สมบัติเชิงกลของไม้ยางพารา-คอมโพสิตที่ประกอบด้วยพอลิ (สไตรีน-โค-อะคริโลไนทริล) และ พอลิ (เมทิลเมทาคริเลต-โค-อะคริโลไนทริล)

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาปิโตรเคมีและวิทยาศาสตร์พอลิเมอร์ หลักสูตรปิโตรเคมีและวิทยาศาสตร์พอลิเมอร์

ISBN 974-13-1320-9
ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Petrochemistry and Polymer Science Program of Petrochemistry and Polymer Science

Academic year 2000
ISBN 974-13-1320-9

Thesis Title Mechanical Properties of Rubberwood-Composites Containing Poly(styrene-co-acrylonitrile) and Poly(methylmethacrylate-co-acrylonitrile)

By Miss Siriluck Boonkrai
Field of Study Petrochemistry and Polymer Science
Thesis Advisor Associate Professor Amorn Petsom, Ph.D.
Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree.
\qquad
(Associate Professor Wanchai Phothiphichitr, Ph.D.)

Thesis Committee

Thesis Advisor
(Associate Professor Amorn Petsom, Ph.D.)

(Associate Professor Sophon Roengsumran, Ph.D.)

(Surachai Pornpakakul, Ph.D.)

ศิริลักษณ์ บุญไกร : สมบัติเชิงกลของไม้ยางพารา-คอมโพสิตที่ประกอบด้วยพอลิ (สไตรีน-โค-อะคริโลไนทริล) และพอลิ (เมทิลเมทาคริเลต-โค-อะคริโลไนทริล) (Mechanical Properties of Rubberwood-Composites Containing Poly(styrene-co-acrylonitrile) and Poly (methylmethacrylate-co-acrylonitrile))
อาจารย์ที่ปรึกษา : รศ.ดร. อมร เพชรสม ; 129 หน้า. ISBN 974-13-1320-9

งานวิจัยนี้ได้เตรียมไม้ยางพารา-คอมโพสิตที่ประกอบด้วยพอลิ (สไตรีน-โค-อะคริโลไนทริล) และพอลิ (เมทิลเมทาคริเลต-โค-อะคริโลไนทริล) ด้วยวิธีการแช่ไม้ให้ชุ่มด้วยโมโนเมอร์ภายใต้การลด ความดัน โดยศึกษาปริมาณของตัวริเริ่มปฏิกิริยา อัตราส่วนฟสมของโมโนเมอร์ที่ใช้แช่ชิ้นไม้ และ อุณหภูมีที่ใช้ในการทำให้เกิดปฏิกิริยาพอลิมมอไรเซชัน รวมทั้งศึกษาภาวะที่เหมาะสมของกระบวนการ เตรียมไม้ยางพารา-คอมโพสิต เช่น เวลาที่ใช้ดึงอากาศออกจากช่องว่างในเซลล์ไม้ เวลาที่ใช้แช่ชิ้นไม้ โดยแปรเปลี่ยนค่าเหล่านั้นให้แตกต่างกันในการเตรียมแต่ละตัวอย่าง ศึกษาสมบัติกายภาพและเชิงกล ของตัวอย่างที่เตรียมขึ้นเปรียบเทียบกับไม้ยางพาราธรรมชาติ ไม้เต็ง และไม้มะค่าโมง

ผลการศึกษานี้พบว่า 90 ส่วนของสไตรีนต่อเรซิน 100 ส่วนและ 10 ส่วนของอะคริโลไนทริล ต่อเรซิน 100 ส่วนเหมาะสำหรับวิธีใช้ความร้อน สำหรับวิธีใช้ตัวช่วยเร่งปฏิกิริยาที่อุณหภูมิห้องใช้ 80 ส่วนของเมทิลเมทาคริเลตต่อเรซิน 100 ส่วนและ 20 ส่วนของอะคริไลไนทริลต่อเรซิน 100 ส่วน และ ภาวะที่เหมาะสมในการเตรียมดังนี้ คือ เวลาที่ใช้ดึงอากาศออกจากช่องว่างในเซลล์ไม้ 2 ชั่วโมง, เวลาที่ ใช้แช่ชิ้นไม้ 4 ชั่วโมง ความดันที่ใช้ดึงอากาศออกจากซลล์ไม้ 5×10^{-3} ทอร์ และความเข้มข้นของตัวริเริ่ม ปฏิกิริยา 2 ส่วนต่อเรซิน 100 ส่วน ตัวอย่างไม้ยางพารา-คอมโพสิตที่เตรียมขึ้นจากสภาวะดังกล่าวให้ค่า การดูคซับน้ำและการพองตัวทางความหนาหลังแช่น้ำต่ำกว่าไม้ยางพาราธรรมชาติและไม้มะค่าโมงที่ ระดับความเชื่อมั่น 95 เปอร์เซ็นต์อย่างมีนัยสำคัญชิ่งและสามารถทนต่อเชื้อราและปลวกคีพอๆ กับไม้ เต็งและไม้มะค่าโมง ความสามารถในการต้านแรงดัด มอดูลัสยืดหยุ่น ความสามารถในการต้านแรงอัด ทางขนานแนวเสี้ยนได้รับการปรับปรุงดีกว่าไม้ยางพาราธรรมชาติไม้เต็ง และไม้มะค่าโมง
 ปีการศึกษา $\ldots2543 \ldots \ldots .$.
\# \#4272408623 : MAJOR PETROCHEMISTRY AND POLYMER SCIENCE
KEY WORDS : RUBBERWOOD/ POLY (STYRENE-CO-ACRYLONITRILE)/ POLY (METHYLMETHACRYLATE-CO-ACRYLONITRILE)/ IMPREGNATION/ CATALYST-HEAT METHOD/ CATALYST-ACCELERATOR METHOD/ COMPOSITES

SIRILUCK BOONKRAI : MECHANICAL PROPERTIES OF RUBBERWOODCOMPOSITES CONTAINING POLY(STYRENE-CO-ACRYLONITRILE) AND POLY (METHYLMETHACRYLATE-CO-ACRYLONITRILE) THESIS ADVISOR : ASSOC. PROF. AMORN PETSOM, Ph.D., 129 pp. ISBN 974-13-1320-9

This research involves the preparation of rubberwood-composites containing poly(styrene-co-acrylonitrile) and poly(methylmethacrylate-co-acrylonitrile) by impregnation of rubberwood with mixture of monomers under reduced pressure. The effect of initiator contents, mixture ratio of monomer, and temperature for curing were studied. Impregnation parameters such as evacuating time, soaking time were varied to various conditions in the preparation process. Physical and mechanical properties of impregnated samples were compared with natural rubberwood, Teng, and Makah-mong.

Results of this study showed that 90 phr. of styrene monomer and 10 phr . of acrylonitrile monomer were suitable for use in the catalyst-heat technique. For the catalyst-accelerator technique, 80 phr . Of methylmethacrylate monomer and 20 phr . of acrylonitrile monomer were used in this technique. The optimum parameters were 2 hours evacuating time, 4 hours soaking time and 5×10^{-3} torr evacuating pressure and 2 phr initiator content. Impregnated samples obtained from the optimum conditions gave significantly lower water absorption and thickness swelling in water than natural rubberwood and Makah-mong at 95% confidence and they resisted to fungi and termite as well as Teng and ${ }^{\circ}$ Makah-mong. Flexure stress, modulus of elasticity, compression parallel to grain could be improved better than natural rubberwood, Teng and Makah-mong.

Field of study... Petrochemistry and Polymer Science ... Student's signature \qquad ProgramPetrochemistry and Polymer Science....... Advisor's signature \qquad Academic year \qquad 2000 \qquad

ACKNOWLEDGEMENT

I would like to express my deepest gratitude to Associate Professor Amorn Petsom, Ph.D., my advisor, for his advice, guidance, concern and encouragement throughout this research.I am also grateful to Associate Professor Supawan Tantayanon, Ph.D., the chairman of this thesis committee, Associate Professor Sophon Roengsumran, Ph.D., Associate Professor Wimonrat Trakarnpruck, Ph.D., and Surachai Pornpakakul, Ph.D. for their useful comments and valuable suggestions. In addition, I would like to thank Bangkok Shuttle Industry, Co., Ltd. for providing the rubberwood used in this research and thanks go towards Mr. Chetsada Chaijareenon, Vice Manager of Siam Chemicals Industry Co., Ltd., for providing of some chemicals for this research. My deep gratitude is due to the Graduate School of Chulalongkorn University for partial fund for the thesis work.

Finally, I wish to express my deep gratitude to my family, friends, and others whose names are not mentioned here, for their love, guidance, and encouragement throughout this thesis.
สถาบันวิทยบริการ
จุฬาลงกรณ์มหาวิทยาลัย

CONTENTS

PAGE

ABSTRACT (IN THAI) iv
ABSTRACT (IN ENGLISH) V
ACKNOWLEDGEMENT vi
CONTENTS vii
LIST OF TABLES xi
LIST OF FIGURES xii
LIST OF ABBREVIATIONS. xiv
CHAPTER 1 INTRODUCTION 1
1.1 Objectives 3
1.2 Scopes of the Research 3
CHAPTER 2 THEORY AND LITERATURE REVIEW 5
2.1 Rubberwood 5
2.1.1 Technical Properties and Utilization of Rubberwood 5
2.1.2 Anatomy of Rubberwood 6
2.1.3 Physical and Mechanical Properties of Rubberwood 8
2.2 Wood Properties 9
2.2.1 Density and Specific Gravity 9
 9
2.2.3 Shrinkage and Swelling 10
2.2.4 Deterioration of Wood 10
2.3 Definition of Wood-Polymer Composites (WPC) 10
2.3.1 Impregnation 10
2.3.2 The Chemicals Used for Modifying Wood 11
2.3.2.1 Acrylonitrile 12
2.3.2.1.1 Polyacrylonitrile 12
2.3.2.2 Styrene 12

CONTENT (CONTINUED)

PAGE
2.3.2.2.1 Poly(styrene-co-acrylonitrile) 13
2.3.2.3 Methyl Methacrylate (MMA) 13
2.3.2.3.1 Poly(acrylonitrile-co-methyl methacrylate) 14
2.3.2.4 Methyl Ethyl Ketone Peroxide (MEKPO) 14
2.3.2.4 Divinyl benzene 15
2.3.2.5 Cobalt Octoate 15
2.4 Properties of WPC 16
2.4.1 Mechanical Properties 17
2.4.2 Dimensional Stability 17
2.4.3 Termite Resistance 17
2.5 Literature Reviews 18
CHAPTER 3 EXPERIMENTAL PROCEDURES 21
3.1 Materials 21
3.1.1 Rubberwood 21
3.1.2 Monomer 21
3.1.3 Initiator 21
3.1.4 Accelerator 21
3.1.5 Crosslinking Agent 22
 22
3.3 Experimental Procedures 22
3.3.1 Preparation of Rubberwood-Composites Containing Poly(styrene-co- acrylonitrile) and Poly(acrylonitrile-co-methyl methacrylate) 22
3.3.1.1 Preparation of Wood Specimens 22
3.3.1.2 Preparation of Prepolymer Mixture 22
3.3.1.2.1 For Catalyst-accelerator Technique 22
3.3.1.2.2 For Catalyst-heat Technique 23

CONTENT (CONTINUED)

PAGE
3.3.1.3 Impregnation for Catalyst-accelerator and Catalyst-heat Technique 23
3.3.1.3.1 Catalyst-accelerator Technique 23
3.3.1.3.2 Catalyst-heat Technique 25
3.3.2 Factor Influencing in the Preparation of Rubberwood-Composites Containing Poly(styrene-co-acrylonitrile) and Poly(acrylonitrile- co-methyl methacrylate) 25
3.3.2.1 Effect of Evacuating time on the Properties 25
3.3.2.2 Effect of Soaking time on the Properties 25
3.3.2.3 Effect of Initiator Contents on the Properties 26
3.3.2.4 Effect of Mixture Ratio of Monomer on the Properties 26
3.3.2.5 Effect of Temperature on the Properties 26
3.3.3 Testing for Physical Properties 26
3.3.3.1 Determination of Moisture Content [ASTM D4442-92 (method A)] and Specifie Gravity [ASTM D2395-93] 27
3.3.3.2 Monomer Uptake and Polymer Loading (PL) 27
3.3.3.3 Dimensional Stability 28
3.3.4 Mechanical Properties 30
3.3.4.1 Flexural Strength and Modulus of Elasticity (MOE)
66 [ASTM D3043-87]/.................................. 30
3.3.4.2 Compressive Strength [ASTM D3501] 31
3.3.5 Microstructure of WPC Specimens 31
93.3.6 Termite Resistance [ASTM D3345] 32
CHAPTER 4 RESULTS AND DISCUSSIONS 34
4.1 Characteristics of Natural Rubberwood, Teng, and Makah-mong 34
4.2 Effect of Evacuating time on the Properties of WPC. 34

CONTENT (CONTINUED)

PAGE
4.3 Effect of Soaking time on the Properties of WPC 37
4.4 Effect of Initiator Contents on the Properties of WPC 40
4.5 Effect of Temperature and Mixture Ratio on the Properties of WPC. 41
4.6 Study on Behavior of Dimensional Stability after Water Soaking of MAN, SAN-Rubberwood Composites, and Other Woods45
4.7 Results of Analysis of Variance 47
4.8 Evaluation of WPC Specimens for Fungi and Termite Resistance 53
4.9 Scanning Electron Microscopy (SEM) of WPC 56
4.10 Application of Rubberwood-Composites Containing Poly(styrene-co- acrylonitrile) and Poly(acrylonitrile-co-methyl methacrylate) 58
CHAPTER 5 CONCLUSION 61
REFERENCES 64
APPENDICES 66
APPENDIX A DATA OF TESTING PROPERTIES 67
APPENDIX B GRAPH OF TESTING RESULTS 87
APPENDIX C DATA OF ANALYSIS OF VARIANCE 94
VITA 129
สถาบันวิทยบริการ
จุฬาลงกรณ์มหาวิทยาลัย

LIST OF TABLES

TABLE PAGE
4.1 Characteristic of natural rubberwood, Teng and Makah-mong. 34
4.2 Properties of rubberwood-composites containing acrylonitrile prepared by varying evacuating times 35
4.3 Properties of rubberwood-composites containing acrylonitrile prepared by varying soaking times 38
4.4 Properties of rubberwood-composites containing acrylonitrile prepared from various initiator contents 41
4.5 Comparison on the mechanical properties between a catalyst-heat and a catalyst-accelerator technique. 43
4.6 Water absorption of MAN, SAN-rubberwood composites, and other woods after water soaking test. 45
4.7 The results of wood before and after testing for termite resistance. 54
4.8 The results of rating of termite attack. 54
4.9 Comparison of the properties of MAN-rubberwood composites with other woods 59
สถาบันวิทยบริการ
จุฬาลงกรณ์มหาวิทยาลัย

LIST OF FIGURES

FIGURE PAGE
2.1 Anatomy and physiology of rubberwood. 7
2.2 The apparatus of impregnation process. 11
2.3 Preparation of crosslinked poly(acrylonitrile-co-MMA) 16
3.1 Apparatus for vacuum impregnation 24
3.2 Dimensions of testing specimen 29
3.3 Dimension for flexure stress and MOE testing specimen. 30
3.4 Dimension for compression parallel to grain testing specimen 31
3.5 Typical ratings of termite attack on test blocks. 33
4.1 Effect of evacuating time on the mechanical properties of impregnated sample. 36
4.2 Effect of soking time on the mechanical properties of impregnated sample 39
4.3 Effect of initiator contents on the mechanical properties of impregnated sample. 42
4.4 Water absorption of treated and untreated rubberwood. 46
4.5 Graphs of Specific gravity, water absorption, and swelling in water of treated and untreated wood. 48
4.6 Graphs of MOE and Flexure stress of treated and untreated rubberwood 51
4.7 Graph of compression parallel to grain of treated and untreated rubberwood 52
4.8 Deterioration of untreated rubberwood by fungi 56
4.9 Scanning electron microscopy of transverse section of empty rubberwood cells 57

LIST OF FIGURES(CONTINUED)

PAGE
4.10 Scanning electron microscopy of transverse section of MAN-treated rubberwood cells 57
4.11 Scanning electron microscopy of transverse section of SAN- treated rubberwood cells 58
4.12 Parquet production from MAN-rubberwood composites 60

LIST OF ABBREVIATIONS

WPC	Wood polymer composites
COMPRESS	Compression
SEM	Scanning electron microscopy
MPa	Mega Pascal
$\mathrm{N} / \mathrm{mm}^{2}$	Newton per square millimeter
WA	Water absorption
SW	Thickness swelling in water
MEKPO	Methyl ethyl ketone peroxide
MOE	Modulus of elasticity
AN	Acrylonitrile monomer
F	Flexure stress
T	Tangential
R	Radial
L	Longitudinal
S	Volumetric swelling coefficient
SG	Specific gravity
	Styrene monomer
MMA	Methylmethacrylate monomer
MAN SAN	Methylmethacrylate-acrylonitrile copolymer Styrene-acrylonitrile copolymer
PAN	Polyacrylonitrile
Phr	Per hundred resin

CHAPTER 1

INTRODUCTION

Wood is a renewable natural resource and it possesses many desirable physical properties which make it an ideal material for many different applications such as kitchen equipment, furniture, construction materials, and etc. As compared to other building materials, wood is structurally strong, may be finished to a pleasing appearance and is easily shaped. But nowadays, wood used in the field of industry is the shortage for domestic use. Since government policy from National Land Management Committee has set target to expand area for forestation every year. By increasing forest area in Thailand from 26.64% of the whole country area or approximately 85 million rais in 1991 to 40% of the whole country area or approximately 128.3 million rais. Thai government supports planting for forest garden, planting for high economic value trees and fast-growing trees to replace using natural tree in short and long term and enforcing the legal measures to completely terminate the concession all over the country on 15th January, 1989 to seriously conserve the remaining forestry. Consequently, the measure affects the lumber shortage for domestic use severely.[1] There are still demands from domestic and internationals in wooden furniture industry. Therefore, searching to substitute materials in place of the traditional uses of wood has been the focus of renewed interest. Rubberwood, in particular, is considered a promising alternate raw material because of its fast growth rate and short rotation rate. $660190 \cap 9 / ?$

The term, "rubber" is usually given to the timber of the species Heavea Brasiliensis Mull.Arg.[2] The most important product of the rubber tree is the latex. After exploitation, the rubber tree is felled for replanting with high yielding clones,
therefore the rubber timbers are available to be advantageous for industrial and engineering uses.

Presently, rubberwood are derived from felling the old type of rubber and replacing the new type of rubberwoods, which it has been set by Rubber Plantation Association to achieve approximately 230,000 rais per year. The rubber tree will be cut down for utilization by 22 cubic metres per rai. The total rubber cuts expected by the association are about 5 million cubic metres per annum. Forest Department in 2000 report that we can use the rubberwood for about 70-75\% of total cuts per rai. Rubber will be manufactured for furniture and other products for exports. Currently, Thailand has the second largest rubber plantation area in the world. In 1989, Thailand has total area of rubber plantation to 11.5 million rais. In 1993, Thailand has rubber plantation area of 12.12 million rais and in 1996 with total area of 13.12 million rais. Most of the rubber plantation in Thailand is in the south and the eastern part, especially in 14 provinces of southern part starting from the lower part of Prachuabkireekhan down to the border area of Malaysia, which accounts for 84.7% of total rubber plantation area. For the eastern part of Thailand, the rubber plantation accounts for 12.9% whereas the remaining is in northeastern part. At the moment, the government tries to promote more rubber plantation in the northeastern for future rubber resources, so rubberwood increases continually.[3] This can regularly provide the raw material for the wooden furniture industry. In addition, the rubberwood could be expected to meet a major part of the future need in Thailand because of the good working qualities of rubberwood, its durability, pleasant appearance, and beautiful grains make it suitable for numerous end uses. It is an ideal wood that can be potentially transformed into household furnitures, tools, and construction materials with high quality.

However, rubberwood has several physical properties which limits its use in a number of different applications. These properties include the relative softness of
wood, poor dimensional stability toward moisture absorption, and low fungi and insect resistance. It must be protected from the attack by insects and fungi for many of the applications. Increased research during recent years has improved the mechanical and physical properties of wood by impregnation. For this research, rubberwood was used for wood impregnation because it has a great number of supplies, good appearance of the whitened cream on the wooden surface with the beauty, and it is relatively cheaper than other hard woods. Nevertheless, rubberwood as a substitute for Teaks or Pradu type is not so easy. This research aims to develope rubberwood as a replacement by looking at quality to be last long, strong and resistant to fungi and termite. One convenient way is to impregnate the wood with a suitable chemical such as a monomer that can be polymerized in situ either using a catalyst-heat technique or a catalystaccelerator technique to give a wood-polymer composite (WPC) which could be the way to reduce the problems.

1.1 Objectives

1. To study the factor influencing in the preparation of acrylonitrile copolymer rubberwood composites.
2. To determine the physical and mechanical properties of acrylonitrile copolymer rubberwood composites and compare them to natural rubberwood, Teng, and Makah-mong. 6

1.2 Scopes of the Research
 In this research work, the wood polymer composites were prepared from

 acrylonitrile (AN), styrene-acrylonitrile (SAN) and methylmethacrylate-acrylonitrile (MAN) mixtures and rubberwood by impregnating under reduced pressure. Suitable monomer mixtures and various impregnation conditions in the preparation of SAN, MAN and PAN rubberwood composites such as soaking time, evacuating time, temperature, the mixture ratio, and initiator content were investigated. The physicaland mechanical properties of specimens such as polymer loading, modulus of elasticity, flexural strength, compressive strength, dimensional stability, water absorption, thickness swelling in water, volumetric swelling coefficient, termite resistance and SEM of microstructure figure were studied.

CHAPTER 2

THEORY AND LITERATURE REVIEW

According to the National policy to conserve the forested area by canceling the forest concession on 15th January, 1989. There has been a timber or log shortage for wooden furniture or construction materials such as Teak, Pradu, Chingchan, etc. Imports from neighbour countries, Burma, Laos, Cambodia, creates troubles and inconvenience to businessman. The shortage becomes severe and impacts furniture and construction industry. There are still demands from domestic and internationals in wooden furniture because it retains the natural looks and beauty. Consequently, wooden furniture industry tries to look for a substitute, especially rubberwood because of a number of supplies, the whitened cream look on the wooden surface with the beauty. Moreover, rubberwood is relatively cheaper than other hard woods. Nevertheless, rubberwood as a substitute for Teak or Pradu type is not so easy. There is still some needs to develop other soft woods for replacement by looking at quality to be last long, strong and resistant to fungi and termite with the application of woodpolymer composites (WPC) by impregnation.[1]

2.1 Rubberwood

2.1.1 Technical properties and utilization of rubberwood

The most important product of rubber tree is the latex and all efforts to improve the rubber tree have been from the point of obtaining higher yield of latex. After exploitation, the rubber tree is felled for replanting with high yielding clones. Till recently, most of the wood from the felled trees was used as fuel. With the depletion of forests in many parts of tropical regions, leading to shortage of wood for many industrial and engineering uses, attention has been given to rubber wood as an alternative source of timber. Research and development activities on the industrial
applications of rubberwood are only of recent origin. New developments indicate the possibility of wider use of rubberwood for a variety of purposes.

Rubber trees grow to a height of 25 meters and generally have straight trunks. Usually, at the time of felling, the girth varies between 100 to 110 centimeters, at a height of 125 centimeters above the ground and gives 0.62 cubic meters of stump wood and 0.40 cubic meters of branch wood. At the time of felling, usually it contains 180 to 185 trees per hectare.[4]

2.1.2 Anatomy of Rubberwood

Rubber tree is divided in sort of softwood. The stem consists of the texture of wood which is the center of stem called "Central axis or Pith (medulla)". The next layer is wood or xylem, the next one is ring of cells or called "Cambium", then the next of cambium is soft bark which contains phloem. The next of soft bark is hard bark and the inner of hard bark, combined with soft bark, contains latex vessels that twisted on the right hand. And then, it is cork cambium and cork, respectively.[5]

The texture of the wood is fairly even with moderately straight and slightly interlocking grain. From whitish yellow when freshly cut, the wood turns to light brown as drying progresses. Latex vessels can be found with characteristic smell in some parts of the wood. The wood is soft to moderately hard with an average weight of 515 kilograms per cubic meters at 12% moisture content. Pores on the cross section are diffused and of medium to large size, mostly solitary but sometimes in short multiples of two to three, filled with tyloses. Vessel tissues are conspicuous in radial and tangential faces and the diameter of vessel tissues are about 200 microns. Wood parenchyma are abundantly visible to the naked eye appearing as narrow, irregular and somewhat closely spaced bands forming a net like pattern with rays. The rays of the wood are moderately broad, rather few and fairly wide spread. The pits found between
the vessels and rays are half-bordered with narrow width. The length of the fibres is more than 1.0 millimeters on the average and the width is about 22 microns when it dried. The cell wall also thickness after it dried, about 2.8 microns.[6]

There is insignificant heart wood formation and no transition appears between sapwood and heart wood, which is confined near the pith. Growth rings or annual rings are not visible in rubberwood, unlike many other wood (ring porous woods). However, concentric false rings sometimes appear on the wood, depending on the presence of tension wood (gelatinous cells) which are fairly common in most of the clones. Maximum number of such rings are found in the basal portions with decreasing number towards the top. The tension wood may vary from 15 to 65% and such erratic distribution and variation are supposed to be responsible for some of the commonly abserved defects that may occur during drying and processing.

1. Cork

2. Cork cambium (between cork and hard bark)
3. Hard bark (consist of stone cells, parenchyma, disorganised sieve tubes, and latex vessels)
4. Soft bark (mainly vertical rows of sieve tubes and many latex vessels)
5. Latex vessels
6. Medullary rays
7. Cambium
8. Stone cells
9. Sapwood

Figure 2.1 Anatomy and physiology of rubberwood

2.1.3 Physical and Mechanical Properties of Rubberwood

Wood, when dry, has unique physical and mechanical properties in that its tensile strength, flexural strength, compressive strength, impact resistance, and hardness per unit weight are the highest of all construction materials. The hydrogen bonding, the unique helical structure of the cell walls, the combination of the linear cellulose molecules impregnated with low molecular weight extractives, and all of the varying amounts of crosslinked lignin make wood an infinitely resource.

Like the other wood species, rubberwood also exhibits orthotropicity in its properties, i.e., its properties are different and independent in the three principal direction of growth: longitudinal, radial, and tangential. Being non-homogeneous in its structure, its density also varies from site to site inside the material. The variations in properties are attributable not only to the variations in density but also to the presence of latex particles in some locations and to the predominance of tension wood. Like most of the wood species, the dynamic properties of rubberwood (i.e. mechanical behavior of rubberwood under dynamic forces) are higher than the static properties. In other words, under impact loads, rubberwood is capable of taking loads nearly twice that under slowly applied loads. However, it may be noted that the static properties of rubberwood in dry condition are higher than those in green condition.[7]

2.2 Wood Properties [8, 9]

That area of wood science concerned with the physical and mechanical properties of wood and the factors which affect them. Since wood consists of aggregates of long tubular cells, most of which are oriented longitudinally in the tree, whereas the ray cells are oriented radially, wood is an ortho-tropic material and exhibits different physical behavior in the three main structural directions, longitudinal, radial, and tangential.

2.2.1 Density and Specific Gravity

Density is the weight or mass of a unit volume of wood, and specific gravity the ratio of the density of wood to that of water. In the metric system of measurement, density and specific gravity are numerically identical. Determination of the density of wood in relation to that of other materials is difficult because wood is hygroscopic, and both its weight and volume are greatly influenced by moisture content. With specimens regular in shape, volume may be calculated on the basis of their dimensions. Differences among species, or samples of the same species, are due to different proportions of wood substance and void volume, and to content of extractives. Density affects the amount of moisture that wood can hold, its shrinkage, swelling, mechanical and other properties; in general, density measures the quality of wood without defects.
สatas ตันวิทยบริการ

2.2.2 Hygroscopicity

0
Wood can absorb water as a diquid, if in contact with it, or in the form of vapour from the surrounding atmosphere. Though wood may absorb other liquids and gases, water is the most important. Because of its hygroscopicity, wood, either as a part of the living tree or as a material, always contains moisture. This moisture affects all wood properties. Dimensions change and decay resistance are greatly affected.

2.2.3 Shrinkage and Swelling

Wood is subject to dimensional changes when its moisture fluctuates below the fibre saturation point. Loss of moisture results in shrinkage, and gain in swelling. It is characteristic that dimensional changes are anisotropic-different in axial, radial, and tangential directions. Cell wall shrinkage is somewhat less than the volume of water desorbed.

2.2.4 Deterioration of Wood

Wood is subject to deterioration by fungi, insects, marine organisms, fire, and other destructive agencies. By far the most important cause of wood loss is decay. Wood decays if the conditions are suitable for growth and activity of fungi. Such conditions include favourable moisture, air, and temperature.

The interesting technique of modified wood, through chemical treatment, from dimensional changes, from deterioration by the biological agencies of fungi and insect, is impregnation under pressure ealled impreg-wood or wood-polymer composite (WPC).

Wood polymer composite (WPC) is a wood impregnated with a polymerizable monomer (mainly vinyl monomer) in order to strengthen the properties of the natural "จำดาพาลงกรณ์มหาวิทยาลัย

2.3.1 Impregnation Process

The impregnation process of wood is carried out by first evacuating the air from the wood vessels and cell lumens. Any type of mechanical vacuum pump is adequate if it can reduce the pressure in the apparatus to 7×10^{-3} torr or less. Experience has shown that the air in the cellular structure of most woods is removed as fast as the
pressure in the evacuation vessel is reduced. After that, the vacuum pump is disconnected from the system at this point. The monomer or prepolymer containing crosslinking agents as well as catalyst, and on occasion dyes, is introduced into the evacuated chamber through a reservoir at atmospheric pressure. The wood must be weighed so that it dose not float in the monomer solution. Alternatively the system can be pumped as the monomer is admitted into the evacuated vessel. After the wood is covered with monomer solution, atmospheres pressure is regained. Immediately the monomer solution begins to flow into the evacuated wood structure to fill the void spaces. The soaking period, like the evacuation period, depends on the structure of wood. After the monomer impregnation is completed, the wood polymer composite is removed and placed in an explosion-proof oven for curing.[11]

Figure 2.2 The apparatus of impregnation process

2.3.2 The Chemicals Used for Modifying Wood

Treatment of wood to improve its physical and mechanical properties and dimensional stabilization due to moisture content and impart resistance to termites,
decay, and marine organisms has been carried out via chemical modification or chemical impregnation. In chemical modification, compounds highly reactive to the hydroxyl groups of cellulose, hemicellulose, and lignin components of wood. Several liquid monomers such as styrene (SM), acrylonitrile (AN), and methylmethacrylate (MMA) were also incorporated into wood samples by means of chemical impregnation. Crosslinking of wood material in wood samples provides good dimensional stability to the wood-polymer composites.

2.3.2.1 Acrylonitrile

Acrylonitrile is polymerized to polyacrylonitrile through suspension methods using free-radical initiators. Most of the polymer produced is employed in acrylic fibres, which are defined as fibres that contain 85 percent or more PAN. A copolymer containing PAN and 2 to 7 percent of a vinyl comonomer such as vinyl acetate can be readily spun to fibres that are soft enough to allow penetration by dyestuffs.

2.3.2.1.1 Polyacrylonitrile

Polyacrylonitrile (PAN) is a vinyl polymer. It made from the monomer acrylonitrile by free radical vinyl polymerization. Polyacrylonitrile is tough, good resistance to organic solvent. Moreover, it offers good tensile strength.

2.3.2.2 Styrene

An outstanding characteristic of styrene monomer is its ability to be polymerized readily by a variety of methods and with a large variety of other
monomers. Styrene monomer is successfully polymerized and copolymerized by both batch and continuous mass polymerization and by solution, suspension, and emulsion processes, as well as by various modifications and combinations of these techniques. Styrene responds to a large number of initiators such as peroxides and other free radical initiators, redox initiator systems, ionic initiators, and others. Styrene is copolymerized to form commercial copolymers with the acrylates and methacrylates, acrylonitrile, divinylbenzene, and others.

2.3.2.2.1 Poly(styrene-co-acrylonitrile)

Poly(styrene-co-acrylonitrile) or SAN is a simple random copolymer of styrene and acrylonitrile. It is tough, rigid, and transparent thermoplastic that displays better resistance to heat and solvents than polystyrene. It has good dimensional stability. Besides, it can improve impact strength and offers excellent chemical and heat resistance.

2.3.2.3 Methyl Methacrylate (MMA) าวทยาลัย

Methyl methacrylate is clear liquid. Boiling point is 100.5 (C at 760 mm Hg . Commercially, the most important chemical property of methyl methacrylate is its ability to polymerize through the vinyl group to give homopolymers and copolymers. Methyl methacrylate will also take part in many other reactions associated with a carbon-carbon double bond. The polymer of methyl methacrylate is a clear colorless
resin. For polymerization or copolymerization with other monomers, such as other methacrylates, acrylonitrile, styrene, etc. Copolymers can be used in adhesives, lacquers, and paper treatments.

2.3.2.3.1 Poly(acrylonitrile-co-methyl methacrylate)

Poly(acrylonitrile-co-methyl methacrylate) or MAN is a copolymer of methyl methacrylate and acrylonitrile that made from acrylonitrile and methylmethacrylate monomer by free radical vinyl polymerization. It is tough and good compression and impact resistance.

2.3.2.4 Methyl Ethyl Ketone Peroxide (MEKPO)

Methyl ethyl ketone peroxide is clear, colorless liquid, and insoluble in water. It is most widely used for curing of gelcoat resins, laminating resins, and lacquers. Self accelerating decomposition temperature is 60 (C. For room temperature application it is necessary to use MEKPO together with a cobalt octoate to react with the peroxide to generate free radicals at lower temperature.

2.3.2.5 Divinyl benzene

Divinyl benzene (DVB) is used extensively in the plastics industry to crosslink and modify materials and to aid in copolymerization. It can also increase stress crack resistance, resistance to some chemicals, hardness, and impact strength. DVB helps improve the polymer properties through its action as a crosslinking agent. For instance, in crosslinking polystyrene, it increases solvent resistance, impact strength, tensile strength, and hardness.

2.3.2.6 Cobalt Octoate

Cobalt Octoate is a highly active oxidizing material suspended in a liquid carrier used to accelerate the decomposition of peroxide catalysts into highly reactive free radicals. These free radicals react readily with polymer and monomer molecules to cure a resin.
 to facilitate penetration and can react with the hydroxyl groups in cell wall. These can improve the mechanical and physical properties. Furthermore, The chemicals should react quickly with the hydroxyl groups to yield stable chemical bonds with no byproducts.

Figure 2.3 is an example of the prepolymer mixture preparation for wood impregnation in catalyst-accelerator technique.

MEKPO (initiator)
Cobalt Octoate (accelerator)

Free radical polymerization

Divinylbenzene (crosslinking agent)

Figure 2.3 Preparation of crosslinked poly(acrylonitrile-co-methyl methacrylate)

2.4 Properties of WPC [12]

Wood-polymer composite (WPC) can modify undesirable properties of wood, such as poor dimensional stability, easy to fungi attack and low termite resistance. Thus, WPC can reduce these deficiencies when compared with untreated wood. Moreover, WPC can increase the static strength and other mechanical properties.

2.4.1 Mechanical Properties

The mechanical or strength properties of wood measure its ability to resist applied forces that might tend to change its shape and size. Resistance to such forces depends on their magnitude and manner of application, and to various characteristics of the wood such as density, moisture content, etc. Besides, wood strength varies with direction of application of load; i.e., axially (parallel to grain), and transversely (perpendicular to grain). The mechanical properties of WPC are improved to enhance such as compressive strength is improved 4 to 5 times that of untreated wood.

2.4.2 Dimensional Stability

Many treatments have been devised to reduce swelling of wood in contact with moisture. These treatments are, in most cases, based on bulking the wood cell walls with some material to keep wood in the swollen state as long as the chemical is retained. In this swollen condition, wood cannot expand or contract further in response to contact with water. Chemicals that have been chemically reacted with cell wall components also bulk the cell wall. Permanence depends on chemical stability of the bonds formed. When the monomer was impregnated into wood and polymerized, it can increase the weight of the wood considerably. Although polymerized chemical cannot be leached by water, very little dimensional stability results from chemical treatment. The small amount of stability that is achieved may be due to some cell wall penetration by the chemical or to physical blocking of moisture (water repellency) from the cell wall.

จฬาลงกรณ์มหาวิทยาลัย

2.4.3 Termite Resistance

Left unprotected or unpreserved, wood will decay and deteriorate anywhere from a few months to a few years, depending upon climate condition. Wood preservatives have proven to be effective in preventing the invasion of biological
agents and wood destroying organisms, such as wood decay fungi, bacteria, and wood destroying insects, including termites.

2.5 Literature Reviews

Several approaches have been taken in the past in attempts to improve mechanical properties, dimensional stability, and decay resistance of wood product. These attempts have included impregnation of the wood with various materials. The extent of improvement in mechanical and physical properties was directly related to the polymer content, the nature of the polymer, the type of wood, and the processing applied. In this literature reviews are summarized as follows:

Hazer, B., et. al.[13] prepared Scotch pine, eastern spruce, and eastern beech samples sawed longitudinally by impregnating with macroinimer and styrene, leading to crosslinked block copolymer of styrene and poly(ethylene glycol). The specimens impregnated with the mixture of macroinimer and styrene showed a water-repellent effectiveness of $35.14-58.15 \%$ after a water soaking test of 144 h . The highest values of water repellent effectiveness were found for spruce, while the lowest values were obtained for pine. ASE of 42.43% was obtained for spruce, followed in order by beech and pine, respectively. The ASE value increases with an increase in percentage of weight gain.

สถาบันวิทยบริการ

Rozman, H.D., et. al.[14] studied the wood polymer composites of rubberwood Hevea brasiliensis, prepared by impregnating the wood with methyl methacrylate (MMA), and the combinations of MMA and diallyl phthalate (MMA/DAP). Polymerization was carried out by catalytic heat treatment in the presence of catalyst. The result showed significant improvements in compressive and impact strengths, hardness, and dimensional stability (toward water) over that of the untreated rubberwood.

Fuller, B.S., et. al. [15] studied wood products impregnated with 30 to 80% of a polymerizable monomer selected from the group consisting of hexanediol diacrylate and hexanediol dimethacrylate. They found excellent indent resistance when using 0.5 to 2% of a thermally activated free radical source as a polymerization initiator for a period sufficient to achieve the desired polymer loading. The wood is heated under pressure to polymerize or cure the monomers.

Rozman, H.D., et. al. [16] prepared WPC of rubberwood by impregnating the wood with glycidyl methacrylate (GMA), combination of glycidyl methacrylate (GMA-DAP) or diallyl phthalate (DAP) alone. Polymerization was carried out by catalytic heat treatment. The results showed that WPC based on GMA exhibited greater dimensional stability. Flexural, compressive and impact properties for all the samples tested were improved, especially for those with higher chemical loading.

Yalinkilic, M.K., et. al. M. [17] prepared wood impregnated with boric acid, styrene, methylmethacrylate and their mixtures. Polymerization was conducted by heat radiation method at 90(C for 4 h . Treated specimens were then subjected to decay and termite tests, as well as oxygen index (O.I.) determination. Anti-swelling efficiency (ASE) and water absorption levels (WA) were also measured. The treated wood proved to be resistant against decay fungi. Moreover, boric acid increased the L.O.I. levels of monomer-treated wood, which resulted in a lower flame spread index.

 Kasamchainanta, B. [18] prepared durianwood-polyester resins composites by

 impregnation under reduced pressure. Treated specimens gave significant lower water absorption, higher antishrink efficiency than natural durianwood. Modulus of elasticity, flexure stress, compression parallel to grain were improved and the density were higher than natural durianwood.Rungvichaniwat, C. [19] prepared para rubberwood-epoxy resins composites by impregnation under reduced pressure. Treated specimens gave significant lower water absorption, higher antishrink efficiency than natural para rubberwood. Modulus of elasticity, flexure stress, compression parallel to grain were improved and specific gravity was higher than natural para rubberwood.

CHAPTER 3

EXPERIMENTAL PROCEDURES

3.1 Materials

3.1.1 Rubberwood

The rubberwood was obtained from Bangkok Shuttle Industry, Co., Ltd. The samples used in this study were sawn into specimens of $10(\mathrm{~T}) \times 10(\mathrm{R}) \times 30(\mathrm{~L}) \mathrm{mm}$ for compression tests; $20(\mathrm{~T}) \times 20(\mathrm{R}) \times 10(\mathrm{~L}) \mathrm{mm}$ for termite tests; $25(\mathrm{~T}) \times 5(\mathrm{R}) \times$ 100 (L) mm for flexural strength tests; $25(\mathrm{~T}) \times 5(\mathrm{R}) \times 25(\mathrm{~L}) \mathrm{mm}$ for dimensional stability tests.

3.1.2 Monomer

3.1.2.1 Acrylonitrile monomer, commercial grade, was supplied from Siam Chemical Industry Co., Ltd.
3.1.2.2 Styrene monomer, commercial grade, was supplied from Siam Chemical Industry Co., Ltd.
3.1.2.3 Methylmethacrylate monomer, commercial grade, was supplied from Siam Chemical Industry Co, Ltd.
สถาบนวิทยบริการ

3.1.3 Initiator

Methyl ethyl ketone peroxide was supplied from Siam Chemical Industry Co., Ltd.

3.1.4 Accelerator

In this study, cobalt octoate with 10% cobalt metal supplied from Siam Chemical Industry Co., Ltd. was used as accelerator.

3.1.5 Crosslinking Agent

Divinyl benzene was obtained from the Fluka Co., Ltd. and it was used as crosslinking agent.

3.2 Apparatus and Equipments

1. Vacuum Chamber : modified from 8 inches diameter dessicator
2. Vacuum Pump : MAKASHI OIL ROTARY, 5×10^{-3} torr., Japan
3. Vernier : MITUTOYO, Japan
4. Electric Saw : PEHAKA, England
5. Universal Testing Machine : HOUNDFIELD H10KM, England
6. Vacuum Oven : MUTTER, Germany
7. Balance : METTLER, Switzerland
8. Scanning Electron Microscope : JSM-6400, JEOL Co., Ltd,. Japan
9. Desiccator
10. Sandpaper

3.3 Experimental Procedures

3.3.1 Preparation of Rubberwood Composites Containing Poly(styrene-coacrylonitrile) and Poly(methylmethacrylate-co-acrylonitrile)

3.3.1.1 Preparation of Wood Specimens

The wood samples used for testing were sawn into specimens for each type of test by using electric saw as mentioned in 3.1. These samples were randomly assigned to treatment. There were 5 replications for each treatment. The rough surface of samples was polished by sandpaper in order to remove the woolly fiber and made smooth surface.

3.3.1.2 Preparation of Prepolymer Mixture

3.3.1.2.1 For Catalyst-accelerator Technique

Styrene and acrylonitrile monomer were weighed and mixed homogeneously in ratio of ST:AN (90:10, 80:20, and 70:30, respectively) for SAN preparation. For MAN preparation, mix methylmethacrylate and acrylonitrile (MMA:AN) in the same ratio as SAN. Methyl ethyl ketone peroxide and cobalt octoate were used as an initiator and accelerator, respectively. Initiator, accelerator and crosslinking agent (divinyl benzene) were added into the mixtures and mixed slowly. The mixtures led to crosslinked copolymer of styrene and acrylonitrile (SAN) and methylmethacrylate and acrylonitrile (MAN).

3.3.1.2.2 For Catalyst-heat Technique

The prepolymer mixtures were prepared as described in 3.3.1.2.1 but the accelerator was not added in this technique.

3.3.1.3 Impregnation in Catalyst-heat and Catalyst-accelerator Technique

3.3.1.3.1 Catalyst-accelerator technique

All wood specimens for impregnation were firstly dried in oven to constant weight at 103(2(C, the dimensions and weight were then measured. Wood samples were placed in a vacuum chamber and evacuated to 5×10^{-3} torr vacuum pressure. When evacuating time for full impregnation was reached, the prepolymer mixture was introduced into the vacuum chamber until the wood samples were covered. The chamber was left at atmospheric pressure at room temperature for the specified time. Impregnated wood samples were removed from the chamber, wiped off the excess monomer mixture from wood surfaces, and weighed immediately to determine the monomer uptake. The impregnated wood specimens were then wrapped in aluminium foil to minimize loss of monomer by evaporation. Then, they were placed immediately into the desiccator to complete the curing process at room temperature for 2 h . After unwrapping, the samples were dried in oven at 100 (C for 24 h to remove
excess monomer and then cooled down in the desiccator. The wood samples were determined polymer loading and tested mechanical and physical properties.

A-Vacuum desiccator
B - Plastic or glass treatment beaker

G-Three-way stopcock
 สถา
 H-Flask containing treating solution

I-Line to source of vacuum

Figure 3.1 Apparatus for vacumm impregnation

3.3.1.3.2 Catalyst-heat technique

Dried wood samples were evacuated in a vacuum chamber to remove air from the pores of the wood and impregnated with the prepolymer mixture for catalyst-heat technique as described in 3.3.1.2.2. Impregnated wood specimens were then wrapped in aluminium foil and sealed to minimize the monomer loss by evaporation. After that, they were placed in an explosion-proof oven to complete the curing process at $70^{\circ} \mathrm{C}$. After unwrapping, the wood samples were dried in oven at 100(C for 24 h to remove excess monomer and then cooled down in the desiccator. The wood samples were determined polymer loading and tested mechanical and physical properties.

3.3.2 Factors Influencing in the Preparation of Rubberwood Composites Containing Acrylonitrile Copolymer

3.3.2.1 Effect of Evacuating time on the Properties

Rubberwood composites containing acrylonitrile were prepared from prepolymer mixtures as follow: various ratio of styrene and acrylonitrile (90:10, 80:20, and $70: 30$) and ratio of methyl methacrylate and acrylonitrile ($90: 10,80: 20$, and 70:30), 2 phr initiator, 0.1 phr accelerator, and 0.1 phr crosslinking agent. The impregnation parameters were as follow: 5×10^{-3} torr evacuating pressure, and 4 hours soaking time. Different evacuating time at $0.5,1,2$, and 3 hours were studied.

3.3.2.2 Effect of Soaking time on the Properties

Rubberwood composites containing acrylonitrile were prepared from prepolymer mixtures as follow: various ratio of styrene and acrylonitrile (90:10, 80:20, and $70: 30$) and ratio of methyl methacrylate and acrylonitrile ($90: 10,80: 20$, and 70:30), 2 phr initiator, 0.1 phr accelerator, and 0.1 phr crosslinking agent. The impregnation parameters were as follow: 5×10^{-3} torr evacuating pressure, and 2 hours degasing time. Different soaking time at $1,2,3$, and 4 hours were studied.

3.3.2.3 Effect of Initiator Contents on the Properties

Rubberwood composites containing acrylonitrile were prepared from prepolymer mixtures as follow: various ratio of styrene and acrylonitrile (90:10, 80:20, and 70:30) and ratio of methyl methacrylate and acrylonitrile (90:10, 80:20, and 70:30), 0.1 phr accelerator and 0.1 phr crosslinking agent. Initiator contents at 1,2 , and 3 phr were added to prepolymer mixtures. For impregnation parameters, degasing time was 2 hours, soaking time was 4 hours, and evacuating pressure was 5×10^{-3} torr.

3.3.2.4 Effect of Mixture Ratio of Monomer on the Properties

Rubberwood composites containing acrylonitrile were prepared from prepolymer mixtures as follow: 2 phr initiator, 0.1 phr accelerator, and 0.1 phr crosslinking agent. The impregnation parameters were as follow: 5×10^{-3} torr evacuating pressure, 2 hours degasing time, and 4 hours soaking time. Different various ratios of styrene and acrylonitrile as $90: 10,80: 20$, and 70:30, respectively, were studied as well as ratios of methyl methacrylate and acrylonitrile.

3.3.2.5 Effect of Temperature on the Properties

Rubberwood composites containing acrylonitrile were prepared from prepolymer mixtures as follow: various ratio of styrene and acrylonitrile (90:10, 80:20, and $70: 30$) and ratio of methyl methacrylate and acrylonitrile ($90: 10,80: 20$, and 70:30), 2 phr initiator, 0.1 phr accelerator, and 0.1 phr crosslinking agent. The impregnation parameters were as follow: 5×10^{-3} forr evacuating pressure, 2 hours degasing time, and 4 hours soaking time. Different temperatures at $70(\mathrm{C}$ and room temperature were studied.

3.3.3 Testing for Physical Properties.

Wood composites specimens were tested for the following properties:

3.3.3.1 Determination of Moisture Content [ASTM D4442-92 (method A)]

 and Specific Gravity [ASTM D2395-93] [12, 20]Each of the prepared test specimens was weighed and measured for the dimension accurately, then dried overnight in oven at 103(2(C. After that, the dried specimens were cooled down in the dessicator, weighed and measured again. The weight and dimension or volumetric of wood composites specimens were calculated for moisture content and specific gravity using the following formula:

$$
\text { Moisture Content }=\left[W_{0}-\mathbf{W}_{1} / \mathbf{W}_{1}\right] \times 100
$$

Where $\mathrm{W}_{\mathrm{o}}=$ Weight before drying
$\mathrm{W}_{1}=$ Weight after drying

Specific Gravity $=K W /[1+(M / 100)]$ LBT

Where $\mathrm{W}=$ Weight of specimen
$\mathrm{M}=$ Moisture content of sample, $\%$
$\mathrm{L}=$ Length of specimen
B = Width of specimen
$\mathrm{T}=$ Thickness of specimen
к-c.uminาบนว่ทยบริการ $=1$ when weight is in g. and volume is in cm^{3}
3.3.3.2 Monomer Uptake and Polymer Loading (PL) [14]

Before impregnation, the specimens were dried in an oven at 105(C overnight and weighed. After impregnation, the wood composites specimens were obtained. They were weighed again, then the monomer uptake were calculated. After that, impregnated wood specimens were then wrapped in aluminium foil and sealed to minimize
loss of monomer by evaporation, and then placed in an explosion-proof oven to polymerize the monomer. The obtained wood composites were weighed and calculated for the polymer loading as follows:

$$
\text { Monomer Uptake (\%) = }\left[\mathbf{W}-\mathbf{W}_{0}\right] / \mathbf{W}_{0}
$$

Where

$$
\begin{aligned}
& \mathrm{W}=\text { Weight of wood after soaking } \\
& \mathrm{W}_{\mathrm{o}}=\text { Weight of untreated wood (oven dry) }
\end{aligned}
$$

Polymer Loading (\%) $=\left[W_{t}-W_{0}\right] / W_{0}$

Where $\quad W_{t}=$ Weight of treated wood or WPC

$$
\mathrm{W}_{\mathrm{o}}=\text { Weight of untreated wood (oven dry) }
$$

3.3.3.3 Dimensional Stability $[12,20]$ The test times were investigated as follows:

Water Absorption (WA)

Wood composite specimens were weighed to 0.1 gram accuracy. Then, they were placed vertically in the vessel. The distilled water was added until the upper surface of specimens was about 25 millimeters under the surface of water. All samples were immersed in water at room temperature for various periods. After each soaking period, the samples were wiped of excess water and weighed. The water absorption value was determined for $2,4,8,24,48,72,144$ and 168 h and calculated from the following equation:

Water Absorption (\%) $=\left[\left(\mathbf{W}_{1}-W_{0}\right) / W_{0}\right] \times 100$
Where $\mathrm{W}_{1}=$ Weight of specimens after water soaking
$\mathrm{W}_{0}=$ Weight of specimens before water soaking

Volumetric Swelling Coefficient (S)

The dimensional stability of impregnated wood samples, cut from longitudinally, was evaluated with volumetric swelling coefficient (S) values and thickness swelling in water values using changes in tangential, radial, and longitudinal dimensions after 7 days of soaking in water. Dimensional stability was expressed as S and thickness swelling in water values was determined from the following equation:

$$
\text { Volumetric Swelling Coefficient }(S)=\left[V-V_{0}\right] / V_{0}
$$

Where $\mathrm{V}=$ Wood volume after water soaking
$\mathrm{V}_{0}=$ Wood volume before water soaking

Thickness Swelling in Water (\%) $=\left[\left(T-T_{0} / T_{0}\right)\right] \times 100$

Where $\mathrm{T}=$ Thickness after water soaking
$\mathrm{T}_{0}=$ Thickness before water soaking
The dimension of specimens used to test for water absorption, volumetric swelling coefficient, thickness swelling in water, and specific gravity were shown in Figure 3.2

Figure 3.2 Dimensions of testing specimen

3.3.4 Mechanical Properties

Mechanical properties are measured as follows:

3.3.4.1 Flexural Strength and Modulus of Elasticity (MOE) [ASTM D3043-

87]

Width and thickness of wood composites specimens were measured and entered these values to the software of testing machine before running the test. Then flexure stress and modulus of elasticity values were obtained. The MOE corresponds to the slope of the linear portion of the stress-strain relationship from zero to the proportional limit, can be calculated from the stress - strain curve as the change in stress causing a corresponding change in strain, as follows:

Modulus of Elasticity (MOE) $=\mathbf{L}^{\mathbf{3}}(\mathbf{W}$

$4 b d^{3}(S$

Where $\mathrm{L}=$ The span between the centers of supports (m)

$$
\begin{aligned}
& (\mathrm{W}=\text { The increment in load }(\mathrm{N}) \\
& \mathrm{b}=\text { The mean width (tangential direction) of the sample (m) } \\
& \mathrm{d}=\text { The mean thickness (radial direction) of the sample (m) } \\
& \text { (} \mathrm{S}=\text { The increment in deflection }(\mathrm{m})
\end{aligned}
$$

Figure 3.3 Dimension for flexure stress and MOE testing specimen

3.3.4.2 Compressive Strength [ASTM D3501]

The width and thickness of wood composites specimens were measured. Maximum load were obtained after tested. The compression parallel to grain value was calculated as follows:

Compression parallel to grain $=\mathrm{P}_{\text {max }}$

Where
$\mathrm{P}_{\text {max }}=$ The maximum load, (N)
$\mathrm{a}, \mathrm{b}=$ The cross sectional dimensions of the test piece, (mm.)

The dimension of testing specimen is shown in Figure 3.4

Figure 3.4 Dimension for compression parallel to grain testing specimen

จฬาลงกรณ์มหาวิทยาละย

3.3.5 Microstructure of WPC Specimens. [21]

Microstructure of wood - polymer composites specimens were observed by scanning electron microscope and compared with microstructure figure of natural rubberwood. The specimens were dried, then coated with gold before scanning for the observation.

3.3.6 Termite Resistance [ASTM D3345]

In this study, three types of wood, Makah-mong, Teng, and natural rubberwood were compared with treated rubberwood specimens. Prior to test, the container was prepared by washing and rinsing with antiseptic solution and dried. Each specimen was prepared as $20(\mathrm{~T}) \times 20(\mathrm{R}) \times 10(\mathrm{~L}) \mathrm{mm}$ and then weighed before testing. The prepared specimens were placed in the bottom of containers. The cleaned sand (200 g.) was added in the container, followed by sufficient distilled water as determined by the equation below:

$$
\% \text { water to add }=\% \text { saturation }-7.0
$$

Calculate the percent saturation as follows:

$\%$ saturation $=($ weight of water foven dry weight of sand $) \times 100$

After addition of water, the container was left overnight. The termites was weighed to $1(0.05 \mathrm{~g}$. and added into prepared container with loosely closed tops. The container was maintained at room temperature for 4 weeks. After 4 weeks, the containers were disassembled and the wood blocks were removed and cleaned. The test blocks were weighed again for \%weight loss and then examined visually at each block using the following rating system in Figure 3.5.

$$
\begin{aligned}
10 & =\text { Sound, surface nibbles permitted } \\
9 & =\text { Light attack } \\
7 & =\text { Moderate attack, penetration } \\
4 & =\text { Heavy } \\
0 & =\text { Failure }
\end{aligned}
$$

Figure 3.5 Typical ratings of termite attack on test blocks

CHAPTER 4

RESULT AND DISCUSSION

Rubberwood composites containing acrylonitrile were prepared by impregnation under reduced pressure and using either catalyst-heat or catalystaccelerator technique to improve and enhance dimensional stability, mechanical properties, and biological resistance. The suitable conditions for preparation were investigated. Mechanical and physical properties of rubberwood composites containing acrylonitrile were tested and compared with the natural rubberwood, Teng, and Makahmong wood.

4.1 Characteristics of Natural Rubberwood, Teng and Makah-mong

In this thesis, natural rubberwood was chosen for wood-composites and compared with Teng and Makah-mong, therefore, they should be characterized for both physical and mechanical properties before study. The results of characterization are presented in Table 4.1.

Table 4.1 Characteristic of natural rubberwood, Teng and Makah-mong

Properties	Rubberwood	Teng	Makah-mong
Specific gravity	1.18		1.26
MOE (MPa)	$619,172.8$	$38,692.20$	$25,886.90$
Flexure stress (MPa)	222.70	325.50	266.80
Compression (N/mm ${ }^{2}$)	5,248	5,721	5,676

- Average data from 5 specimens for each treatment (2 replicates)

4.2 Effect of Evacuating time on the Properties of WPC

Evacuating time was the times used to evacuate air from the void spaces of wood cells. It was assumed that the longer evacuating times the more void space free of air was obtained. So it was benefit for prepolymer mixtures to penetrate the wood cells. In this study the evacuating time was varied from $0.5,1,2,3$ hours. The results of this experiments are shown in Table 4.2 and illustrate in Figure 4.1.

Table 4.2 Properties of rubberwood composites containing acrylonitrile prepared by varying evacuating times.

Mechanical Properties	Evacuating time (hrs.)				
	$\mathbf{0 . 5}$	$\mathbf{1 . 0}$	$\mathbf{2 . 0}$	$\mathbf{3 . 0}$	
Polymer loading (\%)	38.79	41.27	45.14	43.58	
Specific gravity	1.31	1.38	1.42	1.40	
Polymer loading (\%)	32.78	36.54	41.63	39.71	
MOE (MPa)	24,875	30,193	30,445	30,549	
Flexure stress (MPa)	251	293	335	317	
Polymer loading (\%)	30.03	33.19	39.92	36.55	
Compession (N/mm)	6,433	6,818	7,904	7,180	

*Average data from 5 specimens for each treatment (2 replicates)

The results of mechanical properties test indicated that 2 hours evacuating time samples gave higher polymer loading than $0.5,1$, and 3 hours evacuating time. The longer evacuating time gave the ability to evacuate more air from the wood cells. This led to allow the opportunity for prepolymer mixture to penetrate into empty wood cells and retained in there. The more polymer filled in the wood cells, the higher polymer
loading was obtained. Generally, samples with higher polymer loading showed greater strength than the ones with lower polymer loading. Therefore, MOE, flexure stress, and compression increased proportionally with polymer loading as shown in Figure 4.1. In addition, it was found that polymer loading was increased in accordance with specific gravity.

From all of the test results, evacuating time of 2 hours enhanced the mechanical properties of treated samples. The evacuating time at 3 hours did not give significant improvement of WPC compared to 2 hours evacuating time. Thus, the evacuating time of 2 hours was used for the preparation of rubberwood-impregnated samples in this study.

- $\Delta=$ MOE, Flexure stress, and Compression values
- $\square=$ Polymer loading

Figure 4.1 Effect of evacuating time on the mechanical properties of impregnated sample

4.3 Effect of Soaking time on the Properties of WPC

Soaking time is substantial in the impregnation process. It is the periods used to soak the sample specimens in the prepolymer mixtures. The soaking times were varied from 1,2,3 and 4 hours. Another impregnation parameters were fixed at 2 hours evacuating time, 5×10^{-3} torr evacuating pressure. The prepolymer mixtures contained 0.1 phr divinyl benzene, 70 phr styrene, 30 phr acrylonitrile, and 2 phr MEKPO. Properties of the impregnated samples were shown in Table 4.3 and illustrate in Figure 4.2.

Table 4.3 Properties of rubberwood composites containing acrylonitrile prepared by varying soaking times

Mechanical Properties	Soaking time (hrs.)			
	$\mathbf{1 . 0}$	$\mathbf{2 . 0}$	$\mathbf{3 . 0}$	$\mathbf{4 . 0}$
Polymer loading (\%)	39.24	43.10	46.68	53.47
Specific gravity	1.29	1.39	1.44	$\mathbf{1 . 4 6}$
Polymer loading (\%)	35.13	40.98	44.65	55.82
MOE (MPa)	25,729	31,842	33,383	38,416
Flexure stress (Mpa)	302	357	330	392
Polymer loading (\%)	31.03	34.64	38.74	43.75
Compession (N/mm ${ }^{2}$)	5,700	7,580	7,874	8,682

* Average data from 5 specimens for each treatment (2 replicates)

The mechanical properties of rubberwood-impregnated samples were listed in Table 4.3. Results indicated that polymer loading increased in accordance with specific gravity and MOE increased with increasing polymer loading. Notably at 3.0 hours soaking time, the flexure stress value of 44.65% polymer loading was lower than the one of 40.98% polymer loading obtained at 2.0 hours soaking time due to the
difference in nature of used wood. σ.
Compression parallel to grain of testing samples that were soaked at $1,2,3$, and 4 hours gave $5700,7580,7874$, and $8682 \mathrm{~N} / \mathrm{mm}^{2}$ compression values, respectively. The polymer loading was increased in accordance with soaking time. The higher polymer loading obtained from longer soaking time, the higher compression parallel to grain values the sample had. If the polymer contained in wood cells was high, the
stiffness of the straws was increased and resulted in high compression values. But if soaking time was too long, the viscosity of prepolymer mixtures would increase. This led to the partial polymerization on the surface of wood specimen and inhibition of the monomer to penetrate into the wood cells.

- $\Delta=$ MOE, Flexure stress, and Compression values
- $\square=$ Polymer loading

Figure 4.2 Effect of soaking time on the mechanical properties of impregnated sample

Soaking time at 4 hours was the periods that treated samples showed the highest polymer loading. Therefore, 4 hours soaking time was selected to study for other impregnation parameters in the next experiment.

4.4 Effect of Initiator Content on the Properties of WPC

Methyl ethyl ketone peroxide (MEKPO) is the most widely used low temperature peroxide $(20-70(\mathrm{C})$ initiators. It generates free radicals in vinyl polymerization. In this study, the prepolymer mixtures contained 0.1 phr divinyl benzene and varying initiator content from 1, 2, and 3 phr , respectively. Parameters of impregnation process were as follows: 2 hours evacuating time, 4 hours soaking time, 5×10^{-3} torr evacuating pressure. Impregnated samples gave the properties which presented in Table 4.4 and illustrate in Figure 4.3.

Table 4.4 Properties of rubberwood composites containing acrylonitrile prepared from various initiator content

Mechanical Properties	Initiator content (phr.)		
	$\mathbf{1 . 0}$	$\mathbf{2 . 0}$	$\mathbf{3 . 0}$
Polymer loading (\%)	40.89	45.73	36.51
Specific gravity	1.37	1.41	1.30
Polymer loading (\%)	50.48	59.52	35.87
MOE (MPa)	30,445	33,728	34,272
Flexure stress (MPa)	335	410	337
Polymer loading (\%)	39.92	46.13	30.52
Compession (N/mm)	7,904	8,368	6,934

* Average data from 5 specimens for each treatment (2 replicates)

The results in Table 4.2 indicated that samples with higher polymer loading showed greater compressive strength than the ones with lower polymer loading and specific gravity increased proportionally with polymer loading.

Mechanical properties of impregnated samples such as flexure stress and compression parallel to grain of samples impregnated with 2.0 phr initiator, showed the highest values. For 2.0 phr initiator which gave the highest polymer loading, but MOE values was less than MOE values at 3.0 phr initiator because of lower polymer loading. At 3.0 phr was found that viscosity of prepolymer mixture increased. This caused difficulty to penetrate of prepolymer mixture to wood cells. Thus, 2.0 phr initiator was enough for preparing of impregnated samples in this study.

- $\Delta=$ MOE, Flexure stress, and Compression values
- $\square=$ Polymer loading

Figure 4.3 Effect of initiator content on the mechanical properties of impregnated sample

4.5 Effect of Temperature and Mixture Ratio on the Properties of WPC

The monomer ratio and temperature for WPC preparation were speculated that they had influence on the physical and mechanical properties of WPC. In this study, the impregnation parameters were fixed at 2 hours evacuating time, 4 hours soaking time, and 5×10^{-3} torr evacuating pressure. For catalyst-heat technique, methyl ethyl ketone peroxide (MEKPO) was used as initiators together with heat treatment at 70(C for curing and different ratios of monomer as 90:10, 80:20, and 70:30 were studied. For catalyst-accelerator technique, it was necessary to use MEKPO together with a cobalt octoate in order to cause gelation and almost complete curing at room temperature. The comparison results between a catalyst-heat method and a catalyst-accelerator method are shown in Table 4.5.

Table 4.5 Comparison on the mechanical properties between a catalyst-heat and a catalyst-accelerator technique

[^0]| Sample | Catalyst-heat technique | | | Catalyst-accelerator technique | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $\begin{aligned} & \text { MOE } \\ & (\mathrm{MPa}) \end{aligned}$ | Flexure stress (MPa) | Compression ($\mathrm{N} / \mathrm{mm}^{2}$) | $\begin{aligned} & \text { MOE } \\ & (\mathrm{MPa}) \end{aligned}$ | Flexure stress (MPa) | Compression ($\mathrm{N} / \mathrm{mm}^{2}$) |
| $\begin{aligned} & \text { SAN } \\ & 90 / 10 \end{aligned}$ | | | | | | |
| | $\begin{gathered} 37,373.3 \\ 50.27^{\circ} \end{gathered}$ | $\begin{aligned} & 386.2 \\ & 50.27 \end{aligned}$ | $\begin{aligned} & 9,473 \\ & 49.08^{\circ} \end{aligned}$ | $\begin{gathered} 35,001.2 \\ 45.90^{\circ} \end{gathered}$ | $\begin{gathered} 347.8 \\ 45.90^{\circ} \end{gathered}$ | $\begin{aligned} & 8,948 \\ & 50.76^{\circ} \end{aligned}$ |
| 80/20 | $\begin{gathered} 29,696.2 \\ 43.62^{\circ} \end{gathered}$ | $\begin{aligned} & 338.2 \\ & 43.62^{\circ} \end{aligned}$ | $\begin{aligned} & 8,676 \\ & 42.81 \end{aligned}$ | $\begin{gathered} 30,785.0 \\ 48.98^{\circ} \end{gathered}$ | $\begin{aligned} & 356.6 \\ & 48.98^{\circ} \end{aligned}$ | $\begin{aligned} & 8,588 \\ & 48.46^{\circ} \end{aligned}$ |
| 70/30 | $\begin{gathered} 31,387.8^{\circ} \\ 44.44^{\circ} \end{gathered}$ | $\begin{aligned} & 350.8 \\ & 44.44^{\circ} \end{aligned}$ | $\begin{aligned} & 8,575 \\ & 44.00^{\circ} \end{aligned}$ | $\begin{gathered} 30,861.5 \\ 35.47^{\circ} \end{gathered}$ | $\begin{aligned} & 363.6 \\ & 35.47^{\circ} \end{aligned}$ | $\begin{aligned} & 8,592 \\ & 40.97^{\circ} \end{aligned}$ |

** Average data from 5 specimens for each treatment (2 replicates)

In this study, it was found that polymer loading of MAN-rubberwood composites prepared by catalyst-heat method was lower than the catalyst-accelerator method because there was a significant loss of monomer due to vaporization. This led to a much lower polymer loading and mechanical strength of these composites. Thus, MOE, flexure stress, and compression values of 80:20 and 90:10 MAN prepared using the catalyst-accelerator technique showed greater strength than the catalyst-heat technique. In some case, it would not follow the same trend, for instance, MOE and flexure stress values of 70:30 MAN by catalyst-heat method gave higher values, whereas polymer loading of this ratio was lower due to the nature of wood obtained from different parts of wood structure. Therefore, 80:20 by ratio of MAN, prepared using a catalyst-accelerator method was suitable for prepolymer mixture preparation in this experiment.

For the polymer loading of SAN-rubberwood composites prepared using the two methods, it gave similar result, at 44.78-46.02\%. Moreover, it was found that this $90: 10$ by
ratio of SAN prepared using a catalyst-heat method, was suitable for the prepolymer mixture preparation.

4.6 Study on Behavior of Dimensional Stability after Water Soaking of MAN, SAN-

Rubberwood Composites, and Other Woods

In principle, dimensional stability of wood depends on many factors such as moisture content, specific gravity, wood structure, type and content of chemicals, etc. In addition, dimensional stability of wood that impregnated with SAN and MAN depended upon penetration of mixture solution into wood cells and grain orientation.

Table 4.6 Water absorption of MAN, SAN-rubberwood composites, and other woods after water-soaking test

Sample	Water Absorption (\%)				
	Soaking time (hrs.)				
	24	48	72	144	168
Untreated	51.47	54.35	57.43	66.78	71.38
80:20 MAN (R.T.)	29.49	34.33	37.53	41.66	43.46
90:10 SAN (70 $\left.{ }^{\circ} \mathbf{C}\right)$	17.67	21.51	25.11	29.65	30.85
Teng 6	14.73	18.08	21.38	26.11	28.19
Makah-mong	22.83	29.46	35.85	48.02	51.10

[^1]

Figure 4.4 Water Absorption of treated and untreated rubberwood

The results of water absorption shown in Table 4.6 indicated that the wood impregnated with MAN and SAN gave lower water absorption values (\%) than those of untreated rubberwood and Makah-mong but higher than Teng. During the first 24 hrs. of water soaking, untreated rubberwood, Teng, and Makah-mong absorbed water at about 51, 15 , and 23%, respectively, whereas wood impregnated with MAN and SAN absorbed water at about 29 and 18%, respectively. During 168 hrs of water soaking, untreated rubberwood, Teng, and Makah-mong absorbed water at about 71, 28, and, 51%, respectively, whereas wood impregnated with MAN and SAN absorbed water at about 43 and 31%, respectively. From graph, it was found that the water absorption had a tendency to increase with increasing soaking time. When the fiber saturation point has been reached, the water absorption value decreased apparently as shown in Figure 4.4.

Thickness swelling in water of this study was a part of dimensional stability. Thus, thickness of samples before and after water-soaking test was determined as in the formula. The results of thickness swelling in water, percentage of water absorption, specific gravity, MOE, flexure stress, and compression were analyzed with statistic to study
relationships and to compare the various properties of wood impregnated with MAN and SAN to untreated rubberwood, Teng, and Makah-mong.

4.7 Results of Analysis of Variance

Hypothesis in this study, $\mathbf{H}_{\mathbf{0}}: \mu_{1}=\mu_{2}=\mu_{3}$ (The same mean)

$$
\mathbf{H}_{1}: \mu_{\mathrm{i}} \neq \mu_{\mathrm{j}} ; \mathbf{i} \neq \mathbf{j} ; \mathbf{i}, \mathbf{j}=\mathbf{1 , 2 , 3} \text { (Mean Difference) }
$$

Significance $(\alpha)=0.05$

- Example of code $1703030=1$ meant MAN, 7030 meant (70:30) MMA:AN and 30 meant catalyst-accelerator method

$$
2802070=2 \text { meant SAN, } 8020 \text { meant (} 80: 20 \text {) ST:AN }
$$

and 70 meant catalyst-heat method
\square Code $\mathbf{1 7 0 3 0 7 0}=70: 30$ MAN, catalyst-heat method
\square Code $\mathbf{1 8 0 2 0 7 0}=80: 20 \mathrm{MAN}$, catalyst-heat method
$\square_{\text {Code }} 1901070=90: 10$ MAN, catalyst-heat method
\square Code $\mathbf{1 8 0 2 0 3 0}=$ 80:20 MAN, catalyst- accelerator method
\square Code $1901030=90: 10$ MAN, catalyst- accelerator method
\square Code $2703070=70: 30$ SAN, catalyst- heat method
\square Code 2901070 = 90:10 SAN, catalyst-heat method
\square Code $2703030=70: 30$ SAN, catalyst- accelerator method
\square Code 2802030 $=80: 20$ SAN, catalyst- accelerator method

\square Code $\mathbf{2 9 0 1 0 3 0}=90: 10$ SAN, catalyst-accelerator methodCode $7000000=$ Natural rubberwood
■ Code $\mathbf{8 0 0 0 0 0 0}=$ Teng wood
\square Code $9000000=$ Makah-mong wood

The results of analysis at 95% confidence interval were found that the mean of MOE, specific gravity, thickness swelling in water, water absorption, flexure stress, and compression of various monomer ratio and untreated rubberwood including mean of Teng and Makah-mong were different at 0.05 significance level. Thus, we could plot graph in order to gain the optimum mixture ratio for application and compare them to hardwood and untreated wood as shown Figures 4.5, 4.6, and 4.7.

Figure 4.5 Graphs of specific gravity (a), water absorption (b) and swelling in water (c) of treated and untreated rubberwood

From graphs (a) and (b), it was found that the relation of specific gravity (SG) and water absorption (WA) showed the opposite trend, whereas specific gravity increased as water absorption was decreased. The reduction in WA might be due to the following causes: there was fewer void spaces in high specific gravity than in low specific gravity. As a result, less water was absorbed. For the results shown in graph (b), it indicated that \%WA of wood impregnated with MAN using catalyst-accelerator method was significantly decreased as the proportion of MMA increased. This reduction of WA was due to increase in hydrophobicity, because ST and MMA were non-polar, and they hardly reacted with hydroxyl groups of cellulose molecules in wood.

When considered graphs (a) and (c), the thickness swelling in water (SW) values of treated wood increased with the increase of specific gravity due to polarity of acrylonitrile. Our findings were in agreement with the study reported by Nugroho and Ando [22] in which they indicated that SW had a tendency to increase with increasing specific gravity.

From Figure 4.5, it was found that most wood impregnated with MAN and SAN could improve dimensional stability and gave the lower WA and SW values than natural rubberwood and Makah-mong.
สiximuนวทียบริการ

Figure 4.6 Graphs of MOE (a) and Flexure stress (b) of treated wood and untreated rubberwood

The result in Figure 4.6 indicated that the mixture ratio of 70:30 MAN prepared using catalyst-heat technique gave the highest MOE value and 80:20 MAN by catalystaccelerator gave the second highest value. For flexure stress (F) value, the mixture ratio of 80:20 MAN prepared using catalyst-accelerator technique gave the highest F value. In addition, it was found that MOE and F increased with the increase of specific gravity.

The results of MOE and Flexure stress (F) value of treated rubberwood wes apparently better than natural rubberwood and Makah-mong. When they were compared to Teng, it was found that most treated rubberwood gave higher strength. Moreover, it was found that the relationships of MOE and flexure stress were in the same trend.

Figure 4.7 Graph of compression parallel to grain of treated and untreated rubberwood

The result in Figure 4.7 indicated that the compression of treated rubberwood were higher than natural rubberwood, Makah-mong, and Teng. The mixture ratio of 90:10 SAN prepared using catalyst-heat method gave the highest compression value due to strength of styrene. and 90:10 MAN by catalyst-accelerator gave the second highest value. Moreover, it was found that compression parallel to grain increased in accordance with specific gravity.

The catalyst-accelerator method is superior to the catalyst-heat method because there is no significant loss of monomer due to vaporization and this method is easy to operate and save the energy because it can operate at room temperature. The preparation time for WPC using the catalyst-accelerator method is shorter than catalyst-heat method.

4.8 Evaluation of WPC Specimens for Fungi and Termite Resistance

Wood is subject to deterioration by fungi, insects, marine organisms, and other destructive agencies. The most important cause of wood loss is the decay. Wood preservatives have proven to be effective in preventing the invasion of biological agents and wood destroying organisms, such as wood decay fungi, bacteria, and wood destroying insects, including termites. In this experiment, four types of woods were controlled in the same condition such as untreated rubberwood, Teng, Makah-mong, treated rubberwood. The results are shown in Table 4.7 and 4.8

จุพาลงกรรณณมเมาวิทยาลัย

Table 4.7 The results of wood before and after testing for termite resistance

Types of wood	Weight before test (g.)	Weight after test (g.)	Weight loss (\%)
Untreated rubberwood	3.29	2.07	37.08
MAN-treated rubberwood	4.30	4.28	0.47
Makah-mong	4.27	4.26	0.23
Teng	4.49	4.47	0.45

* Average data from 2 specimens for each treatment (2 replicates)

From Table 4.7 the results of termite resistance were found that the weight loss of untreated rubberwood was the highest value about 37.08% by weight. MANtreated rubberwood, Makah-mong, and Teng was about $0.47,0.23$, and 0.45% by weight, respectively.

Table 4.8 The results of rating of termite attack

*Typical ratings of termite attack on test blocks $(\mathbf{1 0}=$ sound, surface nibbles permitted, $9=$ light attack, $7=$ moderate attack, penetration, $4=$ heavy, and $0=$ failure)

From this experiment, in the container that contained untreated rubberwood, rubberwood treated with MAN, Teng, and Makah-mong, it was found that untreated rubberwood was more susceptible to fungal and termites attack than others. The MANtreated rubberwood was quite resistant to fungal and termites attack because it had
hardly been damaged. Remarkable percentage weight loss of MAN-treated rubberwood, at about 0.47% by weight, supported the earlier conclusions on termite resistance of treated rubberwood.[17] Moreover, it attributed to a physical reduction of wood hygroscopicity and inhibition of fungal spread. For Teng and Makah-mong, it was found that weight losses were about the same as treated rubberwood. Therefore, the rubberwood impregnated with MAN was more resistant to fungi and termites than untreated rubberwood.

Figure 4.8 Deterioration of untreated rubberwood by fungi

4.9 Scanning Electron Microscopy (SEM) of WPC

The microstructure of rubberwood-composites containing acrylonitrile (SAN and MAN)were examined by scanning electron microscopy (SEM) of transverse sections of the specimens. The microstructure of untreated rubberwood cells were shown in Figure
4.9 and the microstructures of impregnated rubberwood cells were shown in Figures 4.10 and 4.11 for comparison.

Figure 4.9 Scanning electron microscopy of transverse section of empty rubberwood cells (5,000X).

Figure 4.10 Scanning electron microscopy of transverse section of MAN-treated rubberwood cells (3,500X).

Figure 4.11 Scanning electron microscopy of transverse section of SAN-treated rubberwood cells (3,500X).

The microstructure of untreated rubberwood cells in Figure 4.9 showed the empty void spaces in wood cells. The test pieces for the SEM in Figures 4.10 and 4.11 are shown that wood cells were filled to the same extent in all parts of this specimen and that the polymer is distributed uniformly throughout the treated specimen. This observation was agreed well with the work of Kasamchainanta on durianwood.[19] There was important consequence on improvement in dimensional stability and mechanical properties of natural wood.

4.10 Application of Rubberwood-Composites Containing Acrylonitrile

9 In this study, the rubberwood impregnated with MAN and SAN could be improved both physical and mechanical properties better than some hardwoods as shown in Table 4.9

Table 4.9 Comparison of the properties of MAN-rubberwood composites with other woods

Properties	Specific gravity	MOE	Flexure stress	Compression
	($\mathrm{g} / \mathrm{cm}^{3}$)	(MPa)	(MPa)	($\mathrm{N} / \mathrm{mm}^{2}$)
Makah-mong	1.26	25,886.9	266.8	5,676
Teng	1.44	38,692.2	325.5	5,721
Untreated rubberwood	1.18	19,172.8	222.7	5,248
MAN-rubberwood composites		76,715.7	460.1	8,521
SAN-rubberwood composites		37,373.3	386.2	9,473
PAN-rubberwood composites		25,241.4	258.6	5,711
PMMA-rubberwood composites	1.55	$27,993.5$	342.2	9,471
PS-rubberwood composites	1.57	27,606	328.7	9,138
Epoxy-rubberwood composites	0.86	9,271.0	154.0	7,200
UPR-durianwood composites	0.84	$11,790.0$	$\mathscr{1}^{180.0}$	7,590

* Average data from 5 specimens for each treatment (2 replicates)

From Table 4.9 it indicated apparently that the rubberwood impregnated with MAN could enhance the mechanical and physical properties better than other woods.

Therefore, treated rubberwood had good potential to be applied as construction material, furniture, household equipment, etc.

Figure 4.12 is an example of parquet that prepared from rubberwood impregnated with MAN.

Figure 4.12 Parquet production from MAN-rubberwood composites

CHAPTER 5

CONCLUSION

In this research, the wood-polymer composites that prepared from rubberwood impregnated with MAN and SAN could improve both physical and mechanical properties. The chosen technique is the impregnation under reduced pressure followed by resin curing using either a catalyst-accelerator or a catalyst-heat method to obtain rubberwood-composites that have good properties.

The catalyst-accelerator method is superior to the catalyst-heat method as it allows the in situ polymerization of the monomer to be initiated at room temperature, resulting in virtually no loss of monomer during the initiation process since heating is not required to decompose the peroxide initiators. This reduced the potential for damage to wood, for instance, not to change its color. In addition, the selected method depended on monomer used.

The optimum condition for MAN-rubberwood composites prepared using catalyst-accelerator method was as follows:

The optimum condition for SAN-rubberwood composites prepared using catalyst-heat method was as follows:

Styrene monomer	90	phr.
Acrylonitrile monomer	10	phr.
Methyl ethyl ketone peroxide	2	phr.
Divinyl benzene	0.1 phr.	
Evacuating time	2	hrs.
Soaking time	4	hrs.
Evacuating pressure	$5 \times 10^{-3} \mathrm{torr}$.	

The method of treating the rubberwood-composites to achieve the desired level of penetration may vary depending upon the kind of wood, grain orientation, soaking time, evacuating time, concentration of monomer mixture.

SAN and MAN-rubberwood composites had better dimensional stability, MOE, flexure stress, and compression parallel to grain than natural rubberwood and Makah-mong wood at 95% confidence significantly.

Resistance to fungi and termite of WPC was improved after testing compared with untreated rubberwood, Teng, and Makah-mong. The results showed that wood impregnated with monomer could resist termite and fungi attack remarkably in one month as well as Teng and Makah-mong. 19,2 ?

Expected benefits

The obtained rubberwood is very environmentally resistant and has good potential to be used for furniture, household appliances, toys, parquet, picture frame, and construction materials. This can expand rubberwood market and makes rubberwood more popular in wood industry. Additionally, this will increase export
value and greatly generate national income. Moreover, this research gives a guideline in development of rubberwood-polymer composites in the future.

Suggestion for Future Work

The manufacture of rubberwood-composites containing acrylonitrile appears to be technically feasible. It is recommended that further work should be done to improve in the impregnation process and enlarge scale for parquet production including toys and household appliances, etc.

สถาบันวิทยบริการ

จุฬาลงกรณ์มหาวิทยาลัย

References

1. Dansagoonpon, S. Rubber Clone for Wood Industry J. Para Rubber Bull. 2000; 20(2), 5-8.
2. Navawongs, B. Thai Para Rubber J. Para Rubber Bull. 1999; 19(2), 69-96.
3. Dansagoonpon, S.; Sinthurahat, S.; Prothomintra, S.; Chaipanit, P.; Krisnasap, S.; Ratanasermpong, S.; Phonngam, S.; Rangsikunpom, T. Rubber Growing Area of Thailand (Survey by Using Landsat 5-TM 1996 data) J. Para Rubber Bull. 1998; 18(1), 5-30
4. Lalithambika, J. More Thrust on Rubber Timber in ANRPC Countries Rubber Asia 1996; 10, 74-76.
5. Petchantorn, R. ลักษณะของต้นยางพาราและการขยายพันธุ์ Rubber 1971; 35-39.
6. Sethuraj, M.R.; Mathew, N.M. Natural Rubber, Biology, Cultivation and Technology, New York : Elsevier Science Publisher B.V., 1992; 542-547.
7. Stamm, A.J., Wood and Cellulose Science, USA : The Ronald Press Company 1966; 312-329.
8. Encyclopedia Britannica, 15 th ed., USA, 1981; 19, 919-923.
9. McGraw-Hill Encyclopedia of Science and Technology, 7th ed., USA : McGrawHill Book Company, 1992; 514-522.
10. Taniguchi, T.; Okamura, K. Wood-Polymer Composites Polymeric Materials Encyclopedia 1996; 8755.
11. Wegner, T.H. Wood Polymer-Impregnated. Encyclopedia of Polymer Science and Engineering New York : Johns Wiley \& Sons., (n.d); 17, 887-900.
12. Rowell, R.M.; Ellis, W.D. Determination of Dimensional Stabilization of Wood Using the Water-Soak Method Wood and Fiber. 1978; 10(2), 104-111.
13. Hazer, B.; Ors, Y.; Alma, H.M. Improvement of Wood Properties by Impregnation with Macromonomeric Initiators (Macroinimers). J. Appl. Polym. Sci. 1993; 47, 1097-1103.
14. Rozman, H.D.; Kumar, R.N.; Abusamah, A. Rubberwood-Polymer Composites Based on Diallyl Phthalate and Methyl-Methacrylate J. Appl. Polym. Sci. 1995; 57, 1291-1297.
15. Fuller, B.S.; Ellis, W.D.; Rowell, R.M. Hardened and Fire Retardant Wood Products, U.S. Patent 5,605,767 1997.
16. Rozman, H.D.; Kumar, R.N.; Abusamah, A.; Saad, M.J. Rubberwood-Polymer Composites Based on Glycidyl Methacrylate and Diallyl Phthalate J. Appl. Polym. Sci. 1998; 1221-1226.
17. Yalinkilic, M.K.; Takahashi, M.; Gezer, E.D.; Dwianto, W.; Nemoto, M. Enhancement of Biological and Physical Properties of Wood by Boric AcidVinyl Monomer Combination Treatment Holzforschung 1998; 52(6), 667672.
18. Rungvichaniwat, C. Para Rubberwood-Epoxy Resins Composites, Master's Thesis, Petrochemistry and Polymer Science, Faculty of Science, Chulalongkorn University, 1998
19. Kasamchainanta, B. Mechanical Property Improvement of Durianwood with Polyester Resin, Master's Thesis, Petrochemistry and Polymer Science, Faculty of Science, Chulalongkorn University, 1999.
20. Harzemsah, H.; Yildiz, U.C. Acetylation Plus Water-repellent Treatment of Wood in Slate Thickness Holzforschung 1990; 44, 245-248.
21. Subramanian, R.V.; Mendoza, J.A.; Garg, B.K. Wood Preservation by Organotin Polymers, Holzforschung, 1981; 35, 253-259.
22. Nugroho, N.; Ando, N. Development of Structural Composite Products Made from Bamboo I : Fundamental Properties of Bamboo Zephyr Board J. Wood Sci. 2000; 46, 68-74.

APPENDIX A

DATA OF TESTING PROPERTIES

จฬาลงกรณ์มหาวิทษาลัย 9

WPC	Temperature	Initiator content(\%)	Monomer ratio	Evacuating time (hrs.)	Soaking time(hrs.)
\wedge	R.T.	7hymerpor	70:30	0.5 Ancoluatal	oppertats 1.0
B	R.T.	Water atour 2\%	(2) $70: 30$	bemetas 0.5 Flexmer	-2.0 2.0
C	R.T.	(0) 2\%	70:30	(a) 0.5	2.0
D	R.T.	2%	$\square 70: 30$	0.5	3.0
E	R.T.	2\%	70:30	0.5	4.0
F	R.T.	2\%	70:30	1.0	2.0
G	R.T.	2\%	(3) 70.30	1.0	3.0
II	R.T.	2\%	70:30	1.0	4.0
I	R.T.	2\%	70:30	2.0	2.0
J	R.T.	3\%	1人, 70:30	2.0	3.0
K	R.T.	2\%	+15\%30 $70: 30$	2.0	4.0
1.	R.T.	2%	80:20	2.0	4.0
M	R.T.	2\%	90:10	2.0	4.0
N	R.T.	2%	70:30	$\square 3.0$	2.0
0	R.T.	2%	$70: 30$	3.0	3.0 -
P	R.T.	2\%	70:30 ए	3.0	4.0
Q	R.T.	2\%	70:30	2.0	3.0
R	R.T.	1%	(1) 70:30	2.0	$3.0 \sim$
S	R.T.	3\%	$\square \quad 70: 30$	(2) 2.0	4.0
T	R.T.		¢ 70:30 9	Q 2.0	4.0

9

Table A－I Testing propertics of natural rublerwood

Physical propertics					Mechanical properties		
Sample／piece	Specific gravity	Water absorption	Swelling Coefficient	Swelling in water	Modulus of elasticity	Flexure stress	compression
（unit）	（g／cm）	（\％）	（\％）	（\％）	（Mpa）	（Mpa）	（ N / mm ）
1．／1	1.26	82.17	12.75	1－3．70	7807	112	6000
1．／2	1.17	72.20	7.21	3.37	23821	282	5040
1．／3	1.1	81.89	11.76	6.25	13556	201	4940
1．／4	1.04	92.34	13.66	8.64	20129	200	5160
$1 . / 5$	1.29	63.44	9.58	8.33	20107	252	5100
\％	31%	78.14	10.92	806	$408,3,00$	$309,40$	$5148: 00$
2.11	1.24	51.77	8.57	7.67	20529	226	5140
$2 . / 2$	1.25	68.91	7.37	4.17	17540	184	5360
2.3	1.11	67.44	11.11	7.33	21737	263	5100
2．／4	1.16	65.74	8.87	－8．33	25260	272	5300
2.15	1.19	67.92	10.93	8.33	－ 21242	235	5340
	\%ig		y_{3}	䉼衫	$82 \mathrm{k}, 6 \mathrm{~g}$	$836,0$	

四

Table A-2 Testing properties of Teng wood

Physical properties					Mechanical properties		
Sample / piece	Specilic gravity	Water absorption	Swelling Coeflicient	Swelling in water	Modulus of clasticity	Flexure stress	compression
(unit)	(g / cm)	(\%)	(\%)	(\%)	(Mpa)	(Mpa)	(N / mm)
1.11	1.42	27.68	6.40	(2) 2.39	35144	320	6260
$1 . / 2$	1.46	27.99	13.11	9.55	28403	288	5060
1./3	1.36	28.72	2.90	0.51	31311	299	5540
$1 . / 4$	1.5	28.46	7.30	3.06	72933	338	5110
1.15	1.52	28.32	8.51	4.75	30082	319	5900

จุฬาลงกรณ์มหาวิทยาลัย

Table A－3 Testing properties of Makah－mong wood

Physical propertics					Mechanical properties		
Sample／piece	Specific gravity	Water absorption	Swelling Coeflicient	Swelling in water	Modulus of elasticity	Flexure stress	compression
（unit）	$(\mathrm{g} / \mathrm{cm})$	（\％）	（\％）	（\％）	（Mpa）	（Mpa）	（ N / mm ）
1．1．1 5	1.34	47.86	1.04	10.74	27375	250	5440
1／22 1.12	1.33	51.52	10.00	9.67	22324	250	5860
（－3 1.13	1.22	48.39	12.32	12.46	28399	274	5540
1／4．14	1.15	52.57	6.31	6.67	22558	270	6140
1.15	1.29	52.87	0.99	11.90	27577	292	5370
					（engoisor		

2.11	1.12	53.38	2.88	5.39	32713	312	5840
2．／2	1.24	51.19	6.89	8.17	19825	246	5320
2.13	1．29	50.63	7.65	7.14	27375	250	5660
2.14	1.31	51.95	4.36	9.25	22324	250	5560
2.15	1.28	50.68	5.67	8.48	28399	274	6030
		\＃\＃\＃	¢，\％\％		2912\％ 20	200．40 a a	\＄88．2．0\％

\％ayanis	【这恸				3s880．90\％	300．80	\＄67\％\％0\％
\}							

Table A-4 Testing Properties of Rubberwood-MAN (80:20) Composites. $($ Temp $=70)$

Dimensional Stability						Mechanical Properties				
Sample / piece mint	Polymer Loading. \%	Moisture Content $\%$	Specific Gravity (g./cm.)	Water Ahsorption $\%$	Swelling in water	Polymer Loading \%	Modulus of Elasticity MPa	Flexure stress MPa	Polymer Loading $\%$	Compressive Strength $\mathrm{N} / \mathrm{mm} 2$
1./1	5.53	6.91	0.97	91.7	4.80	6.20	30114	284	4.31	9210
$1 . / 2$	5.12	6.69	1.06	76.78	1.92	7.16	24360	291	4.21	8440
1.13	5.49	7.17	0.98	85.1	5.39	8.14	17212	198	3.70	6580
1.14	4.93	5.83	1.03	88.03) 1.54	5.17	24790	288	4.30	7780
1.15	7.00	5.35	1.03	86.92	0.24	6.49	31226	267	4.94	5790
		\%		§\%				265800\%	K. 4 29\%	

2.11	5.65	7.51	0.98	82.14	2.55	6.26	27867	281	5.05	7200
2.12	5.72	6.94	1.04	86.27	582.89	8.26	29204	284	6.22	5920
2.13	5.98	6.22	1.01	85.96	2.95	4.98	27268	263	5.42	7380
2.14	6.28	5.93	0.97	84.02	2.04	7.03	29580	295	5.82	6840
2.15	6.97	6.26	1.02	83.59	1.56	6.42	40802	392	4.23	5020
¢ \% \% \% \%		¢	\% 0 \% \% \%			\%.59	30944220 20	303300	5\%35	647200

(\%arerg	58\%\%	6.48	\%01	85:05		6.61	28242330	28430	488	7016:00
Sı.	936.	0.33	0.01	ऑ\%...0.93	0:13.	0.03	382106	26.45	075	76933

จุฬาลงกรณมหาวทยาลย

T＇able A－5 Testing Properties of Rubberwocd－SAN（80：20）Composites．（Temp＝70）

Dimensional Stability						Mechanical Properties				
Sample／piece mit	Polymer Loading $\%$	Masture Content $\%$	Specific Gravity （g．／cm．）	Water Alsorption $\%$	Swelling in water $\%$	Polymer Loading $\%$	Modulus of Elasticity MPa	Flexure stress MPa	Polymer Loading $\%$	Compressive Strength $\mathrm{N} / \mathrm{mm} 2$
1．／1	35.48	6.45	1.34	47.02	4.98	41.73	19892	297	42.93	7060
1．／2	34.60	8.02	1.45	42.63	1.65	40.89	43474	387	41.12	9150
1．／3	33.19	10.92	1.32	43.22	4.53	40.90	25192	283	45.45	9150
$1 . / 4$	36.72	7.81	1.38	41.43	3.73	40.78	25199	336	44.69	7300
1.15	35.82	9.70	1.49	36.54	5.70	41.96	43906	366	41.46	8920

2．／1	33.21	7.55	1.52	32.29	5.20	46.45	27783	337	45.45	9150
$2 . / 2$	28.27	6.33	1.34	49.34	－ 264.71	46.82	30228	368	40.18	9940
2.13	36.76	8.30	1.49	32.95	3.41	43.88	26302	306	42.65	8900
2.14	37.60	6.61	1.43	2． 42.94	2.71	47.90	35401	409	42.94	7210
2.15	36.25	9.17	1.40	41.90	2.87	44.87	19585	293	41.20	9980
	§3 \%	\%	Hink	39.88		45.98		\％ing $34 \% .6$ ， 60% \％		

Avers．	34.79	8.09	1.42	\％ 41.03	\％395．．．	W． 43.62	29696：20	338.20	42.81	8676．00
\＃． SO_{1}	0.53	0770	003	\＃162		【． \％$^{3.35}$	【． 259706	6：22．	0．46\％	50912．

Table A-6 Testing Properties of Rubberwood - SAN (70:30) Composites. $($ Temp $=70)$

Dimensional Stability						Mechanical Properties				
Sample / piece unit	Polymer Loading $\%$	Moisture Contert \%	Specifie Cravity ($\mathrm{g}^{\prime} \mathrm{cm}$.)	Water Absorption $\%$	Swelling in water $\%$	Polymer Loading \%	Modulus of Elasticity MPa	Flexure stress MPa	Polymer Loading \%	Compressive Strength $\mathrm{N} / \mathrm{mm} 2$
$1 . / 1$	34.45	8.77	1.41	40.13	11.11	44.78	29697	298	44.81	8240
$1 . / 2$	35.71	9.12	1.28	39.08	7.32	40.32	29096	360	44.02	9220
$1 . / 3$	39.74	8.69	1.35	40.63	12.12	45.89	31583	373	43.92	8740
$1 . / 4$	34.84	8.04	1.32	46.44	6.97	47.21	42672	428	46.24	8500
$1 . / 5$	55.90	8.72	1.35	45.57	6.87	45.24	27145	359	43.78	7580
								K68.60\%**		

ATen¢\%	39.29	8.69	135	423112\%	8.26\%	4444	31387880	350880	44.00	8575.00
S11.	1.19	0.03	0.02	0.08.	\% 087	\%\%.35	\% 920.37	18.10	0.79	168.29

Table A－7 Testing Properties of Rubberwood－MAN（90：10）Composites．（ $\mathrm{Temp}=70$ ）

Dimensional Stability						Mechanical Properties				
Sample／piece unit	Polymer Loading \％	Mosisture Content \％	Specific Ciravity （g．／cm．）	Water Absorption $\%$	Swelling in water \％	Polymer I，oading \％	Modulus of Flasticity MIPa	Flexure stress MPa	Polymer I，oading $\%$	Compressive Strength $N / n m i 2$
1.11	8.37	7.17	1.16	65.59	2.66	9.97	30979	332	7.31	9000
$1 . / 2$	18.40	8.02	1.04	75.94	2.87	8.34	27835	300	8.99	8120
$1 . / 3$	9.22	6.91	h05	79.18	1.74	8.28	38868	356	8.05	7620
1.14	9.12	7.30	1.02	72.09	6.17	8.24	29204	335	7.43	9430
1.15	7.59	7.59	1.09	70.59	1.98	11.32	36006	382	7.41	8720
				\％\％\％68\％【，				34，		857\％800\％

2.1	11.32	8.02	1.10	71.32	± 2.33	9.88	28716	323	10.34	8650
$2 . / 2$	6.90	9.96	0.98	73.71	2.89	11.57	29865	320	6.86	8420
$2 . / 3$	5.56	9.92	0.98	86.92	3.56	9.97	40643	294	9.57	$8 € 00$
2.14	6.52	10.00	1.20	62.88	3.09	14.65	35133	342	8.61	7750
2.15	6.17	9.88	1.15	57.68	3.12	$12.51=$	29110	294	6.57	8620
									\％\％\％8\％， 3 ，	W\％\％\％ 640800 \％

Avers	8．92	848	408\％	7159	3：04	\＄10．47	32635.90	32780	8.11	8493．00
SD．	230	【̌\％饣53	0.01	\％ 5 54	0：06	176	8132	$18: 67$	0，39．	12021

Table A－8 Testing Properties of Rubberwood－MAN（70：30）Composites．（Temp＝70）

Dimensional Stability						Mechanical Properties				
Sample／piece unit	Polymer Loading $\%$	Moisture Content \%	Specific Gravity （g．／cm．）	Water Absorption $\%$	Swelling in water \％	Polymer Loading $\%$	Modulus of Elasticity MPa	Flexure stress MPa	Polymer Loading \％	Compressive Strength $N / m m 2$
$1 . / 1$	11.33	8.53	0.97	82.42	1.85	6.72	126313	498	6.08	8160
$1 . / 2$	6.36	8.47	1.01	94.42	0.76	7.85	60455	323	5.88	7540
$1 . / 3$	8.33	7.50	1.13	80.00	2.90	15.52	124364	592	5.38	6400
1.14	5.77	8.46	1.07	80.00	0.72	6.20	136171	453	5.91	6780
1.15	6.99	8.46	1.15	74.57	4.07	4.64	98986	504	8.65	6460
	Nisisisisis	8.28						焀 4.00%		

2.11	8.59	8.68	1.10	80.02	1.98	6.51	90997	416	5.82	6970
2.12	7.62	8.45	1.02	81.84	1－1．99	6.08	122570	525	5.64	6990
2．／3	7.28	8.67	1.06	82.69	（－） 2.09	8.81	78345	398	5.91	6600
2.14	7.17	8.92	1.04	81.46	2.12	6.78	140824	479	7.18	9090
2.15	6.49	8.00	1.11	80.87	1.94	5.43	47752	313	6.15	7030
		88， 5%	\％i\％k			そॉ．．6\％\％			6．${ }_{\text {6．}}^{\text {\％}}$	7336．00 縎

Avers．	\％59\％	\％ 0 ¢4	\07．	81\％83．	2.04	7.45	102677770	450.10	6.26	720200
Sif	ऑ \％ 023	0．18	【． 0	0.64	0.03	1.04	9305.67	33.80	0.17	189.50

Table A-9 Testing Properties of Rubberwood - SAN ($90: 10$) Composites. ($\mathrm{Temp}=$ R.T.)

Dimensional Stability						Mechanical Properties				
Sample / piece unit	Polymer Loading \%	Moisture Content $\%$	Specific Gravity (g./cm.)	Water Absorption $\%$	Swelling in water \%	Polymer Loading	Modulus of Elasticity MPa	Flexure stress MPa	Polymer Loading \%	Compressive Strength $\mathrm{N} / \mathrm{mm} \mathrm{m}^{2}$
1./1	63.51	9.95	1.32	39.13	6.10	43.79	22914	270	50.00	8500
$1 . / 2$	43.71	9.79	1.55	28.47	6.10	46.96	39951	359	49.73	9780
$1 . / 3$	41.63	10.20	1.42	37.46	3.75	56.23	34500	363	44.02	7470
$1 . / 4$	65.73	9.86	1.42	26.91	7.50	44.93	38943	352	52.06	9780
1.15	43.64	10.17	1.36	41.89	5.00	41.02	29838	305	49.22	8540
		(\%)						§ン9.80\%		\%88, 400

2./1	50.23	9.21	1.43	32.86	- 5.06	46.41	40984	413	53.68	9790
2.12	51.17	9.36	1.44	33.69	- 5.87	45.23	35002	409	55.74	9160
2./3	49.85	9.78	1.51	34.71	6.01	39.18	34358	322	52.43	7700
2.14	48.76	9.94	1.41	35.26	5.95	44.74	32269	383	49.47	8710
$2 . / 5$	50.41	9.87	1.38	36.23	5.98	50.54	41253	302	51.23	10050
					(enty	そ\% 5 \% 22	36\%\%\%20	\$09888\%		908\%20\%

Avers:	50:86	981	442.	3466	573	45.90	35001 20	347.80	50.76	8948:00
S@ॉ.	\%	O26\%	0.01	016.	006	0.97	2505999	25.46	2.48	189.50\%

Dimensional Stability						Mechanical Properties				
Simple / piece unit	Polymer Loading $\%$	Moisture Content $\%$	Specific Gravity (g./em.)	Water Alssorption $\%$	Swelling in water $\%$	Polymer Loading $\%$	Modulus of Elasticity MPa	Flexure stress MPa	Polymer Loading \%	Compressive Strength $\mathrm{N} / \mathrm{mm} 2$
1./1	36.21	9.31	1.62	26.63	11.25	49.49	40969	411	48.69	9470
$1 . / 2$	39.08	9.20	1.47	36.72	1.90	- 45.28	45958	388	46.70	7950
1./3	60.87	9.18	1.65	22.53	4.26	51.14	38867	396	52.91	8620
$1 . / 4$	36.82	9.03	1.63	29.58	9.97	48.68	55904	504	41.06	10090
1.15	44.23	9.13	1.47	32.95	7.06	50.06	43752	389	41.63	10010
2.11	50.21	9.36	1.56	28.14	9.64	50.28	22399	363	55.33	8950
$2 . / 2$	50.25	8.37	1.59	28.69	8.86	58.78	25298	314	50.25	10010
2./3	50.19	7.60	1.65	32.63	-9.33	47.31	45070	426	50.24	10090
2./4	46.09	7.82	1.58	35.54	18. 6.22	- 45.16	31970	312	53.40	10000
2./5	51.07	9.01	1.47	35.10	8.99	56.52	23546	359	50.55	9540
4 U	$49,5 \%$	$8,4$	\#	32.02	8.63.	$5=6$	29656.60	納 854.8 8,		

Table A-11 Testing Properties of Rubberwood - SAN (80:20) Composites. (Temp = R.T.)

Dimensional Stability						Mechanical Properties				
Sample / piece unit	Polymer I,oading \%	Moisture Content $\%$	Specific (iravity (g./cm.)	Water Absorption $\%$	Swelling in water \%	Polymer Inading \%	Modulus of Elasticity MP:a	Flexure stress MPa	Polymer loading \%	Compressive Strength $\mathrm{N} / \mathrm{mm} 2$
1./1	55.45	10.91	132	36.84	4.60	47.39	24741	295	42.05	7800
$1 . / 2$	51.89	8.02	1.33	38.82	0.00	41.69	39378	393	37.97	7120
$1 . / 3$	42.63	9.96	1,43	34.92	6.74	41.93	40134	449	4 4.99	7550
$1 . / 4$	40.87	9.52	1.48	32.39	5.88	46.25	49121	465	52.88	9340
1./5	51.93	9.44	1.60	30.51	5.19	45.96	25953	325	35.00	7320

Avers.	48.42	893	\% ${ }^{\text {¢ }}$	33.56	5448.	48:98\%	3078500	356.60	48.46	8588.00\%
S\#.	0.19\%	0.91	0.03	4.64	\/42	6.13	\%184.7\%	40.73	9	107763

Table A－12 Testing Properties of Rubberwood－SAN（70：30）Composites．（Temp＝R．T．）

Dimensional Stability						Mechanical Properties				
Sample／piece unit	Polymer Loading $\%$	Moisture Content $\%$	Specific Gravity （g．$/ \mathrm{cm}$ ．）	Water Absorption	Swelling in water $\%$	Polymer Loading $\%$	Modulus of Elasticity MPa	Flexure stress MPa	Polymer Loading $\%$	Compressive Strength $\mathrm{N} / \mathrm{mm} 2$
1．／1	53.31	9.50	1.22	35.60	4.89	31.68	31764	395	36.79	7580
$1 . / 2$	60.87	9.18	1.53	35.58	4.17	36.89	30158	362	43.30	7600
1．／3	47.64	9.06	1.50	42.64	4.41	34.42	22527	306	40.72	9040
$1 . / 4$	63.56	8.44	1.43	32.27	4.43	36.15	34268	384	35.68	7530
1.15	68.58	9.73	1.34	50.16	4.21	31.01	27269	342	45.55	9260
\qquad	粦为									

2．／1	41.22	9.89	1.45	24.41	4.27	37.51	37150	431	41.31	8340
2．／2	42.50	6.67	1.50	40.81	4.12	33.40	42825	419	47.69	9240
$2 . / 3$	39.91 ．	7.73	1.32	36.84	2.94	39.87	31508	353	45.60	8880
2．／4	43.21	8.23	1.49	36.20	6.41	37.03	23737	301	36.67	10020
． 2.15	41.02	7.81	1.32	39.08	3.25	36.76	27409	343	36.41	8430
4．8．8．$\%$										

\＃Avers\％	50／8	\％．6\％	\％41．	37，36	年4．311	35．47．	30861150	363.60	4097	8592.00
\％． S D	\％2．8	\％${ }^{\text {\％}}$	0．01	2．67\％		\％ 2004	2353.68%	8.20	0．80\％	551154

จุ๙าลงกรณ์มหาวิทยาลย

Table A-13 Testing Properties of Rubberwood - MAN ($90: 10$) Composites. (Temp = R.T.)

: Dimensional Stability						Mechanical Properties				
Sample/piece unit	Polymer Loading $\%$	Moisture Content $\%$	Specific Gravity (g./cm.)	Water Absorption $\%$	Swelling in water $\%$	Polymer Loading $\%$	Modulus of Elasticity MPa	Flexure stress MPa	Polymer Loading \%	Compressive Strength $\mathrm{N} / \mathrm{mm} 2$
1.11	38.89	9.88	1.25	46.15	5.24	49.90	29820	337	34.54	8180
$1 . / 2$	45.65	10.58	1.43	25.37	5.68	35.35	32314	277	41.00	9240
$1 . / 3$	59.83	10.05	1.42	32.79	5.71	32.26	35384	354	39.52	8730
$1 . / 4$	48.97	11.00	1.33	27.35	6.02	49.85	322893	369	46.38	10050
1.15	40.34	9.16	1.45	29.73	6.27	46.58	41537	370	40.87	10070
			188							

2.11	40.71	10.66	1.43	33.48	5.04	42.58	36595	409	41.09	9200
2.12	45.91	11.12	1.42	34.29	18.89	58.93	30108	390	42.21	9030
2.13	46.26	10.27	1.42	31.64	5.23	37.64	33636	321	34.03	9290
2.14	42.44	9.72	1.38	32.03	5.98	34.19	1 31270	342	33.00	9520
215	43.68	10.28	1.31	31.18	5.67	38.07	36001	387	39.30	8920
	$\text { 4W. } 0 \text { Og }$									9g9200

Dimensional Stability						Mechanical Properties				
Sample / piese unit	Polymer Loading $\%$	Moisture Content \%	Specific Gravity (g./cm.)	Water Absorption \%	Swelling in water \%	Polymer Loading \%	Modulus of Elasticity MPa	Flexure stress MPa	Polymer Loading \%	Compressive Strength $\mathrm{N} / \mathrm{mm} \mathrm{m}^{2}$
$1 . / 1$	42.69	9.88	1.55	36.57	5.06	37.61	39238	472	41.53	7780
$1 . / 2$	35.68	9.13	1.45	41.59	3.85	42.27	35810	421	43.98	9180
1.13 /	30.16	9.13	1.32	48.78	5.06	49.20	31463	384	46.80	9060
1.14	22.53	9.09	1.30	52.26	3.75	34.66	25541	352	50.72	10000
1.15	34.88	9.25	1.56	37.20	7.41	35.91	35516	397	44.97	7220
	K朋县\%							§ 0.5 20		

(2,

Table A－15 Testing Properties of Rubberwood－MAN（70：30）Composites．（Temp＝R．T．）

Dimensional Stability						Mechanical Properties				
Sample／piece unit	Polymer Loading \％	Moisture Content \%	Specific Gravity （g．$/ \mathrm{cm}$. ）	Water Absorption \％	Swelling in water \％	Polymer Loading \％	Modulus of Elasticity MIPa	Flexure stress MI＇a	Polymer Loading \％	Compressive Strength $\mathrm{N} / \mathrm{mm} 2$
1．／1	32.43	9.91	1.02	69.23	2.35	39.11	26454	372	31.22	8180
1.12	31.58	8.65	1,19	60.40	4.92	45.62	38049	371	31.22	7140
1．／3	56.28	9.77	1.08	62.50	4.37	35.21	33343	355	35.96	9280
$1 . / 4$	47.87	9.95	1.12	60.29	3.29	36.47	33537	318	38.00	7800
1．／5	30.98	9.41	1.14	67.48	3.66	47.74	35232	398	36.32	7640
Quefy	§39．63：	9．5\％	\％\％\％			40．83\％．	\％ 33323 U00\％	36280\％	34．54	808800
2.11	48.54	8.79	1.11	40.56	－ 3.19	33.09	43907	352	37.61	9320
2.12	38.01	9.05	1.11	53.11	2.08	37.91	34958	345	45.95	8500
2．／3	41.38	8.81	1.09	33.60	2.04	43.08	36190	353	40.56	6500
2.14	43.33	9.63	1.13	33.07	2.04	51.75	26349	383	39.49	8070
2.15	47.41	9.05	1.15	42.40	2.25	38.35	27869	301	36.02	10020
		\％ $\begin{aligned} & \text { O．} 0 \% \%\end{aligned}$						345．80\％	\＄993\％为	
亿yefg\％	4\％${ }^{\text {\％}}$	930\％\％	あね1				\％ 335888.80%	354.80	37\％ 24	824500
		0．33								

Table A－16 Testing Properties of Rubberwood－PAN Composites．（Temp＝R．T．）

Dimensional Stability						Mechanical Properties				
Sample ；piece unit	Polymer Loading \％	Moisture Content $\%$	Specific Gravity （g．／cm．）	Water Alasorption $\%$ \qquad	Swelling in water \％	Polymer Loading $\%$	Modulus of Elasticity MPa	Flexure stress MPa	Polynier Loading $\%$	Compressive Strength $\mathrm{N} / \mathrm{mm} 2$
1.1	9.38	10.71	0.94	81.63	－ 5.52	25.25	29916	270	9.05	5970
$1 . / 2$	9.78	11.56	0.94	80.56	5.91	15.54	27042	288	8.46	5810
1．／3	9.66	12.18	1.00	75.09	6.14	13.12	24875	251	7.85	4940
$1 . / 4$	8.16	10.61	1.04	68.68	7.39	17.32	27076	259	7.94	5820
$1 . / 5$	7.38	11.07	1.11	61.17	7.23	26.91	29736	293	11.05	6940
		3123	\#noe					\％ \boldsymbol{R}_{272}^{2} 动 20%		
2．／1	11.24	11.48	1.02	75.02	－13．68	± 12.09	23339	243	7.77	4580
$2 . / 2$	9.95	10.95	1.05	78.35	－ 3.77	13.86	28975	260	7.94	5780
2．／3	9.27	11.02	1.03	77.61	－ 5.81	－ 11.03	19765	239	8.19	4570
2．／4	9.11	10.39	0.98	70.32	4.02	10.96	16978	235	9.07	5960
2．／5	9.06	10.41	0.94	68.78	5.03	12.78	24712	248	10.96	6740
			\%							

\％Avers．	930	1104		3.72						
									883	5711100
Sn⿳⺈冂䒑夫	\％60\％	027	0.00	0．42\％	140	5．29\％	3518.00	19.23	0.06	261．63

[^2]Table A-17 Testing Properties of Rubberwood - PMMA Composites. (R.T.)

* Dimensional Stability						Mechanical Properties				
S:mple / piece unit	Polymer 1,oading \%	Moisture Content $\%$	Specific (iravity $\text { (} \mathrm{g} . / \mathrm{cm} .)$	Water Absorption \%	Swelling in water $\%$	Polymer laading \%	Moduhus of Flasticity MPa	Filexure stress MPa	Polymer Loading $\%$	Compressive Strength $\mathrm{N} / \mathrm{mm} 2$
1./1	38.55	9.64	1.43	44.06	4.17	31.33	42714	, 487	46.43	10060
$1 . / 2$	44.14	6.75	1.52	45.31	3.38	62.78	30959	326	36.36	8910
$1 . / 3$	46.84	10.13	1.57	41.38	3.19	41.54	26752	334	50.00	9530
$1 . / 4$	40.16	9.45	1.49	42.13	4.21	38.70	28681	348	40.00	10160
$1 . / 5$	40.00	9.80	1.67	17.09	4.73	59.36	26550	350	39.67	8380

Asers\%	40.48	900	\% 55	\% 37.92.	4.06.	4121	2799350.	342.20	45.97	947100
Sb\%	206	0.22	002.	0	0.17\%	783\%	443738	37.90	492.	89.10

Table A－18 Testing Properties of Rubberwood－PS Composites．（Temp＝R．T $)$

Dimensional Stability						Mechanical Properties				
Sample／piece unit	Polymer Loading \％	Moisture Content \％	Specific Gravity （g．$/ \mathrm{cm}$ ．）	Water Alsorption \％	Swelling in water $\%$	Polymer Loading \％	Modulus of Elasticity MP：a	Flexure stress MPa	Polymer Loading \％	Compressive Strength $\mathrm{N} /$ num 2
1．／1	36.02	9.20	1.51	35.49	1.31	43.85	27533	356	34．7．4	10080
$1 . / 2$	48.35	9.92	1.57	33.15	2.22	51.35	23344	324	42.72	10100
$1 . / 3$	34.62	10.77	1.49	39.43	4.12	43.36	24764	301	43.35	8160
1．／4	36.47	10.15	1.61	32.23	6.58	37.26	29462	278	50.00	7520
1.15	51.21	10.63	1.61	30.35	5.82	53.10	27328	352	36.74	10100
		的納的				KH\％，		\＄2\％		

2.11	42.86	9.52	1.73	27.69	9.30	47.61	28927	344	64.48	9180
2.12	43.91	8.26	1.61	33.53	5.53	41.20	30092	360	37.88	8890
2．13	34.27	8.87	1.42	40.24	［1．4．14	46.30	30285	325	52.25	8900
2.14	34.21	9.21	1.59	39.54	4.28	47.11	29146	325	37.31	8440
2.15	47.85	10.05	1.55	38.19	9.30	44.43	25188	322	40.98	10010
	40．6\％\％		§			4．33\％	\％ 8 \％ 2% \％\％		40．58	

APPENDIX B

Graphs of Testing Results

สถาบนวิทยบริการ
จุฬาลงกรณ์มหาวิทยาลัย
20.
34.

2m:

238

2003

Elastic hod Mex.Str. Fler.Str. Deflect. (lest Mo. 4)

$$
\text { Thick. } 4.08 \text { as } \quad \mathrm{Me} \mathrm{Mex} . \mathrm{Pa} \text { Con. } \mathrm{PPa} \text { great }=a
$$

$$
\text { vidh } 23.65: 3818 \quad 121 \quad 3.21
$$

Figure B-1 Graph of Flexural Strengtin Testing of WPC Prepared by
Varying Soaking times, 3 hrs. (up) and 4 hrs. (down)

Figure B-2 Graph of Compressive Strength Testing of WPC prepared by
Varying Souking times, 4 hrs. (up) and 3 irs. (down)

Figure B-4 Graph of Compressive Strength Testing of WPC prepared by Varring Initiator contents. 3 phr. (up) and 2 phr . (down)

Elastic ind fler.Str. Flex.Str. Beflect. I iest tho. 7 I

242

Figure B-6 Graph of Compressive Strength (up) and Flexural Strength (down) Testing of Rubberwood-MAIN (80:20) Composites

DATA OF ANALYSIS OF VARIANCE

	-	N	Mican	Std. Devistum	Stal Efrou	95\%. Confidence Interval for Miean	
						Lower Beund	Upper Brund
SG	17030.30	10	1.1140	4.SSIE-02	1.439E-02	1.0814	$11+60$
	170.070	10	1.0660	S.719E-02	1.809E-02	1.0251	1.1009
	150:030	10	1.430	.1017	3.215E-02	1.3703	1.5157
	1802070	10	1.0090	3.213E-02	1.016E-02	. 9860	1.0120
	1901030	10	$1.38+0$	$6.569 \mathrm{E}-02$	2.077E-02	1.3370	1.4310
	1901070	10	1.0770	7.617E-02	2.400E-02	1.022s	1.131)
	2703030	10	1.4100	.1034	3.269E-02	1.3360	1.4340
	2703070	10	1.3530	4.057E-02	1.283E-02	1.3240	1.3820
	2802030	10	1.4550	$8.580 \mathrm{E}-02$	2.713E-02	1.3936	1.5164
	2802070	10	1.4160	$7.106 E-02$	2.247E-02	1.3652	1.4668
	2901030	10	1.4240	6.720E-02	2.125E-02	1.3759	1.4721
	2901070	10	1.5690	7.415E-02	2.345E-02	1.5160	1.6220
	7000000	10	1.1810	$8.062 \mathrm{E}-02$	2.549E-02	1.1233	1.2387
	8000000	10	1.4420	S.0SIE-02	$1.597 \mathrm{E}-02$	1.4059	1.4881
	9000000	10	1.2570	7,424E-02	$2.348 \mathrm{E}-02$	1.2039	1.3101
	Total	150	1.3067	.1823	$1.489 \mathrm{E}-02$	1.2772	1.3361
WA	1703030	10	52.2640	13.7700	4.3544	42.4136	62.1144
	1703070	10	81.8290	-4.9815	1.5753	78.2655	85.3925
	1802030	10	43.4590	1.4.7825	1.5124	40.0378	46.8802
	1802070	10	85.0510	3.9296	1.2426	82.2400	87.8620
	1901030	10	32.4010	5.5599	1.7582	28.4237	36.3783
	1901070	10	71.5900	- 8.3180	2.6304	65.6396	77.5404
	2703030	10	37.3590	(1d) 6.7336	2.1294	32.5421	42.1759
	2703070	10	42.3130	2.5438	. 8044	40.4933	44.1327
	2802030	10	33.5560	2.8434	. 8992	31.5219	35.5901
	2802070	10	41.0260	5.5647	17507	37.0.53	45.0067
	2901030	10	34.6610	4.5397	1.4356	31.4135	37.9085
	2901070	10	30.8510	4.5061	1.4250	27.6275	34.0745
	7000000	10	71.3820	11.4498	3.6207	63.1913	79.5727
	8000000	10	28.1940	3.2:	0.1069	27.9521	28.4359
	9000000	0	51.1040	1.8147	$\square .5739$	49.8058	52.4022
	Total	150	49.1360	19.5883	1.5994	45.9756	52.2964

		N	Mean	Sid. Devistion	Sta Emin	95\% Confidence Intervat for Mean	
						Lower Bound	Upper Bound
sw	170.090	10	3.0190	1.04 .10	3298	2.2729	1.7651
	1703070	10	2.0420	9605	3037	1.3549	:7291
	18020.30	10	5.0120	.9\%s	3151	+. 2991	5.7249
	1802070	10	2.6880	1.5947	Sor 3	1.5472	3.8288
	1901030	10	5.6730	. 3950	1249	5.3905	s.95ss
	1901070	10	3.0110	1.2288	3886	2.1620	3.9200
	2703030	10	4.3100	.9332	2951	3.6424	4.9776
	: 203070	IC	8.2040	1.8275	. 5779	6.9567	9.5713
	2802030	10	5.4840	2.3614	. 7468	3.9977	7.1733
	2802070	10	3.9490	1.2881	. 4073	3.0275	4.870 S
	2901030	10	5.7320	3728	.00\%	5.0361	6.4279
	2901070	10	7.7580	2.8957	. 9157	5.6865	9.8295
	7000000	10	6.6120	2.0999	. $66+1$	5.1098	8.1142
	8000000	10	4.1180	2.3686	. 7490	2.4236	5.8124
	9000000	10	8.9870	2.2803	. 7211	7.3558	10.6182
	Toal	150	\$.1126	2.6022	2125	4.6928	5.5324
MOE	1703030	10	33588.8000	1) 5515.6241	174.1935	$296+3.1002$	37534.4398
	1703070	10	102677.7000	32563.2795	10297.4131	79383.3331	125972.0669
	1802030	10	76715.7000	46421.6384	14679.8110	43507.6804	109923.7396
	1802070	10	28242.3000	d715987.1562	1893.3050	23959.3465	32525.2535
	1901030	16	62955.8000	4. ${ }^{1} 91401.0028$	28903.5349	-2428.5386	128340.1386
	1901070	10	32635.9000	4 4637.9255	1466.6408	29318.1280	35953.6720
	2703030	10	30861.5000	6155.8499	$19+5.6507$	26457.3703	35265.1297
	2703070	10	31387.8000	4913.7377	1553.2603	27872.7238	34902.8762
	2802030	10	30785.0000	(i) 9066.1431	2866.9662	24299.4719	37270.5281
	2802070	10	29696.2000	8683.4837	2745.9586	23,484.4100	35907.9900
	2901030	10	35001.2000	5733.0015	1812.9352	30900.0556	39102.3444
	29019:0	10.	37373.2000	11168.4254	3531.7662	29383.8898	45362.7102
	7000000	10	19172.8000	5126.6048	1621.1748	15505.4478	22840.1522
	8000000	10	38692.2000	13322.1058	4212.8198	29162.1396	48222.2604
	9000000		25886.9000	3940.0927	1245.967	23068.3275	28705.4725
	Toal	150	41044.8733	34819.2119	2842.9767	35427.1138	45662.6328

Page:

		N	Mican	Std. Devistion	Std. Errer	95\% Confidence Interval for Miean	
						Lower Reund	Upper Bound
1	1702020	10	354.8000	29.0126	9.1746	3140456	375.5544
	12020:0	10	4501000	88.5795	28.9113	386.7341	513.4659
	180:0:0	10	\$60. 1000	68.4259	21.6382	411.1511	509.0489
	180:070	10	284.3000	47.1217	14.9012	250.5912	318.0088
	1901030	10	355.6000	38.4656	12.1639	328.08 .4	383.1166
	19010:0	10	327.8000	28.1772	8.9104	307.6432	347.9568
	2703030	10	363.6000	43.7879	13.8469	332.2760	394.9240
	270:070	10	350.8000	37.5494	11.37:	323.068	377.6612
	280:010	10	356.6000	59.7145	18.8834	313.8828	399.3172
	280:070	10	338.2000	43.3149	13.6974	307.214	369.1856
	2901030	10	347.8000	- 47.4431	15.0028	313.8613	381.7387
	2901070	10	386.2000	55.9559	17.6948	346.1715	426.2285
	7000000	10	222.7000	50.9140	16.1004	186.2783	259.1217
	8000000	10	325.5000	27.419	8.6708	305.8852	345.1148
	9000000	10	266.8000	21.9939	6.9551	251.066;	282.5335
	Toual	150	346.0600	75.2817	6.1467	333.9140	358.2060
COMPRES	1703030	10	8245.0000	1070.1739	338.4187	7479.4437	9010.5563
	170:0:0	10	7202.0000	847.1626	267.8963	6595.9764	7808.0236
	180:030	10	8521.0000	810.0542	256.1616	7941.5221	9100.4779
	180.070	10	7016.0000	-1269.3323	401.3981	6107.974	7924.0256
	19010:0	10	9223.0000	572.9854	181.1939	8813.1110	9632.8890
	1901070	10	8493.0000	\$47.4598	173.1220	8101.3709	8884.6291
	2703030	10	8592.0000	844.2459	266.9740	7988.0629	9195.9371
	2703070	10	8575.0000	658.2004	208.1412	8104.1518	9045.8482
	2802030	10	8588.0000	1102.7420	348.7177	7799.1459	9376.8541
	280:070	10	8676.0000	1092.1864	345.3797	7894.6969	9457.3031
	2901030	10	8948.0000	913.9998	289.0321	8294.1640	9601.8360
	2901070	10 :	9473.0000	710.94×1	2343077	8942.9591	10003.0409
	7000900	10	5248.0000	296.3781	93.7230	5035.9839	5460.0161
	8000000	10	5721.0000	652.6774	206.3947	5254.1027	6187.8973
	9000000	10	5676.0000	280.8004	88.7969	5475.1275	5876.8725
	Toua	150	7879.8000	1542.2560	125.9247	7630.9712	8128.6288

จุฬาลงกรณ์มหาวิทยาลย

	Levene Statistic	dfl	d 12	Sig.
SĠ	2.375	14	135	. 006
WA	6.051	14	135	. 000
Sw	- 3.45s	14	135	000
MOE	6.151	14	135	. 000
F	2.636	14	135	002
compres	3.020	14	135	. 000

ANOVA

Post Hoc Tests

LSD

Dependent Variable	(I) TCST (J) TEST		Mean Difference ($1-\mathrm{J}$)	Std. Error	$\mathrm{Sig} \text {. }$	Q 95\% Confidence Intervat		
			Lower Bound			Upper Bound		
	1703030	1703070		4.800E-02	3.186E-02	.13.4	-1.5016E-02	.1110
		1802030	-.3290*	3.186E-02	. 000	-. 3920	$\cdot .2660$	
		1802070	.1050*	3.186E-02	. 001	$4198 \mathrm{E}-02$	1680	
		1901030	$\cdots \quad-.2700^{\circ}$	3.186E-02	. 000	$-.33 .30$	$\cdot .2070$	
		1901070	3.700E-02	3.186E-02	. 248	$\therefore 601 / E-02$. 1000.	
		2703030	-.2960*	3.186E-02	. 000	-. 3590	-.2330	
		2703070	-.2390*	3.186E-0?	. 000	$\cdot . .3020$	$\cdot .1760$	
		2802030	-.3410**	3.186E-02	. 000	$\cdot .4040$	-. 2780	

(su)

Depinkent Variatk	(1) TEST	(1) TEST	Mean Difference (1-J)	Sudimux	56		
						Limea Howes	Srper tiowns
sc;	2803070	170.0.0	mº-	LIEAE 0 ?	0000	2100	1650
		1703070	$33^{3} 0^{\circ}$		(000)	28:0	4 se
		1802030	7000E-02	9.fxot-0\%	194	- Mot6e.es	16028-122
		1803070	. 8070	tiscees	com	4*31	4700
		1901030	3200E-02	1786E02	317	-1/1016E-02	9 30:5-02
		1901070	$3.90{ }^{\circ}$	5 186E-0:	000	2760	4020
		270.1030	$6.000 \mathrm{E}-03$	3 180\%-0\%	34	5 meser -as	- Waze-c:
		2703070	6.300E-02	5.1865.02	aso	-1,65025-05	1280
		2802030	-39000E-02	14,609	228	- 10×0	2.402E-0:
		2901030	- $8.0000 \mathrm{E}-03$	not	369	$\rightarrow 10168.02$	3 Soze 0 -
		2901070	$\square .1530^{\circ}$	3,46e0?	000	-2160	
		7000000	- . 2350°	S.160\%	000	1750	2980
		8000000	$-2.6000 \mathrm{E}-02$	1.ator	116	-3.2016E-02	1702E-02
		9000000	.1590*	3 1805	000	9 S98E-02	2270
	2901030	1703030	3100	Simedes	000	2420	3750
		1703070	3580°	8,008-02	000	2950	4210
		1802030	-1.9000E-02	3146 An:	532	-s Sotisfer	4.402E-22
		1802070	. 4150°	1196E.0?	cos	3580	4710
		1901030	$4.000 \mathrm{E}-02$	91865-0:	212	12.3016808	. 1010
		1901070	3470°	Hameos	000	73043	4100
		2703030	$1.400 \mathrm{E}-02$	1itse-02	csit	49016E-02	2,702E-02
		2703070	7,100E-02*	Hresen	028	7.914E-03	$13+3$
		2802030	-3.1000E-02	[158-0]	382	-9.4016E-02	3.202E-02
		2802070	$8.000 \mathrm{E}-03$	1560E-02	102	-5.5016E-02	7.102E-02
		2901070	-.1450*	1.180E-0:	∞	-20x0	6.194E-02
		7000000	.2430*	+136t-0 ${ }^{\text {a }}$	m	. 1800	1060
		8000000	$1.8000 \mathrm{E}-02$, $8866-03$	(7)	4.10t6e-0:	- SOEE-92
		9000000	.1670*	1486E0?	poo	+1040	2300
	2901070	1703030	.4550*	126EE-02	000	3920	5150
		1703070	(2) . 5030°	1.136E-02	000	4400	sese
		1802030	1260°	, Ane-d?	-000	(6.208E-0\%	+...
		1802070	- 5600°	小ene-02	+00	- a $^{\text {a }} 0$	5230
		1901030.	.1850*	1, 18EE-0)	.000	Q 200	2450
		1901070	$.4920^{\circ}$		9000		5350
		2703030	1590°	Fiset-0:		4 spet-az	2230
		2703070	2160*	C 186E-0:	1000	1950	2790
		2802030	. 1140°	1880E-02	000	Sopex-0\%	1770
		2802070	1530°		000	$8.9085-02$	2100
		2901030		126efes	000	8.198E 0\%	2050
		7000000	.3880*	Lixces?	000	3250	4510
		8000000	1270*	198E-02	000	6.193E-02	1900
		9000000	. 3120^{*}	LuSEE-02	000	2430	5750

Dicrindent Vaushle	(1) TEST	(1) TEST	Mean Difference (1-J)	Sid. Enor	Sug	95-- Cinfidkace Interiat	
						Lewer Bround	Upper Bound
	1703nio	170.1070	-29.5650*	2.8712	000	-15.24?	-218528
		1802030	8.8050 -	2.8732	001	3.122x	14.4872
		1802070	-12.7870**	2.8732	0×0	-18.4692	-27.1018
			19.8630^{*}	2.8732	000	14.1803	25.5452
		1901070	-19.3260**	2.8732	000	-25.0082	-13.6418
			14.9050*	2.8732	. 000	9.2228	20.5872
		270.070	$9.9510 \cdot$	2.8732	.201	4.2688	15.6332
		2802030	18.7080*	2.8732	000	13.0258	24.3902
		2802070	11.2380^{*}	2.8732	000	5.5558	16.9202
		2901030	17.6030*	2.8732	.000	11.9208	23.882
		2901070	21.4130*	2.8732	. 000	15.7308	27.0952
		7000000	-19.1180*	2.8732	. 000	-24.8002	-13.4358
			24.0700*	2.8732	. 000	18.3878	29.7522
		9000000	1.1600	2.8732	. 687	-4.5222	6.8422
	1703070	1701010	29.5650^{*}	2.8732	. 000	23.8828	35.2472
		1802030	38.3700^{*}	2.8732	. 000	32.6878	44.0522
		1802070	-3.2220	2.8732	264	-8.9042	2.4602
		1901030	49.4280^{*}	2.8732	. 000	43.7458	Ss. 1102
		1901070	10.2390°	2.8732	. 001	4.5568	15.9212
		2703030	4.4700\%	2.8732	. 000	38.7878	50.1522
		2703070	39.5160°	2.8732	. 000	33.8338	45. 1982
			48.2730°	2.8732	. 000	42.5908	53.9552
		2802070	40.8030°	2.8732	. 000	35.1208	46.4852
		2901030	47.1680°	2.8732	. 000	41.4858	52.8502
		2901070	50.9780*	2.8732	. 000	45.2958	56.6602
			10.4770^{*}	2.8732	. 000	4.76-59	16.1292
		8000000	536350°	2.873:	. 000	47.9528	59.3172
		9000050	30.7250*	2.8732	. 000	25.0428	36.4072
	1802010	1703030	-8.8050*	2.8732	.003	-14.4872	-3.1228
		1703070	- -38.3700°	2.8732	. 000	-44.0522	-32.6878
			-41.5920*	(9)2.8732	. 000	- 47.2742	-35.9098
		1901030	11.0580°	2.8732	-. 000	5.3758	16.7402
		1901070	-28.1310°	2.8732	. 000	-33.8132	-22.4188
		2701010	6.1000°	2.8732	. 016	(0.4178	11.7822
		2703070	1.1460	2.8732	691	-4.53.62	6.8282
		2802030	9.9010^{*}	2.8732	001	4.2208	15.5852
		2802070	2.4330	2.8732	397	-3.2492	8.1152
		2901030	8.7980*	2.8732	. 003	3.1158	14.4802
		2901070	12.6080*	2.8732	. 000	6.9258	18.2902
			-27.92.30*	2.8732	. 000	-33.6052	-22.2408
		8000000	15.2650*	2.8732	. 000	9.5828	20.9472
			-7.6450*	2.8732	. 009	-13.3272	-1.9628

Dependent Variable	(1) TEST	(1) TESt	Mean Difference (1-ת)	Std. Enav	Sig:	Q5--Comfidence Intenat	
						Liouer Pouns	Liperer Bumens
WA	180こ0:0	1703050	12.7870*	2872	. 000	27108	is 4692
		1703070	3.2230	28732	264	-2.4602	8.9042
		18020.10	41.5920°	28712	.000	15.9098	47.2742
		19010.0	52.6500*	2879	0×0	+6.9678	58.3322
		1901070	13.4610°	2873:	. 000	7.7788	19.1432
		270.3030	47.6920^{*}	28732	. 000	42.0098	53.3742
		2709070	42.7380^{*}	2.8732	. 000	37.0558	48.4302
		2802030	51.4950*	2.8732	. 200	45.8128	57.1772
		2802070	4.0250*	28732	. 000	38.1428	49.7072
		2901030	50.3900^{*}	28732	. 000	4.7078	56.0722
		2901070	S4.2000*	2.8732	. 000	48.5178	59.8822
		7000000	13.6690*	2.8732	. 000	7.9868	19.3512
		8000000	56.8570.	2.8732	. 000	51.1748	62.5392
		9000000	$33.9470 \cdot$	2.8732	. 000	28.2648	39.6292
	1901030	1703030	-19.8630*	2.8732	. 000	-25.5452	-14.1808
		1703070	-49.4280°	328732	. 000	-5s. 1102	-43.7458
		1803030	-11.0580*	2.8732	. 000	-16.7402	-5.3758
		1802070	-52.6500*	2.8732	. 000	-58.3322	-46.9678
		1901070	-39.1890*	2.8732	. 000	-44.8712	-33.5068
		2703030	-4.9580	$3 \longdiv { 1 1 . 8 7 3 2 }$. 087	-10.6402	. 7242
		2703070	-9.9120*	A1) 2.8732	. 001	-15.5942	-4.2298
		2802030	-1,1550	- 2.8732	. 688	-6.8372	4.5272
		2802070	-8.6250°	2.8732	. 003	-14.3072	-2.9428
		2901030	-2.2600	2.8732	. 433	-7.9122	3.4222
		2901070	1.5500	2.8732	. 590	-4.1322	7.2322
		7000000	- $\mathbf{3 8 . 9 8 1 0}{ }^{\circ}$	2.8732	000	44.6632	-33.2988
		8000000	4.2070	2.8732	. 145	-1.475	¢.889?
		9000000	-18.7030*	2.8732	. 000	-24.3852	-13.0208
	1901070	1703030	19.3260^{*}	2.8732	. 000	13.6438	25.0082
		1703070	(2) 10.2390°	2.8732	. 001	-15.9212	4.5568
		1802030	928.1310°	2.8732	$.000$	- 22.4488	33.8132
		1802070	-13.4610*	2.8732	. 000	- 19.1432	-7.7788
		1901030 :	39.1890^{*}	2.8732	. .000	33.5068	4.8712
		2703030	34.2310°	2.8732	000	28.5488	39.9132
		2703070	29.2770°		. 000	23.5948	34.9592
		2802030	38.0340*	2.8732	. 000	32.3518	43.7162
		2803070	30.5640^{*}	2.8732	. 000	24.8818	36.2462
		2901030	$\cdots 36.9290^{\circ}$	2.8732	. 000	31.2468	42.6112
		2991070	- $40.7390 \cdot$	2.3732	. 000	35.0568	45.4212
		7000000	. 2080	2.8732	. 942	-5.4742	5.8902
		8000000	43.3960	2.8732	. 000	37.7138	49.0782
		9000000	20.4860°	2.8732	. 000	14.8038	26.1682

Depeinkent Variable	(1) TEST	(1) TEST	Mean Difletence (1-J)	Sts. Erior	Sig :	95-. Confidence Intionat	
						Liver Bound	Liper Revune
W't	2703080	170.030	-14.9050**	- 872	0×0	$\cdot 20.5872$	-9 3 ? 28
		1703070	-4.4700*	23712	000	-50 1522	- 3 \% 5.378
		13020:0	-6.1000*	2372	0.6	-11.7822	- 4178
		1802070	-47.6920*	28732	000	-53,3742	-5: 009 x
		1901010	4.9580	2.8732	. 087	-.7242	106402
		1901070	-34.2310*	28732	000	-39.9132	-28 488
		270.070	-4.590	2.8732	. 087	-10.6.162	. 2282
		23030.0	3.8030	28732	.188	-1.8792	9 + 452
		2802070	-3.6670	2.8732	204	-9.3492	20152
		2901030	2.6980	28732	. 349	$\therefore \cdot 2.98 .42$	8.3802
		2901070	6.5080*	2.8732	. 025	. 8258	12.1902
			-34.0230*	2.8732	. 000	-39.7052	$\cdot 28.3+08$
			9.1650^{*}	2.8732	. 002	3.4828	14.8472
		9000000	-13.7450*	2.8732	. 000	-19.4272	- 8.0628
	2703070	1703030	-9.9510^{-}	2.8732	.001	-15.6332	-4.2688
		1703070	-39.5160*	2.8732	. 000	-45. 1982	-33.8338
		1802030	-1.1460	2.8732	. 691	6.8282	4.5362
		1802070	-42.7380*	2.8732	. 000	-48.4202	-37.0558
		1901030	9.9120^{*}	2.8732	. 001	4.2298	15.5942
		1901070	-29.2770°	1) 2.8732	. 000	-34.9592	-23.5948
		2703030	4.9540	(1) 2.8732	.08?	-. 7282	10.6362
		2802030	8,7570*	2.8732	. 003	3.0748	14.4392
		2802070	1.2870	2.8732	. 655	-4.3952	6.9692
		2901030	7.6520^{*}	2.8732	. 009	1.9698	13.3342
		2901070	11.4620*	2.8732	. 000	5.7798	17.1442
			-29.0690*	2.8732	. 000	-34.7512	-23.3868
		8000001	11.1190°	2.8732	. 000	8.4368	19.8012
		9000000	-8.7910*	2.8732	.003	-14.4732	-3.1088
	2802030	1703030	-18.7080*	2.8732	. 000	-24.3902	-13.0258
		1703070	(2) 48.2710°	2.8732	. 050	-53.9552	42.5908
		1802030	-9.9030^{*}	2.8732	. 001	[15.5852	4.2208
		1802070	-51.4950.	2.8732	. 000	(-57.1772	-45.8128
		1901030	1.1550	2.8732	- 688	-4.5272	6.8372
		1901070	-38.0340	- 2.8732	. 000	33.7162	-32.3518
		2703030	- 3.8080	2.8732	. 188	-9.4852	1.8792
		2701070	-8.7570*	2.8732	.cos	-14.4392	-3.0-48
		2802070	-7.4700*	2.8732	. 010	-13.1522	-1.7878
		2991030	-1.1050	2.8732	. 701	-6.7872	4.5:72
		2901070	2.7050	2.8732	. 348	-2.9772	8.3872
		7000000	-37.8260*	2.8732	. 000	-43.5082	-32.1438
		8000000	5.3620	2.8732	. 064	-.3202	11.042
		9000009	-17.5480*	2.8732	. 000	-23.2302	-11.8658

* シ

Dependemt \atamic	(1) TEST	(1) TEST	Mean Difference (1-J)	Sid. Errox	Sug.	95\% C cnfidence Interval	
						Lewer Beunc	Upper Bewnd
SII	1703030	1701070	9770	. 7590	.20)	-.5241	24781
		18020.0	-1.9930*	2590	010	-1.49.41	4919
		1802070	1310	7590	663	-1.1701	18129
		19010.0	$.2 .6540^{*}$. 7590	001	-4.1551	-1.1529
		1901070	-2.2000E.02	7590	. 977	-1.5231	1.4791
		270.3030	-1.2910	. 7590	. 091	-2.7921	2101
		2703070	-5.2450*	. 590	mo	-6.7261	-374.9
		2802030	-2.4650^{*}	. 7590	. 001	-3.9661	. 96.19
		2802070	-9300	7590	223	-2.4311	5711
		2901030	-2.713°	7590	. 000	-4.2141	-1.215
		2901070	-4.7390*	. 7590	. 000	-6.2401	-3.2.179
		7000000	-3.5930	. 7590	. 000	-5.0941	-2.0919
		8000000	-1.0990	. 7590	. 150	-2.6001	. 0021
		9000000	-5.9680*	. 7590	. 000	-7.4691	4.4659
	1703070	1703030	. 9770	. 7590	200	-2.4781	. 5241
		1802030	-2.9700*	12.7590	. 000	4.4711	-1.4689
		1802070	-.6460	7590	396	-2.1471	. 8551
		1901030	-3.6310*	. 7590	. 000	-5.1321	-2.1299
		1901070	. 9990	W. 7590	. 190	-2.5001	. 5021
		2703030	-2.2680°	(2) 1.7590	. 003	-3.7691	-. 7669
		2703070	-6.2220*	21.7590	. 000	-7.7231	-4.7209
		2802030	-3.4420	- 7590	. 000	-4.9431	-1.9409
		2802070	-1.9070°	. 7590	. 013	-3.4081	-. 4059
		2901030	-3.6900	. 7590	. 000	-5.1911	-2.1889
		2901070	-5.7160*	. 7590	. 000	-7.2171	4.2149
		7000000	- 4.5700°	. 7590	. 000	-6.0711	-3.0689
		8000000	-2.0760^{*}	. 7590	. 007	-3.5771	-. 5749
		9000000	-6.9450*	. 7590	. 000	-8.4461	-5.439
	1802030	1703030	1.9930^{*}	. 7590	. 010	. 4919	3.4941
		1703070	2.9700^{*}	. 7590	- 000	1.4689	4.4711
		1802070	$2.3240 \cdot$	9.7590	.003	- 82229	3.8251
		1901030	$\square . .6610$. 7590	. 385	- 2.1621	8401
\cdots		1901070 :	1.9710^{*}	5.7590	- 010	. 4699	3.4721
		2703030	.7020.	7590	357	. 7991	2.2031
		2703070	-3.2530*	- 7590	. 000	-4.7531	-1.7509
		2802030	. 4720	7590	. 535	-1.9731	1.0291
		2802070	1.0630	. 7590	. 164	-.4381	2.56011
		2901030	$\because \quad .7200$. 7590	345	-2.2211	. 8811
		2901070	-2.7460*	. 7590	. 000	-4.2471	-1.249
		7000000	-1.6000*	. 7590	0.37	-3.1011	-9.8364E-02
		8000000	. 8940	. 7590	. 241	-.6071	2.1951
		9000000	-3.9750*	7500	. 000	-5.4761	-2.4739

Deprimkent Vanable	(1) TEST	(1) TEST	Mean Difietence (1-ת)	Sud. Etrix	Sug:	950.0 Onfudence intenal	
						Lamer Bound	Lipper Bound
sis	1803070	170.030	. 2310	750	666	-1.831	1.1701
		170.070	64100	259	. 36	. 8551	2.1471
		1802030	-23240*	359	. 008	. 18251	-8229
		1901030	-2.9850*	7590	.000	-4.4861	-1.4839
		1901070	. 3530	:590	641	-1.8541	1.1481
		2703030	-1.6220*	. 7590	03.4	-3.12.31	- 1209
		2703070	-5.5760*	7590	000	. 70771	-40749
		2802030	-2.7960°	7590	000	-4.2971	-1.2949
		2802070	-1.2610	7590	090	-2.7621	2401
		2901030	. 3.0480°	2590	. 000	-4.5451	-1.5429
		2901070	-5.0700*	7590	. 000	-6.5711	-3.5689
		7000000	-3.9240	. 7590	. 000	-5.4251	-2.4229
		8000000	-1.4300	. 7590	. 062	-2.9311	7.114E-02
		9000000	-6.2990*	. 7590	. 000	-7.8001	-4.7979
	1901030	1703030	$2.6540{ }^{\circ}$. 7590	. 001	1.1529	4.1551
		1703070	$3.6310{ }^{\circ}$. 7590	. 000	2.1299	5.1321
		1802030	. 6610	. 7590	. 385	-. 8401	2.1621
		1802070	2.9850^{*}	. 7590	. 000	1.4839	4.4861
		1901070	2.6320^{*}	. 7590	. 001	1.1309	4.1331
		2703030	1.3630	. 7590	. 075	-. 1381	2.8641
		2703070	-2.5910**	[C. 7590	. 001	4.0921	-1.0899
		2802030	-1890	. 7590	. 804	-1.3121	1.6901
		2802070	1.7240°	. 7590	. 025	. 2229	3.2251
		2901030	-5.9000E-02	1-7590	. 938	-1.5601	1.4421
		2901070	-2.0850°	. 7590	. 007	-3.5861	-. 5839
		7000000	. 9390	7590	.218	-2.4401	. 5621
		$800000{ }^{\circ}$	1.5550^{*}	. 7590	. 042	5.386E-02	3.0561
		9000000 *	-3.3140*	. 7590	. 000	-4.8151	-1.8129
	1901070	1703030	2.200E-02	. 7590	. 977	-1.4791	1.5231
		1703070	(2) 9990	. 7590	. 190	. 5021	2.5001
		1802030	-1.9710°	0.7590	. 010	$\cdots \quad 3.4721$. 4699
		18020\%0	$\square .3530$	C. 7590	. 643	-1.1481	1.8541
		1901030	-2.6320*	. 7590	. 001	-4.1331	-1.1309
		2703030	-1.2690	- -590	9.097	.27701	2321
		2703070	-5.2230°	7590	- .000	-6.7241	-3.7219
		2802030	-2.4130^{-}	. 7590	.002	-3.941	-.9419
		2802070	-9080	7590	2.24	-2.4091	. 5931
		2901030	-2.6910*	.7590	. 001	-4.1921	-1.1899
		2901070	-4.7170*	.750	. 000	-6.2181	-3.2159
		7000000	-3.5710*	759	. 000	-5.0721	-2.0699
		8000000	-1.0770	7590	.158	-2.5781	. 4241
		9000000	-5.9460*	759	. 000	-7.471	$-4.4+19$

We;endent 1 ariable	(1) TEST	(1) TEST	Mean Diffeence (1-J)	Sid. Eniv	Stig.	95\%-Confidence Interval	
						Lower Bound	Upper Bound
	:70:0:0	170.090	1.2910	7500	001	. 2101	7921
		1703070	2.2680^{*}	2500	. 01	76619	7691
		1503030	-.7030	7590	. 257	-2.2011	7971
		1802070	16220*	7590	044	1209	
		1901010	-1.36.30	7590	075	-2.86.11	. 1381
		1901070	1.2690	. 7590	097	- 3.321	:7701
		-70. 370	-39\%40*	7590	0×0	-5.4551	-2.4529
		2802030	-1.1740	. 7590	.124	-2.6751	1271
		2802070	1610	. 7590	cas	-1.1401	186621
		2901030	-1.4220	. 7590	.063	-2.72? 1	7.9146 .02
		2901070	-3.4180*	. 7590	. 000	-4.9491	-1.9169
		7000000	-2.3020*	. 7590	. 003	-3.8031	- 8009
			. 1920	. 7590	. 801	-1.3091	1.6931
		9000000	-4.6770*	. 7590	. 000	6.1781	-3.1759
	2703070	1703030	5.2450°	. 7590	. 000	3.7439	6.7461
		1703070	$6.2220 *$. 7590	. 000	4.7209	7.72.11
		1802030	3.2520*	.7590.	. 000	1.7509	4.7581
		1802070	5.5760°	. 7590	. 000	4.0749	7.0771
		1901030	2.5910°	1.72.7590	. 001	1.0899	4.0921
		1901070	$5.2230{ }^{\circ}$	$3 \longdiv { 1 1 . 7 5 9 0 }$. 000	3.7219	6.7241
		2703030	3.9540^{*}	1210.7590	. 000	2.4529	5.4551
		2802030	$2.7800{ }^{\circ}$. 7590	. 000	1.2789	4.2811
		2802070	4.3150°	. 7590	. 000	2.8139	5.8161
		2901030	2.5320 -	1. 7.7590	. 001	1.0309	4.0331
		2901070	. 5060	. 7590	. 506	-.9951	2.0071
		7300000	1.6520°	. 7390	. 031	. 1509	3.1531
		800000	2.1460°	. 7590	. 000	2.6449	5.6471
		9000000	-. 7230	. 7590	343	-2.2241	.7781
	2802030	1703030	2.4650^{*} 3.4420* .4720 2.7960° -. 1890 2.4130° 1.1740 -2.7800^{*} 1.535^{*} $\cdot .2480$ -2.2740° -1.1280 1.2660 -3.5030^{*}	. 7590	. 001	. 9639	3.9661
		1703070		. 7590	. 000	1.9409	4.9431
		1802030		. 7590	. 535	-1.0291	1.9731
		1802070		. 7590	. 000	- 1.2949	4. 2971
		1901010		. 7590	. 804	-1.6901	13121
		! 401070		. 7590	. 002	. 9419	3.941
		2703030		. 7590	. 124	. 3271	26751
		2703070		. 7590	. 000	-4.2811	-1.2789
		2802070		7590	OHS	$3.386 \mathrm{E}-02$	10961
		2901030		. 7590	.744	-1.7491	1.2511
		2901070		. 2590	. 003	-3.7751	-.7729
		7000000		. 7590	. 140	-2.6291	. 3731
				7590	. 074	-. 1351	28671
		9000000		. 7590	. 000	. 5.0041	2.2019

						95:- Confi	Interal
Depindent Variable	(1) TEST	(1) TEST	Mean Difletence (1-J)	Sid trav	SiP_{1}	L.owct Bound	Uppet Renend
SII	2x02070	1703030	9100	750	221	. 5711	2.311
		170.1070	19070	359.	018	4059	1.40×1
		1803010	-1.0600	750	:64	$\because 56+1$	41×1
		1802070	1.2610	7590	099	-2401	2.7621
		1901030	$-1.72+0^{*}$	759	02s	-3.2251	-2229
		1901070	. 9080	7590	294	-. 5931	2.4091
		2703030	-. 3610	. 7590	6.5	-. 8621	i.14ul
		2703070	- 3150°	7590	. 000	-5.8161	-2.8139
		230:030	-1.5350°	7590	.045	-3.0361	-3.3864E-02
		2901030	-1.78.30*	. 750	020	-3.2841	. 2819
		2901070	- 3.8090	7590	. 000	-5.3101	-2.3079
		7000000	-2.6630°	7590	. 001	-4.1641	-1.1619
		8000000	. 1690	7590	. 824	-1.6701	1.332i
		9000000	-5.0380*	. 7590	. 000	-6.5391	-3.5369
	2901030	1703030	2.7130°	7590	. 000	1.2119	4.2141
		1703070	3.6900 -	. 7590	. 000	2.1889	5.1911
		1802030	. 7200	. 7590	345	. 7811	2.2211
		1802070	3.0440°	. 7590	. 000	1.5429	4.5451
		1901030	5.900E-02	. 7590	. 938	-1.4221	1.5601
		1901070	2.6910°	117. 7590	. 001	1.1899	4.1921
		2703030	1.4220	C. 7590	. 063	$\cdot 7.9136 \mathrm{E}-02$	2.9231
		2703070	-2.5320	7590	. 001	-4.0331	-1.0309
		2802030	2180	. 7590	.744	-1.2531	1.7491
		28C2070	-1.7830\%	1.1. 7590	. 020	. 2819	3.2841
		2901070	-2.0260*	. 7590	. 009	-3.5271	-. 5249
		7000000	-. 8800	.7590	. 248	-2.3811	. 6211
			1.6140^{*}	-590	n:5	: 1129	3.1151
		9000000	-3.2550**	. 7590	.000	-4.7561	-1.7539
	2901070	1703030	4.7390^{*} 5.7160° 2.7460° $\$.0700^{*}$ 2.0850^{*} 4.7170° 3.480° .5060 2.2740° 18000° 20260° 1.1460 3.6400° -1.22\%	.7590 7590 7590 7590 .7590 .7590 7590 .7590	. 000	3.2379	6.2401
		1703070			. 000	4.2149	7.2171
		1802030			. 000	\% 1.2449	4.2471
		1802070			. 000	3.6689	6.5711
		1901030.			. 007	. 5839	3.5861
		1901070			. 000	3.2159	6.2181
		2703030			000	1.9469	4.9491
		270.1070			506	-2.0071	.9951
		2802 c 30			003	. 7129	3.7751
		:30:070			000	2.3079	5.3101
		2901030			. 069	.5249	3.5271
		7000500			.133	-.3551	2.6471
		3000000			000	2.1389	5.1411
		900600'			. 108	-2.7301	. 2721

Depernemi Variable	(1) TEST	(J) TEST	Mean Difference (1-) ${ }^{\text {a }}$	Std. Enak	Sof:	95-- (onfidence Itterval	
						Lomerer Bround	Upper Bouns
sil	7000000	1301030	$\begin{aligned} & 1.5930^{\circ} \\ & 4.5700^{\circ} \end{aligned}$: 5 \%	0×1	2.1919	50941
		170.070		3 50			60711
		1802030	1.6000^{*}	359		9 xsaileos	3.1011
		1802070	3.9240*	. 7590	0×1	2.4234	5.4251
		1901030	. 9390	. 2590	218	. 5621	2.401
		1901070	3.5710^{*}	7590	. 000	1.0609	5.0721
		2753010	$2.3020{ }^{*}$. 7590	.00:	. 80009	3.8011
		2703070	-1.6520°	7590		-1.1531	- 1509
		28020.10	1.1280	75\%0	140	-.37.1	2.6391
		2802070	2.6630^{*}	. 7590	001	1.1619	$+1641$
		2901030	. 8800	. 7590	. 248	. 6211	2.1811
		2901070	-1.1460	. 7590	.131	-2.6471	. 3551
		8000000	$2.4940{ }^{\circ}$. 7590	. 001	. 9929	3.9951
			-2.3750°	. 7590	.002	3.8761	. 8739
		1703030	1.0990	. 7590	. 150	-.4021	2.6001
		1703070	2.0760^{*}	. 7590	. 007	. 5749	3.5771
		1802030	-. 8940	. 7590	241	-2.3951	. 6071
		1802070	1.4300	7590	. 062	-7.1136E-02	2.9311
		1901030	-1.5550°	C.818. 7590	. 042	-3.0561	-5.386-4E-02
		1901070	1.0770	2) 10.7590	. 158	-.4241	2.5781
		2703030	-. 1920	$.7590$. 801	- 1.6931	1.3091
		2703070	-4.1460	. 7590	. 000	-5.6471	-2.6419
		2802030	-1.3660	. 7590	074	-2.8671	. 1351
		2802070	. 1690	1/. 7590	. 824	-1.3321	1.6701
		2901030	-1.6140°	. 7590	. 035	-3.1151	-. 1129
		29010^{70}	-3.6400°	. 7590	. 000	-5.1411	-2.1389
		7000000	-2.4940*	. 7590	. 001	-3.9951	-. 9929
		9000000	-4.8690*	. 7590	. 000	-6.3701	-3.3679
	9000000	1703030	5.9680^{*}	. 7590	. 000	4.4669	7.4691
		1703070	6.9450*	. 7590	- 000	5.4439	8.4461
		1802030	3.9750^{*}	$.7590$. 000	2.4739	5.4761
		1802070.	6.2990°	. 7590	${ }^{.} .000$	4.7979	7.8001
		1901030	3.3140^{*}	- 7590	. 000	1.8129	4.8151
		1901070	5.9460°	. 7590	. 000	4.4149	7.4471
		2703030	- 4.6770*	. 7590	. 000	3.1759	6.1781
		2703070	. 7230	. 7590	343	-.7781	2.2241
		28020.0	3.5030^{*}	. 7590	. 000	2.0019	5.0041
		2802070	$\checkmark 5.0380^{\circ}$. 7590	. 000	3.5:69	6.53y1
		2901030	3.2550^{*}	.7596	. 000	1.7539	4.7561
		2901070	1.2290	. 7590	. 108	-.2721	2.7301
		7000000	2.3750^{*}	. 7590	.002	8739	3.8761
		8000000	4.8690^{*}	. 7590	. 000	3.3679	6.3701

Depindent \anable	(1) TESt	(1) TESt	Mean Difference (1-J)	Sid. Emox	Sirs:	ง5\%- Confidence Inierva	
						L.ouct Bound	lipper Bound
MOE:	1708040	1703070	.69088.9000 ${ }^{-}$	12782.1650	000	.94168.0890	-41809.7110
		1802030	- 41126.90000°	12782 1650	001	-68406.0890	-17847.710
		1303070	5146.5000	12782.1650	676	-19912.689	30625.6590
		1901030	-29967.0000*	12782.1650	.023	-54606.1890	-4087.8110
		1901070	952.9000	12782.1650	91	-24326.2890	26212.0890
		2709030	2727.3000	12782.1650	831	-22551.8890	28006.4890
		2703070	2201.0000	12782.:650	.864	$\cdots 20: 8.1896$	27:80.1590
		2802030	2803.8000	12782.1650	. 827	-22475. 3890	28082.9890
		2802070	1892.6000	12782.1650	. 761	-21186.5890	29171.7890
		2901030	-1412.4000	12782.16:0	912	-26691.5890	23866.7890
		2901070	-3784.5000	12782.1650	. 768	-29063.6890	21494.6390
		7000000	14816.0000	12782.1650	261	-10863.1890	39695.1890
		8000000	-5103.4000	12782.1650	. 690	-30382.5890	20175.7890
		9000000	7701.9000	12782.1650	. 548	-17577.2890	32981.0890
	1703070	1703030	69088.9000^{*}	12782.1650	. 000	43809.7110	\%4368.0890
		1802030	25962.0000^{*}	12782.1650	. 044	682.8110	51241.1890
		1802070	74435.4000*	12782.1650	000	49156.2110	99714.5890
		1901030	39721.9000*	12782.1650	. 002	1442.7110	65001.0890
		1901070	700-1.8000*	12782.1650	. 000	4472.6110	95320.9890
		2703030	71816.2000°	12782.1650	. 000	46537.0110	97095.3890
		2703070	$71289.4000 *$	12782.1650	. 000	46010.7110	96569.0890
		2802030	71892.7000*	12782.1650	. 000	46613.5110	97171.8890
		2802070	72981.5000°	12782.1650	. 000	47702.3110	98260.6890
		2901030	67676.5000*	12782.1650	. 000	42397.3110	92955.6890
		2901070	65304.4000*	12782.1650	. 000	40025.2110	90583.5890
		7000000	83504.9000^{*}	12782.1650	. 000	58225.7110	108784.9896
		8000000	63985.5000*	12782.1650	son	38706.3110	89264.6890
		9000000	76790.8000*	12782.1650	. 000	51511.6110	102069.9890
	1802030	1703030	- 43126.9000°	12782.1650	. 001	17847.7110	68406.0890
		1703070	- 25962.0000°	12782.1650	044	- 51241.1890	-682.8110
		1802070	48473.4000*	12782.1650	. 000	23194.2110	73752.5890
		1901030	13759.9000	12782.1650	. 284	-11519.2890	39039.0890
		1901070°	44079.8000°	12782.1650	0.001	18800.6110	69358.9890
		2703030	45854.2000*	12782.1650	. 000	20575.0110	71133.3890
		2703070	45327.9000**	12782.1650	. 001	20048.7110	70607.0890
		2802030	45930.7000^{*}	12782.1650	. 000	20651.5110	21209.8890
		2802070	47019.5000*	12782.1650	. 000	21740.3110	72298.6890
		2901030	41714.5000*	12782.1650	. 001	$16+35.3110$	66993.55\%
		2901070	39342.4000*	12782.1650	. 033	14063.2110	6-1621.5890
		7000000	57542.9000*	12782.1650	. 000	32263.7110	82822.0890
		8000000	38023.5000*	12782.1650	. 003	12744.3110	63302.6890
		9000000	50828.8000*	12782.1656	. 000	25549.6110	76107.9890

(N)

Dependent Variable	(1) TEST	() TEST	Mean Diffetence (1-J)	Std. Enow	Sug	95:- Confidence Interval	
						Lower Beund	Upper Breund
MOE	1802070	1701030	. $51+6.5000$	1278: 1650	670	-1025 6.689	19932.6890
		170.1070	.74415.4000*	1278: 16:0	000	-99714 5890	-49156.2110
		1802030	-48473,4000*	12782 1650	0×1	-73752.5890	-2194 2110
		1901030	.34713.5000*	12782.1650	007	-59992.6890	-2414.3110
		1901070	-4.993.6000	12782.1650	132	-29672.7890	20ss5.5x90
		2701030	-2619.2000	12782.1650	818	-27898.3890	22659.9890
		2703070	$\cdot 3145.5000$	12782.1650	806	-284246870	$22133.689 n$
		2802030	-2542.7000	12782.1650	843	-27821.8890	22736.4890
		2802070	-1453.9000	12782.1650	910	-26733.0890	23825.2890
		2901030	- 6758.9000	12782.1650	. 598	-32088.0890	18520.2890
		2901070	-9131.0000	12782.1650	. 476	-3+10.1890	16148.1890
		7000000	9069.5000	12782.1650	. 479	-16209.6890	$34348.68 \% 0$
		8000000	-10419,9000	12782.1650	A15	-35729.0890	14829.2890
		9000000	2355.4000	12782.1550	.854	-22923.7890	27634.5890
	1901030	1703030	29367.0000*	12782.1650	. 023	+087.8110	54646.1890
		1703070	-39721.9000*	12782.1650	.002	.65001.0890	-1442.7110
		1802030	-13759.9000	127821650	. 28.4	-39039.0890	11519.2890
		1802070	$34713.5000{ }^{\circ}$	12782.1650	. 007	9434.3110	59992.6890
		1901070	30319.9000^{*}	12782.1650	. 019	5040.7110	\$5599.0890
		2703030	32094.3000 *	12782.1650	. 013	6815.1110	57373.4890
		2703070	31568.0000°	12782.1650	. 015	6288.8110	56847.1890
		2802030	32170.8000	12782.1650	. 013	6891.6110	57499.9890
		2802070	33:59.6030.	12782.1650	. 010	7980.4110	58538.7890
		2901030	$27954.6000{ }^{\circ}$	12792.1650	. 030	2675.4110	53233.7890
		2901070	25582.5000*	12782.1650	. 047	303.3110	50861.6890
		7000000	43783.0000*	12782.1650	. 001	18503.8110	69062.1390
		8000000	24263.6000	12782.1650	. 060	-1015.5890	49547880
		9000000	37068.9000*	12782.1650	. 004	11789.7110	62348.0390
	1901070	1703030	-952.9000	12782.1650	941	-26232.0890	24326.2890
		1703070	(2) 70041.8000°	12782.1650	. 000	-95320.9890	-44762.6110
		1802030	$-4+4079.8000^{\circ}$	12782.1650	. 001	-69358.9890	-18800... ${ }^{\text {n }}$
		1802070	4393.6000	12782.1650	732	-20885.5890	29672.7890
		$19010{ }^{3} 0$	-30319.9000*	12782.16:0	. 019	-55599.0890	-5040.7110
		2703030	1774.4000	127821650	890	-2:504 7890	$2705^{2} .5890$
		2703070	- 1248.1000	12782.1650	922	-24031.0890	26527.2890
		2802030	1850.9000	127821650	. 885	-234:8. 2890	27130.0590
		2802070	2939.7000	1278. 1650	818	-22339.4890	$28 \geq 18.8890$
		2901030	-2365.3000	12782.1650	853	-2764.4390	22913.8890
		2901070	-4737.4000	12782.1650	211	-30016.5890	20541.7890
		7000000	13.363 .1000	12782.1650	294	-11816.0390	38742.2890
		8000000	-6056.3000	12782.1650	.636	-31335.4890	17222.8890
		9000000	6749.0000	12782.1650	. 598	-185:0.1890	32028.1890

Dependent Variable			Mean Difference (1-J)	Sid. Error	Sig.	95\% Confidence Interval	
						Lower Bound	Upper Bound
170.010		1701070	-95.4000**	21.8611	∞	-138.5146	.5.0654
		1802030	105.3000*	21.8611	000	-148.5146	-62.0654
		1802070	$70.5000 \cdot$	21.8611	002	27.2654	113.74.46
		1901030	-. 8000	21.8611		-4.0146	+2.436
		1901070	27.0000	21.8611	. 219	-16.2.446	70.2366
		2703030	-8.8000	21.8611	.658	-52.0346	34. 5 \$46
		270.3070	4.0000	21.0611	.85s	-99.23+6	47.:346
		2802030	$\cdot 1.8000$	21.8611	9.4	-45.0946	41.4146
		2302070	16.6000	21.8611	.49	-26.6346	$59.83+6$
		2901030	7.0000	21.8611	. 749	-36.2346	50.2346
		2901070	-31.4000	21.8611		.74.6346	11.8346
		7000000	132.100\%:	21.8611	. 000	88.8654	175.3146
		8000000	29.3000	21.8611	182	.13.93.46	72.5146
		9000000	$88.000{ }^{*}$	21.8611	. 000	44.7654	131.2346
1703070		1703030	95.3000^{*}	21.8611	. 000	52.0654	128.5846
		1802030	-10.0000		. 648	-53.2346	312346
		1802070	165.8000*	21.8611	. 000	122.5654	209.0346
		1901030	94.5000*	21.8611	. 000	51.2654	137.7346
		1901070	122.3000*	21.8611	. 000	79.0654	165.5346
		2703030	86.5000°	21.8611	000	43.2654	129.7346
		2703070	99.3050	21.8611	. 000	56.0654	142.5346
		2802030	<< 93.5000°	21.8611	. 000	50.2654	136.7346
		2302070	111.9000°	21.8611	. 000	68.6654	155.1346
		2901030	- 102.3000*	21.8611	. 000	59.0654	145.53\%
		2901070	63.9000^{*}	21.8611	. 004	20.6654	107.13 ± 6
		7000000	227.4000*	21.8611	. 000	184.1654	170-4.46
		8000000	124.6000*	21.8611	.00n	81.3654	167*!46
		9000000	183.3000°	21.8611	. 000	1+0.0654	226.5346
130:0:0		1203030	$105.300{ }^{*}$ 10.0000 175.8000° 1015000° 1321000° $9 \operatorname{scx})^{\circ}$ (9) 1000 1018000^{-} I?10xM 112 10 mO 71 (хко) $217+1000^{\circ}$ 11460010° 1911000°	218611 218611 21.8614 21.8611 218611 218611 : $1 \times(, 1 \mid$: 13611 $\because 18611$. 000	62.0654	148.5946
		1703070			548	-33.23.6	53.2346
		1802070			000	132.5654	219.0346
					- 0	61.2654	1477146
		1901070			000	89.0654	1755326
		2701010			$\bigcirc 000$	312654	110744
		2701070				66,06s 4	146,
		2xosos0				602654	126, 7140
		$\begin{gathered} 2 \times 0207: \\ 201010 \end{gathered}$				786654 69.0654	
		201070			0	in 16.54	11714,
		$700 \times \times \times 00$					
		mixycxic)					17814
		90xx(x)				15006,54	216504.

Page 2.

Dependent Variable	(1) TEST	(J) TEST	Mean Difference (1-3)	Std. Eirice	Sij:	95\% Confidence Intenal	
						L.ower Bound	Upper Bround
	2803070	170:0:0	-16.6000	21.8611	49	-59.8.44	26.6346
		170.070	-111.9000*	21.8611	0×0	-155.1346	-68.6654
		18020:0	$\cdot 121.9000 \cdot$	21.8611	. 000	-165.1346	.78.6654
		1803070	53.9000^{*}	21.8611	. 015	10.6654	97.1346
		1901030	-17.4000	21.8611	427	-60.6.346	25.8346
		1901070	10.4000	21.8611	. 635	-32.8346	$53.63+6$
		2701030	-25.4000	21.8611	. 247	-68.6346	17.83+6
		2701070	-12.6000	21.8611	. 565	-55.8346	30.6346
		2802010	. 18.4000	21.8611	. 401	-61.6346	24.8346
		2901030	-9.6000	21.8611	.61	-52.8346	33.6346
		2901070	- 48.0000°	21.8611	.030	-91.2346	4.7654
			115.5000^{*}	21.8611	. 000	72.2654	:58.7346
		8000000	12.7000	21.8611	. 562	-30.5346	S5.9346
		9000000	71.4000°	21.8611	. 001	28.1654	114.6346
	2901030	1703030	-7,0000	21.8611	. 749	-50.2346	36.2346
		1703070	-102.3000*	21.8611	000	-145.5346	-59.0654
		180:030	-112.9000*	21.8611	. 000	155.5346	-69.0654
		1802070	63.5000*	21.8611	. 004	20.2654	$106.73+6$
		1901030	-7.8000	21.8611	. 722	-51.0346	35.4346
		1901070	20.0000	21.8611	. 362	-23.2346	63.2346
		2703030	-15.8000	21.8611	. 471	-59.0346	27.4346
		2703070	-3.0000	21.8611	. 891	-46.2346	$40.23+6$
		2802030	- 8.8000	21.8611	. 688	-52.0346	34.43-46
		2802070	1-9.6000	4. 21.8611	. 661	-33.6346	52.8346
		2901070	-38.4000	21.8611	. 081	-81.6346	4.8346
		7000000	125.1000*	21.8611	.000	81.8654	168.3346
		8000000	22.3000	21.8611	310	-20.9346	65.5346
		9000000	81.0000**	21.8611	. 000	37.7654	124.2346
	2901070	1703030	31.4000 63.9000° 73.9000* 101.9000° 306000 ss 1060 . $? 2.6000$ 154000 29.6060 +5 $\mathbf{1 x \times 0})^{*}$ is HKKI (m)700) $119+800^{\circ}$	21.8611		$-11.83 .46$	74.6146
		1703070		21.8611	. 004	$\cdot 107.1346$	-20.6654
		1802030		O 21.8611		-117.1346	-30.6654
		1802070		21.8611	000	58.6054	145.1346
		1904030		It 8611	164	$Q_{-12.6146}$	73.8146
		1901070		21×611		15.1654	101.6.4.4
		$270: 0.0$		$\text { 21 } 8611$		2. $2063+6$	65.8146
		2708070		218611	10x	78.46	78.6.146
		280200		218614	17x		32×246
		2902070		218611	910	4.76 .4	91246
		2906080		218014	ox:	. 95146	$\because 161.6$
		moxkxxat		218011		1202654	206, - ith
		maxaxx)		218011	Or,	17464	101940
		grexomor		:13011	0×0	361654	162.6146

Disenoemt Vauabic	(1) TEST	(1) test	Mean Difference (1-J)	Sid. Erox	Sig	95\% Confidence Interval	
						Lower Bound	Upper Bouns
F	7000000	170.030	-112.1000*	21.8611	. 000	-175 3146	-8x $\times 6.4$
		170.0:0	$\because 27.4000 \cdot$	218611	. 0×0	-270.6146	-1x+1654
		180:0.0	$\cdot 238.4000^{\circ}$	218611	. 000	-2x06.14,	-198 16:4
		1802070	-61.6000*	21.3611	.00\%	-100 8146	-18.36:4
		1901090	-132.9000*	21.8611	. 000	-176.1146	- $\times 9.6654$
		19010:0	-105.1000*	21.8611	. 000	-148.3146	-61.8654
		27010.0	-140.9000*	21.8611	. 000	-184.1346	-97.6554
		2703070	-128.1000*	21.8611	. 000	-171.3146	-84.8654
		2802030	-119900*	21.8611	. 000	-177.1346	-20.66:4
		2802070	- 115.5000^{*}	21.8611	. 000	-158.73+6	-72.2654
		2901030	-135.1000*	21.8611	. 000	-168.3346	-81.8654
		2901070	-163.5000*	$21.86 i 1$. 000	-206.7346	-120.2654
		8000000	-102.8000*	21.8611	. 000	-146.0346	-59.5654
		9000000	+4.1000*	21.8611	. 046	-87.3346	-.8654
	80000\%	1703030	-29.3000	21.8611	. 182	-72.53+6	13.9146
		1703070	-124.6000°	21.8611	. 000	$-167.83+6$	-81.3654
		1802030	134.6000*	21.8611	. 000	-177.8346	91.3654
		1802070	41.2000	21.8611	. 062	-2.0346	84.4316
		1901030	-30.1000	21.8611	. 171	-73.3346	$13.13+6$
		1901070	-2.300	(2) 21.8611	. 916	-45.5346	40.9346
		2703030	-38.1000	1 21.8611	. 084	-81.3346	$5.13+6$
		2703070	-253000	21.8611	. 249	-68.5346	17.9346
		2802030	-31.1000	21.8611	. 157	- $9.333+5$	12.13+6
		2802070	-12.2000	21.8611	. 562	-55.9346	30.5346
		2901030	-22.3000	21.8611	310	-65.5346	20.9346
		2901070	-60.7000*	21.8611	. 006	-103.9346	-17.4654
		7000000	102.8000°	21.8611	. 000	59.5554	146.0346
		9000000	38.7000^{*}	21.8611	. 008	15.4654	101.9346
	9000000	1703030	.88.0000*	21.8611	. 000	. 131.2346	-44.765
		1703070	$183.3000 \cdot$	21.8611	. 000	-226.5346	-140.0654
		1802030	193.3000*	21.8611	. 000	~-236.5346	-150.0654
		1802070	-17.5000	21.8611	. 425	(-60.73.46	25.73.6
		1901030:	. 88.80000°	21.8611	A 000	-132.0346	-45.565
		1901070	61.0000	71.8611	$.006$	-10121+6	-17.76.54
		270303n	$\text { . } 9.8000^{\circ}$	21.8611	. 000	-140.03:46	-53.5634
		2703070	.85.0000*	21.8611	. 000	-127.2146	-20.7654
		2802030	- $\$ 9.8000{ }^{\circ}$	21.8611	. 000	-130046	- 6.561 .51
		2802070	-71.4000*	21.8611	. 001	- 114.6146	28. 16.4
		2901030	- $1.0000{ }^{*}$	21.861 i	. 000	-121.2346	37.76!
		2901070	-119.4000*	21.8611	. 000	-162.6346	-76.1654
		7000000	+ 4.1000°	21.8611	0.046	80.54	87.314
		8000000	. $8.7000{ }^{\circ}$	21.8611	. 008	-101.9346	-15.4654

Dependent Varabic	(1) TEST	(נ) TEST	Mean Difference (1-J)	Sid. Errox	Sig.	95\% Confidence Interial	
						Lower Bound	Upper Bound
compres	1703010	1703070	1033.0000^{*}	370.4112	. 006	310.4405	1775.5595
		1802030	$\checkmark 76.0000$	370.4112	. 457	-1008.5595	456.5595
		1802070	1229.0000^{*}	370.4112	.001	496.4405	1961.5595
		1901030	-978.0000*	370.4112	. 009	-1710.5595	-245.405
		1901070	-248.0000	370.4112	. 504	-980.5595	484.5595
		2703030	-347.0000	370.4112	351	-1079.5595	385.5595
		2703070	-330.0000	370.412	375	..062.55n5	-02.5593
		2802030	-343.0000	370.4112	.356	-1075.5595	389.5595
		2802070	-431.0000	370.4112	. 247	-1163.5595	101.5595
		2901030	-703.0000	370.4112	. 060	-1435.5595	29.5595
		2901070	-1228.0000*	370.4112	. 001	-1960.5595	-995.405
		7000000	2997.0000 -	370.4112	. 000	2264.4405	3729.5595
		8000000	2524.0000*	370.4112	. 000	1791.4405	3256.5595
		9000000	2569.0000^{*}	370.4112	. 000	1836.440S	3301.5595
	1703070	1703030	-1003.0000*	370.4112	. 006	-1775.5595	-310.4405
		1802030	-1319.0000*	370.4112	. 001	-2051.5595	-586.4405
		1802070	186.0000	370.4112	. 616	-546.5595	918.5595
		1901030	-2021.0000	370.4112	. 000	-2753.5595	-1288.4405
		1901070	-1291.0090*	370.4112	. 001	-2023.5595	. 558.4405
		2703030	-1390.0000.	370.4112	. 000	-2122.5595	-657.4405
		2703070	-1373.0000.	370.4112	. 000	-2105.5595	-6\%0.4405
		2302030	-1386.0000 ${ }^{-}$	370,4112	. 000	-2118.5595	-653.4405
		2802070	-1474.0000.	370.4112	. 000	-2206.5595	-741.440S
		2901030	-1746.0000	370,4112	. 000	-2478.5595	-1013.4405
		2901070	-2271.0000*	370.4112	. 000	-3003.5595	-1538.4405
		7000000	1954.0000*	370.4112	. 000	1221.4405	2686.5595
		1000000	$1481.0000 \cdot$	170.4112	. 000	743.44 Cs	2213.599
		9000000	1526.0000^{*}	370.4112	. 000	793.4405	2258.5595
	1802010	1703030	276.0000	370.4112	. 457	-456.5595	1008.5595
		1703070	(2) 1319.0000°	370.4112	. 001	586.4405	2051.5595
		1302070	(0) 1505.0000*	(370.4112	. 000	772.4405	2237.5595
		1901010	$\square \cdot 702.0000$	C) 70.4112	060	-1434.5595	30.5595
		1901070	28.0000	370.4112	. 940	-704.5595	760.5595
		270.010 2701070	-71.0000 .540000	$\begin{aligned} & 170.4112 \\ & 3704115 \end{aligned}$		$\begin{array}{r} -803.5595 \\ -786.5595 \end{array}$	6615595 6785595
		2802030	. 67 0x000	170 411?	857	-799.5595	6655595
		2902070	-1550000	170 4112	676	.887.5595	577.5595
		:201030	-4270000	1704112	251	-1159.5595	305.5595
		3901070	-9520000,	17041 ?	011	-1684.5595	-219.405
		20nowion	$12710000 \cdot$	170 4112	0×0	2540.4405	2005 5595
		soroxis		170 +11:	(0x)	206,7.4405	15125505
		9000000	2x45.00600**	1704112	000	2112.4005	1577.5595

t.st:

Depenoent Variable	(1) TEST	()) TEST	Mean Difference (1-J)	Sid. Error	Sug.	95\% Confidence Interval	
						Lower Bound	Upper Brewnd
compres	2701010	170.030	347.0000	370.4112	351	. 385.5595	1079.5595
		1703070	1390.0000^{*}	370.4112	. 000	657.4605	2122.5595
		1802030	71.0000	370.4112	. 848	-661.5595	803.5595
		1802070	1576.0000^{*}	370.4112	. 000	843.4405	2308.5595
		1901030	-631.0000	370.4112	. 091	-1363.5595	101.5595
		1901070	99.0000	370.4112	. 790	-633.5595	831.5595
		270.6070	$17 . \mathrm{mon}$	370.417	. 963	-715.5595	749.5595
		2802030	4.0000	370.4112	991	-728.5595	736.5595
		2802070	-84.0000	370.4112	. 821	-816.55\%5	6.48.5595
		2901010	. 356.0000	370.4112°	.338	-1088.5595	376.5595
		2901070	-881.0000**	-. 370.4112	. 019	-1613.5595	-148.4405
		7000000	3344.0000^{*}	370.4112	. 000	2611.4405	4076.5595
		8000000	2871.0000^{-}	370.4112	. 000	2138.4405	3603.5595
		9000000	2916.0000	370.4112	. 000	2183.4405	3648.5595
	2703070	1703030	330.0000	370.4112	375	-402.5595	1062.5595
		1703070	1373.0000°	370.4112	. 000	640.4405	2105.5595
		1802030	54.0000	370.4112	. 884	-678.5595	786.5595
		1802070	1559.0000°	370.4112	. 000	826.4405	2291.5595
		1901030	-648.0000	370.4112	. 082	-1380.5595	84.5595
		1901070	82.0000	370.4112	. 825	-650.5595	314.5595
		2703030	-17.0000	370.4112	. 963	-749.5595	715.5595
		2802030	- -13.0000	/370.4112	. 972	-745.5595	719.5595
		2802070	1 1-101.0000	370,4112	. 786	-933.5595	631.5595
		2901030	- 373.0000	370.4112	316	-1105.5595	359.5595
		2901070	.898.0000*	370.4112	. 017	-1630.5595	-165.4405
		7000000	3327.0000°	370.4112	. 000	2:28.4405	4059.5595
		8000000	2854.0000-	170.4112	. 030	2121.4405	3586.5595
		9060000	2899.0500°	370.4112	. 000	2166.44VS	3631.5595
	2802030	1703030	343.0000	370.4112	. 356	. 389.5595	1075.5595
		1703070	1386.9000°	370.4112	. 000	653.4405	2118.5595
		18020.0	O 67.0000	370.4112	. 857	-665.5595	799.5595
		1802070	1572.0000°	3704112	000	839.4405	2304.5595
		. 1901010	. 6635.0000	370 411?	. 089	-1367.5595	97.5595
		\% 1901070	- 950000	($170 . \pm 11:$	O.798	. 637.5595	\$27.5595
		2703030	.40000	370.411?		(-716.5595	728.5595
		2701070	13.0000	170.411?	972	-719.5505	745.5595
		2802070	.x8 0000	370.41:?	813	* 60 Sss 5	6-4.5s9)
		2901019	-360.0000	:70412	333	-1002.5595	1725975
		29810:0	-855.0000*	3:0411?	els	. 16175595	-152 4005
		2000x00	$33+00000^{*}$	370 411?	0×0	2607.4505	1072.5595
		goximex	2867.0000*	170 +11:	0×0	:144405	(590.5505
		maxam	2912.0000^{*}	370 +112	(0x)	$2179+105$	un+ 5 sos

Dependent Variable	(1) TEST	() TEST	Mean Difference (1-n)	Sid. Efrix	Sig.	95\% (onfidence Interval	
						L.ower Bound	Upper Breund
compres	2802070	170.1030	431.0000	370.4112	. 247	-.901.5595	1163.5595
		1703070	1474.0000 ${ }^{\text {- }}$	370 411:	mom	741.4405	2206.5595
		1802030	155.0000	370.411?	. 676	-577.5595	887.5595
		1802070	1660.0000*	370.4112	. 000	927.4405	2392.5595
		1901030	-547.0000	370.4112	.142	-1279.5595	185.5595
		1901070	183.0000	370.4112	. 622	-549.5595	915.5595
		2703030	84.0000	370.411?	821	-648.5595	216.5595
		2703070	101.0000	370.4112	. 786	-631.5595	833.5595
		2802030	88.0000	370.4112	813	-644.5595	820.5595
		2901030	-272.0000	370.4112	464	-1004.5595	460.5595
		2901070	-797.0000**	370.4112	. 03.1	-1529.5595	-64.4405
		7000000	3428.0000 ${ }^{\circ}$	370.4112	. 000	2695.4405	4160.5595
		8000000	2955.0000^{*}	370.4112	. 000	2222.405	3687.5595
		9040000	3000.0000*	370.4112	. 000	2267.4105	3732.5595
	2901030	1703030	703.0000	370.41i2	. 060	-29.5595	1433.5895
		1703070	1746.0000*	370.4112	. 000	1013.4405	$2+75.5595$
		1802030	427.000	370.4112	. 251	-305.5595	1159.5595
		1802070	1932.0000*	370.1112	. 000	1199.4405	2656.5595
		1901030	-275.0000	370.4112	. 459	-1007.5595	457.5595
		1901070	455.0000	370.4112	221	-277.5595	1187.5595
		2703030	4 356.0000	370.4112	. 338	-376.5595	1058.5593
		2703070	+ 373.0000	370.411?	. 316	-359.5595	1105.5395
		2802030	16.6360.0000	370.4112		-372.5595	1092.5595
		2802070	272.0000	370.4112	Stis	-460.5595	10045995
		2901070	-525.0000	370.4112	. 159	-1257.. $\cdot 25$	2075598
		7000000	3700.0000*	370.4112	. 000	2967.4403	4412:5935
		- 8000000	3227.0000^{*}	370.411?	. 000	2.94.4405	1989.5595
		. 9000000	3272.0000*	370.411	. 000	2539.403	100\% 5595
	2901070	1203030	1228.0000^{*}	370.4112	. 001	495.4405	1980.5395
		1703070	2271.0000^{*}	370.412	. 000	1533.405	3001.5595
		1802030	9520000°	$170.41:$. 011	219.4405	16545993
		1802070	24570000.			1724.40S	3189.9595
		1901030	250.0000			-482.5595	252 3593
		1901070	9800000*		(1)4,	$247+405$	12125995
		2703030	388100000	$70+11:$	019	$143+405$	15173593
		2703070	x98 00 x$) \cdot$			1654.005	18 \% 0593
		2×0206	xxs $\times 0 \times 00^{\circ}$			$15:+418$	101\% 5493
		2×02070	$797000 \mathrm{k} 0^{\circ}$			con d.00s	15:9 456
		2×100	S25.0000				12.51596
		juxexex	$4225(x \times 6) *$				2047395
		stexacx)	1752(0x0)			3019 4.105	24ヶ4 5 (3)
		*(xxtxx)	1797 (x×n)			M6.4 4 H05	4593595

Dependent Variable	(1) TEST	(נ) TEST	Mean Difference (1-J)	Sid. Error	Sig.	95\% Confidence Interval	
						Lower Bound	Upper Bound
COMPRES	7000000	1703030	-2997.0000 -	170.4112	. 000	-3729.5595	-2264.4105
		170.070	-1954.0000*	370.4112	. 000	-2686.5595	-1221.440s
		1802030	-3273.0000 *	370.4112	. 000	-4005.5595	-25+0.4405
		1802070	-1768.0000 -	370.4112	. 000	-2500.5595	-1015.4405
		1901030	-3975.0000*	370.4112	. 000	-4707.5595	-3242.4405
		1901070	-3245.0000*	370.4112	. 000	-3977.5595	-2512.4405
		270303n	$-33+1.0000 \cdot$	370.4112	. 000	-4076.5595	-2611.4405
		2703070	-3327.0000*	370.4112	. 000	4059.5505	-2594.4405
		2802030	-3340.0000	370.4112	. 000	-4072.5595	-2607.4405
		2802070	-3428.0000*	370.411?	. 000	-4160.5595	$\cdot 2695.4405$
		2901030	-3700.0000	370.4112	. 000	-4432.5595	-2967.440S
		2901070	-4225.0000*	370.4112	. 000	-4957.5595	-3492.440S
		8000000	-473.0000	370.4112	. 204	-1205.5595	259.5595
		9000000	-428,0000	370.4112	. 250	- 1160.5595	304.5595
	8000000	1703030	-2524.0000	370.4:12	. 000	-3256.5595	-1791.4105
		1703070	-1481.0000°	370.4112	. 000	-2213.5595	-748.4405
		1802030	-2800.0000	370.4112	. 000	-3532.5595	-2067.4405
		1802070	-1295.0000	370.4112	. 001	-2027.5595	-562.4105
		1901030	-3502.0000^{-}	370.4112	. 000	-4234.5595	-2769.4405
		1901070	-2772.0000^{*}	370.4112	. 000	-3504.5595	-2039.440S
		2703030	-2871.0000*	370.4112	. 000	-3603.5595	-2138.4405
		2703070	1-2854.0000*	370.4112	. 000	-3586.5595	-2121.44ns
		2802030	[-25-2867.0000*	370.4112	. 000	-3599.5595	-2134.4i0s
		2802070	-2955.0000*	370.4112	. 000	-3687.5595	-2222.4405
		2901030	-3227.0000*	370.4112	. 000	-3959.5595	-2494.4405
		2901070	-3752.0000 ${ }^{\text {- }}$	3704112	. 000	-484.5595	-3019.4405
		7000000	473.0000	370.4112	204	-259.5595	1205.5595
		-9000000	45.0000	370.4112	. 903	-687.5595	717.5595
	9000000	$\dagger 203030$	-2569.0000 ${ }^{\text {- }}$	370.4112	. 000	-3301.5595	-1836.4405
		1703070	-1526.0000.	370.4112	. 000	-2258.5595	.793.4405
		1802030	-2845.0000*	$370+112$	000	. 3577.5595	-2112.4405
		1802070	$-13,40.0000^{\circ}$	370 414?	000	2072 5595	-607.4405
		1901030	-3547.0000°	370 +112?	000	42795595	-2814.4005
		1901070	-2817.0000	T70 4172	000	954.9 ¢595	$-2054+405$
		2703030	-2916.00000^{-}	1704112	- 000	(6,485595	2183 +in5
		2703070	-2x90.0000 ${ }^{\text {- }}$	170 41:	000	-262:5595	$\because 16.64045$
		2802030	$-2912.00 \times 00 \cdot$	170 小11?			? 179 +105
		2802070	- $301000000 \cdot$	170 د11?		-1725995	
		2901030	-127200043*	170 411:		Hent 5 S95	$\because 2 \cdot 9+05$
		2901070	. $3797.00 \times 00^{-}$	1704112	(ax)	45295595	- $5 \times$ c. 4 + 4005
		70000x00	4280×000	$270+112$		-104 suos	1160) 5ios
		8000000	-450060	1704112		.7775595	487.5595

- He mean diffacme is whimic

Vita

Miss Siriluck Boonkrai was born on March 10, 1977 in Rachaburi province. She received a Bachelor's Degree of Science in Chemistry form Chulalongkorn University in 1999. She has been a student in the Program of Petrochemistry and Polymer Science, Faculty of Science, Chulalongkorn University since 1999.

จุฬาลงกรณ์มหาวิทยาลัย

[^0]: * Polymer loading in each sample
 ** Average data from 5 specimens for each treatment (2 replicates)
 * Polymer loading in each sample

[^1]: * Average data from 5 specimens for each treatment (2 replicates)

[^2]: จษาลงกรณมหาวทยาลย
 9

