BRACHISTOCHRONE PROBLEM.

Let $A(x_0, y_0)$ and $B(x_n, y_n)$ be two given points in the xy - plane. We want to find a curve y = y(x) joining them so that a particle falls under gravity along this curve from A to B in the shortest time, friction being neglected.

Take the origin of the coordinate system at the point A, the y - axis directed vertically downward and the x- axis horizontal so that the passage from A to B is marked by an increase in x.

Let the particle start from A with the initial velocity zero, then the velocity of the particle at any point along the curve is given by $v=\frac{ds}{dt}$,. The total time of descent is

$$I = \int_{x_0}^{x_n} \frac{ds}{v} = \int_{x_0}^{x_n} \frac{(1 + (y')^2)^{\frac{1}{2}}}{v} dx \dots (4.1)$$

where the velocity v at any point distance y below the point A is computed by

$$\frac{1}{2} m v^2 = m g y$$
or
$$v = \sqrt{2 g y}$$

It should be noted that y cannot be negative anywhere on the curve, otherwise the particle will fail to reach D. Then (4.1) becomes

$$I = \frac{1}{\sqrt{2g}} \int_{x_0}^{x_1} \sqrt{\frac{1 + (y')^2}{y}} dx. \qquad (4.2)$$

We want to find the curve y = y(x) that makes I a minimum.

In the direct method for solving this problem we consider argument functions which are polygonal curves as defined in chapters 2 and 3.

Then the equation (4.2) may be written

Fig. 10. Polygons constructed to solve the brachistochrone problem.

In order to compute the value of I along the segments of polygonal curves, the equation (4. 3) becomes

$$I = \frac{1}{\sqrt{2g}} \ge \sum_{i=0}^{r_{i}-i} \frac{\sqrt{1 + \left(\frac{y_{i+1} - y_{i}}{\Delta x}\right)^{2}}}{\sqrt{y_{i+1} + \sqrt{y_{i}}}} \cdot \Delta x \cdot \dots \cdot (4.4)$$

$$= \iint_{\mathbf{i}} (y_{1}, y_{2}, \dots, y_{n-1})$$
Let $Y_{i} = \frac{y_{i} + y_{i+1}}{2}$,
$$Y_{i}' = \frac{y_{i+1} - y_{i}}{\Delta x}$$
, for $i = 0, 1, \dots, n-1$.

Then
$$(y_1, y_2, \dots, y_{n-1})$$

$$= \frac{2}{\sqrt{2g}} \sum_{i=0}^{m-1} F(x_i, y_i, y_i) \Delta x.$$

where
$$F(x_{i}, Y_{i}, Y_{i}') = \frac{\sqrt{1 + (Y_{i}')^{2}}}{\sqrt{Y_{i} + \frac{(\Delta x)Y_{i}'}{2}} + \sqrt{Y_{i} - \frac{(\Delta x)Y_{i}'}{2}}}$$

(As in chapter 3 we include x_i in F)

Initially we choose an arbitrary polygon P° whose vertices have the ordinates y_0° , y_1° ,.... y_n° , none of which are negative.

Equation (4.4) then gives

$$I_{o} = \frac{2}{\sqrt{2g}} \sum_{i=0}^{m-i} \frac{\sqrt{1 + \left(\frac{y_{i+1}^{o} - y_{i}^{o}}{\triangle x}\right)^{2}}}{\sqrt{y_{i+1}^{o} + \sqrt{y_{i}^{o}}}} \Delta x,$$

where I is the time the particle falls from A to B along P^{O} .

* See Appendix (b). 00

Now by letting y_0^0 and y_2^0 remain fixed and by varying y_1^1 on $x = x_1$ the time of fall

$$\frac{2}{\sqrt{2_{\text{E}}}} \left[\sqrt{\frac{(\Delta x)^2 + (y_1^1 - y_0^0)^2}{\sqrt{y_1^1 + \sqrt{y_0^0}}}} + \frac{\sqrt{(\Delta x)^2 + (y_2^0 - y_1^1)^2}}{\sqrt{y_2^0 + \sqrt{y_1^1}}} \right]$$

along the new polygonal curve from x_0 to x_2 is made a minimum; this must be less than or equal to its previous value

$$\frac{2}{\sqrt{2g}} \quad \left[\frac{\sqrt{(\Delta x)^2 + (y_1^0 - y_0^0)^2}}{\sqrt{y_0^0 + \sqrt{y_1^0}}} + \frac{\sqrt{(\Delta x)^2 + (y_2^0 - y_1^0)^2}}{\sqrt{y_2^0 + \sqrt{y_1^0}}} \right]$$

Again by letting y_1^1 and y_3^0 remain fixed and by $var y ing y_2^1$ on $x = x_2$ the time of fall

$$\frac{2}{\sqrt{2g}} \left\{ \frac{\sqrt{(\Delta x)^2 + (y_2^1 - y_1^1)^2}}{\sqrt{y_2^1 + \sqrt{y_1^1}}} + \frac{\sqrt{(\Delta x)^2 + (y_2^0 - y_2^1)^2}}{\sqrt{y_3^0 + \sqrt{y_2^1}}} \right\}$$

along the new polygonal curve from $x = x_1$ to $x = x_3$ is made a minimum; this must be less than or equal to its previous value

$$\frac{2}{\sqrt{2g}} \left(\frac{\sqrt{(\Delta x)^2 + (y_2^{\circ} - y_1^{\circ})^2} + \sqrt{(\Delta x)^2 + (y_3^{\circ} - y_2^{\circ})^2}}{\sqrt{y_3^{\circ} + \sqrt{y_3^{\circ}}}} \right)$$

and so on.

Repeating the same process for the remaining interval to construct y_3^1 , y_4^1 ,..... y_{n-1}^1 we obtain a new polygon p^1 the ordinates of the vertices of which are $y_0^1 = y_0^0$, y_1^1 , y_2^1 ,.... $y_n^1 = y_n^0$. The value of the integral I along p^1 is

$$I_{1} = \frac{2}{\sqrt{2g}} = \frac{\frac{n-1}{2}}{\sqrt{\frac{2}{1+1}}} = \frac{\sqrt{(\Delta x)^{2} + (y_{1+1}^{1} - y_{1}^{1})^{2}}}{\sqrt{y_{1+1}^{1} + \sqrt{y_{1}^{1}}}}$$

Which must be less than or equal to I .

$$I_{k} = \frac{2}{\sqrt{2g}} \sum_{\ell=0}^{\frac{m-\ell}{2}} \frac{\sqrt{(\Delta x)^{2} + (y_{i+1}^{k} - y_{i}^{k})^{2}}}{\sqrt{y_{i+1}^{k} + \sqrt{y_{i}^{k}}}}$$

which must be less than $\begin{array}{c} \mathbf{I} \\ \mathbf{k-1} \end{array}$.

By an argument similar to that in the proof of lemma 2, I_0 , I_1 , I_2 , I_2 , I_k , as defined in the preceeding section is a monotonic decreasing sequence, moreover it is bounded below by zero. Therefore this sequence converges to I_m , the greatest lower bound of the sequence.

In other words the polygonal curves converge to the polygon P^{m} that makes the value of the integral I a minimum,

or we may say that the ordinates of the vertices y_i^k of the polygon P^k converge. in such a way that in the limit y_i satisfies the equation $\frac{\partial \mathcal{Y}}{\partial y_i} = 0$, $i = 1, 2, \ldots, n-1$.

Example 3

To find the curve y(x), where y(0)=0, and y(9.4247)=6, that makes the integral g.4247

$$I = \frac{1}{\sqrt{2g}} \int_{0}^{g \cdot \frac{\pi}{2}} \frac{\sqrt{1 + (y')^{2}}}{\sqrt{y}} dx \quad \text{a minimum.}$$

Choose the initial arbitrary polygonal curve P^0 with vertices (0, 0), (1, 0.5), (2, 2), (3, 2.5), (4, 4), (5, 4.25), (6, 4.75), (7, 5.0), (8, 5.25), (9.4247, 6.00).

Then construct the polygon p^k , $k = 1, 2, 3, \dots$ by the method of chapter 4. To construct y_1^k we must minimize the expression.

$$\frac{\sqrt{(\Delta x)^{2} + (y_{1}^{1} - y_{0}^{\circ})^{2}}}{\sqrt{y_{1}^{1} + \sqrt{y_{0}^{\circ}}}} + \sqrt{(\Delta x)^{2} + (y_{2}^{\circ} - y_{1}^{1})^{2}} = T.$$

where y_0^0 and y_2^0 are fixed.

When $y_1^0 = 0.5$

$$T = \sqrt{\frac{1 + (0.5)^2}{\sqrt{0.5} + \sqrt{0}}} + \sqrt{\frac{1 + (1.5)^2}{\sqrt{1.5} + \sqrt{2}}}$$

= 2.4309

When y₁ - 1.0,

When
$$y_1^1 = 1.923$$
, $y_1^2 = 1.5$, then $y_1^2 = 1.8957$.

which is less than 1.923 and less than 2.4309. When $y_1^1=2.0$, then T=1.9445 which is greater than 1.8957. Therefore we select $y_1^1=2.5$.

Continuing this process we obtain the values of y_i^k as shown in table 3 and the graphs of P^k as shown in figure 9. The table also shows that $\frac{T_k}{\sqrt{g}}$ decreases as k increases, and the graphs show that the sequence of polygons approaches the curves calculated analytically in chapter 5.

Table 3. Example 3 Values of y .

· ·	٥	1	2	3	4	5	đ	7	6	9.4247	1 1
0	٥	0.5	2,0	2.5	4.0	4.25	4.75	5.0	5.25	6.00	6,3416
1	o	1.5	2.1	3.5	4.0	4.5	4,75	5.1	6.6	6.0	5.6555
a	٥	1.6	2.5	3.4	4.1	4.5	4.9	5.2	5.7	6,0	5.5041
3	٥	1.7	2.7	3.5	4.2	4.8	4.9	5.4	5.8	0.0	9.5841
4	0	1.7	2.7	3.5	4.2	4.6	5.1	5.6	5.8	8.0	5.5551
5	0	1.7	2.7	3.5	4.2	4.7	5.1	9.5	5.8	6.0	5.5528
-	-	-	_	<u>-</u>	_	-	-	-	-	_	- .
-		-	-	-	-	-	-	-	-	-	-
-	-	-	-	*	-	-	•	_	-	_	-
	0	2:10		-	 110 0 4.55	1 ∎⊕1 5-∘5	 14 t 1 o 1 5 · 4 5	 - 5₁7¢	5:15	6.00	9.4412

