BIODEGRADATION OF PROFENOFOS BY *Pseudomonas* STRAINS UNDER PRESENCES OF OXYGEN AND NITRATE

Miss Tipsuda Subsanguan

จุหาลงกรณ์มหาวิทยาลัย

Chulalongkorn Universit

บทคัดย่อและแฟ้มข้อมูลฉบับเต็มของวิทยานิพนธ์ตั้งแต่ปีการศึกษา 2554 ที่ให้บริการในคลังปัญญาจุฬาฯ (CUIR) เป็นแฟ้มข้อมูลของนิสิตเจ้าของวิทยานิพนธ์ ที่ส่งผ่านทางบัณฑิตวิทยาลัย

The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository (CUIR) are the thesis authors' files submitted through the University Graduate School.

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science Program in Environmental Management (Interdisciplinary Program) Graduate School Chulalongkorn University Academic Year 2014 Copyright of Chulalongkorn University

การย่อยสลายสาร โพรฟีโนฟอสทางชีวภาพโดยจุลินทรีย์ Pseudomonas ภายใต้สภาวะที่มี ออกซิเจนและในเตรท

นางสาวทิพย์สุดา ทรัพย์สงวน

CHULALONGKORN UNIVERSITY

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาการจัดการสิ่งแวดล้อม (สหสาขาวิชา) บัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2557 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

Thesis Title	BIODEGRADATION OF PROFENOFOS BY <i>Pseudomonas</i> STRAINS UNDER PRESENCES OF OXYGEN AND NITRATE
Ву	Miss Tipsuda Subsanguan
Field of Study	Environmental Management
Thesis Advisor	Assistant Professor Sumana Ratpukdi, Ph.D.
Thesis Co-Advisor	Associate Professor Alisa Vangnai, Ph.D.

Accepted by the Graduate School, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

> _____Dean of the Graduate School (Associate Professor Sunait Chutintaranond, Ph.D.)

THESIS COMMITTEE

(Associate Professor Sunar Chuthharanond, Ph.D.)
COMMITTEE
Chairman
(Associate Professor Tawan Limpiyakorn, Ph.D.)
Thesis Advisor
(Assistant Professor Sumana Ratpukdi, Ph.D.)
Thesis Co-Advisor
(Associate Professor Alisa Vangnai, Ph.D.)
Examiner
(Prinpida Sonthiphand, Ph.D.)
External Examiner
(Associate Professor Duangrat Inthorn, Ph.D.)

ทิพย์สุดา ทรัพย์สงวน : การย่อยสลายสารโพรฟีโนฟอสทางชีวภาพโดยจุลินทรีย์ Pseudomonas ภายใต้สภาวะที่มีออกซิเจนและในเตรท (BIODEGRADATION OF PROFENOFOS BY Pseudomonas STRAINS UNDER PRESENCES OF OXYGEN AND NITRATE) อ.ที่ปรึกษาวิทยานิพนธ์หลัก: ผศ. คร. สุมนา ราษฎร์ภักดี, อ.ที่ปรึกษา วิทยานิพนธ์ร่วม: รศ. คร. อลิสา วังใน, 145 หน้า.

การปนเปื้อนสารกำจัดศัตรูพืชโพรฟีโนฟอสภายใต้สภาวะที่มีในเตรตในแหล่งน้ำใต้ดินจัดเป็น ้ ปัญหาที่สามารถพบได้ในประเทศเกษตรกรรม งานวิจัยนี้มีจุดมุ่งหมายเพื่อศึกษาการย่อยสลายสาร โพรฟี ้โนฟอสภายใต้สภาวะที่มีในเตรตเปรียบเทียบกับสภาวะที่มีออกซิเจน โดยจลินทรีย์ที่ใช้ในการศึกษา ได้แก่ Pseudomonas plecoglossicida strain PF1 (PF1) Pseudomonas aeruginosa strain PF2 (PF2) และ Pseudomonas aeruginosa strain PF3 (PF3) ในงานวิจัยนี้ศึกษาที่ความเข้มข้นของสาร ์ โพรฟีโนฟอสเริ่มต้น 10 -150 มิลลิกรัมต่อลิตร และ ความเข้มข้นของในเตรตเริ่มต้น 100 -300 มิลลิกรัมต่อลิตร การทดลองศึกษาด้วยระบบแบตช์ด้วยเครื่องเขย่าแบบบ่ม (ทำซ้ำ 2 รอบ) ที่ ความเร็วรอบ 150 รอบต่อนาที และอุณหภูมิห้อง เป็นระยะเวลา 6-8 วัน จากผลการศึกษาพบว่า ประสิทธิภาพการย่อยสลายสาร โพรฟีโนฟอสภายใต้สภาวะที่มีออกซิเจน โดย PF1 PF2 และ PF3 อยู่ ในช่วงร้อยละ 38.14-55.39 31.62-61.22 และ 34.72 63.81 และภายใต้สภาวะที่มีในเตรตอย่ในช่วง ร้อยละ 27.50-45.33 39.09-75.36 และ 13.78-48.89 ตามลำคับ โดยการย่อยสลายสารโพรฟีโนฟอส เป็นไปตามปฏิกิริยาอันดับที่หนึ่ง จลินทรีย์ PF1 และ PF3 สามารถย่อยสลายสารโพรฟีโนฟอสในสภาวะ ที่มีออกซิเจนได้ดีกว่าภายใต้สภาวะที่มีในเตรตในขณะที่ PF2 ใช้สาร โพรฟีโนฟอสภายใต้สภาวะที่มีใน เตรตได้ดีกว่า สำหรับการเจริญเติบโตของจุลินทรีย์พบว่าจุลินทรีย์ PF1 PF2 และ PF3 เจริญเติบโต เพิ่มขึ้นจาก 10^4 เป็น 10^8 ซีเอฟยต่อมิลลิลิตร ตามปฏิกิริยาอันคับที่หนึ่งทั้งภายใต้สภาวะที่มีออกซิเจนและ ในเตรต (แม้ในเตรตสามารถใช้เป็นเป็นตัวรับอิเล็กตรอนในกระบวนการย่อยสลายสารโพรฟีโนฟอสได้ แต่ในเตรตสามารถยับยั้งกระบวนการย่อยสลายโพรฟีโนฟอสได้เช่นกัน) สำหรับการติดตามสารมัธยันต์ ภายใต้สภาวะที่มีออกซิเจนและ ในเตรตตรวจพบ 4-bromo-2-chlorophenol (BCP) and 1,1diethylethylphenol นอกจากนี้ยังตรวจพบ Triethyl phosphate ในการย่อยสลายสารโพรฟีโนฟอส ้สภาวะที่มีในเตรต การศึกษานี้ชี้ให้เห็นว่าจุลินทรีย์ PF1 PF2 และ PF3 สามารถนำไปประยุกต์ใช้กับ ้สิ่งแวคล้อมที่ปนเปื้อนสารโพรฟีโนฟอสรวมถึงแหล่งน้ำใต้ดินที่มีในเตรตได้ จลินทรีย์ดังกล่าวมีศักยภาพ สำหรับการฟื้นฟูพื้นที่ปนเปื้อนสาร โพรฟี โนฟอสในอนากต

สาขาวิชา	การจัดการสิ่งแวดล้อม	ลายมือชื่อนิสิต
ปีการศึกษา	2557	ลายมือชื่อ อ.ที่ปรึกษาหลัก
		ลายมือชื่อ อ.ที่ปรึกษาร่วม

5687537020 : MAJOR ENVIRONMENTAL MANAGEMENT KEYWORDS: PROFENOFOS BIODEGRADATION / PSEUDOMONAS STRAIN / NITRATE / AEROBIC / ANAEROBIC

TIPSUDA SUBSANGUAN: BIODEGRADATION OF PROFENOFOS BY *Pseudomonas* STRAINS UNDER PRESENCES OF OXYGEN AND NITRATE. ADVISOR: ASST. PROF. SUMANA RATPUKDI, Ph.D., CO-ADVISOR: ASSOC. PROF. ALISA VANGNAI, Ph.D., 145 pp.

Profenofos pesticide contaminated in groundwater with presence of nitrate was an problematic issue potentially found in agricultural countries. This study aimed to investigate profenofos biodegradation under presence of nitrate compared to the condition with oxygen. Three isolates, Pseudomonas plecoglossicida strain PF1 (PF1), Pseudomonas aeruginosa strain PF2 (PF2) and Pseudomonas aeruginosa strain PF3 (PF3), were used. In this research, concentrations of profenofos (10-150 mg/L) and nitrate (100-300 mg/L) were varied. Duplicate batch experiments were conducted using incubating shaker at 150 rpm and room temperature for 6-8 days. The results showed that removal efficiency percentages under presence of oxygen by PF1, PF2 and PF3 ranged from 38.14 to 55.39, 31.62 to 61.22 and 34.72-63.81%, respectively whereas PF1, PF2 and PF3 was removed profenofos from 27.50 to 45.33, 39.09-75.36 and 13.78 to 48.89% under presence of nitrate, respectively. The profenofos degradation kinetics followed the first order kinetic reaction. Strains PF1 and PF3 degraded profenofos under presence of oxygen better than presence of nitrate while PF2 utilized profenofos under presence of nitrate superior than presence of oxygen (For microbial growth, strains PF1, PF2 and PF3 grew from 10^4 to 10^8 CFU/ml followed the first kinetic order for both presence of oxygen and nitrate). Although nitrate was used as an electron acceptor during profenofos degradation, nitrate could inhibit the profenofos biodegradation as well. For intermediate metabolite monitoring, under presence oxygen and nitrate, 4-bromo-2chlorophenol and 1,1-diethylethylphenol were found. Moreover, triethyl phosphate was also found as the metabolite on profenofos degradation under presence of nitrate. This study indicated that strains PF1, PF2 and PF3 could be applied in the profenofos-contaminated environment including groundwater containing nitrate. The cultures are promising for profenofos bioremediation in the future.

Field of Study:	Environmental Management	Student's Signature
Academic Year:	2014	Advisor's Signature
		Co-Advisor's Signature

ACKNOWLEDGEMENTS

First of all, I really appreciate my advisors, Assist. Prof. Dr. Sumana Ratpukdi and Assoc. Prof. Dr. Alisa Vangnai, for their advices. I have to thank to my committee member, Assoc. Prof. Dr. Tawan Limpiyakorn, the Chairman of the committee, and all the committee members; Dr. Prinpida Sonthiphand and Assoc. Prof. Dr. Duangrat Inthorn for their comments and suggestions.

I would like to acknowledge financial supports from the International Program in Hazardous Substance and Environmental Management (HSM), Graduate School Chulalongkorn University and also thanks to Department of Environmental Engineering, Khon Kaen University for providing instruments, laboratory facilities and staff for their suggestions and help.

A special thanks to my family who always give me encouragements, guidance, love and care. Moreover, I would like to thank all of my friends, Jame, Noon, Milk and friends from Khon Kaen University who supported me success in my goals.

> จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

CONTENTS

Page
THAI ABSTRACTiv
ENGLISH ABSTRACT v
ACKNOWLEDGEMENTS vi
CONTENTS vii
LIST OF TABLES x
LIST OF FIGURES xi
CHAPTER I 1
INTRODUCTION
1.1 Motivation
1.2 Objectives
1.3 Scopes of the Study
1.4 Hypotheses
CHAPTER II
LITERATURE REVIEW
2.1 Overview of profenofos
2.1.1 Physical and chemical properties5
2.1.2 Utilization
2.1.3 Toxicity
2.1.4 Profenofos contamination and fate in environment
2.1.5 Profenofos degradation pathway
2.1.6 Microbial cultures involving in profenofos degradation
2.2 Biological treatment
2.2.1 Biotranformation12
2.2.2 Biodegradation
2.2.3 Biodegradation under aerobic and anaerobic conditions
2.3 Microbial growth, degradation and degradation kinetics
2.3.1 Microbial growth15
2.3.2 Degradation kinetics

	Page
CHAPTER III 1	19
MATERIALS AND METHODS 1	19
3.1 Experimental Framework and scheme 1	19
3.2 Materials and Methods	20
3.2.1 Bacteria cultivation and medium	20
3.2.2 Profenofos biodegradation by PF-degradaing cultures	21
3.2.3 Kinetic analyses	21
3.2.4 Chemical analysis	22
CHAPTER IV	24
RESULTS AND DISCUSSION	24
4.1 Profenofos degradation and degradation kinetics under presence of oxygen and nitrate	24
4.1.1 Profenofos degradation under presence of oxygen and nitrate	24
4.1.2 Profenofos degradation kinetics	34
4.2 Microbial growth under presence of oxygen and nitrate	40
4.3 Nitrate reduction under presence of nitrate	47
4.4 Profenofos intermediate metabolite under presence of oxygen and nitrate5	52
CHAPTER Vจพาลงกรณ์มหาวิทยาลัย	59
CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK5	59
5.1 Conclusion	59
5.1.1 Profenofos degradation and degradation kinetics under presence of oxygen and nitrate5	59
5.1.2 Microbial growth under presence of oxygen and nitrate5	59
5.1.3 Nitrate reduction (under presence of nitrate)	60
5.1.4 Profenofos intermediate metabolite monitoring under presence of oxygen and nitrate	60
5.2 Recommendations for future work6	60
REFERENCES	61
APPENDIX A	66

	Page
Medium preparation and aseptic technique	. 66
APPENDIX B	. 72
Chemical Analysis	. 72
APPENDIX C	. 78
Raw data	. 78
VITA	145

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

LIST OF TABLES

Page
Table 2.1 Physical and chemical properties of profenofos 5
Table 2.2 Microbial cultures of profenofos degradation 11
Table 4.1 Degradation kinetics of PF1 under presence of oxygen
Table 4.2 Degradation kinetics of PF1 under presence of nitrate 25
Table 4.3 The percentages of profenofos removal efficiency by PF1 at 5 days 27
Table 4.4 Degradation kinetics of PF2 under presence of oxygen
Table 4.5 Degradation kinetics of PF2 under presence of nitrate 28
Table 4.6 The percentages of profenofos removal efficiency by PF2 at 5 days 30
Table 4.7 Degradation kinetics of PF3 under presence of oxygen
Table 4.8 Degradation kinetics of PF3 under presence of nitrate 31
Table 4 9 The percentages of profenofos removal efficiency by PF3 at 5 days 33
Table 4.10 Degradation kinetic parameters 38
Table 4.11 Growth kinetics of PF1, PF2 and PF3 under presence of oxygen
Table 4.12 Growth kinetics of PF1 under presence of nitrate 41
Table 4.13 Growth kinetics of PF2 under presence of nitrate 42
Table 4.14 Growth kinetics of PF3 under presence of nitrate 42
Table 4.15 Nitrate reduction (%)
Table 4.16 BCP-profenofos ratio on profenofos degradation

LIST OF FIGURES

Figure 2.1 Molecular structure of profenofos
Figure 2.2 Proposed metabolic pathway of profenofos in soil, plant and enzymatic reactions
Figure 2.3 Proposed pathways for profenofos degradation by <i>Pseudomonas</i> <i>aeruginosa</i> (strain OW)
Figure 2.4 Potential profenofos degradation pathway 10
Figure 2.5 Relationship between substrate degradation rate and substrate concentration
Figure 2.6 Relationship of substrate degradation rate and substrate concentration in Lineweaver-Burk model
Figure 3.1 Framework of the study 19
Figure 3.2 Experimental scheme
Figure 3.3 Degradation rate
Figure 4.1 Profenofos degradation under presence of oxygen and nitrate by PF1 24
Figure 4.2 Profenofos degradation under presence of oxygen and nitrate by PF2 27
Figure 4.3 Profenofos degradation under presence of oxygen and nitrate by PF3 30
Figure 4.4 The relationship between 1/V and 1/[PF] of profenofos degradation by PF1 (a) under presence of oxygen (b) under presence of nitrate
Figure 4.5 The relationship between 1/V and 1/[PF] of profenofos degradation by PF2 (a) under presence of oxygen (b) under presence of nitrate
Figure 4.6 The relationship between 1/V and 1/[PF] of profenofos degradation by PF3 (a) under presence of oxygen (b) under presence of nitrate
Figure 4.7 The relationship between V and S of profenofos degradation by PF1 under presence of oxygen and nitrate (100, 200 and 300 mg/L)
Figure 4.8 The relationship between V and S of profenofos degradation by PF2 under presence of oxygen and nitrate (100, 200 and 300 mg/L)
Figure 4.9 The relationship between V and S of profenofos degradation by PF3 under presence of oxygen and nitrate (100, 200 and 300 mg/L)
Figure 4.10 Microbial growth of PF1 under presence of oxygen and nitrate

Page

Figure 4.11 Microbial growth of PF2 under presence of oxygen and nitrate	. 44
Figure 4.12 Microbial growth of PF3 under presence of oxygen and nitrate	. 45
Figure 4.13 The normalized nitrate concentration percentages of PF1 at profenofos 10,25,50,80,100 and 150 mg/L	. 48
Figure 4.14 The normalized nitrate concentration percentages of PF2 at profenofos 10,25,50,80,100 and 150 mg/L	. 49
Figure 4.15 The normailized nitrate concentration percentages of PF3 at profenofos 10,25,50,80,100 and 150 mg/L	. 50
Figure 4.16 Mass spectrum of 4-bromo-chlorophenol (BCP)	. 53
Figure 4.17 Mass spectrum of 1,1 diethylethylphenol	. 53
Figure 4.18 Mass spectrum of triethyl phosphate	. 54
Figure 4.19 Proposed commercial profenofos degradation pathway under presence of oxygen and nitrate	

CHAPTER I

INTRODUCTION

1.1 Motivation

Pesticides play an important role in agriculture for controlling pests and improving agricultural productivity. However, the indiscriminate use of pesticides has inflicted serious environmental problems and human health because of pesticide contamination spread over the application area. Some Pesticides remain for a long time in environment including soil, sediment, and groundwater while others directly go to food chain. Therefore, the fate of pesticides is uncertain; it depends on several factors such as persistence and mobility (Gunawan et al., 2014).

Organophosphate compounds (OPs) are a group of compounds that have been used as pesticides in agricultural area; they also used as municipal hygiene, disease vector control and against household pest (Silva et al., 2013) OPs have been developed to replace the organochlorine pesticides which were banned in USA since 1970 (Jauregui et al., 2003). However, OPs are also high toxic since they are potent irreversible acetylcholinesterase inhibitors. They have a profound effect on the nervous system of exposed organisms (Edwards and Tchounwou, 2005) One of the organophosphorus pesticides is profenofos (O-4-bromo-2-chlorophenyl O-ethyl Spropyl phosphorothioate) which is extensively used in agricultural and household applications causing environmental pollution with adverse effect on human, wildlife and environment (Kumar et al., 2014). In USA, profenofos is a restricted use as pesticide only on cotton crop. Residential uses of profenofos is not allowed (USEPA, 2006). In Brazil, this pesticide can be used for foliar application on cotton, peanuts, potatoes, coffee, onions, peas, beans, watermelon, corn, cucumber and cabbage (Silva et al., 2013) Furthermore, this chemical was applied the most for chili farms in the north eastern area of Thailand (Siripattanakul-Ratpukdi et al., 2015) Based on the utilization information, profenofos is potential to accumulate in soil and sediment and percolate into the groundwater (Ngan et al., 2005).

One treatment method is bioremediation which is a technique applied to clean up organic substances by microorganisms. Bioremediation performance relies on biodegradation ability of microorganisms to remove pollutants from contaminated area. Bioremediation is effective, less hazardous, economical, versatile and environmental friendly (Finley et al., 2010). Previous studies successfully achieved biodegradation of organophosphorus (Yadav et al., 2014). The studies carried out under aerobic condition. However, in practice, the amount of oxygen in groundwater may not be enough for aerobic degradation leading to anoxic or anaerobic degradations which nitrate, manganese (IV) oxide, iron (III) hydroxides, sulfate and carbon dioxide are presented as terminal electron acceptor (Schink, 2005). In agricultural area, groundwater containing nitrate from fertilizers was reported (Sunitha, 2013). In addition, based on redox potential, nitrate was preferred electron acceptor in anaerobic condition. Therefore, biodegradation kinetics with nitrate as electron acceptor is also important.

Some literatures explained the biodegradation under aerobic and anaerobic conditions (Liu et al., 2011). Tiwari and Guha (2013) reported that biodegradation of endosulfan (ES), an Organochlorine, under aerobic and anaerobic conditions which showed the different pathways after degradation. The results showed the rates of degradation of endosulfan were higher in the aerobic environment compared with anaerobic environment. The chemical was oxidized to endosulfan sulfate (ESS) which was the rate limiting step in aerobic degradation then further degradation to endosulfan ether (ESE) and endosulfan lactone (ESL), respectively while ES was hydrolyzed to ESD which was the rate limiting step in anaerobic condition and further degradation to ES. Based on the example, it is obvious that the different degradation mechanism including reactions, kinetics, enzymes and reaction rates led to different intermediates in the pathways which affect to further degradation (Tiwari and Guha, 2013). To the best of our knowledge, all previous studies on profenofos biodegradation have been focused only the degradation under aerobic condition (Malghani et al., 2009; Silva et al., 2013).

Therefore, the thesis entitled "biodegradation of profenofos under presences of oxygen and nitrate" will be carried out. The aim of this study is to determine

profenofos degradation kinetics and potential pathway under presences of oxygen and nitrate. Additionally, the kinetics with different nitrate concentrations will be examined. The *Pseudomonas* strains previously isolated and characterized will be used in this study (Siripattanakul-Ratpukdi et al., 2015).

1.2 Objectives

Main objective

To investigate kinetics of profenofos biodegradation under presences of oxygen and nitrate

Specific objectives

- 1. To investigate profenofos biodegradation and microbial growth in presence of oxygen and nitrate at different profenofos concentrations
- 2. To investigate nitrate reduction during profenofos biodegradation under presence of nitrate
- 3. To estimate kinetics of profenofos biodegradation in presence of oxygen and nitrate
- 4. To determine potential pathways of profenofos biodegradation under presences of oxygen and nitrate degradations

CHULALONGKORN UNIVERSITY

1.3 Scopes of the Study

- 1.31 The isolates (*Pseudomonas plecoglossicida* (GenBank accession number KJ620776), *Pseudomonas aeruginosa* (GenBank accession number KJ143903) and *Pseudomonas aeruginosa* (GenBank accession number KJ143904) were taken from the previous study. The cultures were isolated from profenofos pesticide-contaminated soil in chili farm, Ubon Ratchathani, Thailand (Siripattanakul-Ratpukdi et al., 2015).
- 1.32 The study was carried out in the laboratory scale.

- 1.33 Commercial grade PF was used in the experiment (Guddacy (50% w/v), Thailand) while standard PF (analytical grade) was used for analysis (Dr.Ehrenstorfer GmbH, Germany).
- 1.34 Profenofos concentrations were varied at 10, 25, 50, 80, 100 and 150 mg/L under presences of oxygen and nitrate.
- 1.35 Profenofos concentration was measured by gas chromatograph with electron capture detector (GC-ECD).
- 1.36 Profenofos degradation pathway was examined by gas chromatography/mass spectrometry (GC/MS).
- 1.37 Nitrate was used as electron acceptor under anaerobic condition.
- 1.38 Influence of nitrate concentrations (100, 200 and 300 mg/L) on profenofos biodegradation was investigated.
- 1.39 Nitrate concentration was detected by colorimetric method followed standard method for the examination of water and wastewater (APHA, 1975).
- 1.40 Profenofos biodegradation kinetics under presences of oxygen and nitrate followed Michaelis-Menten model was performed.

1.4 Hypotheses

- 1. Degradation and degradation rate of profenofos under presence of oxygen are higher than those of presence of nitrate
- 2. Microbial growth and growth rate under presence of oxygen are higher than those of presence of nitrate
- 3. Higher concentration of nitrate can promote higher profenofos biodegradation.
- 4. Degradation kinetics under presences of oxygen and nitrate are different
- Profenofos degradation pathways under presences of oxygen and nitrate are different

CHAPTER II

LITERATURE REVIEW

2.1 Overview of profenofos

2.1.1 Physical and chemical properties

Profenofos, a thiophosphate organophosphorus, have been developed to replace the organochlorine pesticides which banned in the United State since 1970 (Jauregui et al., 2003) and other higher toxic organophosphorus compounds (OPs) (Dadsona et al., 2013) It was first registered by the Agency in 1982 for using as an insecticide/miticide in agricultural and household purposes (USEPA, 2006). Physical and chemical properties of profenofos are presented in Table 2.1 and molecular structure in Figure 2.1.

Pesticide type	Insecticide
Chemical class	Organophosphate
Chemical formula	C ₁₁ H ₁₅ BrClO ₃ PS
Chemical name	O-(4-bromo-2-chlorophenyl) O-ethyl S-propyl
	phosphorothioate
Molecular mass	373.63 g/mol
Appearance	Slightly clear pale yellow to light brown liquid
Odor	Pungent, like garlic or cooked onions
pH value	4.2 at 25°C
Boiling point	110 °C at 1.8 Pa
Density	1.46 g/cm ³ at 20 °C
Half-life	About one week (7 days)
Henry's Constant	1.65 x 10 ⁻³ Pa m ³ mol ⁻¹
Vapor Pressure	1.24 x 10 ⁻¹ mPa at 25 °C
Log Kow	4.68
Solubility in water	20 mg/L
Solubility in other	Soluble in several organic solvent such as ethanol, acetone,
solvent	toluene, n-octanol, and n-hexan
Stability	Relatively stable under neutral and slightly acidic
	conditions. under alkaline conditions; on hydrolysis

Table 2.1 Physical and chemical properties of profenofos

Reference: (DowAgroSciences, 2002; USEPA, 2006)

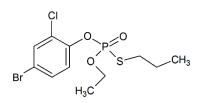


Figure 2.1 Molecular structure of profenofos

2.1.2 Utilization

Profenofos is widely used as pesticide in agriculture for pest control such as tobacco budworm, cotton bollworm, armyworm, cotton aphid, whiteflies, spider mites, plant bugs and fleahoppers. An estimated 85% of profenofos at varying rates is used to control lepidopteron species (worm complex). In addition, an approximately 775,000 lb/y of active ingredient profenofos are applied to cotton crops in the United States (USEPA, 2006). Otherwise, there are many countries which extensively used this chemical. In Pakistan, 80% of pesticide used for cotton crop was profenofos (Ismail et al., 2009). In Egypt, profenofos was applied for vegetable crop, especially field-grown pepper and eggplant (Radwan et al., 2005). In Korea, profenofos was used for pest control, such as white fly, rocket and plantlouse (Min and Cha, 2000). In the United State, Profenofos is a restricted use as pesticide only for cotton crop (USEPA, 2006). In Brazil, Profenofos can be used for foliar application for cotton, peanut, potato, coffee, onion, pea, bean, watermelon, corn, cucumber and cabbage (Silva et al., 2013). Profenofos was one of the most used pesticides for chili farm in the north eastern area of Thailand (Siripattanakul-Ratpukdi et al., 2015).

2.1.3 Toxicity

World Health Organization (WHO) has been classified profenofos as a moderately hazardous (Toxicity class II) pesticide (Malghani et al., 2009; Silva et al., 2013). It has a moderate order of acute toxicity following oral and dermal administration (Pandey et al., 2011). Profenofos also has been examined to be high toxic substance affecting mammals (Dadsona et al., 2013) fish (Ismail et al., 2009; Pandey et al., 2011) and shrimp (Rao et al., 2007). For acute toxic action, profenofos

could inhibit acetylcholinesterase (AChE) and decrease the hydrolysis of acetylcholine in both central and peripheral cholinergic synapses which resulting in overstimulation of nicotinic and muscarinic receptors followed by receptor downregulation on post-synaptic membranes (Dadsona et al., 2013). According to the toxicity of profenofos, it is extreme to aquatic invertebrates and vertebrates which continuously effect on animal through food and water (Rao et al., 2007). Furthermore, profenofos can stimulate the nervous system causing nausea, dizziness, confusion and respiratory paralysis and death at high concentration exposure (USEPA, 2006). Many studies of profenofos toxicity were done. In India, toxicity of organophosphate (acephate, chloropyrifos, monocrotophos and profenofos) in short-term bioassay using brine shrimp was studied (Rao et al., 2007). In China, the acute cytotoxic effect of the organophosphorus pesticide (profenofos) to gill of flounder was determined. The results show that the cell growth rate was reduced and the fine cell structures were changed by profenofos (Hong-yan et al., 2001). In Korea, bioconcentration of phosphamidon and profenofos in Zebrafish was examined. It was found that profenofos had effect on survival of vertebrate, tissue accumulation and physiological and reproductive process of organism especially aquatic organism (Min and Cha, 2000).

2.1.4 Profenofos contamination and fate in environment

From physical and chemical properties of profenofos mention earlier, profenofos directly releases and spread over to the environment including air, soil, water and sediment. Some literature reviews reported the profenofos contamination in environment (Ngan et al., 2005). Profenofos was detected in runoff water and soil range of < 0.01-0.08 ng/mL and < 0.01-0.02 mg/kg, respectively. Moreover, surface water in Khon Kaen, Thailand was found 1 mg/L of profenofos (Harnpicharnchai et al., 2013).

Hydrolysis is the important way of dissipation whereas photolysis is not a main route of profenofos degradation. If profenofos released to soil, it was slightly mobile based on K_{oc} value. However, it was rapidly degraded in alkaline under aerobic condition (half-life of 2 days) and was quickly utilized in anaerobic condition (half-life 3 days). The degradation rate of profenofos is influenced by chemical

hydrolysis. Some reports showed that profenofos may release in air through volatilization which half-life is approximately 8.6 hr. Based on water solubility (20 mg/L), it is moderately soluble in water. Profenofos can releases into water; it can adsorb to suspended solid and sediment. Also, profenofos is potential groundwater contaminant. For surface water, profenofos was accumulated by spraying of agricultural application or runoff. It rapidly dissipated on surface water only a few days in alkaline condition whereas it likely to persist in acidic conditions. Dissolution and adsorption processed affected profenofos transport in runoff. The persistence of profenofos in water depended on pH, microbial population and hydrologic residence time of water body. For groundwater, profenofos was further reduced under alkaline condition because of rapid hydrolysis (USEPA, 1998).

- 2.1.5 Profenofos degradation pathway
 - 1. Abiotic degradation

Profenofos, the compound is stable to photolysis in water and soil (USEPA, 2006) There are many studies on abiotic degradation of profenofos including advanced oxidation processes (the combination of the Fenton reaction, UV/H_2O_2 and the photo-Fenton process) (Badawy et al., 2006; Oller et al., 2011). This reaction combines with oxidants, ultraviolet irradiation and catalysts to generate hydroxyl radicals in solution. Hazardous organic compounds are oxidized by free radicals and mineralized to water, carbon dioxide and mineral salts. In addition, it was profenofos found abiotic hydrolysis reaction on profenofos degradation (Siripattanakul-Ratpukdi et al., 2015).

2. Biotic degradation

There were only a few reports in biotic degradation pathways of profenofos; however, some degradation pathways are described in the literature (Malghani et al., 2009). The metabolic pathway of profenofos in cotton crop involves the cleavage of the phosphorothioate ester bond to yield 4-bromo-2-chlorophenol (BCP), followed by conjugation with glucose (Silva et al., 2013). According to the Food and Agriculture Organization of the United State (FAO), profenofos was metabolized rapidly under aerobic (1.9 days) and anaerobic (2.9 days) (FAO, 2007).

In sterilized soil, cleavage of phenol phosphorous ester bond of profenofos proceeded via chemical hydrolysis, with accumulation of BCP and formation of unextracted residues. For metabolic biotransformation in plant and animal similar to soil, it occured through hydrolysis which was formed 4-bromo-2-chlorophenol as the intermediate and conjugated by several enzymatic activities (Silva et al., 2013). The metabolic pathways of profenofos are showed in Figure 2.2

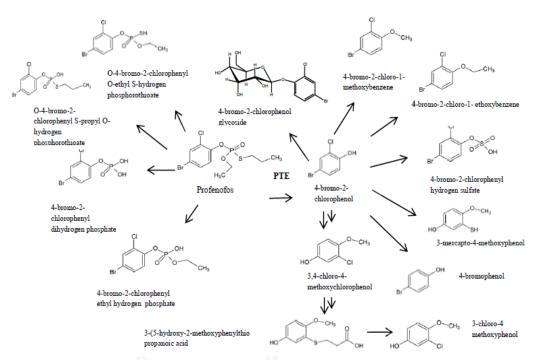


Figure 2.2 Proposed metabolic pathway of profenofos in soil, plant and enzymatic reactions

In addition, some literatures are explained profenofos degradation pathway by both bacteria and fungi (Malghani et al., 2009) For example, isolation and characterization of a profenofos degrading bacteria was performed by (Silva et al., 2013). In this study, 86.81% of pure profenofos disappeared after 48 hours followed by a decreasing of profenofos with a longer incubation time and 4-bromo-2chlorophenol (BCP) was identified as a metabolite in profenofos degradation pathway via esterase enzymes profenofos biodegradation pathways are presented in Figure 2.3.

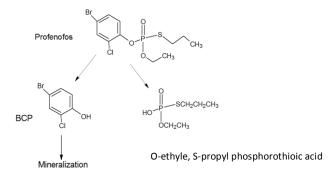


Figure 2.3 Proposed pathways for profenofos degradation by *Pseudomonas aeruginosa* (strain OW)

Another work on biodegradation of profenofos pesticide by novel isolated cultures and their characterization was performed by Siripattanakul-Ratpakdi et al. (2015). In this case, profenofos degradation continuously decreased over two days and the concentration dropped gradually thereafter and 4-bromo-2-chlorophenol (BCP) was detected during profenofos degradation via the organophosphorus hydrolase enzyme (Siripattanakul-Ratpukdi et al., 2015) and profenofos degradation pathway is demonstrated in Figure 2.4.

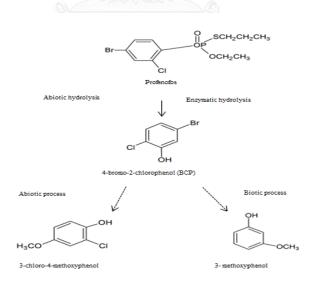


Figure 2.4 Potential profenofos degradation pathway

2.1.6 Microbial cultures involving in profenofos degradation

There were a few reports on microbial cultures which can degrade profenofos. the microbial cultures involving in profenofos degradation are presented in Table 2.2.

Microbial cultures	Isolate	Strains	Results	Reference
	Pseudomonas plecoglossicida	PF 1	After 6 d, profenofos was removed 95.0%	
	Pseudomornas aeruginosa	PF 2	Profenofos was degraded 93.1% within 6 d.	(Siripattanakul -Ratpukdi et al. 2015)
		PF 3	Profenofos was degraded 95.0% within 6 d.	
Bacteria	Pseudomornas aeruginosa	OW	86.81% of profenofos disappeared after 48 hr.	(Malghani et al., 2009)
	Bacillus subtillis	DR-39	89.4% of profenofos was degraded in 9 d.	(Salunkhe et al., 2013)
		CS-126	87.6% of profenofos was degraded in 9 d.	
		TL-171	74.2% of profenofos was degraded 9 d.	
		TS-204	72.8% of profenofos was degraded 9 d.	
Fungi	Penicillium raistrickii	CBMAI 931	This strain degraded approximately of 82% of profenofos.	(Silva et al., 2013)
	Aspergillus sydowii	CBMAI 935	It showed 71% of profenofos degradation	2013)

Table 2.2 Microbial cultures of profenofos degradation

2.2 Biological treatment

Biological treatment is a process which contaminants in environmental media are transformed or degraded to non-hazardous substances such as carbon dioxide, water, fatty acids and biomass through the action of microorganisms. The biological treatment process is low cost and no residual treatment requirement; however, it may be difficult and take longer time compared to chemical and physical processes. (EUGIRS, 2014).

2.2.1 Biotranformation

Biotransformation is the process which a substance is changed from one chemical structure to another by chemical reaction (USGS, 2014). Some literatures described the mechanism of biotransformation of organophosphorus compound (Jokanovic, 2001) Usually, biotransformation of xenobiotics are divided into 2 phases: (1) reaction which a polar group, such as hydroxyl (-OH), carboxyl (-COOH), thiol (-SH) and amino (-NH₂) groups is introduced through oxidation, reduction or hydrolysis. In this step, metabolites could be more or less toxic than that of parent compounds and (2) polar metabolites are conjugated with endogenous substrates such as sulfate, acetate and amino acid which hydrosoluble products are formed. For Organophosphorus compound biotransformation, the reaction is separated into (1) activation processes and (2) detoxification processes.

Since profenofos is a thiophosphate organophosphorus, the activation of this compound may occur through oxidative desulfuration of thiophosphate to form phosphorus compound. Based on the structure of profenofos which contained anhydride bond, it could be cleavage via oxidative dearylation or enzymatic hydrolysis (Jokanavic, 2001). Some previous work showed the biotransformation of organophosphorus pesticide (Lavado and Schlenk, 2011). It was reported parathion fenthion biotransformation. chlorophrifos, and During fenthion dedegradation, 3-methyl-4-methyltiophenol, fenoxon and fenthion sulfoxides were detected as the metabolites in liver and gills of rainbow trout. Chlorpyrifos was converted to chlorpyrifos oxon and 3,4,6-trichloro-2-pyridinol. Paraxon and pnitrophenol were detected as the metabolites on parathion biotransformation.

2.2.2 Biodegradation

Biodegradation is a subset in biotransformation which the intramolecular bond of organic compound structure is broken down. It involves substitution of functional groups leading to mineralization (Madsen, 2008). Some prior works defined biodegradation. U.S. Geological Survey stated biodegradation as "transformation of a substance into new compound through biochemical reactions or the actions of microorganism such as bacteria" (USGS, 2007). Pesticides have been extensively used in agricultural area which can accumulate and persist for a long time in the environment. Microbial degradation of hazardous substance such as pesticides is an important way to reduce or remove the concentration of these compounds to acceptable level. There are many organic compounds biodegradation; for example, More than 95 % removal efficiency of chloropyrifos by *Pseudomonas* sp. in a continuous packed bed bioreactor was observed (Yadav et al., 2014) Chloropyrifos, fenitrothion and parathion were degraded 58.9%, 70.5% and 82.5%, respectively within 14 days by diazinon-degrading *Srratia marcesscens* (M. Cycon et al., 2013) Diazinon was degraded 80-92% by *Serratia* sp. and *Pseudomonas* sp. and the consortium. When MSM was supplemented with glucose, the degradation was accelerated (M. Cycon et al., 2009).

There were a few works on biodegradation of profenofos. Profenofos was removed 86.81% within 48 hours incubation by *Pseudomonas aeruginosa* and the metabolite was identified as 4-bromo-2-chlorophenol (BCP) which occurred through hydrolysis reaction (Malghani et al, 2009). Another study reported that more than 90% of profenofos was degraded within 6 days by the isolates, *Pseudomonas aeruginosa plecoglossicida* (PF1), *Pseudomonas aeruginosa* (PF2) and *Pseudomonas aeruginosa* (PF3) which BCP was detected as the intermediate through organophosphorus hydrolase enzyme (Siripattanakul-Ratpukdi et al., 2015). Recently, the profenofos removal of more than 70% by Bacillus substilis strains was found (Salunk et al., 2013). Not only bacteria can degrade profenofos but fungi can remove prefenofos also. Penicillium raistrickii strain CBMAI 931 and Aspergillus sydowii strai CBMAI 935 showed profenofos degradation of 82.0% and 71.0%, respectively (Silva et al., 2013).

2.2.3 Biodegradation under aerobic and anaerobic conditions

Metabolism is the biochemical reaction which carries out by living organism. Metabolism consists of two types of processes including catabolism and anabolism. Catabolic and anabolism reaction is very important for biodegradation which involves electron transport and redox reaction (oxidation-reduction reaction). For aerobic degradation, enzymatic key reactions of aerobic biodegradation are oxidations catalyzed by oxygenases and peroxidases which oxygenases are oxidoreduatases that used O_2 to corporate with oxygen into the substrate. Microbial degradation needs oxygen in two metabolic sites 1) the initial attack of substrate 2) the end of respiratory chain. Xenobiotic compound is classified as carbon source and electron donor for generation of energy and oxygen as electron acceptor. In some case, though a single bacterium is able to metabolize organic pollutant, mixed culture communities are higher degradation. This is because the mixed cultures containing more various genetic information resulting in better degradation of the xenobiotic compounds. Therefore, the genetic potential and environmental factors such as temperature, pH, available nitrogen and phosphorus sources are important influences on the degradation rate and further degradation (Fritsche and Hofrichter, 2008).

In general, a wealth of aromatic compound is degraded by a limited number of reaction: hydroxylation, oxygenolytic ring cleavage, isomerization and hydrolysis. Some report described that profenofos was degraded by *Pseudomonas aeruginosa* under aerobic degradation which oxygen as an electron acceptor through hydrolysis reaction and BCP was detected as the intermediate. The isolated bacteria may contain hydrolase enzyme (Siripattanakul-Ratpukdi et al., 2015) or esterase enzyme (Malghani et al., 2009).

Anaerobic degradation processes has been examined inferior to aerobic degradation both kinetic and degradation capacities. The processes are slow and insufficient compared to aerobic degradation. Degradation of organic compounds in the absence of oxygen can be coupled to the reduction of alternative electron acceptors. Higher redox potentials lead to more preference of electron acceptors affecting anaerobic degradation ability (Schink, 2005).Oxygen (O₂/H₂O E_h = +810 mV) followed by nitrate (NO₃⁻/NO₂⁻ E_h = +430 mV), manganese (IV) oxide (MnO₂/Mn²⁺ E_h = +400 mV), iron (III) hydroxides (FeOOH/Fe²⁺ E_h = +150 mV), sulfate (SO₄⁻²⁻/HS⁻ E_h = -218 mV) and finally CO₂ (CO₂/CH₄ E_h = -244 mV). Alternative electron acceptors may release nitrite, ammonia, dinitrogen, manganese (II), iron (II) carbonates, sulfides and methane as products. For degradation of aromatic compounds in anaerobic condition, the concept is "destabilization of the aromatic nucleus in the absence of oxygen could proceed through a reductive rather than an oxidative reaction" (Evans, 1997) The important intermediate of aromatic hydrocarbon under anaerobic degradation is benzyl-CoA which further degradation to acid and

 β -oxidation respectively. There was no report on profenofos biodegraation under anaerobic condition; however, some research showed biodegradation of organophosphorus pesticide under anaerobic condition. Parathion which is an organophosphorus compounds disappeared at a faster rate under anaerobic (presence of nitrate) compared with aerobic. (Reddy and Sethunathan, 1893). Moreover, it has been reported on organophosohate compound degradation pathways under anaerobic conditions. Parathion was reduced to aminoparathion and further hydrolyzed to paminophenol and diethylthiophosphoric acid (Munnecke and Hsieh, 1976). Chlorpyifos was converted to 3,5,6-chloro-2-pyridinol an diethyl thiophosphate via hydrolysis under anaerobic condition (Yadav et al., 2014).

2.3 Microbial growth, degradation and degradation kinetics

2.3.1 Microbial growth

Microorganism needs energy and raw material which essential for the building of cell component. Microorganisms require one or more factors for growth. All microbes require carbon, oxygen, nitrogen, sulfur and phosphorus sources. Microbial growth usually depends on two categories of influences including physical (temperature, pH and osmotic pressure) and chemical (source of carbon, nitrogen, sulfur and phosphorus, trace element and oxygen factors (Mckane and Kandel, 1985). Microbial growth is defined as an increase the cell number in a population when microorganisms reproduce by process like binary fission and budding (Waites, 2001). The growth curve consists of 4 phases: lag phase, log phase, stationary phase, and death phase.

For lag phase, when microbes are inoculated in the fresh medium, the cell number or cell mass does not increase immediately. It changes very little because the cells do not reproduce in the fresh medium right away; however, the cells are not dormant and still onto a period intense metabolic activity. Microorganisms start to proliferate at the maximum rate in exponential or log phase. This relies on the genetic potential, the nature of medium and the growing condition. During this phase, cellular reproduction is the most active and generation time is constant so that the rate of growth is constant. During stationary phase, the population growth curve turns to horizontal line and the growth cell rate is very slow. The total number of microorganism remains constant because of the balance between the number of microbial deaths and the number of new cells. The microbial population reaching the stationary phase depends on nutrient limitation, insufficient oxygen, accumulation of toxic products and harmful changes in pH. When the death cell is higher than the new cells, the cell population enters to death phase. It may occur by detrimental environment changes like deficiency of nutrient or accumulation of toxic products.

2.3.2 Degradation kinetics

The biodegradation kinetic study is to forecast the remaining substrate concentrations at given time during biodegradation. Chemical concentrations measurement is the way to ensure the efficiency biodegradation, e.g. disappearance of parent molecule, appearance of mineralization products and disappearance of other compounds used stoichiometrically during compound biodegradation. There are several scenarios which compound can be transformed in biological process such as carbon and energy sources, electron acceptor and source of other component. Other scenarios are the transformation of a compound by non-growing cell and cometabolism (Okpokwasili and Nweke, 2005). The simple case is the transformation of compound as carbon source and energy source for microbial growth and other compounds is limiting. The Michaelis–Menten kinetics, a widely used model for biodegradation, was described in equation 3.1. The relationship between substrate degradation rate and substrate concentration is shown in Figure 2.5.

$$V = V_{max} \times S \tag{3.1}$$
$$\underbrace{K_m + S}$$

$$\begin{array}{lll} \mbox{Where,} & V & = \mbox{Substrate degradation rate (mg/L/day)} \\ & V_{max} & = \mbox{Maximum substrate degradation rate (mg/L/day)} \\ & K_m & = \mbox{Michaelis constant (mg/L)} \\ & S & = \mbox{Substrate concentration (mg/L)} \\ \end{array}$$

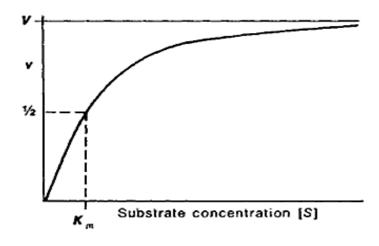


Figure 2.5 Relationship between substrate degradation rate and substrate concentration

The Lineweaver-Burk plot is a straight line which was described in equation 3.2 and the relationship of substrate degradation rate and substrate concentration was showed by plotting of 1/v versus 1/[S] in Figure 2.6.

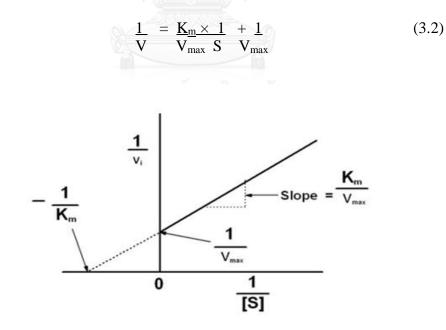


Figure 2.6 Relationship of substrate degradation rate and substrate concentration in Lineweaver-Burk model

The kinetic study is the important for bioremediation which can predict the velocity of compound in transformation or degradation under different conditions. It provides the data to design the appropriate conditions for the contaminated sites.

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

CHAPTER III

MATERIALS AND METHODS

3.1 Experimental Framework and scheme

The framework of study is showed in Figure 3.1. This study aimed to investigate kinetics of profenofos biodegradation under presences of oxygen and nitrate. There are two main parts in the experiment including degradation kinetics under presences of oxygen and nitrate and biodegradation pathway of profenofos. Based on the framework, experimental descriptions and tasks are as shown in Figure 3.2.

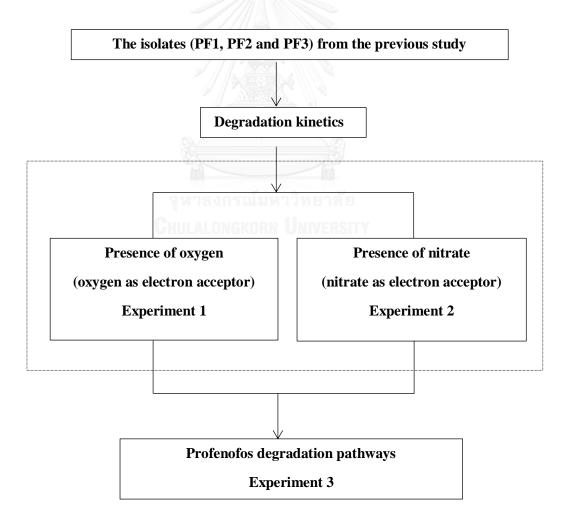


Figure 3.1 Framework of the study

Experiment 1: Microbial growth, degradation and degradation kinetics under presence of oxygen

- Oxygen was used as electron acceptor
- Profenofos concentrations was varied at 10, 25, 50, 80, 100 and 150 mg/L
- Degradation kinetic values (apparent K_s and V_{max}) were determined.

Experiment 2: Microbial growth, degradation and degradation kinetics under presence of nitrate

- Nitrate was used as electron acceptor
- Profenofos concentrations were varied at 10, 25, 50, 80, 100 and 150 mg/L
- Nitrate concentrations were investigated at 100, 200 and 300 mg/L.
- Degradation kinetics values (apparent K_s and V_{max}) were determined.

Experiment 3: Profenofos degradation pathway under presences of oxygen and nitrate

- Profenofos intermediates under presences of oxygen and nitrate degradations were investigated using GC/MS.

Figure 3.2 Experimental scheme

3.2 Materials and Methods

3.2.1 Bacteria cultivation and medium

Profenofos degrading bacteria were isolated from chili farm soil, Ubon Ratchathani, Thailand in the previous study (Siripattanakul-Ratpukdi et al., 2015). Three isolates, PF1, PF2 and PF3, were identified as Pseudomonas plecoglossicida (GenBank accession number KJ620776), Pseudomornas aeruginosa (GenBank accession number KJ143903) and Pseudomornas aeruginosa (GenBank accession number KJ143904), respectively. Minimal salt medium (MSM) for bacteria cultivation was contained NaCl 0.5g/L, NH₄Cl 2g/L, KH₂PO₄ 3g/L, NaH₂PO₄.2H₂O 6.816 g/L and MgSO₄.7H₂O 0.513 g/L in 10 mM of phosphate buffer solution (pH of 6.8). The medium was autoclaved at 121°C for 15 min and then supplemented with 20 mg/L of filtered sterile profenofos. For solid medium, 1.5% of Agar and 0.1% of yeast

extract were added. Nutrient Agar (NA) with 20 mg/L of filtered sterile profenofos was prepared only for bacterial plate count.

3.2.2 Profenofos biodegradation by PF-degradaing cultures

The profenofos biodegradation experiment including performed the presence of oxygen and nitrate degradation tests by PF1, PF2 and PF3 was. For the presence of oxygen degradation test, 10% (v/v) of the isolated bacteria (approximately 2.2×10^4 CFU/mL) were added in 70-mL medium supplemented with different initial PF concentrations (10, 25, 50, 80, 100 and 150 mg/L). All test flasks were shaken on a rotary shaker at 150 rpm, $30\pm 2^{\circ}$ C for 6 days.

For the presence of nitrate degradation test, the medium preparation method was modified from (Gunawan et al., 2014). The experiment was carried out using 100 mL of serum bottles containing 70-mL medium (without profenofos and nitrate). The serum bottles were sealed with silicone rubber and then autoclaved at 121°C for 15 min. After sterilization, the bottles were purged with filter sterilized nitrogen gas for 15 min to ensure the absence of oxygen and capped with aluminium crimps (Figures 21 and 22). Then, profenofos, nitrate and the isolated bacteria (approximately 2.5 $\times 10^4$ CFU/mL) were injected into the bottles, respectively. Six different initial profenofos concentrations (10, 25, 50, 80,100 and 150 mg/L) and three nitrate concentrations (100, 200, 300 mg/L) were examined. After that, the bottles were shaken on a rotary shaker at 100 rpm and $30\pm 2^{\circ}C$ for 8 days. Profenofos concentration, cell number and nitrate concentration (for anaerobic degradation test) were measured daily. All the batch experiments were conducted in duplicates. Abiotic control (the test without the isolated cultures) was also determined along with the experiment. Some selected samples under aerobic and anaerobic degradation tests were taken to identify the potential intermediate metabolites by GC/MS. The microbial growth and profenofos degradation kinetics were calculated. The medium preparation on profenofos degradation under presence of nitrate was shown in Appendix A.

3.2.3 Kinetic analyses

The profenofos degradation results under presences of oxygen and nitrate were plotted. Data of profenofos remaining concentrations and times was used to calculate the profenofos degradation rate (Equation 3.3 and Figure 3.3) After that the degradation kinetics followed by the Michaelis-Menten Model (Equation 3.4) was estimated.

Degradation rate =
$$\underline{\text{Concentration}_2 - \text{Concentration}_1}$$
 (3.3)
Time₁ - Time₂

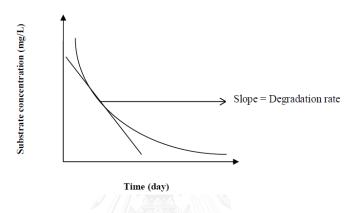


Figure 3.3 Degradation rate

$$V = \frac{V_{max} \times S}{K_s + S}$$
(3.4)

V is substrate degradation rate (mg/L/day), V_{max} is the maximum substrate degradation rate (mg/L/day), Apparent K_s replaced K_m is Michaelis constant (mg/L) and substrate concentration (mg/L), respectively. V_{max} and apparent K_s were examined in linear plot by Lineweaver-Burk plot which showed by plotting of 1/v versus 1/[S] (detail of Lineweaver-Burk plot was described in chapter 2).

3.2.4 Chemical analysis

For profenofos analysis, the sample was extracted using liquid-liquid extraction technique and analyzed using gas chromatography. The sample (0.5 mL) was added in 1.5 mL of microcentrifuge tube with 0.5 mL hexane and 0.01% acetic acid then mixed on vortex mixer at 2,500 rpm for 10 min. Upper solution (hexane) was transferred to 2-mL GC vial.

Profenofos Extracted sample was analyzed by GC (Agilent 4890D, USA) equipped with Ni⁶³ electron capture detector. The column was a SPBTM-608 fused silica capillary column (15 m × 0.53 mm× 0.25 μ m film thickness). One microliter of sample was injected into the inject port. The temperatures of injection plot and detector were set at 240 °C and 250 °C, respectively. The temperature condition was started at 120 °C, hold at 120 °C for 2 min, ramped up 40 °C/min to final temperature 240°C and then hold at 240 °C for 5 min. Total retention time was 10 min. Helium and nitrogen gas were used as the carrier gas with flow rate 8 mL/min and 47 mL/min, respectively. Profenofos peak was detected at 3.1 min in chromatrogram which showed in Appendix B.

Nitrate (NaNO₃, RCI Labscan, Thailand) was analyzed by Colorimetric Method (Brucine) according to standard method for the examination of water and wastewater 14th Edition (APHA, 1975). The 10 mL sample was placed in test tube (Pyrex, Maxigo) then added 2 mL of sodium chlorine solution (Analytical grade, Ajax Finechem Pty Ltd, Thaildand), 10 mL of 4+1 Sulfuric acid (AR grade, RCI Labscan, Thailand) and 0.5 mL of brucine-sulfanic solution (Himedia, India and Loba chemie, India, respectively). The tubes were soaked into the water bath at 95 °C for 20 min. After cooling the sample to room temperature, the sample was measured the absorbance using spectrophotometer at wave length of 410 nanometer.

During profenofos degradation under presence of oxygen and nitrate, some selected sample at high profenofos concentrations were analyzed to identify the profenofos metabolites by GC/MS. Three microliter of extracted sample was injected into the inject port. The temperature condition was started at 100 °C, hold 100 °C at 5 min, ramped up 5 °C/min to final temperature 250°C and then hold at 250 °C for 10 min. Total retention time was 45 min. All chemical analysis was presented in Appendix B.

CHAPTER IV

RESULTS AND DISCUSSION

4.1 Profenofos degradation and degradation kinetics under presence of oxygen and nitrate

4.1.1 Profenofos degradation under presence of oxygen and nitrate

This study investigated the profenofos degradation under presence of oxygen and nitrate by PF1, PF2 and PF3. The degradation at six profenofos concentrations (10, 25, 50, 80, 100 and 150 mg/L) and three nitrate concentrations (100, 200 and 300 mg/L) were examined. The results of profenofos degradation by PF1 under the presence of oxygen and nitrate with various initial profenofos and nitrate concentrations were shown in Figure 4.1. The degradation kinetics under presence of oxygen and nitrate was shown in Table 4.1 and 4.2.

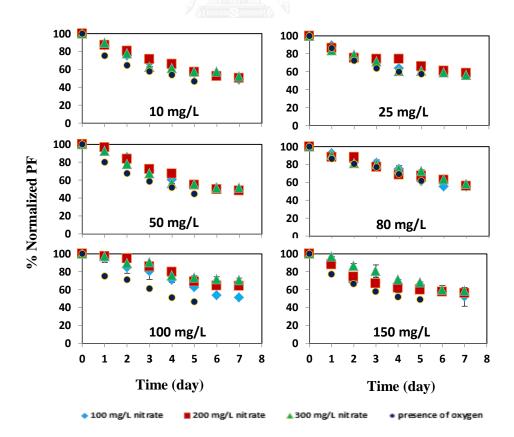


Figure 4.1 Profenofos degradation under presence of oxygen and nitrate by PF1

Profenofos	Kinetics				
conc.(mg/L)	Equation	\mathbb{R}^2	Rate constant at 3 days (1/d)		
10	y = -0.141x + 2.099	0.95	0.141		
25	y = -0.114x + 2.973	0.95	0.114		
50	y = -0.157x + 3.605	0.99	0.157		
80	y = -0.089x + 4.075	0.98	0.089		
100	y = -0.150x + 4.240	0.96	0.150		
150	y = -0.140x + 4.549	0.95	0.140		

Table 4.1 Degradation kinetics of PF1 under presence of oxygen

x=Time(day), y=ln(profenofos concentratio

Table 4.2 Degradation kinetics of PF1 under presence of nitrate

Profenofos	Nitrate	K K	Kinetics	
conc.(mg/L)	conc.(mg/L)	Equation	R ²	Rate constant at 3 days (1/d)
	100	y = -0.116x + 2.071	0.99	0.116
10	200	y= -0.108x + 2.095	0.99	0.108
	300	y = -0.118x + 2.102	0.95	0.118
	100	y= -0.098x + 2.922	0.95	0.098
25	200	y = -0.073x + 2.920	0.88	0.073
	300	y= -0.102x + 2.983	0.95	0.102
	100	y = -0.129x + 3.647	0.98	0.129
50	200	y = -0.121x + 3.649	0.97	0.121
	300	y = -0.132x + 3.674	0.97	0.132
	100	y = -0.088x + 4.069	0.93	0.088
80	200	y = -0.079x + 4.086	0.97	0.079
	300	y = -0.063x + 4.044	0.94	0.063
	100	y = -0.095x + 4.387	0.98	0.095
100	200	y = -0.073x + 4.355	0.93	0.073
	300	y = -0.066x + 4.358	0.91	0.066
	100	y = -0.101x + 4.632	0.88	0.101
150	200	y = -0.107x + 4.657	0.95	0.107
	300	y = -0.084x + 4.679	0.98	0.084

x=Time(day), y=ln(profenofos concentration)

It was found that profenofos degradation under presence of oxygen and nitrate was similar. Profenofos concentration continuously decreased in the first three to five day and gradually for the rest of the experiment. For abiotic control test, profenofos concentration reduced less than 20% (data not shown). It is indicated that profenofos is stable substance and persist for a long time in environment (half-life of 7 days). The physical and chemical reactions were less occurred. Based on experimental data, the profenofos transformation is mainly biodegradation. Based on the kinetic order, the

degradation followed the first kinetic equation which degradation rate depended on initial profenofos concentration. The degradation rates constants under presence of oxygen and nitrate ranged from 0.089 to 0.157 and 0.063 to 0.132 1/day, respectively. It was noticed that the degradation rate constants under presence of oxygen were higher than those of presence of nitrate. This result was related to previous work (Zheng et al., 2013). Under aerobic degradation was likely faster degraded rather than anaerobic degradation.

When compared removal efficiency percentage of profenofos at 5 days under presence of oxygen and nitrate, this result was presented as shown in Table 4.3. PF1 could be degraded profenofos both presence of oxygen and nitrate which percent removal efficiency under presence of oxygen and nitrate range from 38.14 to 55.39 and 27.50 to 45.33%, respectively (Table 4.3) It could imply that profenofos could be served as a carbon source for the enriched cultures (PF1) both under presence of oxygen and nitrate. The average removal efficiency percentages of the tests by PF1 with aerobic condition (49.00%) were likely better than those with presence of nitrate of (37.95%). Moreover, profenofos was less degraded when increasing nitrate concentrations. It is implied that higher nitrate concentration might be inhibited profenofos degradation ability of PF1. The result related to the previous work (Dou et al., 2008). More initial nitrate concentrations were inhibited on degradation under anaerobic condition.

When compared the degradation with different initial profenofos concentrations, the removal efficiencies were quite stable even increasing the profenofos concentration. It is indicated that profenofos concentration did not obviously affect the degradation. In general, each microbial culture has threshold tolerant to hazardous chemicals differently. Low concentration of toxic substance did not inhibit microbial degradation. In this case, there was no inhibition observed in the tests with the concentrations of up to 150 mg/L. It could say that the cultures were efficient and tolerant to profenofos pesticide. They are potential to apply for the contaminated sites in the fulture. From the result, it could suggest that 150 mg/L of profenofos did not inhibited degradation ability of PF1.

	Profenofos removal (%)				
Profenofos	Presence of	Presence of nitrate			
conc. (mg/L)	oxygen	N	itrate conc. (mg/L)		
	50	100	200	300	
10	53.37	44.02	43.03	42.50	
25	42.65	38.18	34.02	39.04	
50	55.39	44.89	45.33	44.72	
80	38.14	38.73	32.56	27.50	
100	53.47	37.68	30.94	26.76	
150	50.97	40.55	40.38	32.32	

Table 4.3 The percentages of profenofos removal efficiency by PF1 at 5 days

The profenofos degradation by strain PF2 under the presence of oxygen and nitrate with various initial profenofos and nitrate concentrations was shown in Figure 4.2. The degradation kinetics under presence of oxygen and nitrate were shown in Table 4.4 and 4.5.

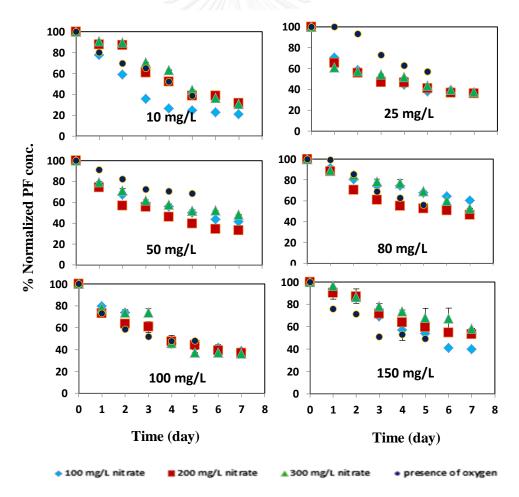


Figure 4.2 Profenofos degradation under presence of oxygen and nitrate by PF2

Profenofos	Kinetics				
conc.(mg/L)	Equation	\mathbb{R}^2	Rate constant at 3 days (1/d)		
10	y = -0.180x + 2.138	0.91	0.180		
25	y = -0.142x + 3.008	0.98	0.142		
50	y = -0.080x + 3.645	0.95	0.080		
80	y = -0.128x + 4.150	0.96	0.128		
100	y = -0.146x + 4.173	0.87	0.146		
150	y = -0.141x + 4.590	0.89	0.141		

Table 4.4 Degradation kinetics of PF2 under presence of oxygen

x=Time(day), y=ln(profenofos concentration)

Table 4.5 Degradation kinetics of PF2 under presence of nitrate

Profenofos	Nitrate	Kinetics		
conc.(mg/L)	conc.(mg/L)	Equation	R^2	Rate constant
		Equation	K	at 3 days (1/d)
	100	y = -0.306x + 2.181	0.97	0.306
10	200	y = -0.191x + 2.245	0.94	0.191
	300	y = -0.154x + 2.128	0.90	0.154
	100	y = -0.181x + 2.866	0.96	0.181
25	200	y = -0.162x + 2.804	0.87	0.162
	300	y = -0.135x + 2.814	0.80	0.135
	100	y = -0.131x + 3.493	0.95	0.131
50	200	y = -0.174x + 3.490	0.95	0.174
	300	y = -0.125x + 3.500	0.96	0.125
	100	y = -0.075x + 4.089	0.94	0.075
80	200	y = -0.136x + 4.072	0.96	0.136
	300	y = -0.067x + 4.083	0.96	0.067
	100	y = -0.170x + 4.235	0.96	0.170
100	200	y = -0.155x + 4.202	0.95	0.155
	300	y = -0.189x + 4.286	0.93	0.189
	100	y = -0.134x + 4.749	0.95	0.134
150	200	y = -0.110x + 4.686	0.97	0.110
	300	y = -0.081x + 4.688	0.99	0.081

x=Time(day), y=ln(profenofos concentration)

From Figure 4.2, profenofos concentration continuously reduced in the first three to five day. For abiotic degradation test, profenofos concentration decreases less than 20% (data not shown). Based on degradation kinetics, the degradation followed the first kinetic equation which degradation rate constant under presence of oxygen and nitrate ranged from 0.080 to 0.180 and 0.067 to 0.306 1/d. The results showed that degradation rate decreased when increasing the profenofos concentration for both

presences of oxygen and nitrate. It is indicated that PF2 could be inhibited degradation ability at high profeonfos concentration. When increasing of initial concentration over the concentration relating to V_{max} , the degradation rate may reduce (Mathur and Majumder, 2010).

When compared between profenofos degradation at 5 days under presence of oxygen and nitrate, the result was shown in Table 4.6 Profenofos was degraded by PF2 under both presence of oxygen and nitrate. The percentages of removal efficiency under presence of oxygen and nitrate range from 31.62 to 61.22 and 32.09 to 75.36 %, respectively. The results showed that higher profenofos concentration likely inhibited the degradation ability of PF2. Higher substance concentration could inhibit the degradation rate (Mathur and Majumder, 2010; Patichot, 2012). Trend of the profenofos degradation under presence of oxygen was lower than that with presence of nitrate at 100 mg/L. It is indicated that the different electron acceptor could affect profenofos degradation. Some prior report showed that the microbial cell degraded substrate under presence of anaerobic (presence of nitrate) better than aerobic condition (Reddy and Sethunathan, 1893).They found that parathion which is an organophosphorus compounds disappeared at a faster rate under anaerobic (presence of nitrate) compared with aerobic condition.

Among the degradations with various initial nitrate concentrations, PF2 less degraded profenofos when increasing nitrate concentration. The results clearly showed the effect of nitrate on profenofos degradation with nitrate concentrations of 200 and 300 mg/L. It is indicated that higher nitrate concentration could affect degradation ability of PF2 resulting in lower profenofos degradation performance. When increasing initial nitrate concentration, the degradation was decreased (Dou et al., 2008).

		Profenofos rei	noval (%)	•
Profenofos	Presence of	Presence of nitrate		
conc. (mg/L)		N	litrate conc. (mg/L)	
	oxygen	100	200	300
10	61.22	75.36	61.31	55.75
25	48.90	61.99	59.05	56.45
50	31.62	50.01	60.47	48.12
80	43.88	32.26	47.42	30.69
100	52.12	55.67	55.83	62.99
150	50.62	46.13	40.53	32.09

Table 4.6 The percentages of profenofos removal efficiency by PF2 at 5 days

Profenofos degradation by PF3 under the presence of oxygen and nitrate with various initial profenofos and nitrate concentration was shown in Figure 4.3. The degradation kinetics under presence of oxygen and nitrate was shown in Table 4.7 and 4.8.

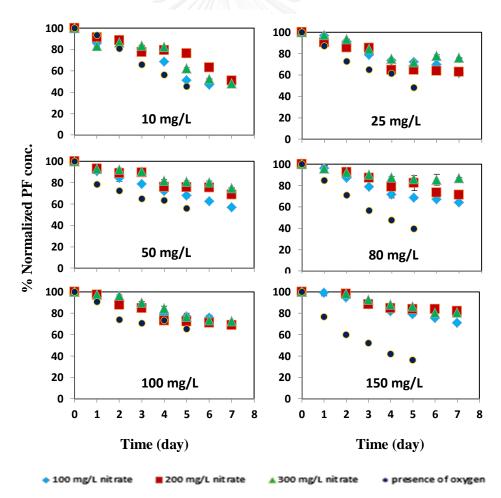


Figure 4.3 Profenofos degradation under presence of oxygen and nitrate by PF3

Profenofos	Kinetics				
conc.(mg/L)	Equation	\mathbb{R}^2	Rate constant at 3 days (1/d)		
10	y = -0.162x + 2.303	0.98	0.162		
25	y = -0.137x + 3.178	0.98	0.137		
50	y = -0.104x + 3.627	0.93	0.104		
80	y = -0.188x + 4.160	0.99	0.188		
100	y = -0.081x + 4.269	0.86	0.081		
150	y = -0.204x + 4.664	0.99	0.204		

Table 4.7 Degradation kinetics of PF3 under presence of oxygen

x=Time(day), y=ln(profenofos concentration)

Table 4.8 Degradation kinetics of PF3 under presence of nitrate

Profenofos	Nitrate	Kinetics		
conc.(mg/L)	conc.(mg/L)	Equation	R ²	Rate constant at 3 days (1/d)
	100	y = -0.121x + 2.157	0.90	0.121
10	200	y = -0.055x + 2.186	0.89	0.055
	300	y = -0.070x + 2.208	0.71	0.070
	100	y = -0.074x + 3.091	0.95	0.074
25	200	y = -0.091x + 3.133	0.89	0.091
	300	y = -0.073x + 3.066	0.96	0.073
	100	y = -0.077x + 3.810	0.99	0.077
50	200	y = -0.057x + 3.804	0.91	0.057
	300	y = -0.042x + 3.735	0.92	0.042
	100	y = -0.082x + 4.286	0.98	0.082
80	200	y = -0.051x + 4.226	0.87	0.051
	300	y = -0.031x + 4.206	0.98	0.031
	100	y = -0.055x + 4.501	0.98	0.055
100	200	y = -0.072x + 4.521	0.96	0.072
	300	y = -0.052x + 4.490	0.92	0.052
	100	y = -0.052x + 4.731	0.96	0.052
150	200	y = -0.045x + 4.695	0.88	0.045
	300	y = -0.035x + 4.664	0.90	0.035

x=Time(day), y=ln(profenofos concentration)

PF3 could degrade profenofos in both presence of oxygen and nitrate. Profenofos concentration continuously decreased in the first three to five day and gradually for the rest of the experiment. For abiotic control test, profenofos concentration reduced less than 20% (data not shown). Based on kinetic order, the degradation followed the first kinetic equation which degradation rate constant under presence of oxygen and nitrate ranged from 0.081 to 0.204 and 0.031 to 0.121 1/d, respectively. The degradation rates under presence of nitrate were declined at high

profenofos concentration. It is indicated that profenofos concentration less affected degradation under presence oxygen; however, it obviously influenced on profenofos degradation under presence of nitrate. Generally, the degradation rate was decreased at high substrate concentrations. This is because bacterial cultures and degradation ability was inhibited at higher substrate concentration (Dou et al., 2008). The profenofos removal efficiency of PF3 at 5 days under presence of oxygen and nitrate was shown in Table 4.9. PF3 could utilize profenofos as carbon source both presence of oxygen and nitrate. The percentages of removal efficiency under presence of oxygen and nitrate range from 34.72 to 63.81 and 13.78 to 48.89%, respectively. The results showed that PF3 less degraded profenofos when increasing profenofos concentration. It is because degradation ability of PF3 was inhibited on profenofos degradation. The result was similar to a previous report (Patichot, 2012). Profenofos degradation ability of mixed cultures including PF1, PF2, and PF3 decreased when concentration reached to 120 mg/L. Profenofos degradation efficiencies under presence of oxygen were higher than those under presence of nitrate. It could conclude that different electron acceptors (oxygen and nitrate) apparently affected profenofos degradation. Moreover, PF3 preferred to use oxygen as an electron acceptor more than nitrate. Gernally, most microganism prefer to use oxygen as electron acceptor rather than nitrate, manganese (IV) oxide, iron (III) hydroxides, sulfate and carbondioxide, repectively. In case of PF3, the removal efficiency percentages under presence of oxygen were higher than nitrate. This is indicated that PF3 favored to use oxygen more than nitrate because oxygen can give more energy for microbial metabolism. This happened in general contaminant removal such as nonylphenol ethoxylates (Lu et al., 2008). For influence of initial nitrate concentration, PF3 degraded profenofos less when increasing nitrate concentration. This should be toxicity of nitrate on degradation (Dou et al., 2008).

	Profenofos removal (%)				
Profenofos	Presence of	Presence of nitrate			
conc. (mg/L)		N	fitrate conc. (mg/L)		
	oxygen	100	200	300	
10	54.64	48.89	23.76	37.77	
25	51.71	27.72	35.38	28.17	
50	44.04	32.12	24.31	19.01	
80	60.44	31.53	17.80	14.19	
100	34.72	23.08	27.82	23.26	
150	63.81	20.96	16.30	13.78	

Table 4.9 The percentages of profenofos removal efficiency by PF3 at 5 days

From all the degradation result, it concluded that PF1, PF2 and PF3 could degrade profenofos under presence of oxyen and nitrate. Profenofos could be served as a carbon source for all isolates. Oxygen and nitrate could be used as an electron acceptor. Based on our knowleadge, *Pseudomonas* sp. could degrade substrate both under presence of oxygen and nitrate (Brock et al., 1984). In case of profenofos degradation under presence of nitrate, it was confirmed by nitrate reduction (presented in the next section). Profenofos could be utilized by PF1 and PF3 under presence of oxygen better than nitrate while PF2 could degrade profenofos under presence of nitrate higher than presence of oxygen. It is indicated that the same bacterial genus/species could differently influence the degradation. Also, different microbial strains preferred electron acceptor differently.

จุฬาลงกรณีมหาวิทยาลัย Chulalongkorn University

4.1.2 Profenofos degradation kinetics

The biodegradation kinetic study is to forecast the remaining substrate concentrations at given time during biodegradation. The Michaelis–Menten model was described in equation 5 which showed the relationship between substrate degradation rate and substrate concentration. Moreover, the Lineweaver-Burk plot (equation 6) was used to calculate kinetic parameter,

$$V = \frac{V_{max} \times S}{K_s + S}$$
(5)
$$\frac{1}{V} = \frac{K_s \times 1}{V_{max}} + \frac{1}{V_{max}}$$
(6)

From the results, the Lineweaver-Burk plots of profenofos degradation under presence of oxygen and nitrate by PF1, PF2 and PF3 were shown in Figure 4.4(a), 4.4(b), 4.5(a), 4.5(b), 4.6(a) and 4.6(b), respectively. The kinetic parameter of profenofos degradation under presence of oxygen and nitrate were shown in Table 4.10. From Table 4.10, Michaelis-Menten model of the profenofos degradation under presence of oxygen and nitrate was shown in Figures 4.7, 4.8 and 4.9.

Ghulalongkorn Universit

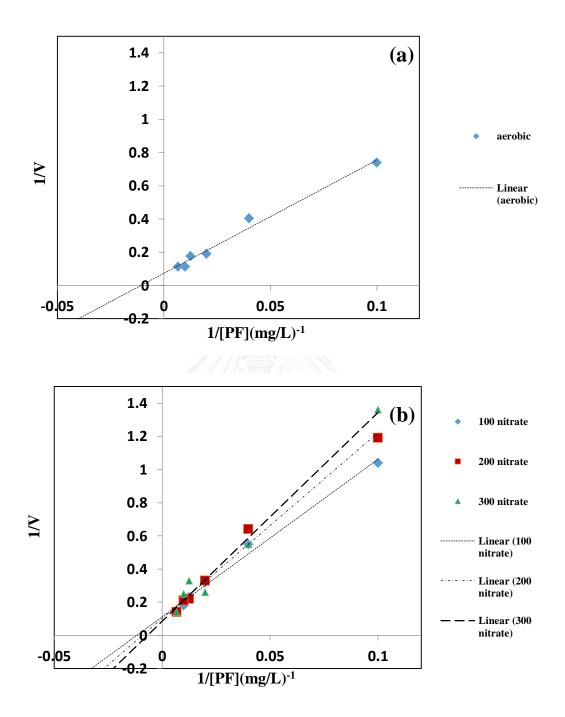


Figure 4.4 The relationship between 1/V and 1/[PF] of profenofos degradation by PF1 (a) under presence of oxygen (b) under presence of nitrate

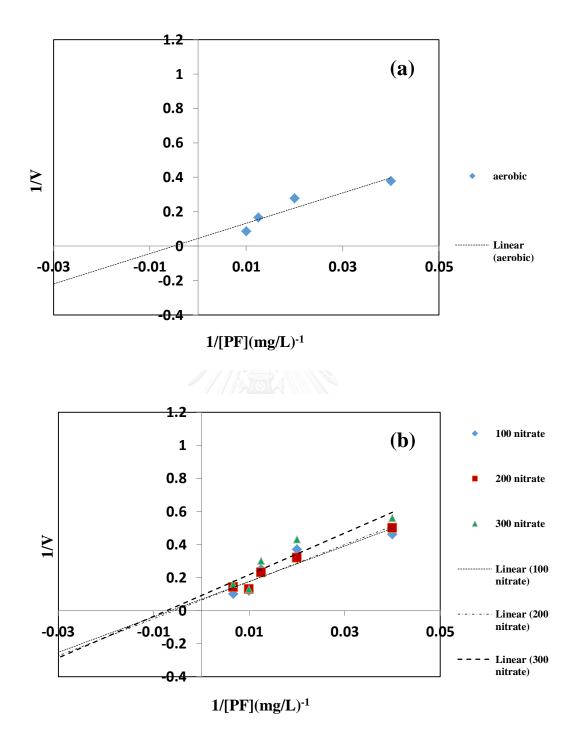


Figure 4.5 The relationship between 1/V and 1/[PF] of profenofos degradation by PF2 (a) under presence of oxygen (b) under presence of nitrate

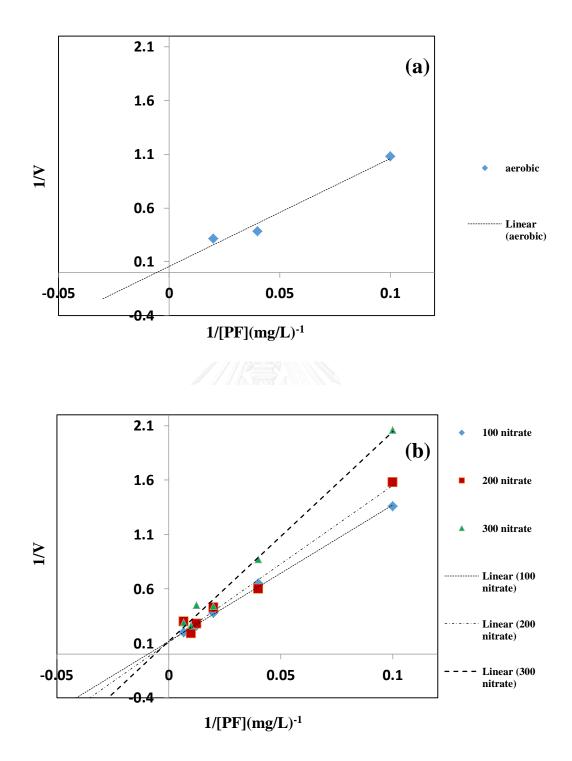


Figure 4.6 The relationship between 1/V and 1/[PF] of profenofos degradation by PF3 (a) under presence of oxygen (b) under presence of nitrate

		Condition				
Isolate	Presence of	Presence of oxygen		Presence of nitrate		
1501400	V _{max}	K _s	Nitrate conc.	K _s	V _{max}	
	(mg/L/day)	(mg/L)	(mg/L)	(mg/L)	(mg/L/day)	
			100	84.76	8.92	
PF1	13.07	92.07	200	109.62	9.79	
			300	147.36	11.72	
			100	155.46	14.51	
PF2	22.57	199.35	200	175.86	15.67	
			300	137.72	10.94	
			100	105.90	8.45	
PF3	17.79	17.79 178.86	200	133.38	9.24	
			300	158.85	8.25	

 Table 4.10 Degradation kinetic parameters

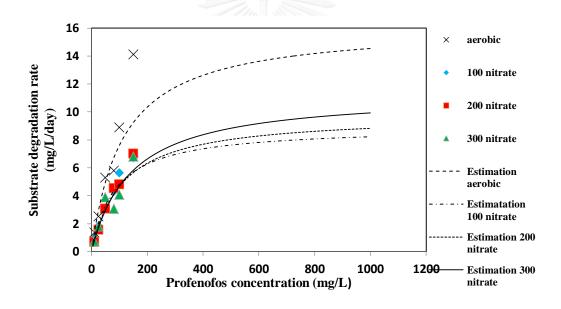


Figure 4.7 The relationship between V and S of profenofos degradation by PF1 under presence of oxygen and nitrate (100, 200 and 300 mg/L)

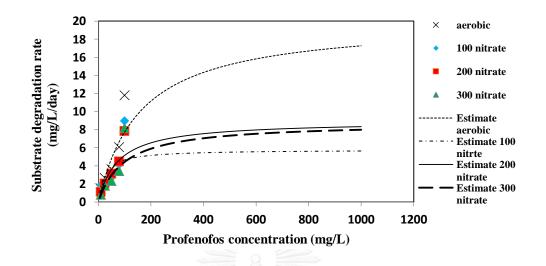


Figure 4.8 The relationship between V and S of profenofos degradation by PF2 under presence of oxygen and nitrate (100, 200 and 300 mg/L)

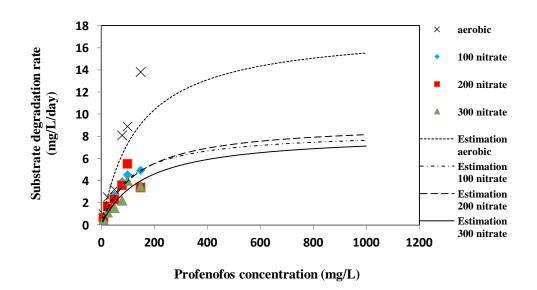


Figure 4.9 The relationship between V and S of profenofos degradation by PF3 under presence of oxygen and nitrate (100, 200 and 300 mg/L)

From degradation kinetic estimation, in overall, the profenofos biodegradation under presence of nitrate was competitive inhibition like (based on Lineweaver-Burk plot in Figures 4.4- 4.6). Competitive inhibition is one of inhibition type which inhibitor was similar shape with substrate and responded to enzymes at active site. It is concluded that nitrate was applied as an electron acceptor for the microbial metabolism, but it could be an inhibitor which react with enzyme at active site as well as profenofos (substrate). It is noted that experiment was performed in the concentration range of 10-150 mg/L did not cover the concentrations in the model. These concentrations were chosen followed the previous study. Patichot (2012) found that at the range of 10-120 mg/L, profenofos degradation of the mixed cultures (which contained the three strains) could be fitted to the model. The previous result showed that the stable range of degradation rate (the graph reached to V_{max}) was found at the concentration lower than 120 mg/L. The different result found in this study might be from the pure cultures more efficient than the mixed cultures. However, it should be further studied at higher range of profenofos concentrations for better fitting the model.

4.2 Microbial growth under presence of oxygen and nitrate

The growth of PF1,PF2 and PF3 was measured during the tests within 6 days under presence of oxygen and 8 days under presence of nitrate at different profenofos (10, 25, 50, 80, 100 and 150 mg/L) and nitrate concentrations (100, 200 and 300 mg/L) using viable cell count technique. This result showed that growth of PF1, PF2 and PF3 under presence of oxygen and nitrate was similar in all experiment. The cell number quickly increased within the first 3 days (exponential phase) and led to stationary phase after day 4. The viable cell number of PF1, PF2 and PF3 under presence of oxygen and nitrate increased from 10^4 to 10^8 , 10^4 to 10^8 and 10^4 to 10^7 CFU/ml, respectively. The microbial growth of PF1, PF2 and PF3 under the presence of oxygen and nitrate with different initial profenofos and nitrate concentration was shown in Figures 4.10, 4.11 and 4.12, respectively. The growth kinetics under presence of oxygen and nitrate (100, 200 and 300) was shown in Tables 4.11, 4.12, 4.13 and 4.14.

	Profenofos	K	inetics	
Isolate	conc.(mg/L)	equation	R ²	Rate constant at 3 days (1/d)
	10	y = 1.922x + 10.973	0.68	1.922
	25	y = 1.540x + 11.281	0.62	1.450
PF1	50	y = 2.680x + 9.325	0.84	2.680
ГГІ	80	y = 3.033x + 10.288	0.97	3.033
	100	y = 3.597x + 11.065	0.75	3.597
	150	y = 2.431x + 11.838	0.72	2.431
	10	y = 2.071x + 9.813	0.87	2.071
	25	y = 2.832x + 11.294	0.92	2.832
PF2	50	y = 2.450x + 11.209	0.92	2.450
ΓΓΖ	80	y = 2.123x + 10.297	0.99	2.123
	100	y = 2.556x + 9.790	0.91	2.556
	150	y = 2.985x + 8.062	0.83	2.985
	10	y = 1.454x + 11.441	0.66	1.454
	25	y = 1.958x + 11.386	0.74	1.958
Pf3	50 🥥	y = 2.007x + 11.929	0.60	2.001
F15	80	y = 2.203x + 11.609	0.65	2.203
	100	y = 2.068x + 11.993	0.59	2.068
	150	y = 2.379x + 11.979	0.71	2.379

Table 4.11 Growth kinetics of PF1, PF2 and PF3 under presence of oxygen

x=Time(day), y=ln(profenofos concentration)

Profenofos		Kinetics		
conc. (mg/L)	Nitrate conc. (mg/L)	equation	R^2	Rate constan at 3 days (1/c
	100	y = 1.791x + 12.682	0.91	1.791
10	200	y = 2.158x + 12.558	0.99	2.158
	300	y = 1.997x + 13.054	0.95	1.997
	100	y = 2.249x + 12.510	0.96	2.249
25	200	y = 2.062x + 13.817	0.60	2.062
	300	y = 2.373x + 12.427	0.96	2.373
	100	y = 2.577x + 12.111	0.94	2.577
50	200	y = 2.286x + 12.438	0.97	2.286
	300	y = 2.576x + 12.107	0.98	2.576
	100	y = 2.552X + 12.567	0.89	2.552
80	200	y = 2.133x + 14.153	0.99	2.133
	300	y = 1.633x + 14.049	0.96	1.634
	100	y = 2.048x + 12.385	0.93	2.048
100	200	y = 2.149x + 11.404	0.91	2.149
	300	y = 2.392x + 10.964	0.82	2.392
150	100	y = 2.087x + 11.367	0.80	2.087
	200	y = 2.199x + 11.736	0.90	2.199
	300	y = 2.631x + 11.610	0.89	2.631

Profenofos	Nitrate conc. (mg/L)	Kinetics		
conc. (mg/L)		equation	R^2	Rate constant at 3 days (1/d)
	100	y = 2.52x + 11.06	0.88	2.52
10	200	y = 2.31x + 11.09	0.86	2.31
	300	y = 1.03x + 13.32	0.79	1.03
	100	y = 1.74x + 13.01	0.84	1.74
25	200	y = 1.89x + 12.51	0.76	1.89
	300	y = 1.15x + 10.99	0.84	1.15
	100	y = 2.07x + 11.46	0.87	2.07
50	200	y = 2.66x + 10.75	0.95	2.66
	300	y = 2.05x + 11.12	0.79	2.05
	100	y=2.36x+11.22	0.92	2.36
80	200	y=2.36x+11.22	0.92	2.36
	300	y = 2.36x + 11.31	0.87	2.36
	100	y = 2.46x + 10.87	0.85	2.46
100	200	y = 2.11x + 10.99	0.87	2.11
	300	y = 2.36x + 11.09	0.87	2.36
	100	y = 2.58x + 10.43	0.89	2.58
150	200	y = 2.69x + 9.52	0.93	2.69
	300	y = 2.74x + 9.47	0.95	2.74

Table 4.13 Growth kinetics of PF2 under presence of nitrate

x=Time(day), y=ln(profenofos concentration)

Table 4..14 Growth kinetics of PF3 under presence of nitrate

Profenofos	Nitrate conc. (mg/L)	Kinetics		
conc. (mg/L)		equation	\mathbb{R}^2	Rate constant at 3 days (1/d)
	100	y = 1.276x + 13.657	0.72	1.276
10	200	y = 1.229x + 13.650	0.67	1.229
	300	y = 1.189x + 13.532	0.75	1.189
	100	y = 1.149x + 13.196	0.75	1.149
25	200	y = 1.286x + 13.18	0.77	1.286
	300	y = 1.036x + 13.73	0.51	1.036
	100	y = 0.979x + 13.099	0.54	0.979
50	200	y = 1.079x + 13.738	0.50	1.079
	300	y = 1.164x + 12.461	0.68	1.164
	100	y = 1.411x + 11.872	0.72	1.411
80	200	y = 1.741x + 11.501	0.68	1.741
	300	y = 1.496x + 11.993	0.81	1.496
	100	y = 1.462x + 11.948	0.51	1.462
100	200	y = 2.011x + 10.893	0.75	2.011
	300	y = 1.609x + 10.900	0.56	1.609
	100	y = 1.743x + 11.546	0.55	1.743
150	200	y = 1.784x + 11.391	0.71	1.784
	300	y = 1.498x + 12.019	0.54	1.498

x=Time(day), y=ln(profenofos concentration)

Figure 4.10 Microbial growth of PF1 under presence of oxygen and nitrate

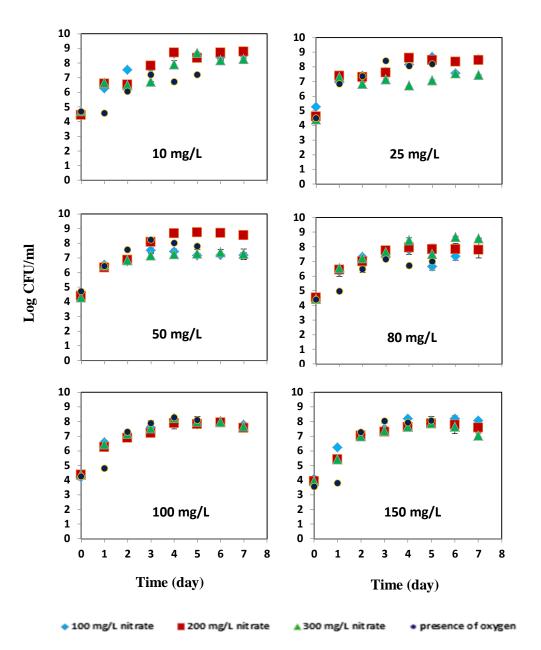


Figure 4.11 Microbial growth of PF2 under presence of oxygen and nitrate

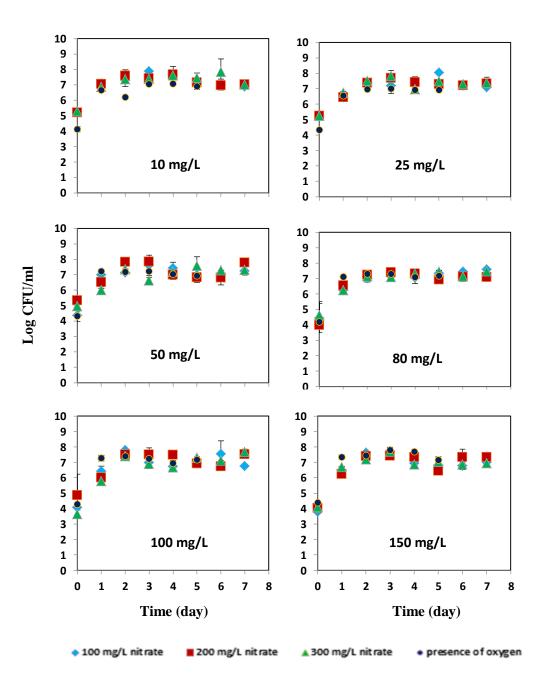


Figure 4.12 Microbial growth of PF3 under presence of oxygen and nitrate

From the results, profenofos could be served as a carbon source under presence of oxygen and nitrate for microbial growth of PF1, PF2 and PF3. All isolates could grow very well in all the experimental conditions. The viable cell growth of PF1 and PF2 (10⁸ CFU/ml) was quite higher than PF3 (10⁷ CFU/ml). All isolates degraded profenofos biodegradation under both presence of oxygen and nitrate without lag phase resulting in continuously decrease in profenofos degradation and dramatically increase the microbial growth (exponential phase). In addition, they gradually steady in stationary after day 4 (without dead phase). The result pointed that the isolates were able to survive and reproduce in the medium supplemented with profenofos for both presence of oxygen and nitrate. It is indicated that various profenofos and nitrate concentrations were not inhibited to the microbial growth of PF1, PF2 and PF3. This may be because the culture has been acclimated in the medium containing profenofos for a long time (longer than 1 month).

Based on microbial growth kinetics (Tables 4.11 to 4.14), the microbial cell growth under presence of oxygen followed the first kinetic equation which the growth rates of strain PF1, PF2 and PF3 ranged from 1.45 to 3.59, 2.07 to 2.98 and 1.45 to 2.37 1/d, respectively. Under presence of nitrate, the microbial growth of all isolate also followed the first kinetic equation which the growth rates of strain PF1, PF2 and PF3 range from 1.63 to 2.63, 1.03 to 2.74 and 0.97 to 2.01 1/d, respectively. The growth rates of PF1, PF2 and PF3 were quite similar. It is indicated that all isolates could grow well even increasing profenofos concentrations from 10 to 150 mg/L and nitrate concentrations (100-300 mg/L). This result was different with the previous study (Patichot, 2012). The microbial growth of the consortium decreased when increasing profenofos concentration to 120 mg/L. This is because high profenofos concentration (120 mg/L) could be toxic to microbial cell growth of the consortium. Generally, the growth rate increases with an increase in substrate concentration until a maximum value is reached and then the rates decreased. Moreover, high substrate concentration inhibited the bacterial growth.

The effect of nitrate on microbial growth of PF1, PF2 and PF3 showed that various initial nitrate concentrations did not affect growth. When increasing the nitrate concentrations from 100 mg/L to 300 mg/L, the growth rates of all isolate quite stable.

It is indicated that nitrate concentration may not obviously influence on microbial growth. This result was correlated to the previous works (Rhee et al., 1997; Chayabutra and Ju, 2000). The bacterial culture growing in the medium with certain range of nitrate concentrations, the cell growths were similar. However, at too high nitrate concentration, the cultures were inhibited. In this study, based on the tested condition, the system contained enough nitrate concentration for supporting microbial metabolism resulting in well growth of the isolates. This result suggested that nitrate concentration of up to 300 mg/L did not be toxic to microbes.

4.3 Nitrate reduction under presence of nitrate

This study investigated the nitrate reduction by PF1, PF2 and PF3 under presence of nitrate. Influence of six profenofos concentrations (10, 25, 50, 80, 100 and 150 mg/L) and three nitrate concentrations (100, 200 and 300 mg/L) were examined. The normailized nitrate remaining percentages of the tests by PF1, PF2 and PF3 were shown in Figures 4.13, 4.14 and 4.15, respectively.

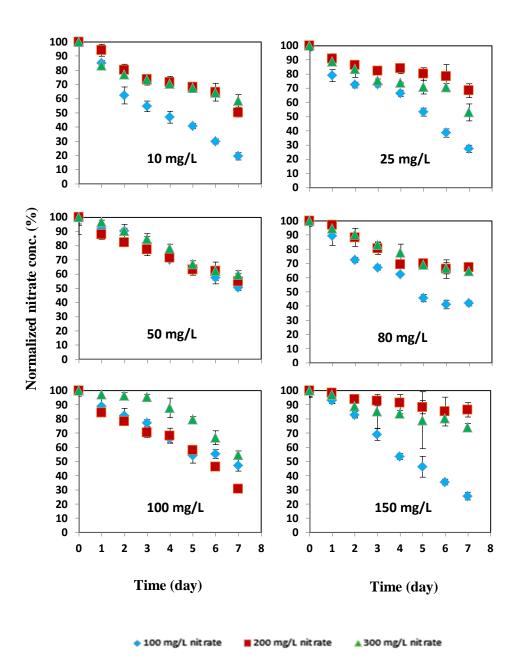


Figure 4.13 The normalized nitrate concentration percentages of PF1 at profenofos 10,25,50,80,100 and 150 mg/L

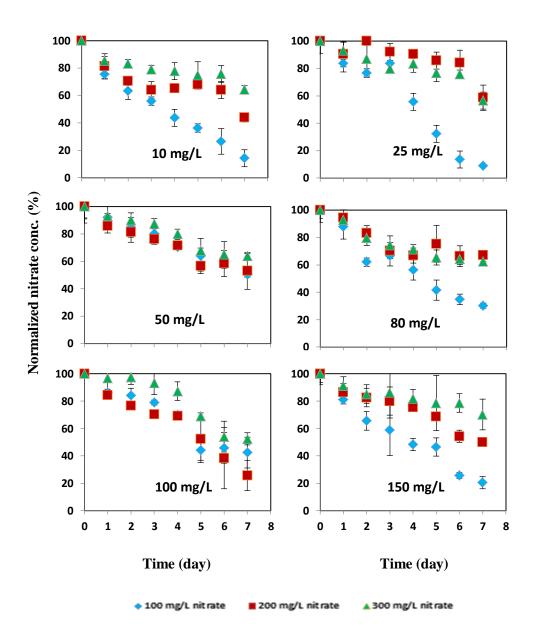


Figure 4.14 The normalized nitrate concentration percentages of PF2 at profenofos 10,25,50,80,100 and 150 mg/L

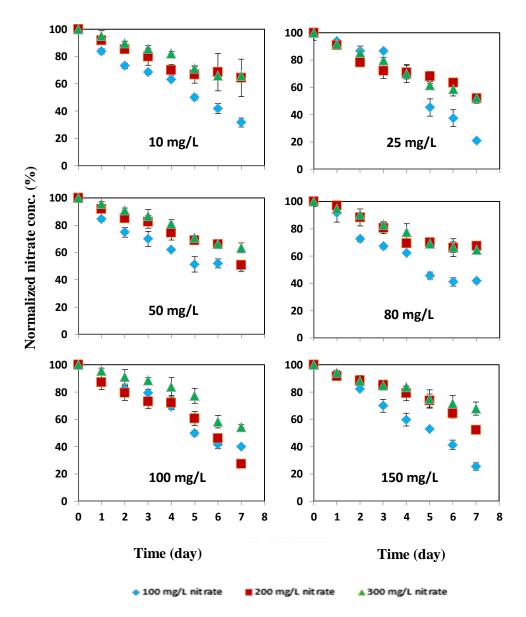


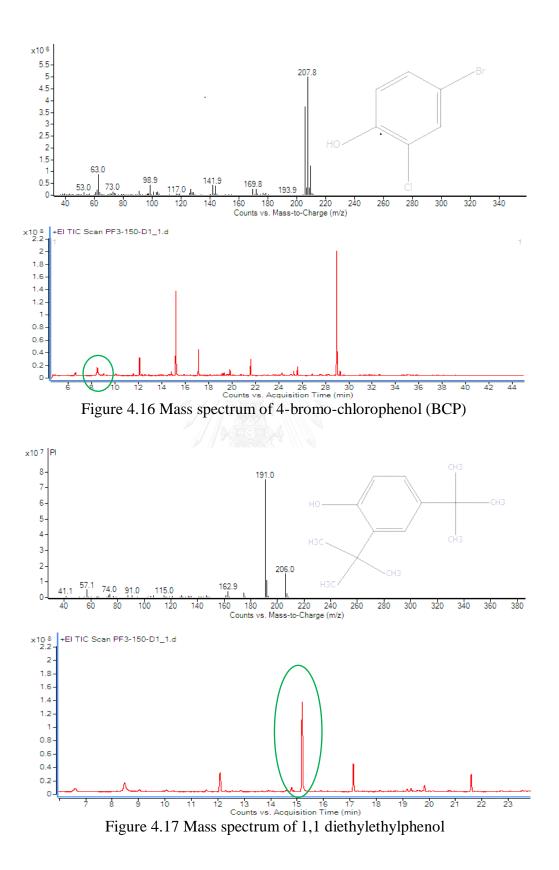
Figure 4.15 The normailized nitrate concentration percentages of PF3 at profenofos 10,25,50,80,100 and 150 mg/L

During profenofos degradation under presence of nitrate, the nitrate concentrations (100, 200 and 300 mg/L) were continuously decreased within 8 days. This result showed the similar patterns of PF1, PF2 and PF3 (Figures 4.13, 4.14 and 4.15). In overall, the nitrate concentrations of the tests at 100 mg/L of nitrate obviously reduced more than those of 200 and 300 mg/L.

It concluded that all isolates could use nitrate as an electron acceptor under profenofos degradation; therefore, profenofos degradation and nitrate reduction occurred due to the biological process. For abiotic control test, nitrate concentration reduced less than 10% (data not shown) in all the experiments. The nitrate reduction percentages of the tests by PF1, PF2 and PF3 ranged from 26.08 to 80.61, 29.86 to 91.12 and 32.23 to 78.96%, respectively as shown in Table 4.15.

	Profenofos conc. (mg/L)	Presence of nitrate Nitrate conc. (mg/L)		
Isolate				
	conc. (mg/L)	100	200	300
	10	80.61	litrate conc. (mg/l	41.64
	25	72.71		46.94
PF1	50	49.74	45.48	40.58
PFI	80	49.74 45.48 50.11 32.73 52.78 69.31 74.38 47.51 85.79 56.15 91.12 41.40 49.69 46.98 69.81 33.10	35.45	
	100	52.78	69.31	45.45
	150	74.38	49.89 35.68 45.48 32.73 69.31 47.51 56.15 41.40 46.98 33.10 74.30 50.03 46.87 48.01	26.08
	10	85.79	56.15	35.86
	25	91.12	41.40	43.52
PF2	50	49.69	46.98	36.17
FF2	80	69.81	33.10	37.61
	100	57.57	74.30	47.59
	150	79.52	rate conc. (mg/I 200 49.89 35.68 45.48 32.73 69.31 47.51 56.15 41.40 46.98 33.10 74.30 50.03 46.87 48.01 49.19 35.64 72.62	29.86
	10	73.94	46.87	51.40
	25	78.96	48.01	47.76
PF3	50	50.77	49.19	36.55
rr3	80		35.64	34.33
	100	60.12	72.62	45.67
	150	74.48	47.83	32.23

Table 4.15 Nitrate reduction (%)


The result was similar to an earlier work (Lu et al., 2008). Nitrate concentration (electron acceptor) were rapidly reduced in the first week of experiment. It was indicated that nitrate could be used as an electron acceptor in the tested conditions (Zhuang et al., 2012).

From this result, nitrate reduction percentage of the test at 100 mg/L of nitrate showed the best reduction (49.69-91.12%). The results showed the similar pattern of all the isolates. The trend of nitrate reduction by PF1, PF2 and PF3 was continuously reduced at various nitrate concentrations. It is indicated that nitrate concentration affected nitrate reduction. This result was similar to previous studies. For example, Rezaee et al (2012)reported that low initial nitrate concentration reduced more than high concentration. When comparing the tests with various initial profenofos concentrations at the same nitrate concentration, it was found that profenofos was not obviously influenced nitrate reduction. This is similar to prior works (Zhuang et al., 2012); contaminant concentration did not play a role on decreasing of nitrate.

It concluded that strains PF1, PF2 and PF3 could use nitrate as an electron acceptor for profenofos biodegradation. In practice, all isolates could be applied in agricultural area containing nitrate from fertilizer. In the case of pesticide and fertilizer-contaminated groundwater (low oxygen condition), the isolated cultures sound promising for bioremediation.

4.4 Profenofos intermediate metabolite under presence of oxygen and nitrate

It was reported that during profenofos degradation, strains PF1, PF2 and PF3 degraded profenofos through hydrolase enzyme and formed 4-bromo-2-chlorophenol (BCP) as a metabolite. In case of high profenofos concentration, BCP was accumulated. Based on a previous study, a consortium containing PF1, PF2 and PF3 degraded both profenofos and BCP (Siripattanakul-Ratpukdi et al., 2015). From this study, BCP was found as an intermediate metabolite under both presence of oxygen and nitrate (Figure 4.16). In addition, it was found that 1,1diethylethylphenol was detected as a metabolite under presence of oxygen and nitrate and triethyl phosphate was accumulated under presence of nitrate. The mass spectrum of BCP, 1,1 diethylethylphenol and triethyl phosphate were shown in Figures 4.16, 4.17 and 4.18, respectively.

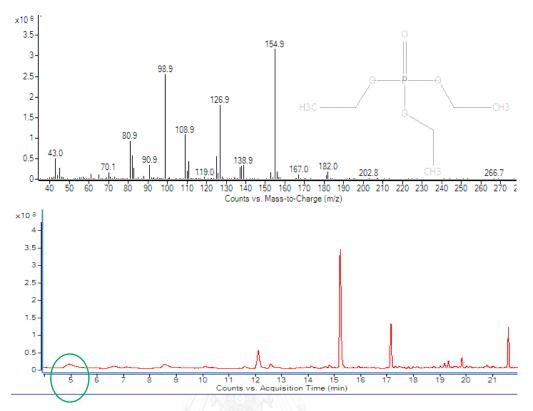


Figure 4.18 Mass spectrum of triethyl phosphate

During the test with profenofos concentration of 150 mg/L in abiotic control test (no cell), profenofos concentration decreased in day 1, BCP was accumulated under presence of oxygen. It was indicated that abiotic hydrolytic process occurred. However, it was found that BCP did not accumulate under presence of nitrate. This was unclear whether BCP was not accumulated or profenofos degraded to be other metabolites. This may be like the proposed pathway previously reported (Silva et al., 2013). Profenofos could be degraded to BCP or other metabolites such as 4-bromo-2-chlorophenyl ethyl hydrogen phosphate, 4-bromo-2-chlorophenyl dihydrogen phosphate and O-4-bromo-2-chlorophenyl-S-propyl O-hydrogen phosphorothioate.

During profenofos biodegradation by PF1, PF2 and PF3, BCP was accumulated under presence of oxygen which was correlated to the previous work. Profenofos was transformed via organophosphorus hydrolase enzyme (Siripattanakul-Ratpukdi et al., 2015). Formed BCP was taken place by breaking ester bond of profenofos (Malghani et al., 2009).When comparing between area peaks of BCP on profenofos biodegradation and abiotic degradation, it was found that the peak area of BCP on profenofos biodegradation was higher than abiotic hydrolysis (data not shown). It was indicated that biodegradation could enhance profenofos degradation. Based on the peak area, BCP-profenofos ratio by PF1, PF2 and PF3 under presence of oxygen and nitrate was demonstrated in Table 4.16.

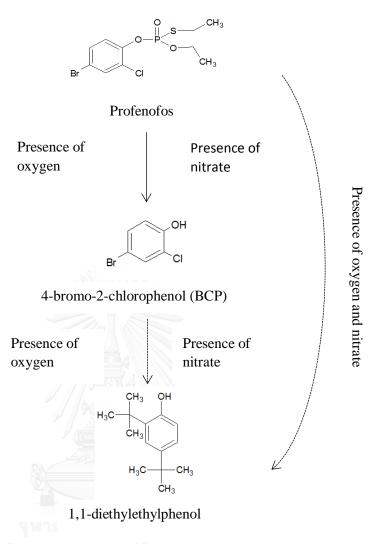

Isolates	Profenofos concentration (mg/L) in day 1		BCP-profenofos ratio	
	Under presence of oxygen	Under presence of nitrate	Under presence of oxygen	Under presence of nitrate
PF1	79.036	101.836	0.321	0.343
PF2	81.413	103.082	0.187	0.206
PF3	85.104	104.719	0.191	0.390

Table 4.16 BCP-profenofos ratio on profenofos degradation

Between presence of oxygen and nitrate, it was found that profenofos remaining under presence of oxygen was lower that under presence of nitrate. The potential BCP degradation under presence of oxygen was higher than one under presence of nitrate. Therefore, BCP accumulation (BCP-profenofos ratio) under presence of oxygen was lower than presence of nitrate. Based on profenofos biodegradation by PF1, PF2 and PF3, profenofos degradation under each condition was quite similar whereas BCP accumulation under presence of oxygen and nitrare was different. Accumulated BCP by PF1 was higher than PF3 and PF2. It was indicated that the profenofos-degrading enzyme of PF2 and PF3 may be more efficient than that of PF1 under presence of oxygen. On the other hand, under presence of nitrate, strain PF2 accumulated BCP less than PF1 and PF3. It was likely that the profenofos-degrading enzyme of PF2 performed better than PF1 and PF3. In overall, all the cultures worked well for both aerobic and anaerobic conditions. However, it sounds that PF2 was more efficient and adaptable for profenofos and intermediate degradation compared to PF1 and PF3. To the best of our knowledge, there was no report on profenofos biodegradation pathway under anaerobic condition (presence of nitrate). Therefore, this study investigated intermediate metabolites under presence of nitrate. The result presented that BCP, 1,1diethylethylphenol and triethyl phosphate were found as the metabolites on profenofos degradation under presence of nitrate.

It has been reported on organic compound degradation pathways under aerobic and anaerobic conditions. Most of biodegradation pathway under aerobic and anaerobic conditions showed the different pathway such as parathion (Munnecke and Hsieh, 1976), Endosulfan (Tiwari and Guha, 2013) and 17α -estradiol-3-sulfate (Zheng et al., 2013). Moreover, some compounds presented the same pathway even different conditions (aerobic and anaerobic conditions) such as chlorpyrifos (Yadav et al., 2015). Based on the literatures, it could be pointed out that the degradation pathway of the organic compound under aerobic and anaerobic conditions may be the same or difference depending on the compound and microbial cultures. In this study, the profenofos degradation pathway under presence of oxygen and nitrate was proposed as shown in Figure 4.19.

CHULALONGKORN UNIVERSITY

Figure 4.19 Proposed commercial profenofos degradation pathway under presence of oxygen and nitrate

Strains PF1, PF2 and PF3 showed the same degradation pathway as presented in Figure 4.19. In presence of oxygen and nitrate, some intermediate metabolites (BCP and 1,1 diethyethylphenol) were discovered. A metabolite (Triethyl phosphate) was found only presence of nitrate. It was indicated that hydrolase enzyme worked on profenofos degradation by all isolates even different conditions. From this study, profenofos was transformed to BCP via hydrolysis reaction. The conjugation reaction was occurred and form 1,1 diethylphenol as the intermediate metabolite. It is noted that the conjugation took place since the commercial profenofos may contain some other unknown hydrocarbons to react with profenofos intermediate product. From the previous study, Siripattanakul-Ratpukdi et al. (2015) reported that profenofos was converted to BCP on profenofos biodegradation under presence of oxygen through hydrolysis. The 3-methoxyphenol was found as an intermediate metabolite. This study was reported some more intermediate metabolites. However, it is inconclusive for the degradation pathway order. Further study on profenofos degradation pathway by the cultures was recommended.

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

5.1 Conclusion

5.1.1 Profenofos degradation and degradation kinetics under presence of oxygen and nitrate

Profenfos could be served as a carbon sources under presence of oxygen and nitrate by PF1, PF2 and PF3. The degradation rate followed the first kinetic order for both presence of oxygen and nitrate. The removal efficiency percentages under presence of oxygen by PF1, PF2 and PF3 ranged from 38.14 to 55.39, 31.62 to 61.22 and 34.72-63.81%, respectively. Under presence of nitrate, PF1, PF2 and PF3 were removed profenofos for 27.50 to 45.33, 39.09 to 75.36 and 13.78 to 48.89%, respectively. Based on percent removal, profenofos was higher degraded by PF1 and PF3 under presence of oxygen than presence of nitrate whereas PF2 utilized profenofos under presence of nitrate better than presence of oxygen.

From Michalis-Menten kinetic model, maximum profenofos degradation rate (V_{max}) of PF1, PF2 and PF3 under presence of oxygen was 13.07, 22.57 and 17.79 mg/L/day, respectively. The V_{max} of PF1, PF2 and PF3 under presence of nitrate was 10.14, 13.71 and 8.65 mg/L/day, respectively. Under presence of oxygen by PF1, PF2 and PF3 was 92.07, 199.35, 178.86 mg/L, respectively. The apparent K_s under presence of nitrate by PF1, PF2 and PF3 ranged from 84.76 to 147.36, 137.86 to 175.86 and 105.90 to 158.85 mg/L, respectively. Moreover, profenofos degradation under presence of nitrate showed the competitive inhibition like.

5.1.2 Microbial growth under presence of oxygen and nitrate

The viable cell number of PF1, PF2 and PF3 under presence of oxygen and nitrate increased from 10^4 to 10^8 , 10^4 to 10^8 and 10^4 to 10^7 CFU/ml, respectively. The growth kinetics followed the first kinetic order for both presence of oxygen and nitrate. The Growth rate of PF1, PF2 and PF3 under presence of oxygen ranged from 1.45 to 3.59, 2.07 to 2.98 and 1.45 to 2.37 1/d, respectively whereas growth rates of

strains PF1, PF2 and PF3 ranged from 1.63 to 2.63, 1.03 to 2.74 and 0.97- 2.01 1/d, respectively.

5.1.3 Nitrate reduction (under presence of nitrate)

Strains PF1, PF2 and PF3 could use nitrate as an electron acceptor under presence of nitrate. The nitrate reduction percentages of PF1, PF2 and PF3 ranged from 26.08 to 80.61, 39.86 to 91.12 and 32.23 to 78.96%, respectively.

5.1.4 Profenofos intermediate metabolite monitoring under presence of oxygen and nitrate

During profenofos degradation under presence oxygen and nitrate, BCP and 1,1,diethylethylphenol were detected as intermediate metabolites and triethyl phosphate was found as a metabolite on profenofos degradation under presence of nitrate. Profenofos degradation under presence of oxygen and nitrate occurred by hydrolysis reaction.

5.2 Recommendations for future work

5.2.1 Various types of electron acceptors such as sulfate and iron (III) should be studied on profenofos degradation under anaerobic condition.

5.2.2 Based on degradation under presence of nitrate, oxygen and nitrite concentrations during the experiment should be investigated.

5.2.3 The stoichiometry between nitrate consumption and profenofos degradation should be studied to ensure the reaction of nitrate on profenofos degradation.

5.2.4 Surface water and groundwater which contained nitrate from fertilizer should be used in the pilot experiment before real application.

REFERENCES

- APHA. (1975). Standard Methods for the Examination of Water and Wastewater,14th Edition *Method 419D*. Washington DC.
- Badawy, M. I., Ghaly, Y. M., and Gad-Allaha, A. T. (2006). Advanced oxidation processes for the removal of organophosphorus pesticides from wastewater. *Desalination*, 194, 166–175.
- Brock, D. T., Smith, W. D., and Madigan, T. M. (1984). *Biology of Microorganism* 4th edition: Prentice-Hall, Inc.1984.
- Chayabutra, C., and Ju, L. (2000). Degradation of n-Hexadecane and Its Metabolites by *Pseudomonas aeruginos*a under Microaerobicand Anaerobic Denitrifying Conditions. *Applied and environmental microbiology*, *66*, 493-498.
- Cycon, M., Wójcik, M., and Piotrowska-Seget, Z. (2009). Biodegradation of the organophosphorus insecticide diazinon by Serratia sp. and Pseudomonas sp. and their use in bioremediation of contaminated soil. *Chemosphere*, 76, 494–501.
- Cycon, M., Zmijowska, A., Wójcik, M., and Piotrowska-Seget, Z. (2013). Biodegradation and bioremediation potential of diazinon-degrading Serratia marcescens to remove other organophosphorus pesticidesfrom soils. *Environmental Management*, 7-16.
- Dadsona, A. O., Ellison, A. C., Singleton, T. S., Chi, L.-H., McGarrigle, P. B., Lein, J. P., et al. (2013). Metabolism of profenofos to 4-bromo-2-chlorophenol, a specific and sensitive exposure biomarker. *Toxicology*, 306, 35–39.
- Dou, J., Liu, X., Hu, Z., and Deng, D. (2008). Anaerobic BTEX biodegradation linked to nitrate and sulfate reduction. *Hazardous Materials*, 151, 720-729.
- DowAgroSciences. (2002). The physical and chemical properties of profenofos. Retrieved 6, 2014, from <u>http://msdssearch.dow.com/PublishedLiteratureDAS/</u> dh_005c/0901b8038005cc2e.pdf ?filepath=/011-10207.pdf
- Edwards, L. F., and Tchounwou, B. P. (2005). Environmental Toxicology and Health Effects Associated with Methyl Parathion Exposure – A Scientific Review. *International Journal of Environmental Research and Public Health*, 2(3), 430-441.
- EUGIRS. (2014). Biological treatment. Retrieved 25, 2014, from <u>http://www.eugris.info/</u>FutherDescription.asp?=2&Cy=0&T=Ex+situ+treatme nt+technologies&e=25
- Evans, W. C. (1997). Biochemistry of the Bacterial Catabolism of Aromatic Compounds in Anaerobic Environments. *Nature London*, 270, 17-22.
- FAO. (2007). Pesticide Residue in Food, Report of the JMPR, FAO Production and Protection Paper. Retrieved 6, 2014, from <u>http://www.fao.org/fileadmin/templates/agphome/documents/Pests Pesticides/</u><u>JMPR/Report08/profenofos.pdf</u>
- Finley, D. S., Broadbelt, J. L., and Hatzimanikatis, V. (2010). In silico feasibility of novel biodegradation pathways for 1,2,4-trichlorobenzene. *BMC Systems Biiology*, 4(7), 1-14.
- Fritsche, W., and Hofrichter, M. (2008). 6 Aerobic Degradation by Microorganism. Retrieved 6, 2014, from <u>www.wiley-vch.de/book/biotech/pfd/v11b aero.pdf</u>

- Gunawan, Y., Nemati, M., and Dalai, A. (2014). Biodegradation of a surrogate naphthenic acid under denitrifying conditions. *Water Research*, *51*, 11-24.
- Harnpicharnchai, K., Chaiear, N., and Charerntanyarak, L. (2013). Residues of organophosphate pesticides used in vegetable cultivation in ambient air, surface water and soil in bueng niam subdistrict, khon kaen, thailand. Assessment of Organophosphate Pesticides in the Environment, 44(1088-1097).
- Hong-yan, L., Shi-Cui, Z., Ming, J., and Min, W. (2001). In vitro siudy on cytotoxic effects of the organophosphorouspesticide profenofos on the gill cell line, FG-9307, of the flounder (Paralichihys Olivaceus). *Chinese Journal of Oceanology and Limnology*, 19, 57-62.
- Ismail, M., Ali, R., Ali, T., Waheed, U., and Khan, M. Q. (2009). Evaluation of the Acute Toxicity of Profenofos and Its Effects on the Behavioral Pattern of Fingerling Common Carp (Cyprinus carpio L., 1758). The Bulletin of Environmental Contamination and Toxicology, 82, 569–573.
- Jauregui, J., Valderrama, B., Albrores, A., and Vanquez-Duhalt, R. (2003). Microsomal transformation of organophosphorus pesticide by white rot fugi. *biodegradtion*, 14, 397-406.
- Jokanovic, M. (2001). Biotransformation of organophosphorus compounds. *Toxicology*, 166, 139–160.
- King Mongkut's University of Technology North Bangkok. (2010). Spread Plate technique. Retrieved November, 2014, from <u>http://www.agro.kmutnb.ac.th/e-learning/521302/1.php</u>
- Kumar, A., Kumari, J., Kumar, H., Nath, A., Singh, J. K., Ali, M., et al. (2014). Hepatoprotective and antioxidant effect of azolla filiculoides on profenofos induced hepatotoxicity in swiss albino mice. *SciTech*, *2*, 372-377.
- Lavado, R., and Schlenk, D. (2011). Microsomal biotransformation of chlorpyrifos, parathion and fenthion in rainbow trout (oncorhynchus mykiss) and coho salmon (oncorhynchus kisutch): Mechanistic insights into interspecific differences in toxicity. *Aquatic Toxicology*, 101, 57-63.
- Liu, Y.-S., Ying, G.-G., Shareef, A., and Kookana, S. R. (2011). Biodegradation of three selected benzotriazoles under aerobic and anaerobic conditions. *Water Research*, 45, 5005-5014.
- Lu, J., Jin, Q., Yiliang, H., and Wu., J. (2008). Enhanced anaerobic biodegradation of nonylphenol ethoxylates by introducing additional sulfate or nitrate as terminal electron acceptors. *International Biodeterioration & Biodegradation*, 62, 214-218.
- Madsen, L. E. (2008). Environmental Microbiology From Genomes to biogeochemistry. Blackwell Publishing Ltd.
- Malghani, S., Chatterjee, N., Hu, X., and Zejiao, L. (2009). Isolation and characterization of a profenofos degrading bacterium. *Journal of Environmental Sciences*, 21, 1591–1597.
- Mathur, A. K., and Majumder, C. B. (2010). Kinetics Modelling of the Biodegradation of Benzene, Toluene and Phenol as Single Substrate and Mixed Substrate by Using *Pseudomonas putida*. *Chemical and Biochemical Engineering Quarterly*, 24, 101-109.

- Mckane, L., and Kandel, J. (1985). *Microbiology Essentials and Application*. McGraw-Hill,Inc.
- Min, K. J., and Cha, C. G. (2000). Determination of the Bioconcentration of Phosphamidon and Profenofos in Zebrafish (Brachydanio rerio). *Bull. Environ. Contam. Toxicol*, 65, 611–617.
- Munnecke, M. D., and Hsieh, H. P. D. (1976). Pathway of Microbial Metabolism of Parathion. *Applied and environmental microbiology*, *31*, 63-69.
- Ngan, C. K., Cheah, U. B., Abdullah, W. Y. W., Lim, K. P., and Ismail, B. S. (2005). Fate of Chlorothalonil, Chlorpyrifos and Profenofos in a Vegetable Farm in cameron Highlands, Malaysia. *Water, Air, & Soil Pollution: Focus, 5*(1-2), 125-136. doi: 10.1007/s11267-005-7408-8
- Okpokwasili, G. C., and Nweke, C. O. (2005). Microbial growth and substrate utilization kinetics. *African Journal of Biotechnology*, 5(4), 305-317.
- Oller, I., Malato, S., and Sánchez-Pérez, J. A. (2011). Combination of Advanced Oxidation Processes and biological treatments for wastewater decontamination—A review. *Science of the Total Environment, 409*, 4141-4166.
- Pandey, K. A., Nagpure, N. S., Trivedi, P. S., Kumar, R., and Kushwaha, B. (2011). Profenofos induced DNA damage in freshwater fish, Channa punctatus (Bloch) using alkaline single cell gel electrophoresis. *Mutation Research*, 726, 209–214.
- Patichot, W. (2012). Biodegraadtion of Profenofos Pesticide by Novel Isolated Cultures and Their Characterization.
- Radwan, M. A., Abu-Elamayem, M. M., Shiboob, M. H., and Abdel-Aal, A. (2005). Residual behaviour of profenofos on some field-grown vegetables and its removal using various washing solutions and household processing. *Food and Chemical Toxicology*, 43, 553–557.
- Rao, V. J., Kavitha, P., Jakka, N. M., Sridhar, V., and Usman, P. K. (2007). Toxicity of Organophosphates on Morphology and Locomotor Behavior in Brine Shrimp, Artemia salina. Archives of Environmental Contamination and Toxicology, 53, 227–232.
- Reddy, R. B., and Sethunathan, N. (1893). Mineralization of Parathion in the Rice Rhizosphere. *Applied and environmental microbiology*, 45(3), 826-829.
- Rezaee, A., Godini, H., Soltani, D. C. R., Hossini, H., and Nili-ahmadabadi, A. (2012). Denitrification of high salinity, high nitrate wastewater using clinoptilite in a packed bed bioreactor. *Journal of Environmental Research* and Management, 32, 031-036.
- Rhee, K., Lee, M. G., Yoon, J., Park, Y., Bae, H., and Lee, S. (1997). Anaerobic and Aerobic Degradation of Pyridine by a Newly Isolated Denitrifying Bacterium. *Applied and environmental microbiology*, 63, 2578-2585.
- Salunkhe, P. V., Sawant, S. I., Banerjee, K., Rajguru, R. Y., Wadkar, N. P., Oulkar, P. D., et al. (2013). Biodegradation of Profenofos by Bacillus subtilis isolated fro Grapevines(Vitis vinifer) *Journal of Agricultural and Food Chemistry*, 61, 7195-7202.
- Schink, B. (2005). Principles of Anaerobic Degradation of Organic Compounds. *Environmental Biotechnology*, 229-256.

- Silva, A. D. N., Birolli, G. W., Seleghim, H. R. M., and Porto, L. M. A. (2013). Biodegradation of the organophosphate pesticide profenofos by marine fungi. Retrieved 15, 2014, from <u>http://cdn.intechopen.com/pdfs-wm/45263.pdf</u>
- Siripattanakul-Ratpukdi, S., Vangnai S, A., Sangthean, P., and Singkibut, S. (2015). Profenofos insecticide degradation by novel microbial consortium and isolates enriched from contaminated chili farm soil. *Environmental Science and Pollution Research*, 22(1), 320-328.
- Sunitha, V. (2013). Nitrates in Groundwater: Health Hazards and Remedial Measures. Indian Journal of Advances in Chemical Science, 1, 164-170.
- Tiwari, K. M., and Guha, S. (2013). Kinetics of the biodegradation pathway of endosulfan in the aerobic and anaerobic environments. *Chemosphere*, *93*, 567-573.
- USEPA. (1998). Environmental Assessment for profenofos. Retrieved 25, 2015, from <u>http://www.epa.gov/opp00001/chem_search/cleared_reviews/csr_PC-111401_16-Jun-99_052.pdf</u>
- USEPA. (2006). Prevention Pesticides and Toxic Substances. Retrieved 4, 2014, from <u>http://www.epa.gov/opp00001/registration/REDs/2540ired.pdf</u>
- USGS. (2007). Biodegradation. Retrieved 5, 2014, from http://toxics.usgs.gov/definitions/biodegradation.html
- USGS. (2014). Biotransformation. Retrieved 4, 2014, from <u>http://toxics.usgs.gov/definitions/biotransformation.html</u>
- Waites, J. M. (2001). Industrial Microbiology. Typesetter Ltd., Hong Kong.
- Yadav, M., Shukla, K. A., Srivastva, N., Upadhyay, N. S., andDubey, K. S. (2015).
 Utilization of microbial community potential for removal of chlorpyrifos: a review. *Critical Reviews in Biotechnology*, 1-16. doi: 10.3109/07388551.2015.1015958
- Yadav, M., Srivastva, N., Singh, S. R., Upadhyay, N. S., andDubey, K. S. (2014). Biodegradation of chlorpyrifos by Pseudomonas sp. in a continuous packed bed bioreactor. *Bioresource Technology*.
- Zheng, W., Zou, Y., Li, X., andMachesky, L. M. (2013). Fate of estrogen conjugate 17-estradiol-3-sulfate in dairywastewater: Comparison of aerobic and anaerobicdegradation and metabolite formation. *Journal of Hazardous Materials*, 258–259, 109–115.
- Zhuang, L., Gui, L., andGillham, W. R. (2012). Biodegradation of pentaerythritol tetranitrate (PETN) by anaerobic consortiafrom a contaminated site. *Chemosphere*, 89, 810–816.

APPENDIX A

Medium preparation and aseptic technique

1. Medium preparation

1.1 Minimal salt medium (MSM) for bacteria cultivation

Chemical

Phosphate buffer 10 mM

- 1) NaH₂PO₄.2H₂O 20.9565 g
- 2) Na₂HPO₄.7H₂O 31.00g

Minimal salt medium (MSM)

1)	NaHPO ₄ 12H ₂ O	14.678	g
2)	KH ₂ PO ₄	3	g
3)	NaCl	0.5	g
4)	NH ₄ Cl	2	g
5)	MgSO ₄ .7H ₂ O	0.513	g
6)	Profenofos	20	mg/L

Procedure

Dissolved all chemicals in 10 mM Phosphate buffer Solution and dilute to 1 liter. The medium was autoclaved at 121°C for 15 min and then supplemented with 20 mg/L of filtered sterile profenofos solution.

Note: 1.5% of Agar and 0.1% of yeast extract were added for solid medium

1.2. Nutrient Agar (NA) for bacteria plate count

Chemical

Nutrient agar 28 g

Procedure

Dissolved nutrient agar in distilled water and dilute to 1 liter. Then the medium was autoclaved at 121°C for 15 min and supplemented with 20 mg/L of filtered sterile profenofos solution.

1.3 Spread plate technique

Spread plate technique is a common method which distributes the bacteria cell number over the surface of an agar plate. The processing of spread plate method consists of 10 serial dilution and spread plate. The 10 serial dilutions and Spread plate were shown in Figure A.1 and A.2

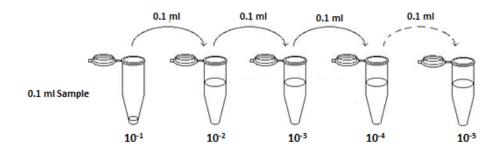


Figure A.1 10 Serial dilutions

The procedure of 10 serial dilutions

- 1. Pipette 0.1 mL of cell suspension with aseptic technique in 0.9 ml of sterilizes distilled water, then mix it. The dilution of cell suspension obtains at 10^{-1} dilution.
- 2. Pipette 0.1 mL of cell suspension from (1) in 0.9 ml of sterilizes distilled water, then mix it. The dilution of cell suspension obtains at 10^{-2} dilution.
- Pipette 0.1 mL of cell suspension from (2) in 0.9 ml of sterilizes distilled water, then mix it. The dilution of cell suspension obtains at 10⁻³ dilution. Keep doing until expected dilution.
- 4. The serial dilution was used to cultivate microbial cell

The methods of Spread Plate

- 1. Preparation agar plate
- 2. Pipette 0.1 ml of sample on agar plate (Figure A.2)
- 3. Put glass spreader into 95% alcohol and burned. After cooling at room temperature, spread plate, reverse plate upside down and incubate at 35 °C in the incubator
- 4. Obverse the morphology of bacterial colonies and count the cell number

Figure A.2 Spread plate technique (King Mongkut's University of Technology North Bangkok, 2010)

2. Medium preparation of presence of nitrate

The procedure of medium preparation under presence of nitrate

1. The medium was carried out using 100 mL of serum bottles containing 70mL medium (without profenofos and nitrate). The serum bottles were sealed with silicone rubber and then autoclaved at 121°C for 15 min (Figures A.3 and A.4).

Figure A.3 serum bottle

Figure A.4 serum bottle after autoclaved

2. After sterilization, the bottles were purged with filter sterilized nitrogen gas for 15 min to ensure the absence of oxygen and capped with aluminium crimps (Figure A.5 and A.6). Finally, the serum bottle under presense of nitrate was done (Figure A.7). Then, profenofos, nitrate and the isolated bacteria were injected into the bottles, respectively.

Figure A.5 Purging nitrogen gas

Figure A.6 Capped with aluminium crimps

Figure A.7 Medium for degradation under presence of nitrate

APPENDIX B

Chemical Analysis

1. Profenofos ananlysis

1.1 Profenofos preparation

1.1.1 Standard Profenofos

Dissolve 0.25 g of standard profenofos (Dr. Ehrenstorfer GmbH, Germany) and dilute with hexane 2.5 ml to 100 mg/L for analysis

1.1.2 Commercial grade profenofos

Dilute 50% v/v (500,000 mg/L) of commercial grade peofenofos with hexane to 200,000 mg/L. Then, Dilute profenofos with distilled water to 20,000 mg/L. Finally, the stock solution for experiment is 2,000 mg/L profenofos. The percentages of profenofos recovery were shown in Table B.1.

	Profenofos recovery percentage (%)							
PF conc. (mg/L)	Presence of	P	Presence of nitrate					
	oxygen	Nitrate	concentration (m	g/L)				
		100	200	300				
10 G	87.31	87.50	88.27	85.72				
25	84.50	79.64	80.21	79.25				
50	76.59	74.59	73.34	74.49				
80	73.12	76.10	74.24	74.81				
100	72.75	72.37	70.53	71.74				
150	72.37	71.46	73.42	73.41				

 Table B.1 Profenofos recovery percentage (%)

1.2 Storage and Preservation

Collected sample without light and preserve sample at 4 ^oC

1.3 Sample preparation (Extraction)

The sample was extracted using liquid-liquid extraction technique. 0.5 ml of sample was added in 1.5 ml of microcentrifuge tube with 0.5 ml of hexane and 0.1% acetic acid. Then, the sample was mixed on vortex at 2500 rpm for 10 min. Upper solution (hexane) was transferred to 2-mL GC vial. The extracted sample was analyzed using gas chromatography.

1.4 Analysis

The sample was analyzed by GC (Agilent 4890D, USA) equipped with Ni⁶³electron capture detector. The column was a SPBTM-608 fused silica capillary column (15 m \times 0.53 mm \times 0.25 µm film thickness). The temperatures of injection plot and detector were set at 240 °C and 250 °C, respectively. The temperature condition was started at 120 °C, hold at 120 °C for 2 min, ramped up 40 °C/min to final temperature 240°C and then hold at 240 °C for 5 mins. Total retention time was 10 min. Helium and nitrogen gas were used as the carrier gas with flow rate 8 mL/min and 47 mL/min, respectively. Profenofos peak was shown at 3.1 min in chromatrogram and profenofos standard cureve was shown in Figure B.1 and B.2, respectively.

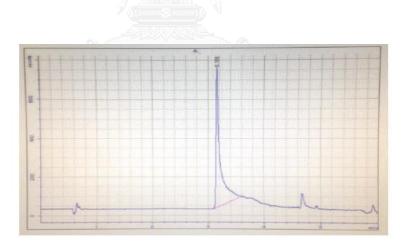
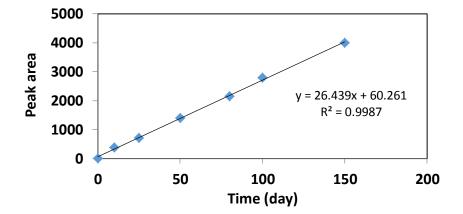



Figure B.1 Profenofos Chromatrogram

FigureB.2 Profenofos standard curve

Chulalongkorn University

2. Nitrate analysis

Nitrate (NaNO₃, RCI Labscan, Thailand) was analyzed by Colorimetric Method (Brucine) according to standard method for the examination of water and wastewater 14th Edition (APHA, 1975). The nitrate standard curve and %recovery was shown in Figure B.3 and Table B.2.

- 2.1 Scope and Appilcation
 - 2.1.1 This method is applied to analyze drinking, surface and saline water, domestic and industrial wastes.
 - 2.1.2 The applicable range of concentrations is 0.1 to 2 mg/L NO₃-N/liter
- 2.2 Sample Handling and Preservation
 - 2.2.1 Analysis should be done as soon as possible. If analysis can be made within 24 hours, the sample should be preserved at 4 °C. If sample can be stored more than 24 hours, it should be preserved with sulfuric acid

2.3 Interference

2.3.1 Dissolved organic matter will cause an off color in 13 N H2SO4

and must be compensated for by additions of all reagents except the brucinesulfanilic acid reagent.

2.3.2 Salinity is eliminated by addition of sodium chloride to the blanks, standard and sample.

2.3.3. All strong oxidizing or reducing agents interfere. The may be determined with a total residual chlorine test kit.

2.3.4 Residual chlorine interference is eliminated by the addition of sodium arsenite.

2.4 Reagents

2.4.1 Potassium nitrate stock solution: 1.0 mL = 0.1 mg NO3-N.

Dissolve 0.7218 g anhydrous potassium nitrate (KNO3) in distilled water and

dilute to 1 liter. This solution is stable for at least 6 months.

2.4.2 Potassium nitrate standard solution: 1.0 mL = 0.001 mg NO3-N. Dilute 10.0 mL of the stock solution (2.4.1) to 1 liter. This standard solution should be prepared fresh weekly.

2.4.3 Sodium chloride solution (30%)

Dissolve 300 g NaCl in distilled water and dilute to 1 liter.

2.4.4 4+1 Sulfuric acid solution

Carefully add 500 mL conc. H2SO4 to 125 ml distilled water. Cool and keep tightly stoppered to prevent absorption of atmospheric moisture.

2.4.5 Brucine-sulfanilic acid reagent: Dissolve 1 g brucine sulfate $[(C_{23}H_{26}N_2O_4)_2 H_2SO_4.7H_2O]$ and 0.1 g sulfanilic acid $(NH_2C_6H_4SO_3H.H_2O)$ in 70 mL hot distilled water. Add 3 mL conc. HCl, cool, mix and dilute to 100 mL with distilled water. This solution is stable for several months. Note: the pink color that develops slowly does not affect to analyze..

2.5 Procedure

2.5.1 Pipette 10.0 mL of standards and samples into the test tube (Pyrex, Mexico).

2.5.2 Added 2 ml of 30% sodium chloride solution (Analytical grade, Ajax Finechem Pty Ltd, Thaildand), to the reagent blank, standards and samples.

2.5.3 Pipette 10.0 mL of 4+1 sulfuric acid solution (AR grade, RCI Labscan, Thailand)

2.5.4 Added 0.5 mL brucine-sulfanilic acid reagent (Himedia, India and Loba chemie, India, respectively) in each test tube and carefully mix by

swirling. Then, the tubes were soaked into the water bath at 95 °C for 20 min. After cooling the sample to room temperature, the sample was measured the absorbance using spectrophotometer at wavelength of 410 nanometer.

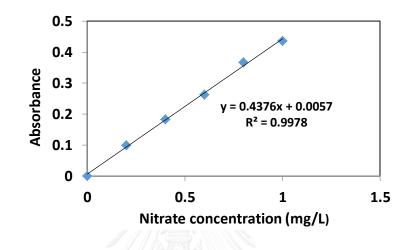


Figure B.3 Nitrate standard curve

Table B.2 N	litrate recovery perce	entage (%)

Sample	Initial nitrate concentration (mg/L)	Average nitrate concentration (mg/L)	%Recovery	
Nitrate	84	86.00	86.00	
(100 mg/L)	88	00.00		
Nitrate	195	189.50	94.75	
(200 mg/L)	184	109.50		
Nitrate	290	282.50	94.17	
(300 mg/L)	275	202.50		

APPENDIX C

Raw data

Results of profenofos degradation under presence of oxygen and nitrate by PF1, PF2 and PF3

		Protenoios degradation by PF1 at 10mg/L under presence of oxygen										
Day			Control			Test						
	1	2	Average	%Normalized PF	1	2	Average	%Normalized PF				
				conc.				conc.				
0	8.690	8.545	8.618	100.00	8.880	8.959	8.959	100.00				
1	8.484	8.532	8.508	98.724	6.554	6.554	6.716	75.291				
2	8.624	8.543	8.548	99.605	5.911	5.626	5.769	64.675				
				S 1 1 1 1 1 1 1 1 1 1 1 1								
3	8.422	8.542	8.482	98.422	5.181	5.131	5.156	57.803				
				2000 1								
4	8.119	8.342	8.231	95.509	4.963	4.669	7.938	53.991				
5	7.833	8.043	7.938	92.110	4.271	4.046	4.159	46.626				
5	,	0.045		-2.110				10.020				

Table C.1 Profenofos degradation by PF1 at 10mg/L under presence of oxygen

Table C.2 Profenofos degradation by PF1 at 25mg/L under presence of oxygen

Day			Control		Test			
	1	2	Average	%Normalized PF conc.	1	2	Average	%Normalized PF conc.
0	20.079	19.782	19.931	100.00	20.236	20.678	20.457	100.00
1	19.218	18.923	19.071	95.685	17.593	17.751	17.672	86.386
2	19.018	18.923	18.971	95.183	15.169	14.504	14.837	72.528
3	18.670	18.643	18.657	93.608	13.458	12.688	13.073	63.905
4	17.726	18.002	17.864	89.629	12.342	12.130	12.236	59.813
5	16.960	17.892	17.426	87.432	11.709	11.756	11.756	57.354

Table C.3. Profenofos degradation by PF1 at 50mg/L under presence of oxygen

Day			Control		Test			
		-						
	1	2	Average	%Normalized PF	1	2	Average	%Normalized PF
				conc.				conc.
0	37.163	37.002	37.083	100.00	36.684	40.286	38.485	100.00
1	36.403	37.720	37.062	99.943	30.515	31.054	30.785	79.992
2	35.103	36.843	35.973	97.007	24.743	27.136	25.940	67.403
3	34.915	35.832	35.374	95.391	21.383	23.637	22.510	58.490
4	34.604	35.832	35.218	94.971	19.474	20.268	19.871	51.633
5	33.263	32.829	33.046	89.114	16.741	17.598	17.170	44.615

Table C.4 Profenofos degradation by PF1 at 80mg/L under presence of oxygen

Day			Control		Test			
Day	1	2	Average	%Normalized PF conc.	1	2	Average	%Normalized PF conc.
0	59.661	60.232	59.947	100.00	60.256	60.194	60.225	100.00
1	58.575	59.782	59.179	98.719	52.953	50.993	51.973	86.298
2	58.691	59.873	59.282	98.891	49.854	47.454	48.654	80.787
3	55.085	56.321	55.703	92.920	46.477	46.348	46.412	77.064
4	51.280	52.384	51.832	86.463	40.244	43.052	41.648	69.154
5	49.788	50.324	50.056	83.500	37.519	36.989	37.254	61.858

Table C.5 Profenofos degradation by PF1 at 100 mg/L under presence of oxygen

Day			Control		Test			
	1	2	Average	%Normalized PF conc.	1	2	Average	%Normalized PF conc.
0	71.919	72.834	72.377	100.00	72.295	74.833	73.564	71.919
1	64.013	68.432	66.223	91.497	53.054	57.360	55.207	64.013
2	60.184	60.002	60.093	83.028	50.558	53.731	52.144	60.184
3	57.797	58.320	58.059	80.217	44.592	45.401	44.997	57.797
4	54.767	55.893	55.330	76.447	39.186	35.979	35.979	54.767
5	51.651	50.432	51.042	70.522	34.608	33.855	34.232	51.651

Table C.6. Profenofos degradation by PF1 at 150mg/L under presence of oxygen

Day			Control		Test			
	1	2	Average	%Normalized PF conc.	ายาลร	2	Average	%Normalized PF conc.
0	102.494	102.432	102.463	100.00	102.322	102.322	102.653	100.00
1	92.799	95.893	94.346	92.078	80.040	78.012	79.036	76.993
2	87.722	90.342	89.032	86.892	68.364	67.698	68.031	66.273
3	82.034	80.453	81.244	79.291	59.192	59.414	59.303	57.770
4	79.734	80.412	80.073	78.148	53.472	52.862	53.167	51.793
5	76.896	78.903	77.900	76.027	51.351	49.313	50.332	49.031

Table C.7 Profenofos degradation by PF2 at 10mg/L under presence of oxygen

Day			Control		Test				
	1	2	Average	%Normalized PF conc.	1	2	Average	%Normalized PF conc.	
0	8.652	8.598	8.625	100.00	8.160	7.930	8.045	100.00	
1	8.319	8.932	8.626	100.012	5.478	7.430	6.454	80.223	
2	7.642	8.084	7.863	91.165	4.220	6.995	6.995	69.695	
3	7.242	7.584	7.413	85.948	5.301	5.189	5.245	65.196	
4	6.995	7.940	7.468	86.586	4.171	4.259	4.215	52.393	
5	6.818	7.843	7.331	84.997	3.175	3.066	3.120	38.782	

Table C.8 Profenofos	degradation by	PF2 at 25mg/L	under presence of	of oxygen

Day			Control		Test				
	1	2	Average	%Normalized PF conc.	1	2	Average	%Normalized PF conc.	
0	20.930	20.782	20.782	100.00	20.230	19.950	20.090	100.00	
1	20.306	19.562	19.934	95.579	18.559	18.828	18.693	93.046	
2	19.632	18.732	18.732	91.974	15.727	13.522	14.624	72.792	
3	17.421	18.932	18.170	87.121	12.447	12.817	12.632	62.877	
4	16.826	17.782	17.304	82.969	11.629	11.268	11.448	56.984	
5	16.308	17.782	17.045	81.727	10.828	9.704	10.266	51.100	

Table C.9. Profenofos degradation by PF2 at 50mg/L under presence of oxygen

Day			Control		Test					
	1	2	Average	%Normalized PF conc.	10	2	Average	%Normalized PF conc.		
0	39.920	38.543	39.232	100.00	39.390	39.140	39.265	100.00		
1	38.627	37.784	38.206	97.385	35.570	35.891	35.730	90.997		
2	38.026	37.674	37.850	96.477	30.078	34.338	32.208	82.027		
3	35.691	36.894	36.293	92.509	28.753	28.033	28.393	72.311		
4	35.415	35.637	35.526	90.554	27.045	28.337	27.691	70.523		
5	34.853	35.001	34.927	89.027	25.619	28.084	26.851	68.384		

Table C.10 Profenofos degradation by PF2 at 80mg/L under presence of oxygen

Day			Control		Test				
		-							
	1	2	Average	%Normalized PF	1	2	Average	%Normalized PF	
				conc.				conc.	
0	63.490	60.423	61.957	100.00	59.380	60.500	59.940	100.00	
1	62.538	60.432	61.485	99.238	60.652	58.445	59.548	99.346	
2	62.122	60.432	61.277	98.902	54.712	47.832	51.272	85.539	
3	60.463	59.342	59.903	96.685	42.215	40.348	41.281	68.871	
4	59.967	59.432	59.700	96.357	38.045	37.399	37.722	62.933	
5	59.439	58.432	58.936	95.124	32.992	34.284	33.638	56.119	

Table C.11 Profenofos degradation by PF2 at 100 mg/L under presence of oxygen

Day			Control		Test				
	1	2	Average	%Normalized PF conc.	1	2	Average	%Normalized PF conc.	
0	74.922	73.782	74.352	100.00	73.260	75.090	74.175	100.00	
1	73.276	72.483	72.880	98.020	58.419	50.306	54.367	73.296	
2	71.856	72.335	72.096	96.966	46.147	40.579	43.363	58.460	
3	69.172	70.324	69.748	93.808	40.542	36.439	38.490	51.891	
4	67.848	69.543	68.696	92.393	32.657	38.036	35.346	47.652	
5	67.354	68.432	74.352	91.313	37.118	33.908	35.513	47.877	

Table C.12. Profenofos degradation by PF2 at 150mg/L under presence of oxygen

Day			Control		Test				
	1	2	Average	%Normalized PF conc.	1	2	Average	%Normalized PF conc.	
0	108.502	109.543	109.023	100.00	107.015	107.188	107.101	100.00	
1	106.567	105.242	105.905	97.140	82.146	80.680	81.413	76.015	
2	104.964	105.321	105.143	96.441	77.467	75.483	76.477	71.406	
3	100.356	100.432	100.394	92.085	58.612	50.885	54.748	51.118	
4	99.124	100.443	99.784	91.526	56.422	57.346	56.884	53.112	
5	98.576	97.892	98.234	90.104	54.203	51.578	52.891	49.383	

Table C.13 Profenofos degradation by PF3 at 10mg/L under presence of oxygen

Day			Control		Test				
	1	2	Average	%Normalized PF conc.	1	2	Average	%Normalized PF conc.	
0	9.554	9.465	9.510	100.00	9.632	9.195	9.413	100.00	
1	9.391	9.254	9.323	98.034	8.743	8.853	8.798	93.466	
2	8.902	9.043	8.973	94.353	7.518	7.684	7.601	80.750	
3	8.573	8.854	8.714	91.630	6.049	6.321	6.185	65.707	
4	8.179	8.483	8.331	87.603	5.237	5.375	5.306	56.369	
5	7.702	8.043	7.873	82.787	4.454	4.086	4.270	45.363	

Table C.14 Profenofos degradation by PF3 at 25mg/L under presence of oxygen

Day			Control		Test				
	1	2	Average	%Normalized PF conc.	1	2	Average	%Normalized PF conc.	
0	23.989	22.843	23.416	100.00	23.804	24.500	24.152	100.00	
1	21.537	20.523	21.030	89.810	21.010	21.098	21.054	87.173	
2	20.228	20.003	20.116	85.907	17.773	17.424	17.598	72.864	
3	19.118	19.832	19.475	83.169	16.301	15.057	15.679	64.918	
4	20.137	19.432	19.785	84.494	14.474	15.171	14.822	61.370	
5	19.622	18.732	19.177	81.897	11.352	11.974	11.663	48.290	

Table C.15. Profenofos degradation by PF3 at 50mg/L under presence of oxygen

Day			Control		Test			
	1	2	Average	%Normalized PF conc.		2	Average	%Normalized PF conc.
0	41.848	40.523	41.186	100.00	40.909	40.448	40.678	100.00
1	36.049	38.674	37.362	90.715	31.605	32.256	31.931	78.497
2	36.620	37.843	37.232	90.400	27.747	31.123	29.435	72.361
3	34.798	35.732	35.265	85.624	24.578	28.208	26.393	64.883
4	35.333	35.998	35.666	86.597	26.125	25.531	25.828	63.494
5	34.895	34.266	34.581	83.963	23.668	21.861	22.764	55.961

Table C.16 Profenofos degradation by PF3 at 80mg/L under presence of oxygen

D			Control		Test			
Day	1	2	Average	%Normalized PF conc.	1	2	Average	%Normalized PF conc.
0	66.881	67.893	67.387	100.00	60.622	65.827	63.224	100.00
1	65.540	65.893	65.717	97.522	52.886	54.149	53.517	84.647
2	60.439	60.554	60.497	89.775	44.789	45.081	44.935	71.073
3	55.119	58.902	57.011	84.602	35.591	36.021	35.806	56.634
4	48.558	50.783	49.671	73.710	31.049	29.046	30.047	47.525
5	45.773	48.783	67.387	70.159	25.163	24.866	25.014	39.564

Table C.17 Profenofos degradation by PF3 at 100 mg/L under presence of oxygen

			Control		Test				
Day	1	2	Average	%Normalized PF conc.	1	2	Average	%Normalized PF conc.	
0	74.479	74.783	74.631	100.00	72.068	77.579	74.823	100.00	
1	72.098	70.343	71.221	95.431	69.369	66.312	67.840	90.667	
2	68.426	70.532	69.479	93.097	54.226	52.625	55.426	74.076	
3	65.447	68.793	67.120	89.936	53.097	52.504	52.801	70.568	
4	61.458	60.874	61.166	81.958	54.340	55.220	54.780	73.212	
5	61.114	60.664	74.631	100.00	47.105	50.591	48.848	65.285	

Table C.18. Profenofos degradation by PF3 at 150mg/L under presence of oxygen

Dere			Control		Test			
Day	1	2	Average	%Normalized PF conc.	วิทยาส์	2	Average	%Normalized PF conc.
0	106.284	110.532	108.408	100.00	113.824	108.423	111.123	100.00
1	106.308	104.853	105.581	97.392	86.041	84.161	85.104	76.585
2	88.780	92.893	90.837	83.792	66.461	66.333	66.397	59.751
3	86.736	89.048	87.892	81.075	57.486	58.372	57.929	52.130
4	81.806	85.932	83.869	77.364	43.251	50.006	46.628	41.961
5	81.150	80.893	81.022	74.738	39.539	38.936	39.237	36.194

Table C.19	Profenofos	degradation b	y PF1 at	10mg/L under	presence of	nitrate (100 mg/L)
------------	------------	---------------	----------	--------------	-------------	--------------------

Day			Control		Test					
	1	2	Average	%Normalized PF conc.	1	2	Average	%Normalized PF conc.		
0	9.183	8.636	8.910	100.000	8.438	7.833	8.135	100.000		
1	8.900	8.516	8.708	97.732	7.877	6.209	7.043	86.580		
2	9.035	8.457	8.746	98.159	6.142	6.132	6.137	75.440		
3	8.990	8.426	8.708	97.732	5.557	5.423	5.490	67.490		
4	7.993	8.317	8.155	91.526	5.073	4.898	4.985	61.280		
5	7.559	7.931	7.745	86.924	4.522	4.586	4.554	55.980		
6	7.234	7.559	7.397	83.019	4.188	4.610	4.399	54.070		
7	7.241	7.616	7.429	83.378	4.002	3.914	3.958	48.650		

Table C.20 Profenofos degradation by PF1 at 10mg/L under presence of nitrate (200 mg/L)

Day			Control		Test				
	1	2	Average	%Normalized PF conc.	1	2	Average	%Normalized PF conc.	
0	8.344	8.132	8.238	100.00	7.967	8.429	8.198	100.00	
1	8.275	8.126	8.201	99.551	6.905	7.380	7.143	87.130	
2	7.752	7.998	7.87	95.594	6.183	7.017	6.600	80.510	
3	7.694	7.862	7.778	94.416	5.884	5.828	5.857	71.440	
4	7.479	7.160	7.320	88.857	5.732	5.077	5.404	65.920	
5	7.143	7.511	7.327	88.941	4.951	4.391	4.670	56.970	
6	6.903	6.756	6.830	82.908	4.341	4.251	4.296	52.40	
7	6.471	6.748	6.610	80.238	4.467	3.793	4.130	50.38	

Table C.21 Profenofos degradation by PF1 at 10mg/L under presence of nitrate (300 mg/L)

Day		C	Control	igkorn Un	Test					
	1	2	Average	%Normalized PF conc.	1	2	Average	%Normalized PF conc.		
0	8.393	8.122	8.258	100.00	8.259	8.374	8.317	100.00		
1	8.074	7.653	7.864	95.229	6.908	8.009	7.459	89.68		
2	7.524	7.683	7.604	92.080	6.312	6.646	6.480	77.91		
3	7.344	7.558	7.451	90.228	5.018	5.444	5.231	62.900		
4	7.526	7.796	7.661	92.771	5.102	5.086	5.093	61.240		
5	7.286	7.402	7.344	88.932	4.833	4.733	4.782	57.500		
6	7.008	7.247	7.128	86.316	4.705	4.844	4.774	57.400		
7	6.865	7.082	6.974	84.451	4.507	4.167	4.337	52.150		

Day	y Control					Test					
	1	2	Average	%Normalized PF conc.	1	2	Average	%Normalized PF conc.			
0	19.295	19.424	19.360	100.00	19.186	19.134	19.161	100.00			
1	18.989	19.428	19.209	99.220	16.147	18.060	17.104	89.260			
2	16.203	16.682	16.443	84.933	14.210	14.372	14.291	74.580			
3	15.598	15.901	15.750	81.353	13.875	14.147	14.011	73.120			
4	15.804	15.755	15.780	81.508	11.437	13.053	12.245	63.910			
5	15.801	15.681	15.741	81.307	11.716	11.976	11.846	61.820			
6	16.522	16.147	16.335	84.375	11.719	11.514	11.617	60.630			
7	16.371	15.504	15.938	82.324	10.732	11.250	10.991	57.360			

 Table C.23
 Profenofos degradation by PF1 at 25mg/L under presence of nitrate (200 mg/L)

Day			Control		Test				
	1	2	Average	%Normalized PF conc.	1	2	Average	%Normalized PF conc.	
0	18.614	19.025	18.820	100.00	19.052	20.226	19.639	100.00	
1	17.670	17.914	17.792	94.538	16.864	17.126	16.995	86.540	
2	17.862	17.704	17.783	94.490	14.907	14.714	14.811	75.420	
3	17.143	17.047	17.095	90.834	14.571	14.637	14.604	74.360	
4	16.692	17.163	16.928	89.947	14.527	13.596	14.601	74.350	
5	16.532	16.228	16.380	87.035	13.279	12.636	12.958	65.980	
6	15.994	16.124	16.059	85.329	12.149	11.827	11.988	61.040	
7	15.803	16.214	16.009	85.064	11.437	11.481	11.459	58.350	

Table C.24 Profenofos degradation by PF1 at 25mg/L under presence of nitrate (300 mg/L)

Day		C	Control	igkorn Un	Test					
	1 2 Average %Normalized PF conc.			1	%Normalized PF conc.					
0	20.330	19.817	20.074	100.00	20.842	20.127	20.484	100.00		
1	20.226	20.011	20.119	100.224	16.030	18.381	17.206	83.997		
2	18.753	18.603	18.678	93.046	17.369	15.007	16.188	79.028		
3	18.589	18.614	18.602	92.667	14.371	14.944	14.658	71.558		
4	16.681	17.301	16.991	84.642	12.056	12.768	12.41	60.594		
5	16.558	16.420	16.489	82.214	12.764	12.211	12.487	60.960		
6	16.003	15.924	15.960	79.526	11.812	12.503	12.158	59.354		
7	15.954	15.651	15.803	78.724	11.504	11.582	11.543	56.351		

Table C.2.	5 Profenofos degradation by PF1 at 50mg/L under presence	e of nitrate (100 mg/L)
Day	Control	

Day			Control		Test						
	1	2	Average	%Normalized PF conc.	1	2	Average	%Normalized PF conc.			
0	36.019	35.774	35.897	100.00	36.406	36.805	36.605	100.00			
1	36.866	37.097	36.982	103.023	34.479	34.964	34.722	94.860			
2	32.719	33.351	33.035	92.027	31.274	31.159	31.217	85.280			
3	33.291	33.502	33.397	93.035	24.862	27.126	25.993	71.010			
4	32.339	32.425	32.382	90.208	22.504	21.564	22.034	60.190			
5	29.780	30.299	30.040	83.684	19.259	21.089	20.173	55.110			
6	29.002	29.353	29.178	81.283	17.492	20.066	18.779	51.300			
7	28.825	28.985	28.905	80.522	17.638	18.751	18.194	49.700			

Table C.26 Profenofos degradation by PF1 at 50mg/L under presence of nitrate (200 mg/L)

Day			Control		Test				
	1	2	Average	%Normalized PF conc.	1	2	Average	%Normalized PF conc.	
0	35.862	36.323	36.093	100.00	37.175	36.328	36.752	100.00	
1	35.514	33.795	34.655	96.016	35.691	35.102	35.397	96.310	
2	33.621	33.887	33.754	93.520	29.399	31.903	30.652	83.400	
3	32.595	32.998	32.797	90.868	26.964	26.153	26.559	72.270	
4	32.823	33.354	33.089	91.677	24.240	24.240	24.678	67.180	
5	31.837	32.033	31.935	88.480	19.320	20.867	20.093	54.670	
6	30.068	30.492	30.280	83.894	18.000	18.508	18.254	49.670	
7	29.805	29.961	29.883	82.794	16.978	18.373	17.676	48.100	

Table C.27 Profenofos degradation by PF1 at 50mg/L under presence of nitrate (300 mg/L)

			Control		Test				
Day	1	2	Average	%Normalized PF conc.	1	2	Average	%Normalized PF conc.	
0	37.001	37.105	37.053	100.00	39.338	38.383	38.860	100.00	
1	36.467	36.796	36.632	98.864	36.173	35.772	35.972	92.570	
2	31.191	32.135	31.663	85.453	30.539	30.044	30.292	77.950	
3	28.144	29.366	28.755	77.605	26.235	26.235	26.187	67.390	
4	28.658	28.418	28.538	77.019	21.992	21.701	21.847	56.220	
5	28.019	28.422	28.221	76.164	21.346	21.616	21.481	55.280	
6	26.732	27.262	26.997	72.860	19.282	20.413	19.848	51.080	
7	26.538	26.911	26.725	72.126	20.109	19.784	19.946	51.330	

Table C 28	Profemofos	degradation b	v PF1	at 80mg/L	under	presence	of nitrate	(100 mg/L)
1 abic C.20	1 101010103	ucgrauation b	'y 1 1 1	at oonig/L	unuer	presence	or intrate	(100 mg/L)

Da			Control		Test					
У										
	1	2	Average	%Normalized PF	1	2	Average	%Normalized		
				conc.				PF conc.		
0	58.759	58.541	58.650	100.00	56.852	58.890	57.871	100.00		
1	56.633	57.004	56.819	96.878	54.029	52.830	53.430	92.330		
2	54.607	54.813	54.710	93.282	49.288	46.136	47.713	82.450		
3	54.191	53.906	54.049	92.155	49.737	44.719	47.228	81.610		
4	52.654	52.175	52.415	89.369	45.928	40.986	43.457	75.090		
5	52.467	52.350	52.409	89.359	35.701	35.211	35.456	61.270		
6	51.824	52.289	52.057	88.759	31.056	32.924	31.990	55.280		
7	49.029	48.708	48.869	83.323	24.921	27.073	25.997	44.920		

Table C.29 Profenofos degradation by PF1 at 80mg/L under presence of nitrate (200 mg/L)

Da			Control		Test					
У	1	2	Average	%Normalized PF conc.	1	2	Average	%Normalized PF conc.		
0	62.628	62.821	62.725	100.00	61.951	60.627	61.289	100.00		
1	62.409	62.281	62.345	99.394	54.411	53.576	53.993	88.100		
2	57.661	57.432	57.547	91.745	51.013	48.499	49.756	81.180		
3	54.122	54.581	54.352	86.651	46.405	47.906	47.155	76.940		
4	51.539	51.336	51.438	82.006	43.669	40.456	42.063	68.630		
5	50.771	52.720	51.746	82.497	44.041	38.628	41.335	67.440		
6	50.552	50.639	50.596	80.663	38.492	38.432	38.462	62.760		
7	48.218	48.311	48.265	76.947	33.764	35.119	34.442	56.200		

Table C.30 Profenofos degradation by PF1 at 80 mg/L under presence of nitrate (300 mg/L)

Da			Control		Test					
У			HULAL	<u>JNGKUKN UN</u>	IIVEKSI I Y					
	1	2	Average	%Normalized PF	1	2	Average	%Normalized		
				conc.				PF conc.		
0	61.607	61.486	61.547	100.00	58.205	59.620	58.913	100.00		
1	61.125	61.040	61.083	99.246	51.920	54.926	53.423	90.680		
2	58.147	57.971	58.059	94.332	45.557	50.187	47.872	81.26		
3	57.532	57.242	57.387	93.240	47.667	46.842	47.255	80.210		
4	52.944	52.774	52.859	85.884	43.593	44.356	43.974	74.640		
5	52.562	52.441	52.502	85.304	41.717	43.704	42.710	72.500		
6	51.116	50.435	50.776	82.499	36.041	38.622	37.331	63.370		
7	48.839	48.625	48.732	79.179	34.112	34.536	34.324	58.270		

Table C.31	Profenofos	degradation b	by PF1 at	100mg/L under	presence of nitrate	(100 mg/L)
------------	------------	---------------	-----------	---------------	---------------------	------------

Day			Control		Test					
	1	2	Average	%Normalized PF conc.	1	2	Average	%Normalized PF conc.		
0	73.441	73.214	73.328	100.00	80.580	75.614	78.097	100.00		
1	73.798	73.023	73.411	99.887	72.151	77.356	74.753	95.720		
2	70.944	70.529	70.737	96.467	61.755	70.247	66.001	84.510		
3	69.215	68.828	69.022	94.128	56.609	68.644	62.62	80.190		
4	69.544	69.506	69.525	94.814	57.290	53.376	55.333	70.850		
5	69.176	68.994	69.085	94.214	47.724	49.612	48.667	62.320		
6	68.064	67.855	67.960	92.679	41.770	42.088	41.929	53.690		
7	67.493	67.855	67.674	92.289	39.057	40.424	39.740	50.890		

Table C.32 Profenofos degradation by PF1 at 100mg/L under presence of nitrate (200 mg/L)

Day			Control		Test					
	1	2	Average	%Normalized PF conc.	1	2	Average	%Normalized PF conc.		
0	83.731	84.409	84.070	100.00	73.663	75.588	74.625	100.00		
1	82.384	81.918	82.151	97.717	67.927	77.161	72.544	97.210		
2	78.900	78.620	78.760	93.683	70.094	70.990	70.542	94.530		
3	76.160	75.687	75.924	90.310	66.721	61.239	63.980	85.740		
4	74.138	74.783	74.461	88.570	58.805	60.022	59.413	79.620		
5	71.179	72.752	71.966	85.602	50.403	52.670	51.536	69.060		
6	65.243	70.644	67.944	80.818	50.380	45.372	47.876	64.160		
7	63.621	66.719	65.170	77.519	49.596	45.803	47.700	63.920		

Table C.33 Profenofos degradation by PF1 at 100mg/L under presence of nitrate (300 mg/L)

Day		C	Control	igkorn Uni	Test					
	1	2	Average	%Normalized PF conc.	1	2	Average	%Normalized PF conc.		
0	80.362	81.082	80.722	100.00	76.868	75.548	76.208	100.00		
1	78.869	79.658	79.264	97.717	74.870	73.198	74.034	97.150		
2	71.978	74.347	73.163	93.683	64.638	71.274	67.956	89.170		
3	70.006	70.248	70.127	90.310	68.812	69.069	68.940	90.460		
4	69.165	69.733	69.449	88.570	57.991	57.615	57.803	75.850		
5	68.721	68.868	68.795	85.602	57.298	54.145	55.721	73.120		
6	67.935	69.018	68.477	80.818	56.490	52.085	54.287	71.240		
7	67.098	67.788	67.443	77.519	55.565	51.444	53.504	70.210		

Table C.34	Profenofos	degradation l	by PF1 at	150mg/L under	presence of nitra	ate (100 mg/L)
------------	------------	---------------	-----------	---------------	-------------------	----------------

Day		(Control		Test				
	1	2	Average	%Normalized PF	1	2	Averag	%Normalized PF	
				conc.			e	conc.	
0	110.140	109.853	109.997	100.00	110.140	106.760	108.450	100.00	
1	106.142	106.317	106.230	96.575	94.094	98.753	96.423	88.910	
2	101.707	102.063	101.885	92.625	76.087	71.277	73.682	67.940	
3	99.622	99.918	99.770	90.702	74.610	72.684	73.647	67.910	
4	98.314	99.077	98.696	89.726	73.445	67.458	70.452	64.960	
5	97.130	97.789	97.460	88.602	65.573	63.367	64.470	59.450	
6	93.999	94.646	94.323	85.750	64.905	60.772	62.838	57.940	
7	89.392	89.103	89.248	81.137	64.079	48.956	56.517	52.110	

Table C.35 Profenofos degradation by PF1 at 150mg/L under presence of nitrate (200 mg/L)

Day		C	Control		Test				
	1	2	Average	%Normalized PF conc.	> 1	2	Averag e	%Normalized PF conc.	
0	109.098	108.693	108.896	100.00	109.676	109.092	109.384	100.00	
1	104.902	105.260	105.081	96.497	97.232	94.610	95.921	87.690	
2	102.197	101.668	101.933	93.606	78.629	83.674	81.151	74.180	
3	100.261	100.448	100.355	92.157	78.166	67.487	72.826	66.570	
4	94.613	96.061	95.337	87.549	63.871	71.031	67.451	61.660	
5	93.788	94.401	94.095	86.408	64.502	65.947	65.224	59.620	
6	90.080	88.952	89.516	82.203	63.104	62.239	62.671	57.290	
7	82.492	83.735	83.114	76.324	63.513	59.052	61.282	56.020	

Table C.36 Profenofos degradation by PF1 at 150mg/L under presence of nitrate (300 mg/L)

Day		C	Control	igkorn Uni	Test					
	1	2	Average	%Normalized PF conc.	1	2	Average	%Normalized PF conc.		
0	106.814	105.981	106.398	100.00	104.558	105.86 7	105.212	100.00		
1	103.878	103.434	103.656	97.423	102.000	101.67 3	101.836	96.790		
2	100.218	100.472	100.345	94.311	93.073	88.981	91.027	86.510		
3	96.207	97.736	96.972	91.141	79.912	89.895	84.903	80.690		
4	94.881	96.406	95.644	89.893	74.813	74.620	74.716	71.010		
5	93.005	94.529	93.767	88.129	70.523	71.901	71.212	67.680		
6	92.775	92.120	92.448	86.889	66.412	59.212	62.812	59.700		
7	89.518	89.813	89.666	84.274	63.653	59.504	61.578	58.520		

Day			Control		Test					
	1	2	Average	%Normalized PF conc.	1	2	Average	%Normalized PF conc.		
0	9.130	9.510	9.320	100.000	8.886	8.660	8.773	100.000		
1	8.463	8.416	8.440	90.560	6.667	6.945	6.806	77.578		
2	7.728	7.601	7.665	82.242	4.853	5.489	5.171	58.942		
3	6.397	6.481	6.439	69.088	3.032	3.239	3.135	35.734		
4	5.490	5.938	5.714	61.309	2.433	2.224	2.337	26.638		
5	4.988	5.659	5.324	57.124	2.169	2.156	2.162	24.643		
6	5.096	5.504	5.300	56.867	2.071	1.921	2.00	22.797		
7	4.739	5.096	4.918	49.175	1.600	2.083	1.841	20.984		

Table C.38 Profenofos degradation by PF2 at 10mg/L under presence of nitrate (200 mg/L)

Day			Control	Test				
	1	2	Average	%Normalized PF conc.	1	2	Averag e	%Normalized PF conc.
0	9.091	9.253	9.172	100.000	8.919	8.424	8.672	100.000
1	8.735	8.813	8.774	95.661	7.383	7.938	7.661	87.704
2	8.892	8.728	8.810	96.053	7.381	7.735	7.558	87.154
3	8.651	8.606	8.629	94.080	5.079	5.469	5.274	60.816
4	8.034	8.211	8.126	88.596	4.364	4.722	4.543	52.387
5	7.062	7.267	7.165	78.119	3.797	2.912	3.355	38.687
6	6.935	7.102	7.019	76.526	3.413	3.310	3.362	38.768
7	6.605	6.773	6.689	72.928	2.588	2.931	2.760	31.826

Table C.39 Profenofos degradation by PF2 at 10mg/L under presence of nitrate (300 mg/L)

Day		(Control		Test				
	1	2	Average	%Normalized PF conc.	1	2	Averag e	%Normalized PF conc.	
0	9.130	9.510	9.320	100.000	8.886	8.660	8.773	100.000	
1	8.463	8.416	8.440	90.560	6.667	6.945	6.806	77.578	
2	7.728	7.601	7.665	82.242	4.853	5.489	5.171	58.942	
3	6.397	6.481	6.439	69.088	3.032	3.239	3.135	35.734	
4	5.490	5.938	5.714	61.309	2.433	2.224	2.337	26.638	
5	4.988	5.659	5.324	57.124	2.169	2.156	2.162	24.643	
6	5.096	5.504	5.300	56.867	2.071	1.921	2.00	22.797	
7	4.739	5.096	4.918	49.175	1.600	2.083	1.841	20.984	

Day			Control		Test					
	1	2	Average	%Normalized PF conc.	1	2	Average	%Normalized PF conc.		
0	20.276	20.204	20.240	100.000	19.367	19.529	19.448	100.000		
1	19.465	19.757	19.611	96.892	13.452	13.975	13.714	70.449		
2	18.539	18.867	18.703	92.406	11.736	11.016	11.376	58.494		
3	16.912	17.834	17.373	85.835	9.988	9.890	9.939	51.105		
4	15.281	16.057	15.669	77.416	8.435	8.893	8.664	44.549		
5	14.344	14.229	14.287	70.588	7.030	7.755	7.393	38.014		
6	15.641	15.656	15.649	77.317	7.620	7.589	7.605	39.104		
7	14.796	15.140	14.968	73.953	7.012	7.244	7.128	36.651		

Table C.41 Profenofos degradation by PF2 at 25 mg/L under presence of nitrate (200 mg/L)

Day			Control		Test				
	1	2	Average	%Normalized PF conc.	1	2	Average	%Normalized PF conc.	
0	19.268	19.384	19.326	100.00	19.514	19.544	19.529	100.00	
1	16.654	17.910	17.282	89.423	12.118	13.359	12.739	65.231	
2	18.120	17.177	17.649	91.322	10.331	11.414	10.872	55.671	
3	17.331	16.657	16.994	87.933	8.133	10.134	9.134	46.771	
4	16.265	16.024	16.144	83.535	9.439	8.724	9.082	46.505	
5	15.855	15.485	15.670	81.082	7.958	8.035	7.997	40.949	
6	15.520	15.284	15.402	79.696	7.553	6.820	7.187	36.801	
7	15.301	15.158	15.230	78.806	7.367	6.718	7.043	36.064	

Table C.42 Profenofos degradation by PF2 at 25 mg/L under presence of nitrate (300 mg/L)

D			Control	.onunonn v	Test				
Day	1	2	Average	%Normalized PF conc.	1	2	Average	%Normalized PF conc.	
0	22.562	21.018	21.790	100.00	19.914	20.339	20.127	100.00	
1	17.453	17.854	17.654	81.019	11.557	13.021	12.289	61.057	
2	15.285	15.843	15.564	71.427	12.250	10.873	11.561	57.440	
3	14.552	15.030	14.791	67.879	10.637	11.182	10.910	54.205	
4	14.379	14.416	14.398	66.076	10.198	10.600	10.399	51.666	
5	12.949	13.059	13.004	59.679	8.810	8.722	8.766	43.553	
6	12.586	12.662	12.624	57.934	8.058	7.825	7.942	39.459	
7	12.331	12.158	12.245	56.196	7.658	7.368	7.513	37.327	

Table C.43 Profenofos degradation by PF2 at 50mg/L under presence of nitrate (100 m	σ/L
Tuble C. 15 Trolenolos degradation by TT2 at Sonig E ander presence of initiale (100 in	·9 · -)

Day			Control		Test					
	1	2	Average	%Normalized PF conc.	1	2	Average	%Normalized PF conc.		
0	37.158	37.124	37.141	100.00	36.121	35.234	35.677	100.00		
1	33.632	37.099	35.366	95.221	27.397	28.029	27.713	77.677		
2	31.914	31.488	31.701	85.353	24.507	23.356	23.931	67.076		
3	31.350	31.005	31.178	83.945	21.529	20.521	21.025	58.931		
4	29.550	29.460	29.505	79.441	20.022	19.721	19.872	55.699		
5	29.241	28.980	29.111	78.379	17.804	17.868	17.836	49.992		
6	29.257	29.131	29.194	78.603	15.968	14.977	15.473	43.369		
7	28.998	29.030	29.014	78.119	14.172	15.410	14.791	41.458		

Table C.44 Profenofos degradation by PF2 at 50mg/L under presence of nitrate (200 mg/L)

Day			Control		2	Test				
	1	2	Average	%Normalized PF conc.	1	2	Average	%Normalized PF conc.		
0	36.013	35.940	35.977	100.00	35.750	36.084	35.917	100.00		
1	37.472	37.269	37.371	103.875	26.203	26.989	26.596	74.048		
2	35.538	35.310	35.424	98.463	19.251	21.499	20.375	56.728		
3	35.064	34.655	34.860	96.895	18.738	21.197	19.968	55.594		
4	34.364	34.139	34.252	95.205	16.133	16.946	16.539	46.047		
5	33.681	33.400	34.541	96.010	14.115	14.278	14.197	39.527		
6	31.526	31.759	31.643	87.95	12.644	12.106	12.375	34.454		
7	31.244	31.167	31.206	86.739	11.540	12.190	11.865	33.034		

Table C.45 Profenofos degradation by PF2 at 50mg/L under presence of nitrate (300 mg/L)

Day			Control	ONGKORN U	Test				
	1	2	Average	%Normalized PF conc.	1	2	Average	%Normalized PF conc.	
0	39.307	37.315	38.311	100.00	35.117	35.615	35.366	100.00	
1	38.501	36.878	37.690	98.379	27.208	28.664	27.936	78.991	
2	36.140	35.564	35.852	93.581	23.526	26.729	25.128	71.051	
3	35.312	35.083	35.198	91.874	21.327	22.284	21.806	61.658	
4	34.319	33.946	34.132	89.092	19.901	20.932	20.417	57.730	
5	32.595	32.444	32.520	84.884	17.652	19.042	18.347	51.877	
6	32.927	32.810	32.869	85.795	18.222	18.572	18.397	52.018	
7	32.672	32.585	32.629	85.169	16.840	17.194	17.017	48.116	

Table C 46	Profenofos	degradation	by PF2 at	80 mg/L	under presenc	e of nitrate ((100 mg/L)
1 4010 0.40	1101010103	ucgradation	0 y 1 1 2 at	00 mg/L	under presene	c or muate ((100 mg/L)

Day			Control		Test					
	1	2	Average	%Normalized PF conc.	1	2	Average	%Normalized PF conc.		
0	59.644	59.406	59.525	100.00	62.407	59.983	61.195	100.00		
1	54.137	56.575	55.356	92.996	57.276	54.631	55.954	91.435		
2	51.391	50.836	51.114	85.870	49.807	48.907	49.357	80.655		
3	50.668	50.472	50.570	84.956	44.251	47.015	45.633	74.569		
4	46.180	46.066	46.12	77.485	45.437	45.802	45.620	74.548		
5	45.692	45.455	45.574	76.563	40.866	42.040	41.453	67.739		
6	44.690	44.466	44.578	74.890	39.077	39.555	39.316	64.247		
7	44.141	44.068	44.105	74.095	38.376	35.508	36.942	60.367		

Table C.47 Profenofos degradation by PF2 at 80 mg/L under presence of nitrate (200 mg/L)

Day			Control		Test					
	1	2	Average	%Normalized PF conc.	1	2	Average	%Normalized PF conc.		
0	58.846	58.723	58.785	100.00	60.003	60.583	60.293	100.00		
1	55.719	56.189	55.954	95.184	53.085	53.209	53.147	88.147		
2	49.320	49.112	49.216	83.722	40.358	44.676	42.517	70.517		
3	50.236	49.930	50.083	85.197	36.348	37.080	36.714	60.892		
4	46.271	47.648	46.960	79.884	33.353	33.157	33.255	55.155		
5	45.673	45.808	45.741	77.811	31.848	31.568	31.708	52.583		
6	44.191	44.078	44.135	75.079	30.312	30.888	30.600	50.752		
7	43.239	43.623	43.431	73.881	28.310	27.850	28.080	46.582		

Table C.48 Profenofos degradation by PF1 at 80 mg/L under presence of nitrate (300 mg/L)

Day		C	Control	NGKORN UN	Test					
	1	2	Average	%Normalized PF conc.	1	2	Average	%Normalized PF conc.		
0	60.901	60.785	60.843	100.00	59.179	62.328	60.754	100.00		
1	57.746	58.111	57.92	95.211	53.938	54.619	54.279	89.342		
2	50.478	51.717	51.098	83.983	52.078	50.866	51.472	84.721		
3	48.725	49.039	48.882	80.341	45.855	49.307	47.581	78.317		
4	46.945	47.366	47.156	77.504	49.109	44.488	46.799	77.030		
5	46.541	46.423	46.482	76.397	41.851	42.362	42.107	69.307		
6	44.302	44.350	44.326	72.853	38.565	34.536	36.551	60.162		
7	41.980	42.808	42.394	69.678	31.738	32.131	31.935	52.564		

1	Table (C.49 Profenofos degradation by PF2 at 100mg/L under pre	sence of nitrate (100 mg/L)
	1		The second se

Tuore	0.1.7 11010	moros degi	1	12 al 100mg 2 ander pre	sence of infrate (100 mg/E)					
Day			Control		Test					
	1	2	Average	%Normalized PF conc.	1	2	Average	%Normalized PF conc.		
0	71.937	72.565	72.251	100.00	69.955	70.034	69.995	100.00		
1	68.528	69.113	68.821	95.253	54.863	56.547	55.705	79.584		
2	60.958	63.212	62.085	85.930	50.243	53.019	51.631	73.763		
3	58.412	59.140	58.776	81.350	40.243	45.821	43.032	61.478		
4	57.446	57.646	57.546	79.647	34.188	29.100	31.644	45.208		
5	53.338	54.937	54.138	74.930	33.023	29.031	31.027	44.327		
6	52.693	52.912	52.803	73.083	26.964	31.175	29.070	41.531		
7	48.023	50.001	49.012	67.836	26.414	27.829	27.122	38.748		

Table C.50 Profenofos degradation by PF2 at 100mg/L under presence of nitrate (200 mg/L)

Day		lioros degri	Control	2 at 100mg/L under pres	Test				
	1	2	Average	%Normalized PF conc.	1	2	Average	%Normalized PF conc.	
0	69.820	70.431	70.126	100.00	72.406	72.981	72.694	100.00	
1	66.546	67.544	67.045	95.606	53.357	52.866	53.112	73.062	
2	62.586	64.110	63.348	90.335	47.967	44.508	46.238	63.606	
3	57.961	59.123	58.542	83.481	47.703	40.680	44.192	60.791	
4	62.921	59.857	61.389	87.541	38.485	30.580	34.533	47.504	
5	57.900	58.562	58.231	83.038	35.179	29.181	32.180	44.168	
6	50.655	53.876	52.266	74.532	28.352	28.693	28.523	39.237	
7	45.601	46.687	46.144	65.802	28.284	25.295	26.790	36.853	

Table C.51 Profenofos degradation by PF2 at 100mg/L under presence of nitrate (300 mg/L)

Day		C	Control	ongkorn U	Test					
	1	2	Average	%Normalized PF conc.	1	2	Average	%Normalized PF conc.		
0	72.932	73.357	73.145	100.00	72.348	69.847	71.098	100.00		
1	71.521	71.852	71.687	98.007	54.486	55.993	55.240	77.695		
2	64.230	65.325	64.778	88.561	50.497	54.297	52.397	73.696		
3	62.777	63.005	62.891	85.981	46.149	51.567	48.858	68.719		
4	57.945	61.697	59.821	81.784	31.799	33.579	32.689	45.977		
5	56.958	57.408	57.183	78.178	26.077	26.554	26.316	37.013		
6	55.048	54.930	54.989	75.178	25.343	27.422	26.383	37.107		
7	52.934	52.815	52.875	72.288	26.637	25.086	25.862	36.375		

Day			Control				Test	
	1	2	Average	%Normalized PF conc.	1	2	Average	%Normalized PF conc.
0	112.192	112.897	112.545	100.00	110.405	112.265	111.335	100.00
1	101.723	102.645	102.184	90.794	103.730	96.230	99.980	89.801
2	95.651	94.848	95.250	84.633	92.839	101.918	97.379	87.464
3	83.382	86.713	85.048	75.568	75.620	78.416	77.018	69.176
4	80.778	82.868	81.823	72.702	56.932	70.287	63.610	57.133
5	76.863	78.511	77.687	69.028	55.959	63.993	59.976	53.869
6	75.358	75.030	75.194	66.812	44.593	46.488	45.541	40.904
7	71.476	72.757	72.117	64.078	43.138	45.318	44.228	39.725

Table C.53 Profenofos degradation by PF21 at 150mg/L under presence of nitrate (200 mg/L)

Day			Control		Test				
	1	2	Average	%Normalized PF conc.	1	2	Average	%Normalized PF conc.	
0	107.019	106.166	106.593	100.00	104.266	109.073	106.670	100.00	
1	103.550	103.901	103.726	97.310	96.257	96.309	96.283	90.262	
2	101.147	99.952	100.550	94.331	91.648	93.851	92.750	86.950	
3	92.750	93.739	93.245	87.478	75.965	76.623	76.294	71.523	
4	84.921	86.928	85.925	80.610	67.748	68.519	68.134	63.873	
5	85.018	84.869	84.944	79.690	66.021	60.863	63.442	59.475	
6	83.860	83.753	83.807	78.623	57.442	59.117	58.280	54.635	
7	82.487	83.366	82.927	77.798	57.973	55.841	56.907	53.348	

Table C.54 Profenofos degradation by PF2 at 150mg/L under presence of nitrate (300 mg/L)

Day			Control	11 0 000 00 01 11	Test					
	1	2	Average	%Normalized PF conc.	NIVINSI	2	Average	%Normalized PF conc.		
0	110.443	107.284	108.863	100.00	104.299	109.502	106.901	100.00		
1	107.536	106.081	106.809	98.113	100.531	105.632	103.082	96.427		
2	98.815	97.920	98.368	90.359	94.572	90.237	92.405	86.439		
3	98.815	96.876	97.846	89.880	81.887	85.437	83.662	78.261		
4	97.408	96.562	96.985	89.089	79.559	77.980	78.770	73.684		
5	93.959	94.861	94.410	86.724	66.683	78.503	72.593	67.906		
6	85.711	87.083	86.397	79.363	65.478	78.480	71.979	67.332		
7	84.327	83.595	83.961	77.125	62.164	62.421	62.293	58.271		

Table C.5	5 Protenot	os degrad	lation by PF3	at 10mg/L under pro	esence of nitra	ite (100 mg	g/L)	
Day			Control		Test			
	1	2	Average	%Normalized PF conc.	1	2	Average	%Normalized PF conc.
0	10.156	9.460	9.808	100.00	9.759	8.934	9.347	100.00
1	9.264	8.847	9.056	92.333	8.059	7.967	8.013	85.780
2	8.986	8.813	8.900	90.742	8.183	7.707	7.945	85.000
3	8.798	8.608	8.703	88.734	7.334	7.247	7.291	78.004
4	7.953	8.196	8.075	82.331	5.824	7.009	6.412	68.600
5	8.188	8.235	8.212	83.728	4.411	5.143	4.777	51.107
6	8.397	8.189	8.293	84.553	4.617	4.171	4.394	47.010
7	8.155	7.994	8.075	82.331	8.155	7.994	4.549	48.668

Table C.55 Profenofos degradation by PF3 at 10mg/L under presence of nitrate (100 mg/L)

Table C.56 Profenofos degradation by PF3 at 10mg/L under presence of nitrate (200 mg/L)

Day	Control				Test			
	1	2	Average	%Normalized PF conc.	1	2	Average	%Normalized PF conc.
0	9.372	8.983	9.178	100.00	9.302	8.948	9.125	100.00
1	9.131	8.886	9.009	98.159	8.570	8.070	8.320	91.178
2	8.840	9.029	8.935	97.352	8.125	8.070	8.098	88.745
3	8.805	8.716	8.761	95.457	6.958	7.181	7.070	77.479
4	8.563	8.385	8.474	92.329	6.738	7.724	7.231	79.244
5	8.465	8.318	8.392	91.436	6.308	7.617	6.963	76.307
6	8.733	7.997	8.365	91.142	5.972	5.556	5.764	63.167
7	8.222	7.804	8.013	87.307	4.341	4.955	4.648	50.937

Table C.57 Profenofos degradation by PF3 at 10mg/L under presence of nitrate (300 mg/L)

Day		C	Control	DNGKORN U	IIVERS			
	1	2	Average	%Normalized PF conc.	1	2	Average	%Normalized PF conc.
0	9.322	9.057	9.190	100.00	9.598	8.990	9.294	100.00
1	9.298	9.116	9.207	100.184	8.256	7.237	7.747	83.355
2	9.122	8.681	8.902	96.866	7.770	8.321	8.046	86.572
3	9.020	8.673	8.847	96.268	7.532	7.991	7.762	83.516
4	8.783	8.953	8.868	96.496	7.515	7.800	7.658	82.397
5	8.644	8.647	8.646	94.081	6.247	5.329	5.788	62.228
6	8.330	8.636	8.483	92.307	5.182	4.566	4.874	52.442
7	5.182	4.566	8.340	90.751	4.552	4.376	4.464	48.031

Table C.58	Profenofos	degradation	by PF3	at 25	mg/L	under	presence	of nitrate	e (100 mg/L)	

Day		C	Control	<u> </u>	Test					
	1	2	Average	%Normalized PF conc.	1	2	Average	%Normalized PF conc.		
0	20.687	20.565	20.626	100.00	22.666	20.511	21.589	100.00		
1	20.685	20.490	20.58	99.816	20.665	21.071	20.868	96.660		
2	20.426	20.315	20.371	98.764	19.565	19.859	19.712	91.306		
3	21.596	21.398	21.497	104.222	17.469	16.548	17.009	78.785		
4	20.387	19.820	20.104	97.469	14.814	16.942	15.878	73.547		
5	20.156	19.955	20.056	97.236	14.882	16.328	15.605	72.282		
6	20.592	20.275	20.434	99.069	15.073	15.067	15.070	69.804		
7	20.400	20.183	20.292	98.381	12.966	13.655	13.311	61.656		

Table C.59 Profenofos degradation by PF3 at 25 mg/L under presence of nitrate (200 mg/L)

Day			Control		Test				
	1	2	Average	%Normalized PF conc.	1	2	Average	%Normalized PF conc.	
0	20.704	20.831	20.768	100.00	22.798	22.511	22.655	100.00	
1	20.480	20.662	20.571	99.051	21.642	19.277	20.460	90.311	
2	21.175	20.900	21.038	101.300	18.464	20.284	19.374	85.518	
3	21.108	20.533	20.821	100.255	18.076	18.005	19.305	85.213	
4	20.003	19.420	19.712	94.915	14.319	15.019	14.669	64.750	
5	20.035	18.795	19.415	93.485	14.319	14.956	14.638	64.613	
6	19.367	19.324	19.346	93.153	14.578	14.323	14.451	63.787	
7	20.066	19.527	19.797	95.325	15.108	13.312	14.210	62.723	

Table C.60 Profenofos degradation by PF3 at 25mg/L under presence of nitrate (300 mg/L)

Day		0	Control	NGKORN UN	Test					
	1	2	Average	%Normalized PF conc.	1	2	Average	%Normalized PF conc.		
0	20.981	20.944	20.963	100.00	20.914	20.590	20.752	100.00		
1	20.667	20.530	20.599	98.264	19.970	20.418	20.194	97.311		
2	20.274	19.659	19.967	95.249	19.199	19.567	19.383	93.403		
3	20.343	20.042	20.193	96.327	17.572	17.376	17.474	84.204		
4	19.096	19.537	19.317	92.148	15.744	15.402	15.573	75.043		
5	19.659	19.184	19.422	92.649	15.329	14.483	14.906	71.829		
6	19.820	19.531	19.676	93.861	15.447	16.916	16.182	77.978		
7	19.625	19.277	19.451	92.787	15.507	16.037	15.772	76.002		

Day			Control		Test				
	1	2	Average	%Normalized PF conc.	1	2	Average	%Normalized PF conc.	
0	46.092	46.290	46.191	100.00	45.110	46.128	45.619	100.00	
1	46.402	45.611	46.007	99.602	41.779	40.881	41.330	90.598	
2	46.033	46.883	46.458	100.578	40.933	36.209	38.571	84.550	
3	42.557	43.741	43.149	93.414	36.360	35.545	35.953	78.811	
4	41.278	41.505	41.392	89.610	31.781	33.910	32.846	72.000	
5	37.915	41.808	39.862	86.298	29.519	32.410	30.965	67.877	
6	38.404	38.521	38.463	83.269	27.830	29.374	28.602	62.698	
7	38.294	38.139	38.217	82.737	26.335	25.566	25.951	56.886	

Test

Average

44.850

41.771

39.865

40.097

34.145

33.947

33.767

30.899

Test

Average

42.233

39.144

38.914

38.168

34.497

34.181

33.921

31.641

%Normalized PF

conc.

100.00

93.135

88.885

89.402

76.132

75.690 75.289

68.894

%Normalized PF

conc.

100.00

92.686

92.141

90.375

81.683

80.934

80.319

74.920

2

45.438

45.438

37.895

39.294

34.489

33.561

34.738

31.083

2

42.814

39.024

37.961

38.006

33.776

34.601

34.819

31.404

Table C.61 Profenofos degradation by PF3 at 50mg/L under presence of nitrate (100 mg/L)

Table C.62 Profenofos degradation by PF3 at 50mg/L under presence of nitrate (200 mg/L)

%Normalized PF

conc.

100.00

93.522

100.433

97.047

94.298

92.913

97.079

94.239

%Normalized PF

conc.

100.00

100.503

100.154

100.900

94.157

87.372

88.311

86.325

1

44.261

44.261

41.835

40.899

33.801

34.333

32.795

30.714

1

41.652

39.263

39.867

38.330

35.218

33.760

33.022

31.877

Control

Average

40.635

38.003

40.811

39.435

38.318

37.755

39.448

38.294

Control

Average

44.103

44.325

44.171

44.500

41.526

38.534

38.948

38.072

Table C.63 Profenofos degradation by PF3 at 50mg/L under presence of nitrate (300 mg/L)

Day

0

1

2

3

4

5

6 7

Day

0

2

3

4

5 6

7

1

40.566

40.566

40.981

38.484

38.571

37.798

38.463

38.270

1

44.373

44.135

44.412

44.721

40.937

38.415

38.321

37.837

2

40.704

40.704

40.641

40.386

38.064

37.711

40.432

38.317

2

43.833

44.514

43.930

44.278

42.114

38.653

39.575

38.306

Derr			Control		Test					
Day	1	2	Average	%Normalized PF conc.	1	2	Average	%Normalized PF conc.		
0	71.003	71.451	71.227	100.00	73.299	69.452	71.376	100.00		
1	69.503	69.315	69.409	97.448	66.699	70.670	68.685	96.230		
2	65.397	66.277	65.837	92.433	62.312	61.846	62.079	86.975		
3	63.617	63.957	63.787	89.554	57.252	55.225	56.239	78.793		
4	61.768	62.449	62.109	87.199	48.802	53.228	51.015	71.474		
5	61.812	62.252	62.032	87.091	49.969	47.766	48.868	68.466		
6	61.914	62.858	62.386	87.588	48.253	47.532	47.893	67.100		
7	61.092	60.561	60.827	85.399	45.419	46.159	45.789	64.152		

Table C.65 Profenofos degradation by PF3 at 80mg/L under presence of nitrate (200 mg/L)

			Control		Test				
Day	1	2	Average	%Normalized PF conc.	1	2	Average	%Normalized PF conc.	
0	70.397	70.461	70.429	100.00	66.971	67.215	67.093	100.00	
1	68.802	69.182	68.992	97.860	66.061	69.151	67.606	100.765	
2	65.004	66.195	65.600	93.143	62.531	61.708	62.120	92.588	
3	63.292	63.532	63.412	90.037	58.162	58.869	58.516	87.216	
4	61.336	61.890	61.613	87.482	49.035	56.442	52.739	78.606	
5	60.139	60.138	60.139	85.390	50.167	46.668	55.153	82.204	
6	56.154	57.107	56.631	80.409	48.646	49.700	49.173	73.291	
7	53.787	54.822	54.305	77.106	46.474	49.098	47.786	71.223	

Table C.66 Profenofos degradation by PF3 at 80mg/L under presence of nitrate (300 mg/L)

			Control		Test						
Day	Day 1	2	Average	%Normalized PF conc.	1	2	Average	%Normalized PF conc.			
0	66.898	67.294	67.096	100.00	68.677	66.751	67.714	100.00			
1	66.735	64.437	65.586	97.749	63.341	66.467	64.904	95.850			
2	64.341	64.420	64.381	95.953	63.632	61.454	62.543	92.363			
3	64.182	63.815	63.999	95.384	61.332	60.864	61.098	90.229			
4	64.480	71.778	68.129	101.540	60.016	58.239	59.128	87.320			
5	63.003	62.945	62.974	93.857	58.920	57.281	58.101	85.803			
6	62.563	63.328	62.945	93.813	61.413	54.210	57.812	85.377			
7	62.760	62.566	62.663	93.393	59.422	58.319	58.871	86.940			

-			Control		Test					
Day	1	2	Average	%Normalized PF conc.	1	2	Average	%Normalized PF conc.		
0	90.616	87.811	89.214	100.00	89.218	89.881	89.550	100.00		
1	90.875	90.375	90.625	101.582	88.045	82.209	85.127	95.419		
2	89.761	87.142	88.452	99.146	81.517	80.782	81.150	90.620		
3	87.653	86.904	87.279	97.831	79.539	76.782	78.161	87.282		
4	88.173	87.381	87.777	98.389	68.049	72.826	70.438	78.658		
5	86.657	86.186	86.422	96.870	66.604	71.162	68.883	76.921		
6	85.644	85.441	85.543	95.885	66.115	69.570	67.842	75.759		
7	82.738	82.241	82.490	92.463	63.523	62.176	62.850	70.184		

Table C.68 Profenofos degradation by PF3 at 100mg/L under presence of nitrate (200 mg/L)

_			Control		Test				
Day	1	2	Average	%Normalized PF conc.	1	2	Average	%Normalized PF conc.	
0	92.442	92.760	92.601	100.00	90.769	89.575	90.172	92.442	
1	93.503	92.587	93.045	100.479	86.560	88.836	87.698	93.503	
2	88.747	88.897	88.822	95.919	77.620	80.651	79.136	88.747	
3	86.913	86.499	86.706	93.634	75.907	76.987	76.477	86.913	
4	84.974	84.469	84.722	91.491	64.973	67.016	65.995	84.974	
5	84.733	84.310	84.522	91.275	66.777	63.402	65.090	84.733	
6	83.662	83.328	83.495	90.166	65.349	62.491	63.920	83.662	
7	81.389	82.009	81.699	88.227	61.883	62.271	62.077	81.389	

Table C.69 Profenofos degradation by PF3 at 100mg/L under presence of nitrate (300 mg/L)

	Control				Test			
Day	1	2	Average	%Normalized PF conc.	1	2	Average	%Normalized PF conc.
0	90.180	86.791	88.486	100.00	87.586	85.495	86.541	90.180
1	88.125	87.263	87.694	99.105	85.495	82.773	84.134	88.125
2	88.506	88.384	88.445	99.954	83.022	83.988	83.505	88.506
3	87.764	87.842	87.803	99.228	76.701	78.704	77.703	87.764
4	86.396	85.945	86.171	97.384	71.222	74.679	72.951	86.396
5	84.429	84.158	84.294	95.263	65.736	67.093	66.415	84.429
6	83.760	82.623	83.192	94.017	64.155	62.871	63.513	83.760
7	83.091	82.936	83.014	93.816	62.108	63.319	62.714	83.091

Day	Control				Test			
	1	2	Average	%Normalized PF conc.	1	2	Average	%Normalized PF conc.
0	113.486	112.781	113.134	100.00	110.412	110.689	110.551	100.00
1	113.040	112.270	112.655	99.577	107.558	111.449	109.504	99.053
2	112.858	112.426	109.504	96.791	104.577	104.396	104.487	94.515
3	107.154	106.763	106.959	94.542	96.532	98.622	97.577	88.264
4	104.872	104.713	104.793	92.627	91.141	89.441	90.291	81.674
5	100.033	98.865	99.44	87.904	86.195	88.575	87.385	79.045
6	98.809	98.275	98.542	87.102	83.459	83.296	83.378	75.420
7	97.514	97.130	97.322	86.024	78.181	78.371	78.276	70.805

Test

Average

105.708

108.200

103.660

93.495

89.466

88.481

87.904

86.805

Test

Average

103.006

104.719

101.141

95.416

90.540

88.813

82.513

82.940

2

106.044

109.001

103.817

95.211

89.020

87.790

87.586

86.837

2

101.064

106.927

101.028

95.723

90.456

89.740

83.005

82.899

%Normalized PF

conc.

100.00

102.357

98.063

88.446

84.635

83.703

83.157

82.118

%Normalized PF

conc.

100.00

101.663

98.189

92.631

87.898

86.221

80.105

80.520

Table C.70 Profenofos degradation by PF3 at 150mg/L under presence of nitrate (100 mg/L)

Table C.71 Profenofos degradation by PF3 at 150mg/L under presence of nitrate (200 mg/L)

%Normalized PF

conc.

100.00

100.682

100.842

98.362

98.659

98.087

92.402

89.666

%Normalized PF

conc.

100.00

100.752

102.295

101.838

98.934

98.486

94.520

93.179

1

105.371

107.399

103.503

91.779

89.911

89.172

88.222

86.773

1

104.948

102.511

101.253

95.109

90.623

87.886

82.020

82.980

Control

Average

110.192

110.943

111.120

108.387

108.714

108.084

101.820

98.535

Control

Average

104.705

105.493

107.108

106.629

103.589

103.120

98.967

97.563

Table C.72 Profenofos degradation by PF3 at 150mg/L under presence of nitrate (300 mg/L)

2

109.902

110.459

110.884

108.169

109.112

107.943

101.562

98.826

2

105.007

105.363

105.078

105.907

103.662

102.897

98.788

97.699

Day

0

1

3

4

5

6

7

Day

0

2

3

4

5

6

7

1

110.481

111.426

111.355

108.604

108.315

108.224

102.077

98.243

1

104.402

105.623

109.137

107.351

103.516

103.343

99.146

97.426

101

Results of microbial growth under presence of oxygen and nitrate

Day	Test				
y	1	2	Average		
0	1.80E+04	1.00E+04	1.40E+04		
1	4.50E+06	4.80E+06	4.65E+06		
2	1.50E+06	1.80E+06	1.65E+06		
3	1.20E+07	1.10E+07	1.15E+07		
4	1.00E+07	1.50E+07	1.25E+07		
5	6.00E+06	1.10E+07	8.50E+06		

Table C.73 Cell number of PF1 at 10mg/L profenofos under presence of oxygen

Table C.74 Cell number of PF1 at 25mg/L profenofos under presence of oxygen

Day	Test				
249	1 P	2	Average		
0	2.40E+04	1.90E+04	2.15E+04		
1	3.90E+06	3.30E+06	3.60E+06		
2	8.00E+05	1.10E+06	9.50E+05		
3	8.00E+06	4.00E+06	6.00E+06		
4	7.00E+06	1.00E+07	8.50E+06		
5	1.00E+07	7.00E+06	8.50E+06		
	De suiter la	and and			

Table C.75 Cell number of PF1 at 50mg/L profenofos under presence of oxygen

Day	Test					
	จุหาลุงกรณม	2	Average			
0	2.00E+04	1.50E+04	1.75E+04			
1	3.50E+04	3.20E+04	3.35E+04			
2	1.40E+07	1.70E+07	1.55E+07			
3	1.80E+07	1.60E+07	1.70E+07			
4	1.10E+07	1.60E+07	1.35E+07			
5	7.00E+06	1.00E+07	8.50E+06			

Day	Test				
	1	2	Average		
0	1.80E+04	1.30E+04	1.55E+04		
1	1.20E+06	1.40E+06	1.30E+06		
2	1.80E+07	2.20E+07	2.00E+07		
3	2.00E+07	2.10E+07	2.05E+07		
4	1.40E+07	1.10E+07	1.25E+07		
5	1.60E+07	1.50E+07	1.55E+07		

Table C.77 Cell number of PF1 at 100 mg/L profenofos under presence of oxygen

Day	Test			
Day	1	2	Average	
0	1.90E+04	2.00E+04	1.95E+04	
1	2.60E+07	2.40E+07	2.50E+07	
2	2.80E+07	2.40E+07	2.60E+07	
3	1.50E+07	2.00E+07	1.50E+07	
4	7.00E+06	1.20E+07	1.90E+07	
5	1.60E+07	1.50E+07	3.10E+07	

Table C.78 Cell number of PF1 at 150mg/L profenofos under presence of oxygen

Day	Test				
Day	1	2	Average		
0	2.10E+04	2.30E+04	2.20E+04		
1	1.80E+07	2.20E+07	2.00E+07		
2	2.60E+07	3.00E+07	2.80E+07		
3	7.00E+07	6.00E+07	6.50E+07		
4	6.00E+07	4.00E+07	5.00E+07		
5	2.00E+07	1.00E+07	1.50E+07		

Table C.79 Cell number of PF2 at 10mg/L profenofos under presence of oxygen

Day	Test			
Day	1	2	Average	
0	4.80E+04	4.60E+04	4.70E+04	
1	3.50E+04	3.70E+04	3.60E+04	
2	1.20E+06	1.00E+06	1.10E+06	
3	1.60E+07	1.40E+07	1.50E+07	
4	6.00E+06	4.00E+06	5.00E+06	
5	1.50E+07	1.60E+07	1.55E+07	

Table C.80 Cell number of PF2 at 25 mg/L profenofos under presence of oxygen

Day	Test				
Duy	1	2	Average		
0	2.80E+04	3.10E+04	2.95E+04		
1	6.20E+06	6.40E+06	6.30E+06		
2	2.30E+07	2.10E+07	2.20E+07		
3	2.30E+08	2.60E+08	2.45E+08		
4	1.20E+08	1.00E+08	1.10E+08		
5	1.60E+08	1.30E+08	1.45E+08		
L	5086				

V (freedomanit)

Table C.81 Cell number of PF2 at 50mg/L profenofos under presence of oxygen

Test				
1	2	Average		
4.90E+04	5.10E+04	5.00E+04		
2.50E+06	2.70E+06	2.60E+06		
3.40E+07	3.50E+07	3.45E+07		
1.60E+08	1.60E+08	1.60E+08		
9.00E+07	1.10E+08	1.00E+08		
7.00E+07	5.00E+07	6.00E+07		
	2.50E+06 3.40E+07 1.60E+08 9.00E+07	1 2 4.90E+04 5.10E+04 2.50E+06 2.70E+06 3.40E+07 3.50E+07 1.60E+08 1.60E+08 9.00E+07 1.10E+08		

Table C.82 Cell number of PF2 at 80mg/L profenofos under presence of oxygen

Day		Test		
249	1	2	Average	
0	2.60E+04	2.30E+04	2.45E+04	
1	1.00E+05	8.00E+04	9.00E+04	
2	4.00E+06	2.00E+06	3.00E+06	
3	1.20E+07	1.50E+07	1.35E+07	
4	6.00E+06	4.00E+06	5.00E+06	
5	1.00E+07	9.00E+06	9.50E+06	

Table C.83 Cell number of PF2 at 100 mg/L profenofos under presence of oxygen

Day		Test		
	1	2	Average	
0	1.80E+04	1.60E+04	1.70E+04	
1	5.00E+04	7.00E+04	6.00E+04	
2	1.90E+07	1.80E+07	1.85E+07	
3	1.00E+08	5.00E+07	7.50E+07	
4	1.90E+08	1.60E+08	1.75E+08	
5	1.10E+08	1.30E+08	1.20E+08	

Table C.84 Cell number of PF2 at 150mg/L profenofos under presence of oxygen

Day		Test	
	1	2	Average
0	4.00E+03	3.00E+03	3.50E+03
1	5.00E+03	7.00E+03	6.00E+03
2	1.70E+07	1.80E+07	1.75E+07
3	9.00E+07	1.20E+08	1.05E+08
4	9.00E+07	7.00E+07	8.00E+07
5	1.40E+08	8.00E+07	1.10E+08

Day		Test		
Duy	1	2	Average	
0	1.80E+04	1.00E+04	1.40E+04	
1	4.50E+06	4.80E+06	4.65E+06	
2	1.50E+06	1.80E+06	1.65E+06	
3	1.20E+07	1.10E+07	1.15E+07	
4	1.00E+07	1.50E+07	1.25E+07	
5	6.00E+06	1.10E+07	8.50E+06	

Table C.86 Cell number of PF3 at 25 mg/L profenofos under presence of oxygen

D		Test	
Day	1	2	Average
0	2.40E+04	1.90E+04	2.15E+04
1	3.90E+06	3.30E+06	3.60E+06
2	8.00E+06	1.10E+07	9.50E+06
3	8.00E+06	1.40E+07	1.10E+07
4	7.00E+06	1.00E+07	8.50E+06
5	1.00E+07	7.00E+06	8.50E+06

Table C.87 Cell number of PF3 at 50mg/L profenofos under presence of oxygen

Day	Test		
	1	2	Average
0	3.50E+04	1.20E+04	2.35E+04
1	2.00E+07	1.40E+07	1.70E+07
2	1.40E+07	1.70E+07	1.55E+07
3	1.80E+07	1.60E+07	1.70E+07
4	1.10E+07	1.10E+07	1.10E+07
5	7.00E+06	1.00E+07	8.50E+06

Table C.88 Cell number of PF3 at 80 mg/L profenofos under presence of oxygen

Day		Test		
	1	2	Average	
0	1.80E+04	1.3 E+4	1.80E+04	
1	1.20E+07	1.40E+07	1.30E+07	
2	1.80E+07	2.20E+07	2.00E+07	
3	2.00E+07	2.10E+07	2.05E+07	
4	1.40E+07	1.10E+07	1.25E+07	
5	1.60E+07	1.50E+07	1.55E+07	

Table C.89 Cell number of PF3 at 100 mg/L profenofos under presence of oxygen

	Test		
1	2	Average	
1.90E+04	2.00E+04	1.95E+04	
2.60E+07	1.40E+07	2.00E+07	
2.80E+07	2.40E+07	2.60E+07	
1.50E+07	2.00E+07	1.75E+07	
7.00E+06	1.20E+07	9.50E+06	
1.60E+07	1.50E+07	1.55E+07	
	2.60E+07 2.80E+07 1.50E+07 7.00E+06	1.90E+04 2.00E+04 2.60E+07 1.40E+07 2.80E+07 2.40E+07 1.50E+07 2.00E+07 7.00E+06 1.20E+07	

Table C.90 Cell number of PF3 at 150mg/L profenofos under presence of oxygen

Day	8	Test	
	1	2	Average
0	2.10E+04	3.00E+04	2.55E+04
1	1.80E+07	2.80E+07	2.30E+07
2	2.60E+07	3.00E+07	2.80E+07
3	7.00E+07	6.00E+07	6.50E+07
4	6.00E+07	4.00E+07	5.00E+07
5	2.00E+07	1.00E+07	1.50E+07

Table C.91 Cell number of PF1 at 10mg/L profenofos under presence of nitrate

Nitrate conc. Day		Test		
	(mg/L)	1	2	Average
0		2.10E+05	2.30E+05	2.20E+05
1		1.60E+05	4.08E+06	4.08E+06
2		4.30E+07	4.80E+07	4.55E+07
3	100	4.00E+07	2.60E+08	1.50E+08
4		4.00E+08	8.00E+07	2.40E+08
5		1.30E+07	3.70E+08	1.92E+08
6		7.00E+06	4.40E+08	2.24E+08
7		2.90E+08	2.90E+08	2.90E+08

Table C.92 Cell number of PF1 at 10 mg/L profenofos under presence of nitrate

Day	Nitrate conc.	Test		
-	(mg/L)		2	Average
0		2.40E+05	2.00E+05	2.20E+05
1		3.70E+06	3.50E+06	3.60E+06
2		2.80E+07	1.70E+07	2.25E+07
3	200	1.50E+08	1.70E+08	1.60E+08
4		1.50E+08	7.70E+08	4.60E+08
5		6.00E+07	8.00E+08	4.30E+08
6		1.00E+08	8.20E+08	4.60E+08
7		6.00E+08	6.40E+08	6.20E+08

Chulalongkorn University

Table C.93 Cell number of PF1 at 10mg/L profenofos under presence of nitrate

Day	Nitrate conc.	Test				
	(mg/L)	1	2	Average		
0		3.40E+05	1.90E+05	2.65E+05		
1		6.60E+06	3.20E+06	4.90E+06		
2		5.20E+07	3.00E+07	4.10E+07		
3	300	3.80E+08	3.50E+08	3.65E+08		
4		7.80E+08	4.90E+08	6.35E+08		
5		1.60E+09	1.00E+09	1.30E+09		
6		1.20E+09	6.50E+08	9.25E+08		
7		8.00E+08	4.40E+08	6.20E+08		

Table C.94 Cell number of PF1 at 25 mg/L profenofos under presence of nitrate

Day	Nitrate conc.		Test		
Duy	(mg/L)		2	Average	
0		1.70E+05	1.40E+05	1.55E+05	
1		5.90E+06	5.10E+06	5.50E+06	
2		2.60E+07	3.20E+07	2.90E+07	
3	100	1.50E+08	1.70E+08	1.60E+08	
4	100	1.50E+08	3.00E+08	2.25E+08	
5		3.90E+08	8.00E+07	2.35E+08	
6	-	1.00E+08	1.90E+08	1.45E+08	
7		1.30E+08	1.80E+08	1.55E+08	

Table C.95Cell number of PF1 at 10mg/L profenofos under presence of nitrate

Day	Nitrate conc.	Test			
	(mg/L)	1	2	Average	
0		3.40E+05	1.90E+05	2.65E+05	
1		6.60E+06	3.20E+06	4.90E+06	
2		5.20E+07	3.00E+07	4.10E+07	
3	300	3.80E+08	3.50E+08	3.65E+08	
4	300	7.80E+08	4.90E+08	6.35E+08	
5		1.60E+09	1.00E+09	1.30E+09	
6		1.20E+09	6.50E+08	9.25E+08	
7		8.00E+08	4.40E+08	6.20E+08	

Table C.96 Cell number of PF1 at 25 mg/L profenofos under presence of nitrate

Day	Nitrate conc.	Test				
	(mg/L)	1	2	Average		
0		1.70E+05	1.40E+05	1.55E+05		
1		5.90E+06	5.10E+06	5.50E+06		
2		2.60E+07	3.20E+07	2.90E+07		
3	100	1.50E+08	1.70E+08	1.60E+08		
4		1.50E+08	3.00E+08	2.25E+08		
5		3.90E+08	8.00E+07	2.35E+08		
6		1.00E+08	1.90E+08	1.45E+08		
7		1.30E+08	1.80E+08	1.55E+08		

Table C.97 Cell number of PF1 at 25mg/L profenofos under presence of nitrate

Day	Nitrate conc.	onc. Test			
Day	(mg/L)	-1-/100	2	Average	
0		6.20E+05	2.30E+05	4.25E+05	
1	-	6.40E+07	4.80E+07	5.60E+07	
2		8.00E+06	6.80E+07	3.80E+07	
3	200	2.90E+08	1.90E+07	1.55E+08	
4	200	6.00E+07	5.00E+08	2.80E+08	
5	-	3.00E+07	4.30E+08	2.30E+08	
6	-	8.00E+07	3.30E+08	2.05E+08	
7	-	3.50E+08	1.60E+08	2.55E+08	

Table C.98 Cell number of PF1 at 25 mg/L profenofos under presence of nitrate

Day	Nitrate conc.	GHULALONGKORN		
Duy	(mg/L)	1	2	Average
0		1.40E+05	1.40E+05	1.40E+05
1		7.90E+06	5.10E+06	6.50E+06
2		3.80E+07	2.20E+07	3.00E+07
3	300	5.30E+08	1.00E+08	3.15E+08
4		3.50E+08	3.70E+08	3.60E+08
5		6.70E+08	6.20E+08	6.45E+08
6		5.30E+08	5.30E+08	5.30E+08
7		4.20E+08	5.90E+08	5.05E+08

Table C.99 Cell number of PF1 at 50mg/L profenofos under presence of nitrate

Day	Nitrate conc.	Test			
	(mg/L)	1	2	Average	
0		1.60E+05	1.00E+05	1.30E+05	
1	-	5.70E+06	4.30E+06	5.00E+06	
2		2.00E+07	2.40E+07	2.20E+07	
3	100	1.60E+08	2.00E+07	9.00E+07	
4		3.90E+08	3.00E+07	2.10E+08	
5		4.80E+08	4.50E+08	4.65E+08	
6		5.20E+08	5.00E+08	5.10E+08	
7		4.30E+08	4.50E+08	4.40E+08	

Table C.100 Cell number of PF1 at 50 mg/L profenofos under presence of nitrate

Day	Nitrate conc.		Test			
	(mg/L)	1	2	Average		
0		8.00E+04	1.80E+05	1.30E+05		
1		5.70E+06	7.40E+06	6.55E+06		
2		2.50E+07	4.40E+07	3.45E+07		
3	200	7.00E+07	2.90E+08	1.80E+08		
4	200	3.00E+07	2.40E+08	1.35E+08		
5	-	4.00E+07	3.00E+08	1.70E+08		
6		2.00E+08	2.70E+08	2.35E+08		
7		3.50E+08	3.80E+08	3.65E+08		

จุหาลงกรณ์มหาวิทยาลัย

Table C.101 Cell number of PF1 50 mg/L profenofos under presence of nitrate

Day	Nitrate conc.	GHULALONGKORI		
	(mg/L)	1	2	Average
0		1.80E+05	9.00E+04	1.35E+05
1		3.80E+06	4.80E+06	4.30E+06
2		2.80E+07	2.80E+07	2.80E+07
3	300	3.60E+08	3.70E+08	3.65E+08
4		5.00E+08	5.40E+08	5.20E+08
5		4.30E+08	4.40E+08	4.35E+08
6		6.30E+08	4.00E+08	5.15E+08
7		4.00E+08	5.60E+08	4.80E+08

Table C.102 Cell number of PF1 at 80 mg/L profenofos under presence of nitrate

Day	Nitrate conc.			
	(mg/L)	1	2	Average
0		1.50E+05	2.00E+05	1.75E+05
1	-	1.70E+07	6.00E+06	1.15E+07
2		2.90E+07	2.80E+07	2.85E+07
3	100	2.00E+07	1.90E+07	1.95E+07
4		1.60E+07	1.30E+07	1.45E+07
5		5.00E+06	1.00E+07	7.50E+06
6		3.00E+06	7.00E+06	5.00E+06
7		1.00E+08	5.00E+07	7.50E+07

Table C.103 Cell number of PF1 at 80mg/L profenofos under presence of nitrate

Day	Nitrate conc.			
,	(mg/L)	I	2	Average
0		2.20E+05	1.70E+05	1.95E+05
1	-	1.00E+07	1.10E+07	1.05E+07
2		1.70E+07	4.80E+07	3.25E+07
3	200	1.80E+08	3.00E+08	2.40E+08
4	200	8.00E+07	3.50E+08	2.15E+08
5		1.50E+08	5.00E+08	3.25E+08
6	_	1.20E+08	4.40E+08	2.80E+08
7		7.00E+07	4.20E+08	2.45E+08

Table C.104 Cell number of PF1 at 80 mg/L profenofos under presence of nitrate

Day	Nitrate conc.	Chulalongkorn	Test			
	(mg/L)	1	2	Average		
0		1.90E+05	1.60E+05	1.75E+05		
1		7.00E+06	9.00E+06	8.00E+06		
2		1.30E+07	1.40E+07	1.35E+07		
3	300	2.90E+07	1.10E+08	6.95E+07		
4		3.60E+08	1.90E+08	2.75E+08		
5		5.00E+07	2.00E+08	1.25E+08		
6		2.70E+08	2.00E+08	2.35E+08		
7		1.80E+08	1.70E+08	1.75E+08		

Day	Nitrate conc.	Test		
	(mg/L)	1	2	Average
0		1.90E+05	1.60E+05	1.75E+05
1		3.70E+06	3.30E+06	3.50E+06
2		1.10E+07	1.00E+07	1.05E+07
3	100	2.00E+07	8.00E+06	1.40E+07
4	100	2.40E+07	7.00E+06	1.55E+07
5		3.00E+06	9.00E+06	6.00E+06
6	-	2.00E+08	1.50E+08	1.75E+08
7		5.00E+08	5.40E+08	5.20E+08

Table C.106 Cell number of PF1 at 100 mg/L profenofos under presence of nitrate

Day	Nitrate conc.	Test		
,	(mg/L)		2	Average
0		3.80E+04	4.00E+04	3.90E+04
1		2.30E+06	2.60E+06	2.45E+06
2		9.00E+06	7.00E+06	8.00E+06
3	200	3.20E+07	3.60E+07	3.40E+07
4	200	2.00E+08	1.50E+08	1.75E+08
5		1.90E+08	4.00E+07	1.15E+08
6		1.80E+08	1.00E+08	1.40E+08
7		1.60E+08	1.70E+08	1.65E+08

Table C.117 Cell number of PF1 at 100 mg/L profenofos under presence of nitrate

Day	Nitrate conc.	Test		
	(mg/L)	1	2	Average
0		1.90E+04	1.20E+04	1.55E+04
1		2.60E+06	5.20E+06	3.90E+06
2	300	1.30E+07	1.00E+07	1.15E+07
3		3.00E+07	3.00E+07	3.00E+07
4		5.00E+07	1.60E+08	1.05E+08
5		1.00E+08	1.00E+08	1.00E+08
6		1.30E+08	1.30E+08	1.30E+08
7		5.00E+07	1.00E+08	7.50E+07

Table C.118 Cell number of PF1	at 150 mg/L profenofos	under presence of nitrate
ruble c.rrb cen number of fr	at 150 mg E protenoros	under presence of intrate

Day	Nitrate conc.	Test		
	(mg/L)	1	2	Average
0		3.00E+04	2.00E+04	2.50E+04
1		4.10E+06	3.50E+06	3.80E+06
2		1.00E+07	7.00E+06	8.50E+06
3	100	1.70E+07	2.30E+07	2.00E+07
4	100	1.90E+07	3.80E+07	2.85E+07
5	-	7.00E+07	1.00E+08	8.50E+07
6		1.50E+08	1.50E+08	1.50E+08
7		8.00E+07	8.00E+07	8.00E+07

Table C.119 Cell number of PF1 at 150 mg/L profenofos under presence of nitrate

Day	Nitrate conc.	Test		
	(mg/L)	1/1	2	Average
0		7.00E+04	4.00E+04	5.50E+04
1	-	3.00E+06	2.70E+06	2.85E+06
2	-	3.40E+07	1.30E+07	2.35E+07
3	200	3.90E+07	4.40E+07	4.15E+07
4	200	3.00E+07	3.20E+07	3.10E+07
5		5.00E+07	4.00E+07	4.50E+07
6	-	2.00E+08	1.50E+08	1.75E+08
7		7.00E+07	9.00E+07	8.00E+07

Table C.110 Cell number of PF1 at 150 mg/L profenofos under presence of nitrate

Day	Nitrate conc.	Test		
	(mg/L)	1	2	Average
0		6.00E+04	7.00E+04	6.50E+04
1		4.90E+06	4.00E+06	4.45E+06
2		1.30E+07	1.20E+07	1.25E+07
3	300	1.20E+07	2.70E+07	1.95E+07
4		2.60E+07	2.80E+07	2.70E+07
5		4.00E+07	9.00E+07	6.50E+07
6		3.30E+08	9.00E+07	2.10E+08
7		1.20E+08	1.40E+08	1.30E+08

Table C.111 Cell number of PF2 at 10 mg/L profenofos under presence of nitrate

Day	Nitrate conc.	Test		
	(mg/L)	1	2	Average
0		2.70E+04	2.30E+04	2.50E+04
1		1.90E+06	1.60E+06	1.75E+06
2	100	3.70E+07	2.90E+07	3.30E+07
3		3.50E+07	4.80E+07	4.15E+07
4		3.90E+09	4.40E+08	2.17E+09
5		3.00E+08	4.50E+08	3.75E+08
6		1.80E+08	3.00E+08	2.40E+08
7		3.00E+08	3.50E+08	3.25E+08

Table C.112 Cell number of PF2 at 10 mg/L profenofos under presence of nitrate

Day	Nitrate conc.	Test		
Duy	(mg/L)		2	Average
0		3.00E+04	2.30E+04	2.65E+04
1		3.50E+06	4.00E+06	3.75E+06
2		2.90E+06	3.50E+06	3.20E+06
3	200	5.90E+07	6.30E+07	6.10E+07
4	200	3.60E+08	6.90E+08	5.25E+08
5		1.70E+08	2.50E+08	2.10E+08
6		8.00E+08	3.00E+08	5.50E+08
7		4.60E+08	6.80E+08	5.70E+08

Table C.113 Cell number of PF2 at 10 mg/L profenofos under presence of nitrate

Day	Nitrate conc.	Test		
	(mg/L)	1	2	Average
0		4.00E+04	6.00E+04	5.00E+04
1		4.20E+06	4.50E+06	4.35E+06
2		3.30E+06	2.60E+06	2.95E+06
3	300	4.60E+06	5.20E+06	4.90E+06
4		1.20E+08	5.00E+07	8.50E+07
5		4.80E+08	4.50E+08	4.65E+08
6		1.40E+08	1.50E+08	1.45E+08
7		2.00E+08	1.60E+08	1.80E+08

Table C.114 Cell number of PF2 at 25 mg	g/L profenofos under presence of nitrate

Day	Nitrate conc.	Test		
	(mg/L)	1	2	Average
0		1.90E+05	1.60E+05	1.75E+05
1		1.00E+07	7.00E+06	8.50E+06
2		2.40E+07	2.10E+07	2.25E+07
3	100	3.80E+07	4.50E+07	4.15E+07
4		1.40E+08	1.20E+08	1.30E+08
5		4.30E+08	4.50E+08	4.40E+08
6	-	3.00E+07	4.00E+07	3.50E+07
7		2.80E+08	3.00E+08	2.90E+08

Table C.115 Cell number of PF2 at 25 mg/L profenofos under presence of nitrate

Day	Nitrate conc.	Test		
	(mg/L)	1///	2	Average
0		5.00E+04	3.00E+04	4.00E+04
1		2.70E+07	1.90E+07	2.30E+07
2	200	1.80E+07	1.90E+07	1.85E+07
3		3.80E+07	3.60E+07	3.70E+07
4		3.60E+08	4.00E+08	3.80E+08
5		3.10E+08	2.20E+08	2.65E+08
6		2.80E+08	1.60E+08	2.20E+08
7		2.50E+08	2.60E+08	2.55E+08

Table C.116 Cell number of PF2 at 25 mg/L profenofos under presence of nitrate

Day	Nitrate conc.	Test		
	(mg/L)	1	2	Average
0		3.00E+04	2.00E+04	2.50E+04
1		2.00E+07	1.80E+07	1.90E+07
2		5.00E+06	8.00E+06	6.50E+06
3	300	1.20E+07	1.40E+07	1.30E+07
4		5.00E+06	5.00E+06	5.00E+06
5		1.00E+07	1.20E+07	1.10E+07
6		3.50E+07	3.30E+07	2.40E+07
7		2.40E+07	2.80E+07	2.60E+07

Table C.117 Cell number of PF2 at 50 mg/L profenofos under presence of nitrate

Day	Nitrate conc.	Test		
	(mg/L)	1	2	Average
0		3.60E+04	3.90E+05	2.13E+05
1		3.50E+06	2.80E+06	3.15E+06
2		5.70E+06	5.65E+06	5.65E+06
3	100	4.10E+07	2.30E+07	3.20E+07
4		3.50E+07	1.80E+07	2.65E+07
5		1.80E+07	1.10E+07	1.45E+07
6		1.20E+07	1.70E+07	1.45E+07
7		2.00E+07	1.00E+07	1.50E+07

Table C.118 Cell number of PF2 at 50 mg/L profenofos under presence of nitrate

Day	Ntrate conc.	Test		
Duj	(mg/L)	1	2	Average
0		2.10E+04	2.90E+04	2.50E+04
1		2.30E+06	1.80E+06	2.05E+06
2		5.60E+06	8.00E+06	6.80E+06
3	200	1.17E+08	1.15E+08	1.16E+08
4	200	5.40E+08	3.50E+08	4.45E+08
5		6.80E+08	3.90E+08	5.35E+08
6	-	5.30E+08	3.90E+08	4.60E+08
7		3.10E+08	3.50E+08	3.30E+08

Table C.119 Cell number of PF2 at 50 mg/L profenofos under presence of nitrate

Day	Nitrate conc.	Test		
	(mg/L)	1	2	Average
0		1.90E+04	1.80E+04	1.85E+04
1		3.40E+06	2.50E+06	2.50E+06
2		4.50E+06	9.00E+06	6.75E+06
3	300	9.00E+06	2.00E+07	1.45E+07
4	002	1.10E+07	2.50E+07	1.80E+07
5		1.20E+07	3.00E+07	2.10E+07
6		1.50E+07	3.30E+07	2.40E+07
7		1.00E+07	3.20E+07	3.20E+07

Day	Nitrate conc.	Test		
	(mg/L)	1	2	Average
0		3.20E+04	3.70E+04	3.45E+04
1	_	2.50E+06	1.50E+06	1.50E+06
2	100	1.50E+06	1.20E+07	2.15E+07
3		3.10E+07	1.10E+07	2.10E+07
4		7.00E+07	5.10E+07	6.05E+07
5		6.00E+06	3.00E+06	4.50E+06
6		4.00E+07	1.20E+07	2.60E+07
7		4.00E+07	9.00E+07	6.50E+07

Table C.121 Cell number of PF2 at 80 mg/L profenofos under presence of nitrate

Day	Nitrate conc.	Test		
	(mg/L)	1////	2	Average
0		3.00E+04	3.40E+04	3.40E+04
1	200	2.60E+06	2.70E+06	2.65E+06
2		9.00E+06	1.00E+07	9.50E+06
3		3.40E+07	8.40E+07	5.90E+07
4		5.70E+07	1.25E+08	1.25E+08
5		6.00E+07	7.00E+07	6.50E+07
6		5.00E+07	9.00E+07	7.00E+07
7	-	9.00E+07	4.00E+07	6.50E+07

Table C.122 Cell number of PF2 at 80 mg/L profenofos under presence of nitrate

Day	Nitrate conc.	Test			
	(mg/L)	1	2	Average	
0		2.80E+04	2.60E+04	2.70E+04	
1	—	3.30E+06	3.40E+06	3.40E+06	
2	-	3.40E+06	2.00E+07	1.65E+07	
3	300	2.60E+07	6.90E+07	4.75E+07	
4	300	3.40E+08	2.00E+08	2.70E+08	
5	—	2.90E+07	3.30E+07	3.30E+07	
6		4.90E+08	3.80E+08	3.80E+08	
7		5.00E+08	2.70E+08	3.85E+08	

Table C.123 Cell number of PF2 at 100 mg/L profenofos under presence of	or mitrate

Day	Nitrate conc.	Test		
	(mg/L)	1	2	Average
0		1.40E+04	1.60E+04	1.50E+04
1	-	4.10E+06	2.90E+06	3.50E+06
2	100	6.00E+06	1.50E+07	1.05E+07
3		4.90E+07	3.00E+07	3.95E+07
4		4.00E+07	1.20E+08	8.00E+07
5		5.30E+07	6.80E+07	6.05E+07
6		9.00E+07	1.10E+08	1.10E+08
7		5.80E+07	5.80E+07	5.55E+07

Table C.124 Cell number of PF2 at 100 mg/L profenofos under presence of nitrate

Day	Nitrate conc.	Test		
Duy	(mg/L)	1	2	Average
0		2.60E+04	1.80E+04	2.20E+04
1		1.90E+06	1.50E+06	1.70E+06
2		7.00E+06	7.00E+06	7.00E+06
3		1.50E+07	1.60E+07	1.55E+07
4	200	6.00E+07	9.00E+07	7.50E+07
5		5.30E+07	6.90E+07	6.10E+07
6		6.00E+07	1.10E+08	1.10E+08
7		3.00E+07	3.80E+07	3.40E+07

Table C.125 Cell number of PF2 at 100 mg/L profenofos under presence of nitrate

Day	Nitrate conc.	GHULALONGKORN	Test	
5	(mg/L)	1	2	Average
0		1.90E+04	2.50E+04	2.20E+04
1		2.50E+06	2.70E+06	2.60E+06
2		1.50E+07	1.30E+07	1.40E+07
3	300	3.60E+07	2.90E+07	3.25E+07
4	500	1.20E+08	2.10E+08	2.10E+08
5		1.70E+08	5.00E+07	1.10E+08
6		1.10E+08	7.00E+07	9.00E+07
7		6.60E+07	3.00E+07	4.80E+07

Table C.126 Cell number of PF2 at 150 mg/	L profenofos under presence of nitrate
Tuble C.120 Cell humber of 112 at 150 mg	E protenoros under presence or intrate

Day	Nitrate conc.	Test		
	(mg/L)	1	2	Average
0		1.30E+04	1.00E+04	1.15E+04
1	_	1.70E+06	1.50E+06	1.60E+06
2		1.30E+07	1.10E+07	1.20E+07
3	100	1.70E+07	5.80E+07	3.75E+07
4		1.10E+08	1.90E+08	1.50E+08
5		6.00E+07	1.80E+08	1.80E+08
6		1.00E+08	2.10E+08	1.55E+08
7		1.00E+08	1.20E+08	1.10E+08

Table C.127 Cell number of PF2 at 150 mg/L profenofos under presence of nitrate

Day	Day Nitrate conc.		Test	Test	
	(mg/L)		2	Average	
0		9.00E+03	7.00E+03	8.00E+03	
1		2.00E+05	3.00E+05	2.50E+05	
2		9.00E+06	1.10E+07	1.00E+07	
3	200	1.40E+07	2.40E+07	1.90E+07	
4	200	3.00E+07	5.00E+07	4.00E+07	
5	-	9.00E+07	5.00E+07	7.00E+07	
6		6.00E+07	5.00E+07	5.50E+07	
7		3.80E+07	3.40E+07	3.60E+07	

Table C.128 Cell number of PF2 at 150 mg/L profenofos under presence of nitrate

Day	Nitrate conc.	Test			
Duy	(mg/L)	1	2	Average	
0		9.00E+03	7.00E+03	8.00E+03	
1	-	2.00E+05	3.00E+05	2.50E+05	
2	-	8.00E+06	1.00E+07	9.60E+06	
3	300	2.30E+07	2.10E+07	2.02E+07	
4	500	6.00E+07	3.00E+07	4.20E+07	
5		6.00E+07	9.00E+07	7.20E+07	
6	_	9.00E+07	2.00E+07	5.50E+07	
7	_	1.40E+07	7.00E+06	2.58E+07	

Table C.129 Cell number of PF3 at 10 mg/L profenofos under presence of nitrate

Day	Nitrate conc.	Test			
	(mg/L)	1	2	Average	
0		2.20E+05	1.70E+05	1.95E+05	
1		1.20E+07	1.20E+07	1.20E+07	
2		1.40E+07	2.80E+07	2.10E+07	
3	100	8.20E+07	7.10E+07	7.65E+07	
4		5.10E+07	4.00E+07	4.55E+07	
5		1.20E+07	1.50E+07	1.35E+07	
6		1.90E+07	6.00E+06	1.25E+07	
7		9.00E+06	7.00E+06	8.00E+06	

Table C.130 Cell number of PF3 at 10 mg/L profenofos under presence of nitrate

Day	Nitrate conc.	Test		
5	(mg/L)		2	Average
0		2.30E+05	1.10E+05	1.10E+05
1	-	1.40E+07	9.10E+06	1.16E+07
2		7.40E+07	2.20E+07	4.80E+07
3		4.00E+07	1.90E+07	2.95E+07
4	200	4.40E+07	5.10E+07	4.75E+07
5		1.30E+07	1.60E+07	1.45E+07
6	-	1.00E+07	9.00E+07	5.00E+07
7		9.00E+06	1.30E+07	1.10E+07

Table C.131 Cell number of PF3 at 10 mg/L profenofos under presence of nitrate

Day	Nitrate conc.	Test		
,	(mg/L)	1	2	Average
0		2.30E+05	1.70E+05	2.00E+05
1	_	8.20E+06	7.00E+06	7.60E+06
2	_	4.80E+07	1.10E+07	2.95E+07
3	300	4.30E+07	1.40E+07	2.85E+07
4	500	1.10E+08	1.60E+07	6.30E+07
5		1.70E+07	4.80E+07	3.25E+07
6		1.80E+07	2.80E+08	1.49E+08
7	_	1.10E+07	1.00E+07	1.05E+07

Day	Nitrate conc.	Test		
	(mg/L)	1	2	Average
0		1.40E+05	2.30E+05	1.85E+05
1		2.60E+06	3.00E+06	2.80E+06
2		3.20E+07	1.70E+07	2.45E+07
3	100	3.80E+07	7.00E+06	2.25E+07
4		2.00E+07	2.70E+07	2.35E+07
5		1.10E+08	1.20E+08	1.15E+08
6		1.80E+07	1.50E+07	1.65E+07
7		1.10E+07	1.40E+07	1.25E+07

Table C.133 Cell number of PF3 at 25 mg/L profenofos under presence of nitrate

Day	Nitrate conc.	Test		
	(mg/L)	1	2	Average
0		1.50E+05	2.10E+05	1.80E+05
1	-	2.40E+06	3.40E+06	2.90E+06
2	-	2.70E+07	2.20E+07	2.45E+07
3	200	5.00E+07	4.80E+07	4.90E+07
4	200	4.70E+07	1.50E+07	3.10E+07
5	-	2.50E+07	1.60E+07	2.05E+07
6	-	1.90E+07	1.50E+07	1.70E+07
7		3.20E+07	1.50E+07	2.35E+07

Table C.134 Cell number of PF3 at 25 mg/L profenofos under presence of nitrate

Day	Nitrate conc.	Test			
	(mg/L)	1	2	Average	
0		1.70E+05	1.90E+05	1.80E+05	
1		6.40E+06	5.00E+06	5.00E+06	
2	300	3.20E+07	3.40E+07	3.30E+07	
3		3.60E+07	1.20E+08	7.80E+07	
4		1.10E+07	8.00E+06	9.50E+06	
5		3.70E+07	2.60E+07	3.15E+07	
6		1.90E+07	2.10E+07	2.00E+07	
7		1.40E+07	4.40E+07	2.90E+07	

Table C.135 Cell number of PE3 at 50 n	ng/L profenofos under presence of nitrate

Day	Nitrate conc.	Test		
	(mg/L)	1	2	Average
0		2.00E+04	2.60E+04	2.30E+04
1		9.50E+06	1.00E+07	9.75E+06
2	100	1.30E+07	1.50E+07	1.40E+07
3		1.20E+08	1.40E+07	6.70E+07
4		5.00E+07	1.50E+07	3.25E+07
5		8.00E+06	1.10E+07	9.50E+06
6		1.00E+07	1.20E+07	1.10E+07
7		1.90E+07	1.60E+07	1.75E+07

Table C.136 Cell number of PF3 at 50 mg/L profenofos under presence of nitrate

Day	Nitrate conc.	Test		
	(mg/L)		2	Average
0		2.30E+05	2.00E+05	2.15E+05
1		2.00E+06	5.30E+06	3.65E+06
2	—	6.70E+07	6.50E+07	6.60E+07
3	200	1.00E+08	5.00E+07	7.50E+07
4	200	1.70E+07	6.00E+06	1.15E+07
5	-	4.00E+06	1.10E+07	7.50E+06
6		3.00E+06	1.40E+07	8.50E+06
7		4.80E+07	7.50E+07	6.15E+07

จุหาลงกรณมหาวทยาลย

Table C.137 Cell number of PF3 at 50 mg/L profenofos under presence of nitrate

Day	Nitrate conc.		Test	
	(mg/L)	1	2	Average
0		8.00E+04	1.10E+05	9.50E+04
1		1.20E+06	8.00E+05	1.00E+06
2		2.30E+07	2.10E+07	2.20E+07
3	300	6.00E+06	3.00E+06	4.50E+06
4	500	1.10E+07	2.10E+07	1.60E+07
5	-	1.40E+07	1.00E+08	5.70E+07
6		2.00E+07	1.90E+07	1.95E+07
7	_	3.50E+07	1.20E+07	2.35E+07

Table C.138 Cell number of PF3 at 80 mg/L profenofos under presence of nitrate

Day	Nitrate conc.	Test		
	(mg/L)	1	2	Average
0		6.00E+03	1.30E+05	6.80E+04
1		1.90E+06	1.60E+06	1.75E+06
2		7.00E+06	1.50E+07	1.10E+07
3	100	1.40E+07	1.50E+07	1.45E+07
4		6.00E+06	2.10E+07	1.35E+07
5		1.60E+07	3.10E+07	2.35E+07
6		3.10E+07	2.50E+07	3.20E+07
7		4.00E+07	3.80E+07	3.90E+07

Table C.139 Cell number of PF3 at 80 mg/L profenofos under presence of nitrate

Day	Nitrate conc. Test			
	(mg/L)	-1/10	2	Average
0		9.00E+03	1.00E+04	9.50E+03
1		4.00E+06	3.40E+06	3.70E+06
2		1.70E+07	1.80E+07	1.75E+07
3	200	2.20E+07	3.10E+07	2.65E+07
4		1.40E+07	3.30E+07	2.35E+07
5		8.00E+06	9.00E+06	8.50E+06
6	_	1.00E+07	1.70E+07	1.35E+07

Table C.140 Cell number of PF3 at 80 mg/L profenofos under presence of nitrate

Day	Nitrate conc.	Chulalongkori	Test		
	(mg/L)	1	2	Average	
0		1.00E+04	1.80E+05	9.50E+04	
1		1.30E+06	2.30E+06	1.80E+06	
2	300	1.40E+07	1.30E+07	1.35E+07	
3		1.60E+07	1.00E+07	1.30E+07	
4		1.60E+07	2.70E+07	2.15E+07	
5		3.10E+07	2.50E+07	2.80E+07	
6		2.30E+07	8.00E+06	1.55E+07	
7		2.90E+07	3.00E+07	2.95E+07	

	100 7 0 0	
Table C.141 Cell number of PF3	at 100 mg/L protenotos	under presence of nitrate
ruble c.141 cell humber of 115	at 100 mg E protenoios	under presence of intrate

Day	Nitrate conc.	Test		
	(mg/L)	1	2	Average
0		1.10E+04	1.40E+04	1.25E+04
1		4.50E+06	1.60E+06	3.05E+06
2		6.50E+07	6.00E+07	6.25E+07
3	100	1.90E+07	5.00E+06	1.20E+07
4		5.00E+06	6.00E+06	5.50E+06
5		1.00E+07	8.00E+06	9.00E+06
6		9.00E+06	1.40E+08	7.45E+07
7		5.00E+06	7.00E+06	6.00E+06

Table C.142 Cell number of PF3 at 100 mg/L profenofos under presence of nitrate

Day	Nitrate conc.	Vitrate conc. Test		
Ĵ	(mg/L)		2	Average
0		8.00E+03	7.00E+03	7.50E+03
1		7.00E+05	1.50E+06	1.10E+06
2		3.00E+07	3.40E+07	3.20E+07
3	200	1.60E+07	6.50E+07	4.05E+07
4	200	4.40E+07	2.20E+07	3.30E+07
5		1.00E+07	7.00E+06	8.50E+06
6		6.00E+06	5.00E+06	5.50E+06
7		4.00E+07	3.00E+07	3.50E+07

Table C.143 Cell number of PF3 at 100 mg/L profenofos under presence of nitrate

Day	Nitrate conc.	Test			
Day	(mg/L)	1	2	Average	
0		3.00E+03	7.00E+03	5.00E+03	
1	-	1.30E+06	7.00E+05	1.00E+06	
2	-	1.70E+07	4.00E+07	2.85E+07	
3	300	6.00E+06	1.10E+07	8.50E+06	
4		3.00E+06	8.00E+06	5.50E+06	
5	-	1.80E+07	2.20E+07	2.00E+07	
6	-	1.30E+07	1.30E+07	1.30E+07	
7	-	3.70E+07	6.40E+07	5.05E+07	

Table C.144 Cell number of PF3 at 150 mg/L profenofos under presence of nitrate

Day	Nitrate conc.		Test	
	(mg/L)	1	2	Average
0		8.00E+03	5.00E+03	6.50E+03
1		2.90E+06	3.40E+06	3.15E+06
2		4.00E+07	4.70E+07	4.35E+07
3	100	5.90E+07	5.20E+07	5.55E+07
4		7.00E+06	1.20E+07	9.50E+06
5		5.00E+06	9.00E+06	7.00E+06
6		4.00E+06	9.00E+06	6.50E+06
7		1.60E+07	7.00E+06	1.15E+07

Table C.145 Cell number of PF3 at 150 mg/L profenofos under presence of nitrate

Day	Nitrate conc.		Test	
	(mg/L)	1	2	Average
0		1.30E+04	1.00E+04	1.15E+04
1		1.70E+06	1.80E+06	1.75E+06
2	-	3.30E+07	2.10E+07	2.70E+07
3		2.60E+07	2.70E+07	2.65E+07
4	200	2.40E+07	2.00E+07	2.20E+07
5		2.00E+06	4.00E+06	3.00E+06
6		1.00E+07	5.10E+07	3.05E+07
7	-	2.50E+07	1.90E+07	2.20E+07

Table C.146 Cell number of PF3 at 150 mg/L profenofos under presence of nitrate

Day	Nitrate conc.	CHULALONGKORN	Test	
	(mg/L)	1	2	Average
0		1.70E+04	1.00E+04	1.35E+04
1		5.00E+06	5.30E+06	5.15E+06
2		1.50E+07	1.70E+07	1.60E+07
3	300	7.80E+07	3.20E+07	5.50E+07
4		7.00E+06	8.00E+06	7.50E+06
5		1.30E+07	9.00E+06	1.10E+07
6		7.00E+06	8.00E+06	7.50E+06
7		1.20E+07	7.00E+06	9.50E+06

	%Normalized PF conc.	100.00	84.967	62.230	54.691	46.975	40.650	29.894	19.392	100.00	94.078	80.024	73.523	71.607	68.220	64.535	50.110	100.00	83.277	76.962	73.381	70.455	67.554	63.997	58.364
st	Average	90.896	77.232	56.565	49.712	42.698	36.949	27.172	17.627	163.374	153.699	130.739	120.118	116.988	111.453	105.433	81.867	237.434	197.729	182.734	174.231	167.283	160.395	151.950	138.577
Test	7	90.896	78.574	52.345	52.345	45.687	38.238	28.445	19.456	165.072	156.689	133.687	119.446	114.078	113.008	100.989	79.645	239.789	199.875	184.894	176.875	166.780	158.899	151.221	135.445
	-	90.896	75.890	60.784	47.078	39.708	35.660	25.899	15.798	161.675	150.708	127.790	120.789	119.897	109.897	109.878	84.089	235.078	195.583	180.574	171.586	167.786	161.890	152.678	141.709
	%Normalized PF conc.	100.00	92.427	91.954	85.751	85.751	86.218	86.218	86.218	100.00	92.573	85.393	85.010	83.355	82.213	79.173	80.094	100.00	96.458	91.348	91.710	90.250	88.939	87.913	87.007
enofos Control	Average	98.344	90.896	90.432	84.331	84.331	84.790	84.790	84.790	162.897	150.798	139.103	138.479	135.783	133.922	128.971	130.471	232.564	224.327	212.442	213.284	209.890	206.840	204.453	202.348
10 mg/L of profer C	0	99.089	90.896	90.432	82.765	82.765	86.757	86.757	86.757	164.897	143.806	142.798	132.786	132.786	132.798	125.896	125.896	235.078	223.576	211.086	212.678	209.890	203.789	204.453	200.243
on (%) of PF1 at :	1	97.598	90.896	90.432	85.897	85.897	82.822	82.822	82.822	160.897	157.789	135.408	144.171	138.780	135.045	132.045	135.045	230.050	225.078	213.798	213.890	209.890	209.890	204.453	204.453
Table C.147 Nitrate reduction (%) of PF1 at 10 mg/L of profenofos Nitrate Control	Conc. (mg/L)				5	100							300	007							000	000			
Table C.1	Day	0	1	2	3	4	5	9	7	0	1	2	3	4	5	9	7	0	1	2	ю	4	5	9	7

Results of nitration reduction (%) by PF1, PF2 and PF3 under presence of nitrate

	% Normalized PF conc.	100.00	78.967	72.314	72.653	66.389	53.331	38.543	27.287	100.00	90.713	86.180	82.211	83.859	80.124	78.164	68.317	100.00	88.696	83.416	75.385	73.850	70.883	100.00	78.967
Test	Average	98.565	77.834	71.276	71.611	65.338	52.566	37.990	26.895	148.340	134.563	127.839	121.952	124.396	118.856	115.948	101.342	232.001	205.776	193.527	174.893	171.334	164.450	98.565	77.834
L	5	99.234	80.789	72.655	70.332	63.779	50.567	35.890	25.112	145.784	137.231	129.894	122.006	126.786	115.705	109.890	104.786	233.223	205.776	197.590	174.009	170.990	161.009	99.234	80.789
	1	97.896	74.878	69.897	72.890	66.897	54.564	40.090	28.678	150.895	131.894	125.784	121.897	122.006	122.006	122.006	97.897	230.778	205.776	189.463	175.776	171.678	167.890	97.896	74.878
	%Normalized PF conc.	100.00	93.876	92.366	86.375	87.509	85.719	85.719	81.464	100.00	97.672	89.660	88.263	90.886	83.895	82.253	83.066	100.00	92.295	87.944	87.920	86.842	87.185	100.00	93.876
Control	Average	.044 93.016 897 87.320 087 85.915 008 80.343 785 81.397 785 79.732				79.732	79.732	75.775	150.895	147.383	135.292	133.184	137.142	126.594	124.116	125.342	235.894	217.719	207.454	207.399	204.855	205.665	93.016	87.320	
	7						80.785	75.775	150.895	144.890	135.689	130.678	138.594	124.098	125.342	125.342	235.009	215.678	209.009	205.789	200.700	205.665	90.044	85.897	
	-	95.987	88.743	88.743	78.678	82.008	78.678	78.678	75.775	150.895	149.875	134.895	135.689	135.689	129.089	122.890	125.342	230.778	219.760	205.899	209.009	209.009	205.665	95.987	88.743
Nitrate	Conc. (mg/L)				100	001							000	007							300	nnc			
	Day	0	-	2	ω	4	S	9	7	0	-	2	ю	4	S	9	7	0	1	2	ω	4	S	9	7

Table C.148 Nitrate reduction (%) of PF1 at 25 mg/L of profenofos

	%Normalized PF conc.	100.00	91.979	90.299	81.752	69.891	64.478	57.334	50.260	100.00	87.673	82.129	77.136	71.207	62.951	61.973	54.516	100.00	96.550	90.303	84.628	77.745	66.682	62.116	59 473
Test	Average	80.052	73.631	72.286	65.444	55.949	51.616	45.897	40.234	202.227	177.298	166.087	155.989	143.998	127.303	125.327	110.246	290.983	280.943	262.765	246.254	226.226	194.033	180.747	172.910
	2	88.613	75.771	73.675	62.089	56.009	50.342	42.897	40.789	198.897	175.031	166.087	153.123	143.088	124.708	129.897	105.897	295.089	282.009	259.443	243.432	223.876	192.112	182.786	174.954
	1	71.490	71.490	70.897	68.798	55.889	52.890	48.897	39.678	205.556	179.564	166.087	158.854	144.908	129.897	120.756	114.595	286.876	279.876	266.087	249.076	228.576	195.954	178.708	170.865
	%Normalized PF conc.	100.00	98.632	92.208	84.574	77.342	77.342	76.216	71.431	100.00	96.853	95.829	94.372	92.183	89.851	89.851	87.994	100.00	96.147	93.308	90.918	90.710	89.271	88.502	88.502
trol	Average	89.616	88.390	82.633	75.792	69.311	69.311	68.302	64.014	205.556	199.087	196.983	193.988	189.488	184.695	184.695	180.876	296.972	285.531	277.100	270.002	269.384	265.110	262.826	262.826
Control	5	91.342	88.890	84.332	78.432	70.658	70.658	70.658	64.785	205.556	199.087	195.089	195.089	190.078	184.695	184.695	180.876	295.089	285.531	280.113	270.002	268.765	265.110	265.110	265.110
	1	87.890	87.890	80.934	73.152	67.963	67.964	65.945	63.243	205.556	199.087	198.876	192.887	188.897	184.695	184.695	180.876	298.854	285.531	274.087	270.002	270.002	265.110	260.541	260.541
Nitrate	Conc. (mg/L)				100	100	-	-					000	007							300	000			
	Day	0 1 2 2 4 4 4 3 3 2 1 1 0 0 0 2 2 1 1					ю	4	S	9	7	0	1	2	ю	4	5	9	7						

Table C.149 Nitrate reduction (%) of PF1 at 50 mg/L of profenofos

	% Normalized PF conc.	100.00	91.440	72.422	67.041	62.237	45.606	41.035	41.889	100.00	96.890	88.240	80.600	69.305	70.029	66.025	67.270	100.00	94.566	90.224	82.943	77.511	68.974	66.493	64.547
Test	Average	87.834	80.315	63.611	58.885	54.665	40.058	36.043	36.793	189.759	183.858	167.443	152.946	131.512	132.887	125.288	127.651	285.235	269.734	257.350	236.582	221.088	196.737	189.664	184.112
	5	90.574	84.944	62.312	57.588	54.665	38.221	38.221	38.043	190.983	182.932	163.003	150.003	130.132	132.887	120.678	129.897	284.576	270.903	258.013	238.132	216.743	195.932	186.903	184.112
	-	85.093	75.685	64.909	60.181	54.665	41.895	33.864	35.543	188.534	184.784	171.883	155.889	132.892	132.887	129.897	125.405	285.894	268.564	256.687	235.032	225.432	197.542	192.424	184.112
	%Normalized PF conc.	100.00	89.320	83.682	76.280	76.221	75.130	75.129	76.221	100.00	98.691	95.730	94.454	94.056	92.917	89.169	88.778	100.00	94.867	93.132	92.127	89.563	89.004	87.447	87.692
Control	Average	88.994	79.489	74.472	67.885	67.832	66.861	66.861	67.832	195.983	193.418	187.615	185.114	184.333	182.101	174.757	173.989	287.771	273.000	268.009	265.115	257.736	256.129	251.648	252.353
	2						67.832	67.832	195.983	190.853	185.895	185.895	184.333	182.101	174.757	176.089	290.965	270.435	270.903	265.115	255.567	259.904	250.943	252.353	
	1	92.894	80.893	77.894	67.885	67.832	65.890	65.890	67.832	195.983	195.983	189.334	184.333	184.333	182.101	174.757	171.889	284.576	275.565	265.115	265.115	259.904	252.353	252.353	252.353
Nitrate	Conc. (mg/L)												006	007							300	000			
	Day 0 0 0 5 5 3 3 3 7 7							0	1	2	ω	4	S	9	7	0	1	2	ω	4	S	9	7		

Table C.150 Nitrate reduction (%) of PF1 at 80 mg/L of profenofos

	% Normalized PF conc.	100.00	88.893	82.319	77.127	66.072	54.141	55.185	47.218	100.00	84.361	78.222	70.492	68.167	57.941	46.250	30.692	100.00	97.283	96.383	95.393	87.721	79.654	66.694	54.551
Test	Average	95.007	84.455	78.209	73.276	62.773	51.438	52.430	44.860	189.077	159.507	147.899	133.284	128.888	109.554	87.449	58.032	292.897	284.939	282.303	279.402	256.932	233.305	195.344	159.779
	5	95.007	88.345	81.764	74.989	61.002	55.132	54.654	41.954	190.083	158.364	146.890	135.890	125.098	108.908	86.008	59.078	295.789	279.873	283.809	278.006	252.075	234.867	191.897	157.768
	1	95.007	80.564	74.653	71.563	64.543	47.743	50.205	47.765	188.071	160.649	148.908	130.678	132.678	110.199	88.889	56.986	290.004	290.004	280.797	280.797	261.789	231.743	198.790	161.790
	%Normalized PF conc.	100.00	99.148	101.216	95.237	92.849	86.142	82.995	81.507	100.00	88.193	87.737	86.448	83.595	83.500	83.535	81.230	100.00	99.415	99.668	98.830	99.531	99.823	99.705	97.576
Control	Average	100.335	99.480	101.555	95.556	93.160	86.431	83.273	81.780	190.083	167.639	166.774	164.323	158.899	158.720	158.785	154.405	295.789	294.060	294.808	292.330	294.149	295.266	294.917	288.618
	2	2 100.335 99.645 102.546 95.556 94.786 88.097		88.097	84.765	81.780	190.083	165.487	165.567	165.567	160.008	158.720	160.008	157.562	295.789	295.789	292.330	292.330	292.330	290.879	299.653	290.180			
	-	100.335	99.314	100.564	95.556	91.534	84.765	81.780	81.780	190.083	169.790	167.980	163.078	157.789	158.720	157.562	151.247	295.789	292.330	297.285	292.330	295.968	299.653	290.180	287.055
Nitrate	Conc. (mg/L)				100	100							000	007							300	0000			
	Day 0 0 1 1 0 0 2 2 2 1 1 0 0 2 3 3 3 2 1 1 0 0 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1					4	S	9	7																

Table C.151 Nitrate reduction (%) of PF1 at 100 mg/L of profenofos

	%Normalized PF conc.	100.00	92.837	82.892	69.101	53.485	46.275	35.529	25.620	100.00	94.079	87.143	84.502	79.840	73.053	60.900	52.493	100.00	96.919	88.870	85.162	83.772	78.994	80.319	73.919
Test	Average	92.348	85.733	76.549	63.813	49.393	42.734	32.810	23.660	181.554	170.804	158.211	153.417	144.953	132.631	110.567	95.303	297.394	288.232	264.293	253.267	249.132	234.923	238.863	219.830
	5	93.802	84.382	78.154	60.783	50.893	47.892	34.265	21.776	181.554	176.143	158.211	151.049	141.009	129.354	103.365	98.897	293.894	287.732	259.007	261.756	249.132	220.714	236.947	221.870
	-	90.893	87.083	74.943	66.843	47.892	37.575	31.354	25.544	181.554	165.465	158.211	155.784	148.896	135.907	117.768	91.709	300.893	288.732	269.578	244.778	249.132	249.132	240.778	217.789
	%Normalized PF conc.	100.00	100.704	93.672	95.390	87.168	86.571	87.289	83.585	100.00	98.285	93.919	92.618	91.410	88.283	85.220	86.367	100.00	100.681	102.381	101.060	98.300	94.452	92.713	88.732
Control	Average										173.645	171.240	169.007	163.226	157.563	159.683	293.894	295.895	300.893	297.008	288.897	277.589	272.480	260.778	
	5	2 93.802 2 95.132 0 88.490 2 90.112 4 80.356 1 81.781						80.584	75.466	184.889	180.894	172.246	172.246	170.233	165.732	160.720	160.584	293.894	290.896	300.893	297.008	297.008	280.785	270.567	260.778
	1	95.132	95.132	88.490	90.112	84.334	81.781	84.334	82.454	184.889	182.543	175.043	170.233	167.780	160.720	154.405	158.782	293.894	300.893	300.893	297.008	280.785	274.392	274.392	260.778
Nitrate	Conc. (mg/L)	(mg/L)											000	007							300	000			
	Day	0	1	2	ω	4	S	9	7	0	1	2	ю	4	S	9	7	0	1	2	ю	4	S	9	7

Table C.152 Nitrate reduction (%) of PF1 at 150 mg/L of profenofos

	%Normalized PF conc.	100.00	75.490	63.235	55.882	43.627	36.275	26.471	14.215	100.00	81.283	70.588	63.904	65.241	67.915	63.904	43.850	100.00	85.232	83.121	78.902	77.847	74.683	75.738	64.137
Test	Average	89.395	67.485	56.529	49.956	39.001	32.428	23.664	12.708	163.891	133.217	115.688	104.733	106.924	111.306	104.733	71.867	207.713	177.038	172.655	163.891	161.700	155.127	157.318	133.221
	2	91.586	69.676	52.147	52.147	43.383	30.237	30.237	17.090	166.082	126.643	113.497	109.115	104.732	113.497	100.350	69.676	209.904	179.229	174.846	166.082	166.082	148.553	161.700	135.407
	1	87.204	65.293	60.911	47.765	34.619	34.619	17.090	8.326	161.700	139.790	117.879	100.350	109.115	109.115	109.115	74.058	205.521	174.846	170.464	161.700	157.318	161.700	152.936	131.035
	%Normalized PF conc.	100.00	93.153	92.563	88.648	83.601	88.600	87.433	83.670	100.00	87.719	88.719	91.589	90.088	85.819	87.715	88.779	100.00	93.448	94.707	95.228	93.604	92.688	91.650	90.571
Control	Average	95.163	88.647	88.086	84.360	79.558	84.314	83.204	79.623	156.655	137.416	138.096	143.478	141.128	134.440	137.410	139.076	224.246	209.554	212.376	213.545	209.904	207.849	205.521	203.103
	2	94.357	90.089	88.967	85.897	80.675	85.806	83.586	80.806	160.374	143.806	140.783	142.784	142.465	137.854	143.795	142.743	225.443	213.586	210.465	212.803	209.904	205.793	205.521	200.684
	1	95.968	87.204	87.204	82.822	78.440	82.822	82.822	78.440	152.936	131.025	135.408	144.171	139.790	131.025	131.025	135.408	223.049	205.521	214.286	214.286	209.904	209.904	205.521	205.521
Nitrate	Conc. (mg/L)				001	OOT							000	0007							200	2			
	Day	0	1	2	m	4	2	9	7	0	-	2	e	4	S	9	7	0	-	2	'n	4	S	9	7

Table C.153 Nitrate reduction (%) of PF2 at 10 mg/L of profenofos

	% Normalized PF conc.	100.00	83.644	76.634	83.644	55.606	32.243	13.550	8.878	100.00	90.445	100.00	92.037	90.445	85.668	84.076	58.598	100.00	92.914	86.842	79.757	83.298	76.720	75.708	56.477
Test	Average	93.778	78.440	71.866	78.440	52.147	30.237	12.708	8.326	137.599	124.452	137.599	126.643	124.452	117.879	115.688	80.631	216.477	201.139	187.993	172.656	174.847	166.082	163.891	122.261
	2	100.351	82.822	74.057	74.057	47.765	25.855	8.326	8.326	135.408	117.879	139.790	122.261	126.643	113.497	109.115	74.058	218.668	205.521	196.757	174.847	170.464	161.700	161.700	126.643
	1	87.204	74.057	69.675	82.822	56.529	34.619	17.090	8.326	139.789	131.025	135.408	131.025	122.261	122.261	122.261	87.204	214.286	196.757	179.229	170.464	179.229	170.464	166.082	117.879
	%Normalized PF conc.	100.00	90.133	89.028	88.478	89.780	87.376	87.376	86.089	100.00	95.892	94.100	91.248	92.328	93.702	89.829	91.618	100.00	98.956	98.956	98.956	97.744	97.744	97.744	97.744
Control	Average	91.115	82.125	81.117	80.617	81.804	79.613	79.613	78.440	148.554	142.294	139.790	135.553	137.157	139.198	133.445	136.102	209.904	207.713	207.713	207.713	205.169	205.521	205.521	205.521
	5	90.643	85.809	83.794	82.794	80.785	80.785	80.785	78.440	148.554	144.798	139.790	135.697	138.906	138.607	135.864	136.795	209.904	205.521	209.904	205.521	200.434	205.521	201.139	201.139
	-	91.586	78.440	78.440	78.440	82.822	78.440	78.440	78.440	148.554	139.789	139.790	135.408	135.408	139.789	131.025	135.408	209.904	209.904	205.521	209.904	209.904	205.521	201.139	201.139
Nitrate	Conc. (mg/L)				100	100							000	007							300	oor			
	Day	0	1	5	ю	4	5	9	7	0	1	5	б	4	5	9	7	0	1	5	ю	4	S	9	7

Table C.154 Nitrate reduction (%) of PF2 at 25 mg/L of profenofos

	% Normalized PF conc.	100.00	91.978	84.899	80.037	70.318	63.837	58.745	50.306	100.00	85.714	81.376	76.143	71.564	56.518	58.477	53.025	100.00	92.880	89.840	87.443	79.773	67.788	64.833	63.834
Test	Average	80.052	73.631	67.964	64.072	56.291	51.103	47.027	40.271	198.274	169.949	161.349	150.973	141.894	112.062	115.946	105.136	270.548	251.285	243.061	236.576	215.824	183.398	175.406	172.703
	5	88.613	75.771	73.152	60.181	57.588	60.182	44.324	41.622	192.353	169.949	166.537	153.567	143.191	114.656	109.189	95.676	264.127	242.723	239.170	233.982	213.229	184.695	182.162	174.054
	-	71.490	71.490	62.776	67.963	54.994	42.023	49.730	38.919	204.195	169.949	156.161	148.378	140.597	109.468	122.703	114.595	276.969	259.846	246.952	239.170	218.418	182.101	168.649	171.351
	%Normalized PF conc.	100.00	96.420	92.138	84.510	77.283	77.283	76.159	71.377	100.00	100.03	98.961	96.080	94.821	92.695	92.783	90.069	100.00	97.801	95.268	92.583	92.326	90.806	90.024	90.024
Control	Average	89.684	86.473	82.633	75.792	69.311	69.311	68.302	64.014	199.244	199.299	197.174	191.435	188.926	184.689	184.865	179.459	291.952	285.531	278.138	270.298	269.548	265.110	262.826	262.826
	7	90.754	88.613	84.332	78.432	70.658	70.658	70.658	64.785	198.573	198.683	196.683	190.392	190.563	184.682	184.865	179.459	285.531	285.531	280.789	270.298	268.798	265.110	265.110	265.110
	-	88.613	84.332	80.934	73.152	67.963	67.964	65.945	63.243	199.914	199.914	197.665	192.477	187.289	184.695	184.865	179.459	298.373	285.531	275.486	270.298	270.298	265.110	260.541	260.541
Nitrate	Conc. (mg/L)				100	100							000	007							300	nnc			
	Day	0	-	2	ε	4	5	9	7	0	1	2	ω	4	S	9	7	0	1	2	ю	4	S	9	7

Table C.155 Nitrate reduction (%) of PF2 at 50 mg/L of profenofos

	d PF																								
	%Normalized PF conc.	100.00	87.922	62.060	66.451	56.206	41.568	34.770	30.195	100.00	94.343	83.217	70.193	66.765	75.279	66.277	66.991	100.00	92.669	79.700	74.368	71.259	65.483	64.246	62.394
Test	Average	88.613	77.911	58.885	58.885	49.806	36.835	30.811	26.757	189.213	178.510	157.458	132.815	126.329	142.439	125.405	126.757	291.952	270.548	232.685	217.121	208.042	191.180	187.567	182.162
	2	92.894	84.332	62.776	57.588	54.994	42.023	28.108	28.108	191.353	182.791	153.567	140.597	130.220	152.062	160.540	128.108	298.373	272.688	228.794	218.418	210.636	195.071	184.864	182.162
	1	84.332	71.490	54.994	60.181	44.617	31.647	33.514	25.405	187.072	174.229	161.349	125.032	122.438	132.815	149.730	125.405	285.531	268.408	236.576	215.824	205.447	187.289	190.270	182.162
	%Normalized PF conc.	100.00	100.00	97.534	95.068	95.068	93.254	93.656	95.548	100.00	98.931	91.333	89.389	91.986	91.091	88.418	87.066	100.00	97.269	101.815	99.240	96.506	97.783	98.062	96.517
Control	Average	71.490	71.490	69.727	67.964	67.964	66.667	66.955	68.307	199.910	197.772	182.583	178.697	183.890	182.101	176.757	174.054	267.141	259.846	271.992	265.110	257.806	261.219	261.965	257.837
	7	71.490	71.490	71.490	67.964	67.964	67.964	67.964	67.964	199.910	199.910	185.658	183.075	183.085	182.101	176.757	176.757	270.156	264.126	278.874	265.110	255.689	259.922	260.687	257.837
	1	71.490	71.490	67.964	67.964	67.964	65.370	65.946	68.649	199.910	195.634	179.507	174.319	184.695	182.101	176.757	171.351	264.126	255.565	265.110	265.110	259.922	262.516	263.243	257.837
Nitrate	Conc. (mg/L)			100	100							000	007							300	nnc				
	Day	0	1	5	æ	4	s	9	7	0	1	2	ж	4	S	9	7	0	1	2	m	4	S	9	7

Tabl3 C.156 Nitrate reduction (%) of PF2 at 80 mg/L of profenofos

	I PF																								
	%Normalized PF conc.	100.00	86.175	84.157	78.946	69.801	44.139	45.849	42.428	100.00	84.299	76.626	70.272	69.087	52.399	38.214	25.699	100.00	96.795	97.357	93.277	87.235	69.017	54.013	52.406
Test	Average	92.283	79.525	77.663	72.854	64.414	40.733	42.311	39.154	189.214	159.506	144.987	132.965	130.723	99.147	72.308	48.626	294.635	285.192	286.848	274.826	257.026	203.347	159.141	154.405
	2	94.573	78.382	81.270	74.056	62.835	34.417	34.417	31.260	190.357	158.364	146.189	134.167	129.144	88.096	56.520	56.520	295.475	279.479	283.241	268.815	252.289	204.926	151.247	157.562
	1	89.993	80.667	74.056	71.652	65.993	47.048	50.205	47.048	188.071	160.649	143.785	131.762	132.302	110.199	88.096	40.732	293.794	290.905	290.454	280.837	261.762	201.768	167.035	151.247
	%Normalized PF conc.	100.00	101.618	101.316	97.740	92.688	87.354	82.658	71.699	100.00	96.407	94.421	93.099	91.530	92.428	91.520	88.796	100.00	99.897	100.612	103.017	100.395	99.022	97.347	95.262
Control	Average	100.849	102.481	102.176	98.570	93.475	88.096	83.360	72.308	173.887	167.639	164.186	161.887	159.158	160.720	159.141	154.405	302.954	302.643	304.808	312.094	304.150	299.993	294.917	288.601
	2	100.254	101.443	101.443	101.443	95.696	91.253	84.938	72.308	170.764	165.487	160.543	160.754	160.754	160.720	160.720	157.562	302.954	302.954	302.331	312.094	302.331	300.332	299.653	290.180
	1	101.443	103.519	102.909	95.696	91.253	84.938	81.781	72.308	177.009	169.790	167.829	163.020	157.562	160.720	157.562	151.247	302.954	302.331	307.285	312.094	305.968	299.653	290.180	287.022
Nitrate	Conc. (mg/L)				100	OOT							006	7007							000	0000			
	Day	0	1	2	e	4	S	9	7	0	1	2	m	4	S	9	7	0	1	2	m	4	S	9	7

Table C.157 Nitrate reduction (%) of PF2 at 100 mg/L of profenofos

	%Normalized PF conc.	100.00	81.156	65.563	58.954	48.258	46.522	25.691	20.483	100.00	86.469	82.569	79.981	75.461	68.662	54.216	49.967	100.00	91.208	85.107	86.314	81.764	78.595	78.595	70.144
Test	Average	90.951	73.812	59.630	53.619	43.891	42.312	23.366	18.630	185.787	160.649	153.402	148.594	140.196	127.566	100.727	92.833	298.903	272.624	254.388	257.995	244.396	234.923	234.923	209.662
	5	92.093	76.097	54.821	40.394	40.733	47.048	24.945	21.787	190.357	156.079	148.593	141.380	141.775	129.144	103.884	94.411	293.190	277.194	259.197	271.219	239.659	220.714	239.659	201.768
	Π	808.68	71.527	64.439	66.843	47.048	37.575	21.787	15.472	181.216	165.219	158.211	155.807	138.617	125.987	97.569	91.254	304.616	268.053	249.579	244.770	249.132	249.132	230.186	217.556
	%Normalized PF conc.	100.00	101.216	94.137	96.694	88.049	86.370	83.011	78.608	100.00	98.291	99.541	98.161	96.716	93.614	90.366	88.555	100.00	101.571	104.387	102.733	99.410	95.409	93.124	89.982
Control	Average	93.994	95.137	88.483	90.887	82.761	81.183	78.025	73.887	174.360	171.381	173.559	171.154	168.634	163.226	157.563	154.405	290.905	295.476	303.666	298.857	289.188	277.550	270.901	261.762
	2	95.895	95.895	88.483	90.887	80.584	80.584	80.584	75.466	174.360	170.687	172.075	172.075	170.233	165.732	160.720	160.720	290.905	290.905	300.046	300.046	297.668	280.707	270.567	261.762
	1	92.093	94.378	88.483	90.887	84.938	81.781	75.466	72.308	174.360	172.075	175.042	170.233	167.035	160.720	154.405	148.090	290.905	300.046	307.285	297.668	280.707	274.392	271.235	261.762
Nitrate	Conc. (mg/L)				100	100							000	007							300	000			
	Day	0	1	5	ε	4	5	9	7	0	1	2	ę	4	5	9	7	0	1	2	ę	4	5	9	7

Table C.158 Nitrate reduction (%) of PF2 at 150 mg/L of profenofos

	% Normalized PF conc.	100.00	85.016	69.084	60.505	47.446	37.218	32.240	26.057	100.00	91.646	84.895	79.277	77.531	71.965	62.938	53.133	100.00	92.558	83.081	73.468	63.835	59.442	56.502	48.601
Test	Average	90.998	77.363	62.865	55.058	43.175	33.868	29.338	23.711	183.329	168.013	155.637	145.338	142.136	131.933	115.383	97.409	277.562	256.906	230.601	203.919	177.182	164.989	156.829	134.899
	5	92.783	78.943	64.992	52.23	41.804	31.904	30.893	19.032	184.213	166.132	153.821	149.783	144.488	133.973	110.982	99.836	279.241	259.028	234.352	206.054	177.182	168.084	160.764	135.903
	1	89.213	75.783	60.738	57.893	44.545	35.832	27.783	28.389	182.445	169.893	157.453	140.893	139.783	129.893	119.783	94.982	275.883	254.784	226.849	201.783	177.182	161.893	152.893	133.894
	%Normalized PF conc.	100.00	97.328	97.132	92.029	89.279	89.279	89.625	86.328	100.00	95.346	89.871	89.871	85.845	86.875	83.763	85.078	100.00	96.329	91.809	92.251	606.06	90.152	89.254	88.442
Control	Average	91.518	89.073	88.893	84.223	81.707	81.707	82.023	79.006	181.614	172.732	163.218	163.218	155.907	157.777	152.126	154.513	274.893	264.803	252.376	253.591	249.903	247.823	245.354	243.120
	2	90.252	90.252	88.893	85.662	80.423	80.423	82.023	80.028	180.782	173.790	160.893	160.893	152.093	155.832	153.243	153.243	275.883	263.674	250.465	252.896	249.903	245.743	245.354	240.885
	-	92.783	87.893	88.893	82.783	82.990	82.990	82.023	77.983	182.445	171.673	165.543	165.543	159.721	159.721	151.009	155.783	273.903	265.932	254.286	254.286	249.903	249.903	245.354	245.354
Nitrate Conc. (mg/L)				100	100							000	007							300	000				
	Day	0	1	2	3	4	5	9	7	0	1	2	3	4	5	9	7	0	1	2	3	4	S	9	7

Table C.159 Nitrate reduction (%) of PF3 at 10 mg/L of profenofos

139

	%Normalized PF conc.	100.00	93.860	86.682	82.718	71.153	45.243	37.363	21.041	100.00	90.885	78.175	72.050	70.913	67.987	63.337	51.994	100.00	91.591	85.305	79.759	70.008	61.624	58.598	52.238
Test	Average	89.263	83.782	77.375	73.837	63.513	40.385	33.351	18.782	175.883	159.851	137.496	126.724	124.724	119.577	111.398	91.448	278.950	255.494	237.958	222.488	195.287	171.899	163.461	145.718
	5	91.082	82.902	74.845	74.845	67.133	35.937	28.920	18.782	175.883	157.923	139.099	122.893	126.554	116.893	109.902	94.002	282.894	254.094	236.032	224.143	190.672	172.903	160.029	143.532
	1	87.443	84.662	79.904	72.829	59.892	44.832	37.782	18.782	175.883	161.778	135.893	130.554	122.893	122.261	112.893	88.893	275.006	256.893	239.884	220.832	199.902	170.894	166.893	147.903
	%Normalized PF conc.	100.00	96.151	90.422	87.767	90.016	87.767	88.792	88.303	100.00	93.113	89.302	82.033	77.533	78.128	77.570	75.859	100.00	96.470	92.988	92.885	91.928	92.264	90.612	90.612
Control	Average	90.487	87.004	81.820	79.418	81.453	79.418	80.345	79.903	178.993	166.665	159.844	146.833	138.778	139.843	138.846	135.783	277.348	267.558	257.899	257.615	254.961	255.892	251.311	251.311
	2	89.892	85.115	83.917	80.003	80.003	80.003	80.786	79.903	178.993	164.321	159.844	147.930	138.778	138.778	135.783	135.783	275.006	265.672	259.903	255.895	250.032	255.892	251.311	251.311
	1	91.082	88.893	79.723	78.832	82.903	78.832	79.903	79.903	178.993	169.009	159.844	145.735	138.778	140.908	141.908	135.783	279.689	269.443	255.895	259.334	259.889	255.892	251.311	251.311
Nitrate	Conc. (mg/L)				100	100							000	007							300	000			
	Day	0	1	2	ω	4	5	9	7	0	1	2	ε	4	S	9	7	0	1	2	ω	4	5	9	7

Table C.160 Nitrate reduction (%) of PF3 at 25 mg/L of profenofos

				1	1	1	1	1				1		<u> </u>		1		1		1	T	1	· · · ·	1	
	%Normalized PF conc.	100.00	84.366	74.836	69.967	62.068	51.312	51.925	49.228	100.00	91.668	85.020	82.421	74.477	68.891	65.894	50.806	100.00	95.398	90.760	86.500	80.864	70.698	66.159	63.446
Test	Average	91.397	77.108	68.398	63.948	56.729	46.898	47.458	44.993	183.875	168.554	156.331	151.552	136.945	126.674	121.163	93.419	273.367	260.787	248.107	236.463	221.057	193.264	180.857	173.441
	2	89.902	78.323	78.004	70.892	70.892	50.902	45.132	41.092	182.843	167.223	156.331	154.881	133.144	124.785	119.432	92.054	275.811	262.142	249.322	233.035	223.332	194.415	182.932	175.990
	1	92.891	75.893	78.004	77.893	77.893	42.893	49.783	48.893	184.906	169.885	156.331	148.223	140.745	128.563	122.893	94.784	270.923	259.432	246.892	239.891	218.781	192.112	178.782	170.892
	%Normalized PF conc.	100.00	96.083	90.444	85.346	81.395	81.395	80.177	79.016	100.00	98.075	93.569	90.554	88.964	89.488	92.227	88.875	100.00	99.443	97.290	97.629	97.266	96.923	95.545	94.783
Control	Average	91.397	87.817	82.663	78.004	74.393	74.393	73.279	72.218	178.665	175.225	167.175	161.788	158.948	159.884	164.778	158.790	277.357	275.811	269.842	270.782	269.773	268.823	265.001	262.887
	2	92.891	89.902	84.432	70.902	60.003	57.556	70.654	70.654	178.665	177.544	166.804	160.673	160.002	154.984	164.778	157.674	275.811	275.811	268.902	270.782	268.823	268.823	265.001	265.001
	1	89.902	85.732	80.893	65.893	67.892	55.902	75.903	73.782	178.665	172.905	167.546	162.903	157.894	164.783	164.778	159.905	278.903	275.811	270.782	270.782	270.723	268.823	265.001	260.773
Nitrate	Conc. (mg/L)				001	OOT								007							000	0000			
	Day	0	-	2	m	4	S	9	7	0	-	2	m	4	S	9	7	0	-	2	'n	4	5	9	7

Table C.161 Nitrate reduction (%) of PF3 at 50 mg/L of profenofos

	<u>ц</u>																								
	%Normalized PF conc.	100.00	87.068	81.902	78.988	76.577	74.279	72.345	74.365	100.00	100.00	97.307	95.944	94.561	96.195	93.659	92.865	100.00	98.573	98.202	97.226	95.107	93.857	92.554	90.585
Control	Average	91.854	79.975	75.230	72.554	70.339	68.228	66.452	68.307	187.719	187.719	182.663	180.106	177.509	180.576	175.815	174.326	272.673	268.783	267.771	265.110	259.330	255.923	252.371	247.002
	5	91.854	78.054	72.554	72.554	68.894	67.121	67.121	67.964	185.443	189.994	185.893	185.893	180.576	180.576	174.873	176.757	270.453	268.783	270.432	265.110	259.330	259.330	250.902	247.002
	_	91.854	81.895	77.905	72.554	71.783	69.334	65.783	68.649	189.994	185.443	179.432	174.319	174.442	180.576	176.757	171.894	274.892	268.783	265.110	265.110	259.330	252.516	253.839	247.002
Nitrate	Conc. [mg/L]		L	L	001		I	I	L		L	L		007	I	L	I		I	I	300		I	I	<u> </u>
	Day	0	1	7		4	5	9	-	0		5		4	5	9	-	0		5	3	4	5	9	7

Table C.162 Nitrate reduction (%) of PF3 at 80 mg/L of profenofos

	Nitrate			Control				Test	
Day	Conc. (mg/L)	1	2	Average	%Normalized PF conc.	1	2	Average	%Normalized PF conc.
0		91.672	91.672	91.672	100.00	89.998	93.094	91.546	100.00
1		88.890	91.672	91.546	99.863	80.554	78.009	79.282	86.603
2		82.785	91.886	87.336	95.270	74.008	76.897	75.453	82.421
3	100	85.697	82.785	84.241	91.893	70.775	74.541	72.658	79.368
4	1001	81.253	85.559	83.406	90.983	65.034	61.892	63.463	69.324
5		85.559	81.253	83.406	90.983	47.048	44.116	45.582	49.791
9		81.903	83.894	82.899	90.430	40.200	35.893	38.047	41.561
7		78.553	78.553	78.553	85.689	37.124	35.893	36.509	39.880
0		187.778	190.083	188.931	100.00	187.778	190.083	188.931	100.00
-		179.432	175.772	177.602	94.004	160.902	168.492	164.697	87.173
2		167.893	165.113	166.503	88.129	153.824	146.002	149.913	79.348
3	000	163.892	163.892	163.892	86.747	141.443	134.057	137.750	72.910
4	007	158.443	160.115	159.279	84.305	132.829	139.049	135.939	71.952
5		160.115	160.115	160.115	84.748	110.892	118.003	114.448	60.577
9		158.007	160.902	159.455	84.398	88.032	86.164	87.098	46.100
7		151.841	156.742	154.292	81.665	50.732	52.723	51.728	27.379
0		282.778	282.778	282.778	100.00	284.354	280.121	282.238	100.00
1		282.778	280.453	281.616	99.589	270.885	268.005	269.445	95.467
2		277.889	272.787	275.338	97.369	260.894	253.443	257.169	91.118
3	300	262.094	272.787	267.441	94.576	250.893	248.002	249.448	88.382
4		265.672	262.892	264.282	93.459	241.332	232.113	236.723	83.873
5		269.814	260.332	265.073	93.739	221.782	214.083	217.933	77.216
9		260.892	258.990	259.941	91.924	167.443	161.029	164.236	58.191
7		257.990	250.332	254.161	89.880	151.990	154.667	153.329	54.326

Table C.163 Nitrate reduction (%) of PF3 at 100 mg/L of profenofos

	PF conc.	0	8	3	6	0	0	5	1	0	5	1	0	6	0	3	1	0	6	4	4	1	4	8	
	%Normalized PF conc.	100.00	92.558	82.133	69.926	59.730	52.750	41.215	25.521	100.00	91.435	88.421	85.300	78.976	73.730	64.273	52.171	100.00	94.109	87.924	84.694	83.621	74.964	71.478	
Test	Average	90.772	84.017	74.554	63.473	54.218	47.883	37.412	23.166	179.694	167.079	158.889	153.279	141.916	132.488	115.494	93.748	286.874	269.974	252.232	268.961	272.643	215.055	205.053	
	2	92.112	86.132	74.554	60.163	50.893	47.982	34.893	21.253	178.834	168.615	158.889	151.092	145.783	129.083	113.094	92.153	289.132	270.894	255.141	241.889	239.887	210.321	209.213	
	1	89.432	81.902	74.554	66.783	57.542	47.783	39.930	25.078	180.554	165.543	158.889	155.465	138.048	135.892	117.893	95.342	284.616	269.053	249.323	244.042	239.887	219.788	200.892	
	%Normalized PF conc.	100.00	97.756	94.026	85.089	86.934	88.012	84.662	81.312	100.00	96.262	95.330	93.890	92.581	89.798	86.435	85.858	100.00	97.694	95.329	95.329	93.548	94.828	94.566	
Control	Average	92.919	90.834	87.368	79.064	80.778	81.780	78.668	75.554	182.729	175.899	174.196	171.564	169.173	164.087	157.942	156.888	287.512	280.883	274.083	274.083	242.966	239.887	271.889	
	2	95.003	90.834	85.902	78.124	80.778	80.778	80.092	75.554	180.554	178.904	172.903	172.903	170.893	167.453	160.893	160.893	289.132	280.883	270.943	270.943	267.028	270.893	270.884	
	1	90.834	90.834	88.834	80.003	80.778	82.781	77.243	75.554	184.903	172.893	175.489	170.224	167.453	160.720	154.990	152.883	285.892	280.883	277.223	277.223	270.893	274.392	272.893	
Nitrate	Conc. (mg/L)				001		·														500				-
	Day	0	1	2	3	4	5	9	7	0	1	2	3	4	5	9	7	0	1	2	3	4	5	9	

ofos	
of profei	
0 mg/L oi	
f PF3 at 150	
(%) of P	
duction (
litrate re	
e C.164 N	
Table	

VITA

Name: Miss Tipsuda Subsanguan

Date of Birth: May 4, 1991

Nationality: Thai

University Education: 2004-2009, Triamudomsuksanomklao School, Bangkok, Thailand 2009-2013 Bachelor Degree of Science in Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand

Presentation:

Tipsuda Subsanguan, Alisa S. Vangnai and Sumana Siripattanakul-Ratpukdi. PROFENOFOS BIODEGRADATION BY PSEUDOMONAS AERUGINOSA STRAIN PF2 UNDER ANAEROBIC CONDITION: EFFECT OF PROFENONOFS AND NITRATE CONCENTRATIONS. The Proceedings of 4th International Conference on Environmental Engineering, Science and Management May 27-29, 2015 at Lotus Hotel Pang Suan Kaew, Chiang Mai, Thailand, Organized by Environmental Enginerring Association of Thailand.

> จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University