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CHAPTERI
PRELIMINARIES

1.1 Introduction

The general symplectic graph associated with nonsingular alternate matrices
over a field is introduced by Tang and Wan [13] as a new family of strongly reg-
ular graphs. This graph was firstly defined for a symplectic space over a com-
mutative ring by Meemark and Prinyasart [12]. They showed that their sym-
plectic graph is vertex transitive and arc transitive when R = Z,», p is an odd
prime and n > 1. There are many articles influenced by this definition such as
[10], [11], [6] and [5]. Mostly, the work was on strong regularity, automorphism
groups, vertex and arc transitivities, chromatic numbers and subconstituents of
symplectic graphs over a finite field, modulo p", and modulo pq, where p and ¢
are primes and n > 1.

In what follows, we study those topics over finite local rings and obtain re-
sults parallel to [13], [12], [10], [11], [6] and [5]. We use combinatorial approach
similar to [12]. In addition, we present some results over finite commutative

rings in the final chapter.

1.2 Symplectic graphs

Let R be a commutative ring and let V' be a free R-module of R-dimension 2v,
where v > 1. Assume that we have a function 5: V x V. — R which is R-
bilinear, 3(#, ¥) = 0 for all ¥ in V' and the R-module morphism from V to V* =
Homp(V, R) given by ' — f(-, %) is an isomorphism. We call the pair (V, 5) a

symplectic space. A vector 7 in V is said to be unimodular if there is an f in V*



with f(Z) = 1; equivalently, if 7 = by + - - + gy by, Where {51, . 752V} is a
basis for V, then the ideal (a4, . . ., as,) = R. If ¥ is unimodular, then the line R¥
is a free R-direct summand of dimension one.

A hyperbolic pair {7, } is a pair of unimodular vectors in V' with the prop-
erty that 5 (2, y) = 1. The module H = RZ® Ry is called a hyperbolic plane. Let
(V. B) be a symplectic space. An R-module automorphism o on V' is an isometry
on Vif B(o(Z),0(y)) = B (Z,y) for all Z,i € V. The group of isometries on V is
called the symplectic group of (V, ) over R and denoted by Sp (V).

Define the graph Gg, (1) with the vertex set is the set of lines {RZ : 7' is a

unimodular vector in V'} and with adjacency given by
RZ is adjacent to Ry if and only if 5(Z, %) € R*.

Here, R* denotes the group of invertible elements in k. We call Gg, (), the

symplectic graph of (V, 3) over R.

Example 1.2.1. Let p be a prime number and let R be the ring of integers mod-
ulo p", Zn», or the field of p” elements, F,., where n € N. For v > 1, let V denote

the set of 2v-tuples (a4, ..., as, ) of elements in R. Define 5: V x V — R by

0 I, t
6(((117 R a/21/)7 (bla ... 7b2u)) — (ala ... ,CLQV) (b17 ceey le/) )
—I, 0
2U X2V
where [, is the v x v identity matrix, for all vectors (a,...,as.), (b1,...,ba)

in V. Then (V, ) is a symplectic space, and unimodular vectors in V" are those
(aq,...,as,) of elements in R such that a; € R* for some i € {1,2,...,2v}. We

generalize this result in Theorem 2.1.2. We write Sp®*)(R) for this symplectic
graph.

Theorem 1.2.2. [12, 13] Let p be a prime number and let n and v be positive integers.
For R = Fyu or R = Zyn, the graph Sp®(R) is (p*)*'-reqular and every two
adjacent vertices of Sp®”)(R) has (p")2~2(p" — p"~") common neighbors.



1.3 Terminologies and literature reviews

A strongly regular graph with parameters (v, k, A, ;1) is a k-regular graph on v
vertices such that for every pair of adjacent vertices there are \ vertices adjacent
to both, and for every pair of non-adjacent vertices there are . vertices adjacent

to both.
Theorem 1.3.1. Let p be a prime number and let n and v be positive integers.

(1) [13] The symplectic graph Sp®”)(F,») is a strongly regular graph with parame-
ters

(—(p;Z 1—1 LML ()R = 1) () (0 1)) :

(2) [12] The symplectic graph Sp\*(Z,) is a strongly reqular graph with parameters

(p"+p" Lt —p" ")

and Sp®)(Z,n) is not strongly regular when v > 2 and n > 2.

Example 1.3.2. The following figure shows the symplcetic graph Sp™® (F,). This
graph is strongly regular with parameters (15, 8, 4, 4).

As a generalization of strongly regular graphs, Erickson and Fernando [3]
introduced Deza graphs, which were firstly introduced in a slightly more re-
stricted form by Deza and Deza [2]. A regular graph with degree k on v vertices

is said to be a (v, k, A, 1)-Deza graph if any two distinct vertices » and y have A



or ;. common adjacent vertices. A Deza graph of diameter two is called a strictly

Deza graph if it is not strongly regular.

Example 1.3.3. The following figure shows a (8, 5, 4 2)-Deza graph. It is also a
strictly Deza graph.

Li, Wang and Guo [10] showed that:
Theorem 1.3.4. [10] The symplectic graph Sp**)(Z,.) is a strictly Deza graph when
v > 2and n > 2 with parameters

(—(p;Z 1—1 L R~ Y, (p”)Q”‘l) :

For a graph G, we write V(G) for its vertex set and £(G) for its edge set. Let
G and H be graphs. A function f from V(G) to V(H) is a homomorphism from
G to H if f(g1) and f(g2) are adjacent in H whenever g; and g- are adjacent in G.
It is called an isomorphism if it is a bijection and f~! is a homomorphism from
H onto G. Moreover, an isomorphism on G is called an automorphism. The set
of all automorphisms of a graph G is denoted by Aut(G). It is a group under

composition, called the automorphism group of G.

Theorem 1.3.5. Let R be a commutative ring and (V, ) a symplectic space over R.
For each o € Spy(V'), o can be considered as an automorphism of Gs,,,v). That is, we

have the imbedding Spp(V') — Aut(Gsp,(v))-

Proof. Let o € Spp(V). Define the map & on G, (v) by
0 : RT — Ro (%)

for all unimodular vectors ¥ € V. Since o is an isometry, ¢ is a bijection and



B(Z,y) = B(o(Z),o(y)) for all unimodular vectors &,y € V. Thus,
B(E,y) € R < Blo(),0(y)) € R

for all unimodular vectors 7,3 € V. Hence, & € Aut(Gs;,(v))- O

We give more reviews and study the automorphism group of symplectic
graphs and their subconstituents in Sections 2.4 and 3.3, respectively.

A graph G is vertex transitive if its automorphism group acts transitively
on the vertex set. That is, for any two vertices of G, there is an automorphism
carrying one to the other. An arc in (' is an ordered pair of adjacent vertices, and
G is arc transitive if its automorphism group acts transitively on its arcs. Note
that an arc transitive graph is necessarily vertex and edge transitive. More on
transitive graphs can be found in Chapter 3 of Godsil’s book [4]. We have the

next results.

Theorem 1.3.6. [10, 12, 13] Let p be a prime number and let n be a positive integer.
For R =T, or R = Z,n, the symplectic graph Sp'* (R) is arc transitive.

Theorem 1.3.7. [11] Let m > 2 be an integer. For R = Z,,, the symplectic graph

Sp*)(R) is arc transitive.

The chromatic number of a graph G is the smallest number of colors needed
to color the vertices of G so that no two adjacent vertices share the same color.
The chromatic number of a graph G is commonly denoted by x (G). Some results
on chromatic numbers are as follows. We refer the reader to Sections 2.3, 3.2 and

4.2 for our work on chromatic numbers.

Theorem 1.3.8. 1. [13] If k is the field of q elements and V' is the symplectic graph
of dimension 2v, v > 1, then x(Gsp, (vy) = ¢” + 1.

2. [12] x(SpP(Zyn)) = p+ 1 forall n > 1.



Example 1.3.9. The symplectic graph Sp® (F,) has the chromatic number equal

to 22 + 1 = 5. We can assign a coloring as shown below.




CHAPTER II
SYMPLECTIC GRAPHS OVER FINITE LOCAL RINGS

A local ring is a commutative ring which has a unique maximal ideal. Note
that for a local ring R, its unique maximal ideal is given by M = R ~ R* and
we call the field R/M, the residue field of R. For example, if p is a prime, then
Zyn, n € N, is a local ring with maximal ideal pZ,» and residue field Z,» /pZ,»
isomorphic to Z,. Moreover, every field is a local ring with maximal ideal {0}.
In this chapter, we study the symplectic graph Gs, 1) when R is a finite
local ring. We obtain a classification for our graph to be strongly regular or to
be a strictly Deza graph. Moreover, we prove that this graph is vertex and arc
transitive and study the chromatic number. In the final section, we work on the

automorphism group.

2.1 Strong regularity

Let R be a local ring with unique maximal ideal M and let (V, §) be a symplectic
space of R-dimension 2v, where v > 1. By Theorem 1 of [8], V' possesses a
canonical basis {€1, ..., é,} such that {€},¢,.;} is a hyperbolic pair for all 1 <
j < vand V is an orthogonal direct sum V' = H,1H,1 ... LH,, where H; =
Reé; @ Re,y; is a hyperbolic plane for all 1 < j < v. Recall a common theorem

about local rings that:

Theorem 2.1.1. Let R be a local ring with unique maximal ideal M. Then 1 4+ m is a

unit in R for allm € M.

Proof. Letm € M. Assume that 1+ m is not invertible. Then 1+ m € M because
Ris alocal ring. Thus, (1 +m) —m =1 € M, a contradiction. Hence, 1 + misa

unit of R. 0



We have a criterion to determine whether a vector in V is unimodular as

follows.

Theorem 2.1.2. A vector ¥ = a1€1 + - - - + ag, €y, in 'V is unimodular if and only if a;

is a unit of R for somei € {1,...,2v}.

Proof. 1If some q; is a unit in R, then (a4, ..., as,) = R, so Z is unimodular. Con-
versely, assume that 7' is unimodular. Then there exists an f € V* such that
1= f(Z) = a1 f(€1) + -+ + az f(€2). Suppose that a; is not a unit in R for all 4.
Since R is a local ring, a; € M for all i, and thus a, f(€1) + - - - + as, f(€2,) € M.
By Theorem 2.1.1, 0 = 1 — (ay f(€1) + - -+ + a2, f(€5,)) is a unit in R, which is a

contradiction. Therefore, a; is a unit of R for some i € {1,...,2v}. N

If R is finite, the above theorem gives the number of vertices of G, (v),

namely,

R — M|

[V(Gspr(v))| = [{RZ : #is a unimodular vector in V}| = "

Write unimodular vectors @ = a1€; + + -+ + a9,€5, and b = bié; + - - - + by, €3,

for some a;,b; € R. Then

—,

B(d,b) = flar€) + ...+ as €, b1€1 + ... + boy€s,)

v 2v v
= Z Zaibjﬂ(gia 53) = Z(aibwri - au+ibi)
i=1 j=1 i=1
because (3(€;,€;) = 0,6(€,€,4;) = 1 and p(€,€;) = —p(€;,¢é:) for all 4,5 €
{1,...,2v}. Hence, the adjacency condition becomes

Riisadjacentto Rb ifandonlyif > (aib,4; — ayuib) € R (2.1.1)

i=1

We shall use it in the next lemma.



Lemma 2.1.3. Let d = a1} + - - - + a9, €, and b= b€y + - - + by, €5, be unimodular
vectors in V and assume that a; € R* for some i € {1,...,2v}. If Ra is adjacent to

Rb, then a;by — a;b; is a unit for somel € {1,...,2v}and [ # i.

Proof. Assume that a;b; — a;b; € M foralll € {1,...,2v}. Then

v v v

Z(aiajbu+j_aqujajbi)+Z(aiau+jbj_ajau+jbi) == Z(aia]’bwrj_aiawrjbi) € M,

j=1 j=1 J=1
which implies >, (a;b,4; — a,4;b;) € M. Thus, Rd is not adjacent to Rb. O

Theorem 2.1.4. Let R be a finite local ring and let (V,[3) be a symplectic space of
dimension 2v, where v > 1.
[ — M

2v—1

o | R .
-regular with vertices.

(1) The symplectic graph Gs, vy is |R| T

(2) Every two adjacent vertices of Gsy, (v has |R|* 2 |R*| common neighbors.

1>~ common

(3) Every two non-adjacent vertices of Gs,,.(v) has |R|*~?|R*| or |R

neighbors.

Proof. Letd = a1€1+- - -+ag,€5, and b= bi€i+ -+ +by, €, be unimodular vectors
in V and assume that Rd is adjacent to Rb. Since @ is unimodular, there exists an

ie{l,...,2v} such thata; € R*. If i < v, then

by = a; ' (r + (as1br — arbyi1) + (avi2bs — azbyi2) + - -
+ (ay+i—1bi—1 - az‘—lbu-l—i—l) + ay,4ib; + (a'u+i+1bi+1 - ai+1bu+i+1) + -

+ (a2ybu - aub2u>)
for some r € R* and if i > v, then

bi—, = Cli_l ((G1by+1 — Ayy1b1) + (a2byio — apgobe) + - - + (@im1-0bim1 — a;—1bim1-y)

+ aiybi + (@is1—vbiss — aiprbisioy) + - + (aybay — ag by) — s)
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for some s € R*. Therefore, there are |R|**~! classes adjacent to the vertex Rd,
and hence Gs,, (v is | R~ '-regular. This proves (1).
Next, we let ¥ = z1€] + - - - + 29,5, be a unimodular vector in V' such that RZ

is a common neighbor of Rd and Rb. Then

(a1Zp41 — p121) + (@2Tppo2 — Quio®2) + - + (T2 — agywy) =7 (2.1.2)
and

(01741 — bugam1) + (baygo — byyowe) + -+ - 4 (b, — byyz,) =8 (2.1.3)

for some 7', s’ € R*. Since a; € R* and we may assume without loss of general-

ity that ¢ < v, from Eq. (2.1.2) we have

—1 !
Tyri = a; ' (r' + (4121 — G1Zp11) + (@yi0Ts — AsTyys) + -+
+ (Ay+io1Tio1 — Qi—1Typio1) + AupiTi + (Quiit1Tip1 — Qi1 Tppigr) + - -

+ (a211131/ - CL,/.T21,>).

Subtracting b; x (2.1.2) from a;x(2.1.3) gives

— Z(aibyﬂ — CLV_H‘bZ')ZEj + Z(aibj - (ljbi>$y+j = ais' - bﬂ“,. (214)
j=1 Jj=1
j#i

Assume that Rd is adjacent to Rb. By Lemma 2.1.3, we have a;b; — a;b; is a unit

forsomel € {1,...,2v}and [ #i. If | < v, then

v

Ty = (aib — albi)_1<ai5/ —bir' +> (aibyi — ay b — Y (aib; — ajbi)xuﬂ')
7=1 j=1
j#il
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and if l > v + 1, then

v

Ti—py = (aibl — albi)_l (CLZ‘S, - bz"l"/ + Z (aib,,ﬂ» - al,ﬂ-bi)xj - Z(aibj — ajbi)xyﬂ-) .

J#El-v J#i

2v—2 X X .
W = |R|*2|R*| classes of common neighbors of

Hence, there are
adjacent vertices Ra and Rb, and so we have (2).

Finally, suppose that Ra is not adjacent to Rb. If a;b; — a;b; is a unit for
some | € {1,...,2v} and [ # i, then Eq. (2.1.4) implies that z,,; or z; de-

pends on other 2v — 2 variables similar to the previous paragraph, so that there

o R 2IR|IRx]

T = |R|* % R*| classes of common neighbors. Assume that

ar

aby —a;b; € M foralll € {1,...,2v} ~ {i}. Then b; is a unit, so

Typi = b; (8" 4 (bysr®r — b12yga) + (byjors — battyyn) + - -
+ (bypim1Tic1 — bi1Typii1) + bygii + (bygit1Tig1 — i1 Togisr) + -+

+ (bQVxl/ - beQV))-

Clearly, if 2, € M forall k € {1,...,2v} ~ {v + i}, then z,; € R*. Hence, there

|21/—1

are |R classes of common neighbors. This completes the proof of (3). O

Furthermore, the above proof gives the following result.

Theorem 2.1.5. Let @ = a1 + - - - + a9, €5, and b— b1€1 + - - - + bo, €5, be unimodular
vectors in 'V and assume that a; € R* for some i € {1,...,2v}. If R@ and Rb are

non-adjacent vectices of Gsp,.(v), then the number of common neighbors are

[BP*22|RY|, if aiby — b, € R for some € {1,..... 20}~ {i},

|R[>, if a;by — aib; € M forall I € {1,...,2v} \ {i}.

We conclude some direct consequences of Theorems 2.1.4 and 2.1.5 in our

main classification theorem.
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Theorem 2.1.6. Let R be a finite local ring with unique maximal ideal M and let (V, 3)
be a symplectic space of dimension 2v.

(1) If v =1, then Gy, (v is a strongly regular graph with parameters
(IR + [M[, | R, [R*], | R])-

Moreover, if v = 1 and R is a field, then Gs, (v is a complete graph.

(2) Ifv > 2and Ris a field, then Gs,, (v is a strongly regular graph with parameters

’R|2V — 1 2v—1 202 2v—2
WL Rt -2 = 1), 2R - ).

(3) If v > 2and Ris not a field, then Gs,, (v is a strictly Deza graph with parameters

R2V_ MQV { . o
<| "Rxn ’ ,’R|2 1,|R|2 2’RX|,|R|2 1>'

2.2 Vertex and arc transitivities

In this section, we show that our symplectic graph Gg,, (1) is arc transitive. We

recall Proposition 2.3 of [8] as follows.

Proposition 2.2.1. [8] Let R be a local ring. If {Z,a} and {Z,b} are hyperbolic pairs
of unimodular vectors in V', then there exists an isometry o in Sp (V') which leaves &

invariant and carries d to b.

Lemma 2.2.2. Let R be a finite local ring and let (V, 3) be a symplectic space of dimen-
sion 2v. Then symplectic group Spy(V') acts transitively on unimodular vectors and

on hyperbolic planes.

Proof. Let @ and b be unimodular vectors in V such that Ri # Rb. By Theorem
2.1.4 (2) and (3), for every two distinct vertices of Ggp, . (v, there exists a unimod-

ular vector 7 such that {Z,@} and {7, b} are hyperbolic pairs. Then Proposition
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2.2.1 gives an isometry o in Spy (V') which leaves 7 invariant and carries @ to b.
Hence, Spy (V') acts transitively on unimodular vectors.

Next, let {@,b} and { d} be two distinct hyperbolic pairs of unimodular
vectors in V. Then there exists an isometry p in Sp (V') carries @ to ¢. Since {@, b}
is hyperbolic pair, so is the pair {p(Z), p(@)} = {c, p(b)}. Again, Proposition 2.2.1

implies an isometry 7 in Sp (V') which leaves ¢invariant and carries p(b) to d. It

follows that 7 o p € Spp (V) maps {a, b} to {,d} as desired. O

Theorem 2.2.3. Let R be a finite local ring and let (V, ) be a symplectic space of

dimension 2v. Then symplectic graph Gsy, . (v) is vertex transitive and arc transitive.

Proof. The previous lemma proves that our graph is vertex transitive. Observe
that for any automorphism o of V, we have the induced automorphism 7, on

the vertex set of the symplectic graph Gs, (1) given by
T, : Rd— Ro(d)

for all unimodular vectors @ € V. Let @ and b be unimodular vectors in V. By
Lemma 2.2.2, there is an isometry o € Spp (V) such that (@) = b. Thus, we have
T, € Aut Gs,,(v) and T, : Rd@ — Ro(a@) = Rb.

For edge transitivity, we let a, l;, e d be unimodular vectors in V such that
{@,b} and {¢ d} are hyperbolic pairs. Again, by Lemma 2.2.2, there exists an
isometry o € Spyp(V) such that o(@) = ¢and o(b) = d. Hence, T, € Aut Gsp (V)
sends Rd to Réand Rb to Rd. This proof also shows that the symplectic graph

Gspy,(v) 1s arc transitive. ]

2.3 Chromatic numbers

Let R be a finite local ring with unique maximal ideal M and the residue field

k = R/M. Let V be a free R-module of R-dimension 2v, v > 1, and let V' be
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the 2v-dimensional vector space over k induced from V' via the canonical map
m: R — k given by

Tir—=r+ M.

Moreover, if (V, ) is a symplectic space, then (V',3') is a symplectic space,

where /' is given by

-

B (w(@), m(b)) = m(5(@,5))

for all @,b € V. Here, we write m(@) = (7(ay),7(as),...,7(ay,)) for all @ =

(ay,as,...,ay,) € V. Note that the relation
RZ ~ Ry < kn(Z) = kn(7) (2.3.1)

is an equivalence relation on the vertex set of the graph Gg,.(1). Since R is a

local ring, it follows that

—, -, -

8(@,b) € R* = n(3(@,b) # M & B(r(@), (b)) € k*.

This gives (3) of the next theorem.

k 21/_1 = — - . .
Theorem 2.3.1. Let k = ||L|_1 and 1,2, ..., T, be unimodular vectors in V such

that the vertex set
V(Gsp,(vry) = {km(Z;) i =1,2,... K}

(1) The set T = {R(ZF + M%), R(Zy + M*),...,R(Z, + M*")} is a partition
of V(Gspp(vy), where R(Z; + M*) = {R(Z; +m) : m € M*} for all €
{1,2,...,k}. Moreover, for each i € {1,2,...,k}, any two distinct vertices

in R(Z; + M*) are non-adjacent vertices.
(2) |R(Z;+ M*)| = |M|* ! foralli € {1,... Kk}

(3) For unimodular vectors @,b € V, we have R and Rb are adjacent vertices in

-,

V(Gspy(v)) if and only if kn(@) and km(b) are adjacent vertices in V(Gsy, (v7))-
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(4) Fori,j € {1,2,...,k}, if kn(Z;) and kn(Z;) are adjacent vertices, then R(Z; +

my) and R(Z; + miy) are adjacent vertices in V(Gsy, . (v)) for all iy, s € M.

Proof. The first part of (1) follows from (2.3.1) and (4) is an immediate conse-

quence of (3). Note that
B(Zi + M, Ti + ma) = B(T;, My ) + (e, T5) + B, me) € M

foralli € {1,2,...,x} and miy,my € M?". This proves the second part of (1).
Next, let 1,7y € M* and assume that R(Z; + ;) = R(Z; + my). Then

Z; + my = A(Z; + my) for some X € R*. Thus
(1 = )\)fl 7 )\’f?lg TN Tﬁl € MQV.

Since Z; is unimodular, 1 — A € M, so A = 1 + u for some 1 € M. Hence,
T+ = (14 p)(2; +niy). Finally, we show that R(1+ p)(Z+m) = R(Z+n) for
all p € M, ¥ € V unimodular, and 1 € M? and we therefore have (2). Clearly,
R(1 + p)(Z#+m) C R(Z+m). Since p € M, 1+ u € R*. Then r(Z + m) =
(r(1+ p) ™ H (1 + p)(Z + m) for all r € R, which gives another inclusion. O

Recall that the chromatic number of a graph G is the smallest number of
colors needed to color the vertices of G so that no two adjacent vertices share
the same color. It follows from Proposition 2.3 of [13] that Gg,, (v is |k|” + 1-
partite with partite sets Y1, Y5,..., Yjy11, where Y, NY; = @ for all i # j and
there is no edge of Gg,, (1) joining two vertices of the same subset. Moreover, the
subsets Y1,Y5, ..., Y;»41 can be chosen so that for any distinct indices ¢ and j,
every y € Y; is adjacent to exactly |k|"~! vertices in Y;. In addition, the chromatic
number of Gg, (v is |k|” + 1 (Theorem 1.3.8). The canonical map 7 : R — k and

Theorem 2.3.1 give the following theorem.

Theorem 2.3.2. The symplectic graph Gs, (v is |k|” + 1-partite with partite sets
W), 7 (Ya), ..., m  (Yigpsa), where Y;, j = 1,2,...,|k|” + 1, are subsets of

Gsp, (v1) discussed above. Moreover, for any distinct indices i and j, every a € m—(Y;)
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is adjacent to exactly |M|*~t|k|"~! vertices in ©='(Y}). As a result, the chromatic

number x(Gsp,(v)) is |k|” + 1.

Proof. It remains to derive the chromatic number of Gs,, (). Since our graph is
|k|”+1-partite, x(Gsp,,(v)) < |k|”+1. To prove the reverse inequality, we consider
the induced subgraph of Gg, (1) whose vertex set is { Rz, Rz, ..., Rz, }. By
Theorem 2.3.1 (3), this subgraph is isomorphic to the symplectic graph Ggp, (v/).
Thus, it has chromatic number |k|” + 1. Hence, the chromatic number x(Gs; . (v))

is |k|” + 1 as desired. O

2.4 Automorphisms

In this section, we study the automorphism group of our symplectic graph. We
begin by recalling the results of Tang and Wan [13] for symplectic graphs over
tinite fields.

Let k be a field and write Aut(k) for the group of automorphisms of k. Let
¢ be the natural action of Aut(k) on the group (£*)” = k* x --- x k* (v copies)
defined by

p(@)((a1, ..., an)) = (¢(ar), - ., plav)),

forall ¢ € Aut(k) and @y, ..., a, € k*. The semidirect product of (k*)” by Aut(k)
corresponding to ¢, denoted by (k*)” x, Aut(k), is the group consisting of all
elements of the form ((ay,...,a,),®), wherea,...,a, € k* and ¢ € Aut(k) with

multiplication defined by

((ah B 7al/)7 ¢)(<a,17 s 7a;/>7¢,) = ((ah s 7al/)(@(¢)(<a,17 R 7a;/>>>7¢o 925,)
= ((@mo(a)),...,avd(a,)), ¢ 0 ¢').

The set of all permutations of a set S is denoted by Sym(S) or just Sym(n) if
|S| = n. Note that | Sym(n)| = n!. The automorphism group of the symplectic

graph over a finite field can be described as follows.
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Theorem 2.4.1. (Theorem 3.4 and Corollary 3.6 of [13]) Let k be a field and V
be a symplectic space over k of dimension 2v, v > 1. Regard the symplectic group
Spi (V') /{x12} as a subgroup of Aut(Gsp, (vy) (as shown in Theorem 1.3.5) and let E
be the subgroup of Aut(Gsy, (v) defined as follows:

E = {0 € Aut(Gsp, (v)) : o(ké;) = keé; foralli =1,...,2v},

where {€, e, ..., €y} is the standard basis of V. Then

Aut(Gsp,(v)) = (Spp(V)/{£12}) - E,

where

e Sym(k*) = Sym(|k| — 1), ifv =1,

12

(kX)" ., Aut(k), ifv>2.
Consequently, the number of automorphisms of the symplectic graph is given by
EIGRE =1 (k[ -2),,  fv=1,
‘Aut(gspk(v)” Va s : .
UC’ H(|k|2z_1>'[k:FP]v lfVZZ,

i=1
where k is of characteristic p and [k : IF,,| denotes the degree of extension of k over F,,.
For a finite local ring R, we have the following result.

Theorem 2.4.2. Let R be a finite local ring with unique maximal ideal M and residue

field k = R/M and let (V, ) be a symplectic space of dimension 2v, v > 1. Then

Aut(Gspp,(v)) = Aut(Gsp, ) x (Sym(|M 1),

where k = “‘“5—:1 and V' is the symplectic space over k induced from V.
Proof. Let 21,75, ..., %, be unimodular vectors in V' such that

V(gspk(v/)) = {k‘ﬂ'(fz) NS {1, 2,..., /{}}
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Theorem 2.3.1 shows that the subgraph of Gg, (/) induced from the vertex set
{RZ; : i € {1,2,...,K}} is isomorphic to the symplectic graph Gg,,, (v+). More-
over, each automorphism of G, () corresponds with an automorphism of the
graph Gs,, (/) and a permutation of vertices in the set R(Z; + M*) for all ¢ €

{1,2,...,k}. Thus,

Aut(Gsp 1) = Aut(Gsp, ) x | ] Sym(|R(@ + 1))

=1

= Aut(Gsp, (v1) x (Sym(|M[* )"

because |R(Z; + M*)| = |[M|* ! foralli € {1,2,...,k}. O



CHAPTER III
SUBCONSTITUENTS OF SYMPLECTIC GRAPHS OVER
FINITE LOCAL RINGS

. . (i) . .
In this chapter, we study the subconstituents gSpR(V), i = 1,2, of symplectic
graphs over finite local rings. The first section presents the definition and re-
sults on strong regularity. Sections 3.2 and 3.3 include the work on chromatic
numbers and automorphism groups, respectively. This chapter generalizes the

work in [5], [6] and [9].

3.1 Subconstituents of symplectic graphs

Let R be a finite local ring with unique maximal ideal M. Another aspect in
studying the symplectic graph Gg,, .(v) is to work on the subconstituents QéQR W)

i = 1,2, defined to be the induced subgraphs of Gg;, (1) on the vertex sets
V; = {R% : ¥ is a unimodular vector in V and d(RZ, Ré,+1) = i}

i = 1,2, respectively. Recall from Theorem 2.1.6 that our symplectic graph is a
strongly regular or strictly Deza graph, so for each modular vector ¥ € V, we
have d(R%, Re, 1) = 1 or 2,if R¥ # Re, ;. Thus, V; consists of adjacent vertices
of Re, 11 and V, consists of non-adjacent vertices of Re), 1, which are not Ré, .

Hence, gé;)R(V) is the induced subgraph of Gs, (1) on the vertex set

VlZ{Rff: _)1+(126_‘2+"'+CL2,,€21,, WhereaiERforallie {2,,2V}}
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and Qéi)R () is the induced subgraph of Gs; () on the vertex set

Vo = {Rf i T = me| + asly + - -+ + a9, €5, is unimodular in V,

where a; € Rforalli € {2,...,2v} andm € M}.

This allows us to find that

Wil = |R* and Vol = V(Gspuv))| — Vil — {641 }| = BTy

Remark. Observe that we can define the subconstituents associated with other
vertices. However, since the symplectic graph Gg;, (v is vertex and arc transi-

tive, it suffices to consider only the ones associated with Ré), ;.
Letd = €1 + a8 + - - - + a9,6-, and b= €1 + ba€y + - - - + by, €5, be vectorsin V.
Assume that Ra is adjacent to Rb. Thus,

byi1=r+a,41+ (Cbu+2b2 = a2bu+2) + -+ (azyby — a,,bgl,).

for some € R*. Therefore, there are |R|**|R*| classes adjacent to the vertex
Rad in géQR(V), and hence géQR(V) is |R|*~* |R*|-regular. Next, we proceed to

prove the following theorem.

Theorem 3.1.1. Let R be a finite local ring and let (V,3) be a symplectic space of

dimension 2v, where v > 1.
(1) The subconstituent graph géQR(V) is |R|*~* | R*|-reqular with | R[>~ vertices.

(2) Every two adjacent vertices ofgé;)R(V) has |R|* % |R*|* or |R|* 7 (|R*| — | M)

common neighbors.

(3) Every two non-adjacent vertices of Qé;)R(V) has |R|* 73| R*|? or |R|* 72 |R*| com-

mon neighbors.

Proof. We have proved (1) in the above discussion. Let & = € +x2€5+- - - +29,€5,
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be a vector in V' such that RZ is a common neighbor of Ra and Rb. Then

(Zyt1 = Gug1) + (@204 — GuyaXo) + -+ + (T2 — a2,) =1 (3.1.1)
and

(Zy1 = bugr) + (b2yp2 — byjowa) + - + (byao, — boyx,) = 5 (3.1.2)
for some ', s’ € R*. From Eq. (3.1.1), we have

Tyr1 =71+ ap1 + (i — asZ,10) + -+ - + (a2, 1, — a,Ta,). (3.1.3)

Subtracting (3.1.1) from (3.1.2) gives

v

—(by+1 — al,+1) — Z(by+j -7 ay+j)$j A Z(b] - Clj)l',/Jrj = 8/ — 7’,. (314)
j=2

J=2

Assume that Rd is adjacent to Rb. By Lemma 2.1.3, we have b; — q; is a unit for

somel € {2,...,2v}. If | < v, then

v

Ty = (b —a)™" (S' — 7'+ by — Gy + E (butj — Quyj)Tj — E (bj — aj)%ﬂ')
=2 j=2
il

and if l > v + 1, then

v

2y = (b —a)™ (S' — ' b =+ Y (g — avg)r— Y (b — aj)l’wrj)'
j=2 7j=2
A

(3.1.5)
If | # v+ 1, then there are | R|**~?| R*|? classes of common neighbors of adjacent
vertices Rd and Rb. Now, we assume that [ = v + 1 and b; — a; € M for all
Jj€42,...,2v} ~{l}. Then, by Eq. (3.1.4), we have

14 v

=5 = (bt — @) + Y (bury — aui)z — Y (b — )Ty,

=2 j=2
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which implies 7" — 5" € R*. There are

[RI* (R = [R*||M])
| R

= |R[**(|R*| — [M]) = [R["*(|R| — 2|M])

classes of common neighbors. This completes the proof of (2).

Finally, we suppose that Ra is not adjacent to Rb. If b, — a, is a unit for some
le{2,...,2v} ~ {v + 1}, then Eq. (3.1.3) and (3.1.4) imply that =, and (z,4,
or x;) depend on other 2v — 3 variables, so that there are |R|* 73| R*|* classes of
common neighbors. Assume that b, —a; € M foralll € {2,...,2v} ~ {v+ 1}. If

b,y1 — a,11 € R*, then

(by+1 - au+1)+ Z(aibu—i-i — au+ibi)

1=2
v

= (byy1 —apy1) + Z(bqui(ai —b;) + b;(by4i — au+i)) € R”,

1=2

which contradicts the fact that Rd is not adjacent to Rb. Thus, b,11 — a,41 € M.
Eq. (3.1.4) implies that

v v

s'=r"— (bu+1 - al/+1) — (bu+j T au-kj)xj + Z(bj - aj)l'erj
=2 j=2
is a unit. Hence, there are | R|*"~?|R*| classes of common neighbors. O

Moreover, the proof of Theorem 3.1.1 gives the following results.

Theorem 3.1.2. Let d = €| + as€s + - - - + a9,€5, and l;: €1 + ba€y + - -+ + boy €5, be

unimodular vectorsin V.

(1) If Ra and Rb are adjacent vectices of Qé;)R (v, then the number of common neigh-

bors are

|R|? 3| R¥|?, ifby—a; € R forsomel € {2,...,2v} ~ {v + 1},

RP2(RA| = (M), ifby—a € Mforalll € {2, 20b~ v+ 1},
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(2) If Ra@ and Rb are non-adjacent vectices of QéL)R(V), then the number of common

neighbors are

|RIZ73|R*?, ifby —a; € R* forsomel € {2,...,2v} ~ {v + 1},

RP*(R|, ifby—a € Mforalll € {2, 20}~ {v + 1},

Results for the subconstituent graph Qéi)R(V) are similar as we shall see in the
next theorem. If v = 1, then the graph Qéi)R(V) consists of | M| — 1 vertices with

no edges, so it is an empty graph. Thus, we may assume that v > 2.
Theorem 3.1.3. Let R be a finite local ring and let (V,3) be a symplectic space of
dimension 2v, where v > 2.

(1) The subconstituent graph Qéi)R vy 18 [ R 72| M |-regular.

(2) Every two adjacent vertices of géi)R(v) has |R|*73|R*|| M| common neighbors.

(3) Every two non-adjacent vertices of ggij(V) has |R|* 73| R*||M| or |R|* 2| M|

common neighbors.

Proof. Let @ = me| + as€5 + -+ - + ag,€5, and b = m'é + by + - + by, be
unimodular vectors in V and assume that R is adjacent to Rb in Qéi)R (v)- Since

d is unimodular, there exists an i € {2,...,2r} such thata; € R*. If i < v, then

bu+z’ = CLi_l (T + (al,+1m/ — mb,,_H) + ((ll,+262 — agby+2) + -
+ (ay+i—1bi—1 — a;i—1byti—1) + ay1ibi + (apyiv1bic1 — Qip1byiivr) + -

+ (a2ubu - aubQV))
for somer € R* and if i > v + 1, then

bi—, = al-_l ((mbu+1 — A1) + (a2byso — yyobs) + - + (aim1-pbic1 — ai—1bi—1-y)

+ai—ybi + (ir1-vbig1 — aip1big1-y) + -+ (ayba, — agby) — 3)
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2v—-2

for some s € R*. Hence, there are |R| | M| classes adjacent to the vertex Ra,

and thus Qéi)R(V) is |R|*"~? |M|-regular. Therefore, we have (1).
Next, let ¥ = m" €} +x2€5 + - - - + 19, E5, be a unimodular vector in V' such that

RZ is a common neighbor of Rd and Rb. Then

(mayg1 — aypam”) + (a2yys — Guyolts) + - + (a2 — agx,) =1 (3.1.6)
and

(Mm@, — bygam”) + (bawyro — byrows) + -+ (byxoy — boyx,) = & (3.1.7)
for some r’, s’ € R*. Since a; € R*,if i < v, we have

-1/ "
Typi = @ (7“ + (ay1m” — mx, 1) + (ayi209 — asx,40) + -
+ (Qp+i-1Tie1 — Gi—1Tyiio1) F Qi + (Qugit1Tip1 — Gi1Tppivr) + - -

+ (a“21/xlj - a“Z/'TQV))
and if 7 > v + 1, we have

Timy = a7 (mxyg1 — aypym”) + (0240 — Qypola) + - -
+ (@i—1—u$i—1 - Clz‘—1$i—1—u) + a;—,T; + (Cli+1—u$z‘+1 - ai+1$i+1—y) + -

+ (ayxay — asyx,) — S).

In what follows, we shall prove (2) and (3) when i < v. The proof for the case

i > v + 11is obtained in the same way. Subtracting b;x (3.1.6) from a,;x(3.1.7)
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gives
14
a;s' — b’ = —(aiby41 — ayp1bi)m” — Z(Gibuﬂ — ayyibi)z; + (a;m’ — mb;) x4
=2
+ Z(aibj — ajb,;):r,,ﬂ.
i

(3.1.8)
Assume that Rd is adjacent to Rb. By Lemma 2.1.3, we have a;b; — a;b; is a unit
forsome!l € {2,...,2v}and [ #i. If | < v, then

14

Ty = (a;iby — aib;) ™ (aisl — bir" + (asbysr — ayprbi)m” + Z(aibu—i-j — Ay bi)T;

=2
12

— (a;m’ —mb;)x, 11 — Z(aibj - ajbi)x,,ﬂ-)

j=2
JFul

(3.1.9)
and if > v + 1, then
T, = (aib — albi)_l (aisl — bir’ + (abyr — CLVJrlbi)mH + Z (aibytj — aysjbi)z;

j=2
v

(3.1.10)

2v—3 X |2
Thus, there are W

= |R|*3|R*||M| classes of common neighbors of
adjacent vertices Ra and Rb. This proves (2).

Finally, we suppose that Rd is not adjacent to Rb. Tf a;b; — a;b; is a unit for
some ! € {2,...,2v} and | # i, then Eq. (3.1.8) implies that z; and (z,4,; or z;)
depend on other 2v — 3 variables similar to the previous paragraph, so that there

are |R|*73|R*||M| classes of common neighbors.

Assume that a;b; — a;b; € M foralll € {2,...,2v}~{v+i}. If a;b, 1 —a,5b; €
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R*, then

v

(mby1—aym’) + > _(a;byrj — avib;)
j=2

= (aibyri = Augibi) + (Mby1 — apym’) + a;’ Z ai(ajbytj — ay1;0;)
j=2
Ji

= (mby_l’_l - CLV_HTTL,) + +CL;1 Z(aj(aibl,ﬂ- — a,,+jbi) + al,+j(ajbi - aibj))
j=2

Jj#i
+ (@iby+i — ay4ib;)

is a unit, which contradicts the fact that Ra is not adjacent to Rb. Thus, a;b,,; —
ay+:b; € M. Again, Eq. (3.1.8) implies that

v

s = a; ' (bir' — (ab,s1 — aysaby)m” — Z(aibquj — a4 b;)x;

=2
+ (aim' — mbi)xy+1 + Z(mb] T ajbi)xl,ﬂ)
i
is a unit. Hence, there are |R|*~2|M| classes of common neighbors. The proof

completes. O

We may conclude some consequences from the proof of Theorem 3.1.3 in the

next theorem.

Theorem 3.1.4. Let @ = mé; + ax€y + - - - + a9, €, and b= m'e| + byl + - - - + by o,
be unimodular vectors in V, m,m’ € M and assume that a; € R* for some i €

{2,...,2v}.

(1) If Rd and Rb are adjacent vectices of Qéi)R(V), then the number of common neigh-

bors is | R|?** 73| R*|| M|.

(2) If Rd and Rb are non-adjacent vectices of Qéi)R(V), then for i < v, the number of



27

common neighbors are

|R|* 73| R*||M|, if a;b, — a;b; € R* for somel € {2,...,2v} ~ {v +1i},

R#=2M|. ifab— b € M foralll € (2,20} ~ v + i},

and for i > v + 1, the number of common neighbors are

(RS RAIM, i aiby— aibs € R for some L € {2,...., 20} {i = v},

|R|* 2| M], ifaby —aib; € M foralll € {2,...,2v} ~ {i — v}.

For d > 2, a k-regular graph G on v vertices is called a d-Deza graph with
parameters (v, k, {ci, ..., cq}) if every two distinct vertices of G have ¢y, co, .. ., ¢4
common adjacent vertices. In particular, a 2-Deza graph is just an ordinary Deza
graph.

Therefore, we can summarize the work on subconstituents of symplectic

graphs in this section as follows.

Theorem 3.1.5. Let R be a finite local ving with unique maximal ideal M and let (V, 3)

be a symplectic space of dimension 2v.

(1) If v =1, then Qé;)R (v) 18 a strongly regular graph with parameters
(IRL [R*[ || = [M], [R]).
(2) Ifv > 2and R is a field, then gé;)R(V) is a strictly Deza graph with parameters
(IRP5 IR (R = 1), R RI = 1% R (IR] - 2)).
(3) If v > 2 and R is not a field, then gé;)R(V) is a 3-Deza graph with parameters

(IR R 2R {|IR* 3 RX)% | R 2(|RX| — | M), |RI* 2| R*|}) .
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Theorem 3.1.6. Let R be a finite local ring with unique maximal ideal M and let (V, 3)
be a symplectic space of dimension 2v, where v > 2. Then géi)R(V) is a strictly Deza

graph with parameters

(er”—l M| — | M|

|R~] = LR [ M| | R 2 M, \Rlz”_?’!RXHM!}) :

3.2 Chromatic Numbers

Let R be a finite local ring with unique maximal ideal M. Let V be a free R-
module of R-dimension 2, v > 1, and let V’ be the 2v-dimensional row vector
space over k induced from V' via the canonical map as we have discussed earlier
in Section 2.3.

Recall that the subconstituents Qé?R (vy is the induced subgraph of G, (v) on

the vertex set
Vi ={RZ: ¥ =¢€ 4+ afy + - -+ as,6y,, wherea; € Rforall: € {2,...,2v}}
and

Vo = {Rf i T'=mey + aslsy + - -+ + a9, €5, is unimodular in V,

where a; € Rforalli € {2,...,2v} andm € M}.
Thus, the canonical map 7 gives that
Vi =71(V1) = {k¥@ : ¥ = €1+by€a+- - ~+bo, €, whereb; € kforalli € {2,... 2v}}
and

Vy=n(Va) = {k@ : & = by + - - - + by, €, is unimodular in V’,

where b; € kforalli € {2,...,2v}}
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are the vertex sets of the subconstituents Qé;)k(v,) and Qéi)k(v,), respectively. Let

/ 21 B |
K1:|V1‘ = |k| and I€2:|V2| :—_17
k| -1
and let ¥y, @, ..., 7, and 41, ¥, - . . , U, be unimodular vectors in V' such that

V(géi))k(v/)) = {kn(Zy), kr(Zs),... km(Zs,)}

and

V(GE) ) = k(i) k(i) . .. k(i) }.
Similar to Theorem 2.3.1, the above observation yields the next theorem.
Theorem 3.2.1. Under the above set up, we have the following statements.

(1) (i) ThesetTly = {R(Z) + M*), R(Zy + M*"),..., R(Z,, + M*")} is a parti-
tion of V(gé;),{(v))' Moreover, for each i € {1,2,..., K.}, any two distinct
vertices in R(Z; + M*") are non-adjacent vertices.

(ii) Theset 11, = {R(th+M?), R(go+M?), ..., R(Y.,+M?*)} is a partition
of V(Qéi)R(VQ)). Moreover, for each j € {1,2,...,ko}, any two distinct

vertices in R(y; + M*) are non-adjacent vertices.

Here, R(Z+ M*) = {R(Z+m) : m € M*"} for all unimodular vectors in V.
(2) |R(Z+ M?)| = |M|*~" for all unimodular vectors Zin V.

(3) Let @ and b be unimodular vectors in V. For each i € {1,2}, we have Ra and Rb

-

are adjacent vertices in V(QégR(VZ_ ) if and only if kr(d@) and km(b) are adjacent

vertices in V(gggk wn)-

(4) For i € {1,2}, if kn(Z) and kn (&) are adjacent vertices in the subconstituent
Qéip)R(V), then R(Z+ my) and R(W + my) are adjacent vertices in V(QégR(v))for

all ml, My € M.

Proof. The proof is analogous to the proof of Theorem 2.3.1. O
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It follows from Theorem 3.5 of [9] that the subconstituent QS vy is |k
partite with partite sets 7, Z,, ..., Zjy», where Z; N Z; # @ for all i # j and
there is no edge of gé” ,y joining two vertices of the same subset. Moreover,

pr(V")
the subsets Z,, Zs, ..., Z};» can be chosen so that for any distinct indices ¢ and j,
every z € Z; is adjacent to exactly |k|*~! vertices in Z;. Moreover, the chromatic
number of QS (vr) 18 |k|” (Theorem 3.7 of [9]). The canonical map 7 : R — k and

Theorem 3.2.1 give the following theorem.

Theorem 3.2.2. The subconstituent gé;)R(V) is |k|"-partite with partite sets 7—'(Z,),
wN2Zy), ..., 7 N Zyw), where Z;, j = 1,2,...,|k|", are subsets ofgégk(v,) discussed
above. Moreover, the subsets n='(Zy),n = (Zs), ..., 7~ (Zy) can be chosen so that
for any distinct indices i and j, every a € w—(Z;) is adjacent to exactly |M|*~*|k|"~!

vertices in m(Z;). Consequently, the chromatic number X(ggyR(v)) is |k|”.

Proof. Since the subconstituent géQR () 18 |k|"-partite, its chromatic number is at
most |k|”. The reverse inequality follows from the fact that the induced sub-
graph of G (1) vy whose vertex set is { RZy, . .., RT,, } is isomorphic to the graph
Qsp v by Theorem3 2.1 (3). Hence, X(Q(l) ) = |kl O

The proof of Theorem 4.8 of [9] shows that the vertex set of subconstituent
Qéi)k(v,) can be partitioned into pairwise disjoint sets W1, W5, ..., Wyp-141, and
there is no edge of G 2% joining two vertices of the same subset. Moreover,

Spr (V")

W] = |k|£[‘f‘ forall 1 < j < |k]“"! + 1. In addition, Theorem 4.6 of [9] says that

X(géi)k(v,)) = k|~ + 1. Again, the canonical map 7 : R — k and Theorem 3.2.1

give the following theorem.

Theorem 3.2.3. The subconstituent QS is |k|"~' + l-partite with partite sets

(V)
W), (Wa), o N (Wikp-14), where Wy, 5 = 1,2, ..., |k|"~1 + 1, are subsets
of V(géi)k (vn) discussed above. Moreover, there is no edge of Qgp) ) joining two vertices

of the same subset 7= (W;) and |z~ (W;)| = 'kl” M forall 1 < j < [k 1

Consequently, the chromatic number X(géij (V)) |kl + 1.

Proof. Since the subconstituent géf}R(V) is | k|~ + 1-partite, its chromatic number

is at most |k|" "'+ 1. The reverse inequality follows from the fact that the induced
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subgraph of géi)R(V) whose vertex set is { Ry, ..., Ry, } is isomorphic to the

graph Qéi)k(v,) by Theorem 3.2.1 (3). Therefore, X(géi;(v)) = k"1 + 1. O

3.3 Automorphisms

Let R be a commutative ring and let (V = R?, ) be a symplectic space with
the standard basis {€},é5,...,é5,}. Recall from Section 1.2 that an R-module
automorphism o on V' is an isometry if 3(0(%),0(y)) = B (2, y) forall ¥,y € V

and the group of isometries Sp (V') is called the symplectic group. Define
Spi (V) = {0 € Sp(V) : 0(E11) = €}

Clearly, it is a subgroup of Sp (V). Moreover, similar to Theorem 1.3.5, we have
the imbedding Spg) (V) — Aut(gé;)R (v)) by considering the automorphisms fix-
ing €,11. Gu and Wan [6] showed that:

Proposition 3.3.1. (Theorem 2.2 and Corollary 2.13 of [6]) Let k be a field and V a
symplectic space over k of dimension 2v, v > 2. Let E; be the subgroup of Aut(gégk(v))
defined as follows:

By = {0 € Aut(GY)) ) : o(kei) = kér, o (k{6 + esti)) = k(e + est),

o(k(€, + &) = k(& +c&), forall i =2,3,...,vand c € k*},
where {€}, e, ..., €y} is the standard basis of V. Then
Aut(GS) ) = (Spy (V) - En.

Moreover, the number of automorphisms of the subconstituent gé;)k(v) is

v—1

k[ (1 = 1) TT (kP 1) - [k F,),

i=1
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where k is of characteristic p and [k : IF,| denotes the degree of extension of k over F,,.

Gu and Wan also studied the automorphism group of the subconstituent

ggp)k(v). Their result is as follows.

Proposition 3.3.2. (Theorem 3.1 and Corollary 3.2 of [6]) Let k be a field and V
a symplectic space over k of dimension 2v, v > 2. The automorphism group of the

subconstituent géi)k(v) is isomorphic to

Aut(Gsp,w)) % (Sym(k))",

where W' is the subspace of V' generated by the set {é, ..., €,, €42, ..., €} and kK =
W(TIJ‘# — 1 is the number of vertices in the graph géi)k (- In addition,
(k] + D)1 R|H Y ifv=2,
| Aut(G) )] = v
O e e TR = 1) ke By, i >3,

i=1
where k is of characteristic p and [k : IF,)| denotes the degree of extension of k over F,,.

For our results, we let R be a finite local ring with unique maximal ideal M
and residue field £ = R/M and let (V, ) be a symplectic space of dimension
2v and V' the 2v-dimensional row vector space over k induced from V' via the
canonical map. By Theorem 3.2.1 (1), for i € {1,2}, the set II, is a partition
of V(ggp)R(v)) and any two distinct vertices in each partite set are non-adjacent.
Moreover, the induced subgraph of g(” ) [resp. Qg) )], whose vertex set is
{R%y,...,RZ,,} [resp. {Ry1,...,Ryy,}], is isomorphic to graph Q v [resp.
Qéi)k(v,)] (by Theorem 3.2.1 (3) and (4)). Thus, for i € {1,2}, an automorphlsm of
géQR(V) corresponds with an automorphism of Qéip)k (v (studied in the previous
two propositions) and a permutation of vertices of the subconstituent QégR (v) in
each partite set of II;. Recall also that each partite set is of cardinality |M|*~! by
Theorem 3.2.1 (2). Hence, we have the following theorem on the automorphism

groups.
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Theorem 3.3.3. Let R be a finite local ring with unique maximal ideal M and residue
field k = R/M and let (V, ) be a symplectic space of dimension 2v, v > 2. Then for
ie{1,2},

Aut(GY) () = Aut(G) () x Sym(|M[* 1)~
where V' is the 2v-dimensional row vector space over k induced from V via the canonical

|k|21/71 -1

—1.
k| =1

map, k1 = |k|* ! and ko =



CHAPTER IV
SOME RESULTS OVER FINITE COMMUTATIVE RINGS

It is well known that any finite commutative ring is a product of finite local rings
(Theorem 8.7 of [1]) and we completely study our graphs over finite local rings
in the previous chapters. In this chapter, we show how to use the decomposition
of finite commutative rings into local rings and the work on symplectic graphs
in Chapter II to obtain some analogous results. We also include an example with

R = Z,,, m > 1, to illustrate the theorems. Moreover, it generalizes [11].

4.1 Strong regularity

Let R be a finite commutative ring. Write
R:R1XR2X"'XRt

as a direct product of finite local rings R;, i = 1,2,...,t. Consider V = R%,
a free R-module of R-dimension 2v, where v > 1. We have the canonical 1-1
correspondence

T = (1,22, 00) S (@), @8y (@05)5).
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Note that if #, 4 € V, then this correspondence induces the symplectic map

on V by

B, 7) = B((@)y, )y, @) (), ) s (D))

= (BT, 7Y), B3, §?), ..., BTV, §V))

v v v

1 1 2 2) (2 6 (t t
= (D@l = 2y > @l = 2y, Y @l — 2™,
i=1 i=1 i=1
where 20) = (29 20 . #)) e vO) = = R¥ and (VY ;) is a 2v-dimensional

symplectic space of R;, forall j = 1.2,...,t. Since R* = R x R} x--- X R}, we

have

B(Z,7) € R* & Z ey a0 yP) € R¥ forallj e {1,2,....,t}, (4.1.1)
it follows from Eq. (2.1.1) that
Fspr(v) = Gspp, (V) @ Gspp (vi) ® -+ @ g, (v, (4.1.2)

as a graph isomorphism. Here, for two graphs G and H, we define their tensor
product G ® H to be the graph with vertex set V(G) x V(H), where (u,v) is
adjacent to (v, ') if and only if v is adjacent to «’ and v is adjacent to v'.

From Theorem 2.1.4 (1) and the above discussion, we have the number of

vertices of Gg;,,.(v) is equal to

| Ry [ — | My[>
[V(Gspr)l H V(Gspy, ven)l = H 7] :

and Gg;, (v is regular of degree |Ry[* 7| Ry[* " ... |R,[*~! = |R|**~'. Moreover,
every two adjacent vertices of Gs, () has |R[*7?|R*| common neighbors by

Theorem 2.1.4 (2). We record these results in the next theorem.

Theorem 4.1.1. Let R be a finite commutative ring and (V, ) be the induced symplec-

tic space of dimension 2v, v > 1, discussed above.
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(1) The symplectic graph Gsy, () is a |R|*~'-regular and isomorphic to the graph
gSPRlW“)) ® gSpRQ(V@’)) Q- gSPRt(V(t))'

(2) Every two adjacent vertices of Gs, . (v) has |R|**~2| R*| common neighbors.

Example 4.1.2. If m > 1 and m = p}'py®...p;", where n; € N and p; are distinct

primes for alli € {1,2,...,t}, then by Chinese remainder theorem we have
R =7 = Zipny X Lipyra X -+ X Ly

Consider V' = R*, the induced symplectic space of dimension 2v, v > 1. By

Theorem 4.1.1, we have

(1) the symplectic graph Gs, .(v) isam® ~'-regular and isomorphic to the graph
product
Sp(zy) (Zm"l) ® Sp(2y) (Zm"?) Q- & Sp(QV) (Zpt"t)7

(see Example 1.2.1), and

(2) every two adjacent vertices of Gg,, () has m*~2¢(m) common neighbors,

where ¢ is the Euler ¢-function.

The numbers of common neighbors for two non-adjacent vertices are stud-

ied in the following theorem, where we apply Theorem 2.1.5 on each factor.

Theorem 4.1.3. Let R and V be as in Theorem 4.1.1, and let

@ = (@) (@8 @8 ) and B = (), 08y, )

be unimodular vectors in V and assume that (a@)zzl € R* forsomei € {1,2,...,2v}.

(2

Assume that R and Rb are non-adjacent vertices of Gy, (vy. Let {j1,72,...,7s} C
{1,2,...,t} be such that R; (ai,a§™ ... a¥") and Ry, (b7% 099, ... b3 are

v

non-adjacent vertices for all k € {1,2,...,s}. Then the number of common neighbors
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of Rd and Rb are

I1 iR 2R ] O

j€{1,2 ~~~~~ t}\{jl,j27-~7js} k€{1,2 ..... s}

where

R, 12 2|RE |, if aP™ b — Wb € RY forsomel € {1,2,..., 20} ~ {i},

7

Cy =

|Rj, [*~, ifagjk)bl(jk) — al(j’“)bgjk) e M, foralll € {1,...,2v} \ {i},
forall k € {1,2,..., s}
Proof. It follows directly from the isomorphism (4.1.2) and Theorem 2.1.5. [

Remark. Theorem 4.1.3 tells us that, in general, the symplectic graphs over fi-
nite commutative rings are neither strongly regular nor strictly Deza. Thus, we

shall not talk about their subconstituents.
Let G and H be two graphs. Let o and 7 be automorphisms of G and H,
respectively. It is easy to see that the map

p:(g,h)— (o(g),7(h)) forall g € V(G), h € V(H),

is an automorphism of G ® H. Thus, we have showed that:
Theorem 4.1.4. For graphs G and H, Aut(G) x Aut(H) C Aut(G ® H).

Remark. Unfortunately, another inclusion is false in general. Hence, the iso-
morphism (4.1.2) does not imply the automorphism group of Gg,, (1), which is
usually larger than the product Aut(gSpR1 (VD)) X X Aut(gSpRt (v)y). However,
the fact in the above theorem can be use to prove results on transitivities in the

next section.
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4.2 Vertex and arc transitivities and chromatic numbers

If a finite commutative ring R is decomposed as R = R; x Ry X --- x R;, where

R;isalocalring foralli =1,2,...,¢, then

Gspr(v) = Gspp, (v) © Gsp, (v) @ - @ Gsp (v

as we have seen in Subsection 4.1. Recall from Theorem 2.2.3 that for each i, we

have QSpRv (v(y 18 vertex transitive and arc transitive. By Theorem 4.1.4,
Aut(Gsy,,, (vany) X Aut(Gsp  vey) X X Aub(Gsp . (voy) S Aut(Gsp ),

it follows that Gg, (1) is also vertex transitive and arc transitive. Hence, we have

proved:

Theorem 4.2.1. If (V. 5) is a symplectic space over a finite commutative ring R, then

the symplectic graph Gy, . (v) is vertex transitive and arc transitive.

A set I of vertices of a graph (' is called an independent set if no two distinct
vertices of I are adjacent. Write o(G) for the size of largest independent set of G.
For example, if R is a local ring, Theorem 2.3.1 implies that the sets R(Z; + M%),
i € {1,2,...,k}, are independent sets in the symplectic graph Gg, .(v). Since the

symplectic graph is regular, it follows from Theorem 2.3.2 that:

Theorem 4.2.2. Let R be a finite local ring with unique maximal ideal M and residue

field k = R/M and let (V, ) be a symplectic space of dimension 2v, v > 1. Then

Y =18,
aGsaery) = (=) Iy,

A fractional coloring of a graph G is a mapping f which assigns to each
independent set I of G a real number f(I) € [0,1] such that for any vertex v,
Y ver f(I) = 1. The total weight w(f) of a fractional coloring f of G is the sum

of f(I) over all the independent sets I of G. The fractional chromatic number
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of G, denoted by x*(G), is the minimum total weight of a fractional coloring of
G.

The color classes of a proper [-coloring of G form a collection of [ pairwise
disjoint independent sets [y, I, . .., I; whose union is V(G). The function f such
that f(I;) = 1forall j € {1,2,...,l} and f(S) = 0 for all other independent sets
S is a fractional coloring of weight [. Therefore, x*(G) < x(G). Moreover, when

G is vertex transitive, we have the following proposition.

Proposition 4.2.3. (Corollary 7.5.2 of [4]) If G is a vertex transitive graph, then

Let R be a finite local ring with unique maximal ideal M and residue field
k = R/M and let (V,3) be a symplectic space of dimension 2v, v > 1. By
Theorems 2.1.4 (1) and 4.2.2, we have

_ ’R|2V _ |M‘2l/

k[ —1
|V(gSPR(V))| - ’Rxl

k[ =1

and a(Gspv) = (‘) 1M1

respectively. Thus, it follows from Proposition 4.2.3 that

R — M
" _ | B _RP M R -1 M
X (gSpR(V))— |k.|1/_1 - ’MPV ]k]”—l\R]—\M]

< k[ — 1 )'MPH

which is equal to the chromatic number of G, (). We record this result in the

= K+ 1

next theorem.

Theorem 4.2.4. Let R be a finite local ring with unique maximal ideal M and residue

field k = R/M and let (V, B) be a symplectic space of dimension 2v, v > 1. Then

X*<gSpR(V)) = [k|"+1= X(gSpR(V))'

It is easy to see that if there is a homomorphism from a graph X toa graphY,
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then x(X) < x(Y). Let G and H be graphs. Since both G and H are homomor-

phic images of G x H (using the projection homomorphisms), we have that
X(G @ H) <min{x(G), x(H)}.

Hedetniemi [7] has conjectured that for all graphs G and H equality occurs in
the above bound. This conjecture is still open. However, Zhu [14] showed that

Hedetniemi’s conjecture is true for fractional chromatic numbers.

Proposition 4.2.5. (Theorem 2 of [14]) For any graphs G and H,

X' (G @ H) = min{x*(G), x"(H)}.

Let R be a finite commutative ring decomposed as R = Ry x Ry X --- X Ry,

where R; is alocal ring forall ¢ = 1,2,....¢. Then

Gspp(v) = Gspp, (V) @ Gsp (v) © -+ @ Gy (vin))-

as we have seen earlier. By Proposition 4.2.5 and the above discussion,

min X" (Gsp,, (v©)) = X" (Gspr(1)) < X(Gspr(v)) < min x(Gsp, (vin)-

1<i<t T I<i<t

Since x*(Gsp,, (v)) = X(Gsp,, (vay) forall i =1,2,... ¢, it forces that

X (Gspr(n) = X(Gspp(v) = min, X (Gspp, (v))-

1<i<t
Together with Theorem 2.3.2, we have our final result.

Theorem 4.2.6. Let R be a finite commutative ring decomposed as R = Ry X Ry X
- X Ry, where R; is a local ring and k; is its residue field, for all i = 1,2,...,t. If

(V, B) is a symplectic space over R of dimension 2v, v > 1, then

X*(gSpR(V)) = X(gSpR(V)) = fggt ki + 1.
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Corollary 4.2.7. Let m > 1 and R = Zy, = Zp,m X Lipyna X =+ = X Lip,ne, Where n; € N
and p; are primes such that p; < py < --- < p;. For the symplectic space V over R of

dimension 2v, v > 1, we have the chromatic number of the graph Gs, .y given by

X (Gsprv)) = X(Gsppvy) = |p2]” + 1.
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