0383 

Specific activity    =        0.0383 x 1.2 ml x 1,000 

      

   =       328.28 µmol/min/mg protein 

 

 

 

 

 

 

 

ɛ x protein content (0.05 mg) 

2.8 mM-1cm-1 x 0.05 mg 
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4.  GR activity 

 Specific activity    =   A340/min x total volume x 1,000 

 

One unit of GR activity was defined as the amount of enzyme to reduce 

GSSG to GSH per min at 340 nm (ɛ = 6.22 mM-1cm-1). 

For example:  

GR activity of wild-type KDML105 plants under without salt (0 mM NaCl) for 3 days 

A340/min   = 0.0129 

  Specific activity    =          0.0129 x 1.2 ml x 1,000 

 

      =         50.16 µmol/min/mg protein 

 

 

 

 

 

 

 

ɛ x protein content (0.05 mg) 

    6.22 mM-1cm-1 x 0.05 mg 
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5.  Measurement of RGR 

   RGR = (lnWf – lnWi) / (tf – ti) 

where, Wf and Wi are the shoot and root dry weight of plant, tf and ti are 

the times and subscripts denote initial and final sampling that is, day 0 (before 

salt stress treatment) and day 3 (after 3 days salt stress treatment). 

For example:  

RGR of wild-type KDML105 plants under without salt (0 mM NaCl) for 3 days 

Wi = 0.022 g, Wf  = 0.025 g   

RGR  =  (ln0.026 – ln0.021) / (3 – 0) 

          =   0.07 g·g-1·d-1 
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6.  Measurement of RWC 

RWC = [(Wi – Wd)/(Wf – Wd)] x 100 

where, Wi is the leaf initial weight, Wf is the leaf fully turgid weight, 

and Wd is the leaf dry weight.  

For example:  

RWC of wild-type KDML105 plants under without salt (0 mM NaCl) for 3 days 

Wi   =   0.0040 g, Wf   =   0.0043 g, Wd   =  0.0003 g   

             RWC  =  [(0.0040– 0.0003)/(0.0043 – 0.0003)] x 100 

             =   92.5 %   
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7.  Measurement of photosynthetic pigments  

 Total chlorophyll (a and b) (mg/l) = 17.90 (A647) + 8.08 (A664) 

Chlorophyll a (mg/l) = 12.70 (A664) - 2.79 (A647) 

Chlorophyll b (mg/l) = 20.70 (A647) – 4.62 (A664) 

    Carotenoids (mg/l) = A461 x 200  

 The pigment concentrations were calculated in mg/g FW of sample. 

For example:  

Photosynthetic pigments of wild-type KDML105 plants under without salt (0 mM 

NaCl) for 3 days 

A461 = 1.1106, A647 = 0.4251, A664 = 1.2101 

Total chlorophyll (a and b) (mg/l) =17.90 (0.4251) + 8.08 (1.2101) = 17.39 mg/l 

Chlorophyll a (mg/l) =12.70 (1.2101) - 2.79 (0.4251) = 14.18 mg/l 

Chlorophyll b (mg/l) =20.70 (0.4251) – 4.62 1.2101) = 3.37 mg/l 

     Carotenoids (mg/l) =1.1106 x 200  = 222.12 mg/l 

Total chl 17.39 mg/l      =      17.39 µg/ml  

=      17.39 µg/0.05 g sample 

=      347.8 µg/g sample 
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The total volume of extraction is  8 ml 

        Total chl  =      347.8 x 8   

                =      2782.4 µg/g   

    =      2.78 mg/g FW  

***For chl a, chl b and carotenoids, the results are calculated using the same method. 
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8.   Measurement of lipid peroxidation 

TBARS content  =   (A532-A600) x Vt x Vr x 100 

 

 where, Vt is the total volume of extract solution 

   Vr is the total volume of reaction mixture 

Vs is the volume of the extract solution contain in the reaction mixture 

m  is the weight of sample 

 ɛ   is the extinction coefficient (155 mM-1cm-1) 

For example:  

MDA content of wild-type KDML105 plants under without salt (0 mM NaCl) for 3 

days 

A532 = 0.1547, A600 = 0.1013 

TBARS content  =  (0.1547-0.1013) x 1 ml x 3 ml x 100 

 

      = 0.028 µmol/g FW 

 

 

 

 

 

(µmol MDA equivalents g FW)   ɛ x Vs x m   

(µmol MDA equivalents g FW)   
 

155 x 0.075 ml x 0.05 g  
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9.  Measurement of DPPH radical scavenging activity 

 

 

For example:  

DPPH content of wild-type KDML105 plants under without salt (0 mM NaCl) for 3 

days 

A517 control = 0.7596, A517 test = 0.6705 

 

    

          =    11.73 % 

 

 

 

 

 

 

 

 

(A
control

 – A
test

) 

A
control

 

AA%    = x 100 

(0.7596 – 0.6705) 

0.7596 

AA%    = x 100 
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10.  Calibration curve for protein content of standard BSA 
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y = 0.4401x

R² = 0.9998
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11.  Calibration curve of standard H2O2 
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