

CHAPTER II

AN ALGEBRAIC FORMULATION OF PATH PROBLEMS

In this chapter, the strong and weak closures of a stable element of a path algebra are defined and an arc-value matrix A of a digraph over a path algebra is given. When A is stable, A^*b where A^* is the strong closure of A and b is either a column vector of A or the unit matrix E of a path algebra $(M_n(P), \oplus, \otimes)$, is shown to be a solution of a matrix equation $y = Ay \oplus b$. The solution is determined by the Jordan elimination method. Then the entry a_{ij}^* or a_{ij}^{\wedge} of A^*b is a solution of a path problem.

2.1 Arc-value Matrices

Let x be an element of a path algebra (P, \oplus , \otimes). The powers of an element x are defined by

 $x^{0} = e, x^{k} = x^{k-1}x$ for all $k \in \mathbb{N}$, (2.1.1)

where e is the unit of P.

An element x is said to be stable if there is $q \in N_0$ such that $\bigoplus_{k=0}^{q} \sum_{k=0}^{k} = \bigoplus_{k=0}^{q+1} \sum_{k=0}^{k}$, and the stability index of an element x is the least such integer q if the element x is stable.

Let x be a stable element of a path algebra (P, \oplus , \otimes) with the stability index q. Then

$$\bigoplus_{k=0}^{q} \sum_{k=0}^{k} = \bigoplus_{k=0}^{r} \sum_{k=0}^{k} \text{ for all integers } r \ge q,$$

and

The strong closure of a stable element x of index q is defined as $\bigoplus \sum_{k=0}^{q} x^{k}$, denoted by x^{*}, and the weak closure of the element x is defined as $\bigoplus \sum_{k=1}^{q+1} x^{k}$,

denoted by x ^.

Let $M_n(P)$ be the set of all $n \times n$ matrices whose entries belong to P. Given any matrices $A = [a_{ij}]$ and $B = [b_{ij}]$ in $M_n(P)$, the addition of A and B is defined by

$$A \oplus B = C$$

where $C = [c_{ij}]$ is the n \times n matrix with entries $c_{ij} = a_{ij} \oplus b_{ij}$, and the multiplication of A and B is defined by

$$A \otimes B = AB = C$$

where $C = [c_{ij}]$ is the n × n matrix with entries $c_{ij} = \bigoplus_{k=1}^{n} (a_{ik} \otimes b_{kj})$. Then $(M_n(P), \oplus, \otimes)$ is a path algebra whose zero and unit are n × n matrices

	θ	$\theta \cdots \theta$		Гe	θ	θ	
Φ=	θ	$\begin{array}{ccc} \theta & \cdots & \theta \\ \hline \theta & \cdots & \theta \\ \vdots & & \vdots \\ \vdots & & \vdots \\ 0 & & \theta \end{array}$	and $E =$	θ :	e :	θ	respectively,
	θ	$\theta \cdots \theta$		θ	θ	e	

where θ and e are the zero and unit of P respectively.

The arc-value matrix of a digraph G = (X, U, v) over a path algebra (P, \oplus , \otimes) is an n × n matrix A = $[a_{ij}]$ where

$$\mathbf{a}_{ij} = \begin{cases} \mathbf{v}(i, j) & \text{if } (i, j) \in \mathbf{U}, \\\\\\ \theta & \text{otherwise,} \end{cases}$$

where θ is the zero of P. Thus, $A \in M_n(P)$.

Let A be any matrix belonging to M_(P). By (2.1.1), the powers of A are

$$A^{0} = E, A^{k} = A^{k-1}A$$
 (k = 0, 1, 2, . . .)

where E is the unit matrix of $M_n(P)$.

Let A be the arc-value matrix of a digraph G = (X, U, v) over a path algebra (P, \oplus, \otimes) . For each $k \in N_0$, the entry a_{ij}^k of A^k is given by

$$\mathbf{a}_{ij}^{k} = \bigoplus_{\mu \in S_{ij}^{k}} \mathbf{v}(\mu)$$
(2.1.2)

where $S_{ij}^{k} = \{\mu \mid \mu \text{ is a dipath of order } k \text{ from node } i \text{ to node } j \text{ in } G\}$ [3].

For each
$$h \in N_0$$
, if $A^{[h]}$ denotes $\bigoplus_{k=0}^{n} A^k$ and $A^{[h]} = [a_{ij}^{[h]}]$ then from (1.2.1(iv))

and (2.1.2), $A^{[h]}$ has the entry

where $T_{ij}^{h} = \{\mu / \mu \text{ is a dipath of order } r, 0 \le r \le h, \text{ from node i to node j in } G\}.$

Since $M_n(P)$ is a path algebra, then all the definitions and results of stability can be applied to matrices. Therefore, if A is stable, then the entry a_{ij}^* of the strong closure A^* of A is given by

$$a_{ij}^* = \bigoplus_{\mu \in T_{ij}^h}^{b} \quad \text{for some } h \in \mathbb{N}_0, \qquad (2.1.4)$$

and the entry a_{ij}^{\wedge} of the weak closure A $\hat{}$ of A is given by

$$a_{ij}^{\wedge} = \bigoplus_{\mu \in W_{ij}^{k}}^{\sum \nu(\mu)} \quad \text{for some } k \in \mathbb{N}, \qquad (2.1.5)$$

where $W_{ij}^{k} = {\mu / \mu \text{ is a dipath of order } r, 1 \le r \le k, \text{ from node i to node j in G}.$

Some sufficient conditions for an arc-value matrix A of a digraph G = (X, U, v) over a path algebra (P, \oplus, \otimes) to be stable are the following statements [3].

(1) If for every elementary cycle γ in G, $v(\gamma) \oplus e = e$ where e is the unit of P, then A is stable.

(2) If A is nilpotent, i.e. $A^m = \Phi$ for some $m \in N_0$, then A is stable.

The following examples show some arc-value matrices of digraphs over path algebras which satisfy the above conditions and they are used in solving certain path problems in the next section.

Example 2.1.1 Figure 2.1.1(a) shows a digraph G = (X, U, v) over the path algebra (P_2, \oplus, \otimes) and the arc-value matrix A of G is in Figure 2.1.1(b).

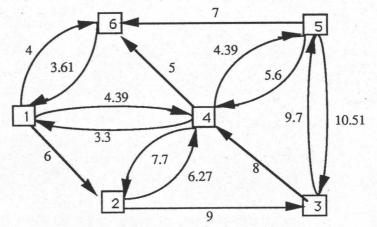


Figure 2.1.1(a)									
	∞	6	∞	4.39	∞	4]			
	∞	∞	9	6.27	∞	∞			
	∞	∞	∞	8	9.7	∞			
	3.3	7.7	∞	∞	4.39	5			
	~	~	10.51	5.6	∞	7			
	3.61	~	∞.	∞	~	∞			

Figure 2.1.1(b)

Let $\gamma = (i_0, i_1)(i_1, i_2) \dots (i_r, i_0)$ be an elementary cycle in G. Then $v(\gamma) = v(i_0, i_1) \otimes v(i_1, i_2) \otimes \dots \otimes v(i_r, i_0)$. Since $v(i_0, i_1) \oplus 0 = \min\{v(i_0, i_1), 0\} = 0$, then

$$\begin{aligned} \mathbf{v}(\boldsymbol{\gamma}) &\oplus \mathbf{0} = (\mathbf{v}(\mathbf{i}_0, \mathbf{i}_1) \otimes \mathbf{v}(\mathbf{i}_1, \mathbf{i}_2) \otimes \ldots \otimes \mathbf{v}(\mathbf{i}_r, \mathbf{i}_0)) \oplus \mathbf{0} \\ &= (\mathbf{v}(\mathbf{i}_0, \mathbf{i}_1) \otimes \mathbf{v}(\mathbf{i}_1, \mathbf{i}_2) \otimes \ldots \otimes \mathbf{v}(\mathbf{i}_r, \mathbf{i}_0)) \oplus (\mathbf{0} \otimes (\mathbf{v}(\mathbf{i}_1, \mathbf{i}_2) \otimes \mathbf{v}(\mathbf{i}_2, \mathbf{i}_3) \otimes \ldots \otimes \mathbf{v}(\mathbf{i}_r, \mathbf{i}_0))) \\ &= (\mathbf{v}(\mathbf{i}_0, \mathbf{i}_1) \oplus \mathbf{0}) \otimes (\mathbf{v}(\mathbf{i}_1, \mathbf{i}_2) \otimes \mathbf{v}(\mathbf{i}_2, \mathbf{i}_3) \otimes \ldots \otimes \mathbf{v}(\mathbf{i}_r, \mathbf{i}_0)) \\ &= \mathbf{0} \otimes (\mathbf{v}(\mathbf{i}_1, \mathbf{i}_2) \otimes \mathbf{v}(\mathbf{i}_2, \mathbf{i}_3) \otimes \ldots \otimes \mathbf{v}(\mathbf{i}_r, \mathbf{i}_0)) \\ &= \mathbf{0} \end{aligned}$$

Therefore, A is stable.

Example 2.1.2 Figure 2.1.2(a) shows a digraph G = (X, U, v) over the path algebra (P_7, \oplus, \otimes) , where $\Sigma = \{a, b, \ldots, o\}$, and the arc-value matrix A of G is in Figure 2.1.2(b).

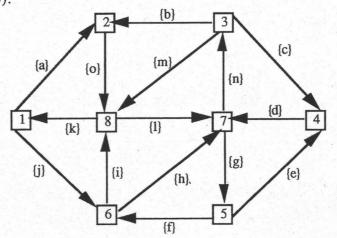


Figure 2.1.2(a)

1.10	A State State State		and a strategy of the	1					í.
	Ø	{a}	ø	ø	ø	{j}	Ø	ø	
	ø	ø	ø	ø	ø	Ø	Ø	{o}	
	ø	{b}	Ø	{c}	Ø	ø	Ø	{m}	
	ø.	ø	Ø	ø	ø	ø	{d}	Ø	
	Ø	ø	Ø	{e}	Ø	{f }	Ø	Ø	
	ø.	ø	Ø	ø	Ø	ø	{h}	{i}	
	ø	ø	{n}	ø	{g}	ø	Ø	Ø	and the second se
	{k}	ø	ø	Ø	Ø	Ø	{1}	ø	

Figure 2.1.2(b)

Let t be the maximum order of simple dipaths in G. Let i, $j \in X$ and let $S_{ij}^{t+1} = \{\mu / \mu \text{ is a dipath of order } t + 1 \text{ from node i to node j in G}\}$. Then for each $\mu \in S_{ij}^{t+1}$, $v(\mu) = \emptyset$. Since $A^{t+1} = [a_{ij}^{t+1}]$ where $a_{ij}^{t+1} = \bigoplus_{\mu \in S_{ij}^{t+1}} v(\mu)$, then $A^{t+1} = \Phi$. Therefore, A is stable.

2.2 Solutions of Path Problems

Suppose that the arc-value matrix A of a digraph G = (X, U, v) over a path algebra (P, \oplus, \otimes) is stable. Then $A^* = \bigoplus_{k=0}^{q} A^k$ for some $q \in N_0$, and the equation

$$\mathbf{y} = \mathbf{A}\mathbf{y} \oplus \mathbf{b} \tag{2.2.1}$$

where **b** is the column vector of a specified matrix in a path algebra $(M_n(P), \oplus, \otimes)$, has a solution $y = A^*b$ because $A(A^*b) \oplus b = (AA^* \oplus E)b = A^*b$.

Suppose that the arc-value matrix A is nilpotent. Then there is $q \in N_0$ such that $A^q = \Phi$, and $A^* = \bigoplus_{k=0}^{q-1} A^k$. Let y_0 be an arbitrary solution of (2.2.1), i.e.

$$y_0 = Ay_0 \oplus b$$
.

By substituting, we obtain

$$\mathbf{y}_{\mathbf{0}} = \mathbf{A}(\mathbf{A}\mathbf{y}_{\mathbf{0}} \oplus \mathbf{b}) \oplus \mathbf{b} = \mathbf{A}^{2}\mathbf{y}_{\mathbf{0}} \oplus (\mathbf{E} \oplus \mathbf{A})\mathbf{b},$$

and by repeated substitutions

$$y_{0} = A^{q}y_{0} \oplus (\bigoplus_{k=0}^{q-1} A^{k})b$$
$$= (\bigoplus_{k=0}^{q-1} A^{k})b$$
$$= -A^{*}b$$

Therefore, the equation (2.2.1) has the unique solution $y = A^*b$.

Note that by the definitions of strong and weak closures of a stable element, the entry of the solution $y = A^*b$ is

 $y_{ij} = \begin{cases} a_{ij}^* & \text{if } b \text{ is the } j\underline{th} \text{ column vector of the unit matrix } E, \\ a_{ij}^\wedge & \text{if } b \text{ is the } j\underline{th} \text{ column vector of the arc-value matrix } A, \\ \text{where } a_{ij}^* & \text{and } a_{ij}^\wedge \text{ are the entries of } A^* \text{ and } A^\wedge \text{ respectively. From (2.1.4) and} \\ (2.1.5), \text{ we conclude that the entry } y_{ij} \text{ of } y = A^* b \text{ is} \end{cases}$

 $y_{ij} = \begin{cases} \bigoplus \sum v(\mu) & \text{if } b \text{ is the } j\underline{th} \text{ column vector of the unit matrix } E, \\ \mu \in T_{ij}^{h} \end{cases}$ (2.2.2) $\bigoplus \sum v(\mu) & \text{if } b \text{ is the } j\underline{th} \text{ column vector of the arc-value matrix } A. \\ \mu \in W_{ij}^{k} \end{cases}$

Therefore, a path problem is the determination of the entry of the solution $y = A^*b$ of the equation (2.2.1), where either b is the <u>jth</u> column vector of the unit matrix E or the <u>jth</u> column vector of the arc-value matrix A.

A solution $y = A^*b$ of the equation (2.2.1) can be determined by the following method [3].

The Jordan elimination method

Suppose that the arc-value matrix A of a digraph G = (X, U, v) over a path algebra (P, \oplus, \otimes) , where $X = \{1, 2, ..., n\}$, is stable. We denote the equation $y = Ay \oplus b$ by

$$\mathbf{y} = \mathbf{A}^{(0)}\mathbf{y} \oplus \mathbf{b}^{(0)}.$$

From this equation we derive n new equations

$$y = A^{(k)} y \oplus b^{(k)}$$
 (k = 1, 2, ..., n)

and we obtain the sequence of matrices $A^{(k)} = [a_{ij}^{(k)}]$ and column vectors $\mathbf{b}^{(k)} = [b^{(k)}]$

by using the following formulas

$$a_{ij}^{(k)} = \begin{cases} a_{ij}^{(k-1)} \oplus a_{ik}^{(k-1)} (a_{kk}^{(k-1)})^* a_{kj}^{(k-1)} & \text{if } i \neq k, j > k, \\ (a_{kk}^{(k-1)})^* a_{kj}^{(k-1)} & \text{if } i = k, j > k, \\ \theta & \text{otherwise}, \end{cases}$$

$$b_{ij}^{(k)} = \begin{cases} (a_{kk}^{(k-1)})^* b_{kj}^{(k-1)} & \text{if } i = k, \\ (a_{kk}^{(k-1)})^* b_{kj}^{(k-1)} & \text{if } i = k, \\ b_{ij}^{(k-1)} \oplus a_{ik}^{(k-1)} (a_{kk}^{(k-1)})^* b_{kj}^{(k-1)} & \text{if } i \neq k, \end{cases}$$

$$(2.2.3)$$

where θ is the zero of P, $a_{ij}^{(k-1)}$ and $b_{ij}^{(k-1)}$ are the entries of $A^{(k-1)}$ and $b^{(k-1)}$ respectively. Then these equations $y = A^{(k)}y \oplus b^{(k)}$ (k = 1, 2, ..., n) have a solution $y = A^*b$ and in the final equation $y = A^{(n)}y + b^{(n)}$, $A^{(n)} = \Phi$ and $y = b^{(n)}$.

Example 2.2.1 Enumeration of simple dipaths between two given nodes.

Let us consider a digraph G = (X, U) of Figure 2.2.1, whose arcs have distinct names from $\Sigma = \{a, b, \ldots, o\}$. In order to determine the set of all non-null simple dipaths from node 3 to node 5 in G, a digraph G = (X, U, v)over a path algebra $(P_{\gamma}, \oplus, \otimes)$ is given as Figure 2.1.2(a).

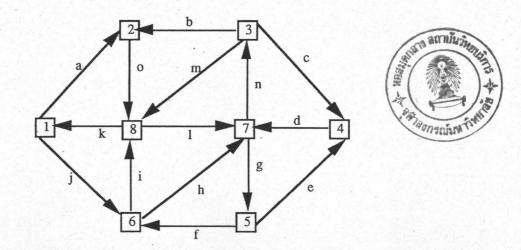


Figure 2.2.1

Recall that the set of all non-null simple dipaths from node i to node j is the formal sum $\bigoplus_{\mu \in W_{ij}^q} \nabla v(\mu)$ where q is the maximum order of simple dipaths from node i to node j in G and $W_{ij}^q = \{\mu / \mu \text{ is a dipath of order r, } 1 \le r \le q, \text{ from node i}$ to node j in G}. Let the set of all non-null simple dipaths from node i to node 5 be denoted by y_{i5} . Therefore, $y_{i5} = \bigoplus_{\mu \in W_{i5}^q} \nabla v(\mu)$ and y_{35} is the required answer.

From Example 2.1.2, the arc-value matrix A of G (Figure 2.1.2(b)) is stable. By (2.2.2), we have that y_{15} is the entry of the solution $y = A^*b$ of the matrix equation $y = Ay \oplus b$ where

$$y = [y_{15} y_{25} y_{35} y_{45} y_{55} y_{65} y_{75} y_{85}]'$$

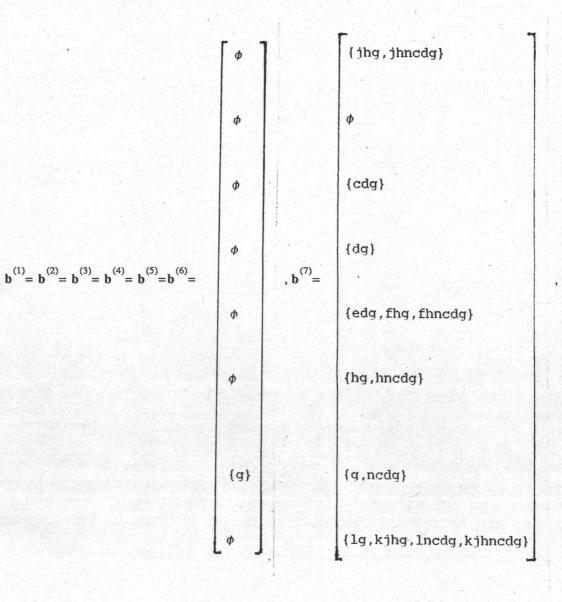
 $\mathbf{b} = [\emptyset \ \emptyset \ \emptyset \ \emptyset \ \emptyset \ \emptyset \ \{g\} \ \emptyset]'$

and

is the 5<u>th</u> column vector of A. The solution $y = A^*b$ can be determined by the Jordan elimination method as follows.

$$A^{(0)} = A \text{ and } b^{(0)} = b.$$

The successive vectors $\mathbf{b}^{(k)}$ (k = 1, 2, . . . , 8) obtained by the equation (2.2.3) are given below.



{olg,okjilg,okjhnmlg,okjhg,olnmkjhg,olncdg,okjilncdg,okjhncdg}

{cdg,mlg,bolg,cdnmlg,cdnbolg,mkaolg,cdnmkaolg,mkjilg,bokjilg,cdnmkjilg,cdnbokjil g,bokjhnmlg,mkjhnbolg,mkjhg,bokjhg,cdnmkjhg,cdnbokjhg,bolnmkjhg,mlnbokjhg,mlncdg ,bolncdg,mkaolncdg,mkjilncdg,bokjilncdg,mkjhncdg,bokjhncdg}

{dg,dnmlg,dnbolg,dnmkaolg,dnmkjilg,dnbokjilg,dnmkjhg,dnbokjhg}

b⁽⁸⁾=

{edg,fhg,fhncdg,filg,ednmlq,fhnmlq,ednbolg,fhnbolg,fikaolg,ednmkaolg,fhnmkaolg,e dnmkjilg,fhnmkjilg,ednbokjilg,fhnbokjilg,fikjhnmlg,fikjhnbolg,fikjhg,ednmkjhg,ed nbokjhg,filnmkjhg,filnbokjhg,filncdg,fikaolncdg,fikjhncdg}

{hg,hncdg,ilg,hnmlg,hnbolg,iKaolq,hnmkaolg,hnmkjilg,hnbokjilg,ikjhnmlg,ikjhnbolg ,ikjhg,ilnmkjhg,ilnbokjhg,ilncdg,ikaolncdg,ikjhncdg}

{q,ncdg,nmlg,nbolg,nmkaolg,nmkjilg,nbokjilg,nmkjhg,nbokjhg}

{lg,kaolg,kjilg,kjhnmlg,kjhnbolg,kjhg,lnmkjhg,lnbokjhg,lncdg,kaolncdg,kjilncdg,k jhncdg}

Therefore, the set of all non-null simple dipaths from node 3 to node 5 is y_{35} .

y₃₅ = {cdg,mlg,bolg,cdnmlg,cdnbolg,mkaolg,cdnmkaolg,mkjilg,bokjilg,cdnmkjilg,cdnbokjil g,bokjhnmlg,mkjhnbolg,mkjhg,bokjhg,cdnmkjhg,cdnbokjhg,bolnmkjhg,mlnbokjhg,mlncdg ,bolncdg,mkaolncdg,mkjilncdg,bokjilncdg,mkjhncdg,bokjhncdg}.