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CHAPTER I

PRELIMINARIES

1.1 Introduction

The general symplectic graph associated with nonsingular alternate matrices

over a field is introduced by Tang and Wan [13] as a new family of strongly reg-

ular graphs. This graph was firstly defined for a symplectic space over a com-

mutative ring by Meemark and Prinyasart [12]. They showed that their sym-

plectic graph is vertex transitive and arc transitive when R = Zpn , p is an odd

prime and n ≥ 1. There are many articles influenced by this definition such as

[10], [11], [6] and [5]. Mostly, the work was on strong regularity, automorphism

groups, vertex and arc transitivities, chromatic numbers and subconstituents of

symplectic graphs over a finite field, modulo pn, and modulo pq, where p and q

are primes and n ≥ 1.

In what follows, we study those topics over finite local rings and obtain re-

sults parallel to [13], [12], [10], [11], [6] and [5]. We use combinatorial approach

similar to [12]. In addition, we present some results over finite commutative

rings in the final chapter.

1.2 Symplectic graphs

Let R be a commutative ring and let V be a free R-module of R-dimension 2ν,

where ν ≥ 1. Assume that we have a function β: V × V → R which is R-

bilinear, β(~x, ~x) = 0 for all ~x in V and the R-module morphism from V to V ∗ =

HomR(V,R) given by ~x 7→ β(·, ~x) is an isomorphism. We call the pair (V, β) a

symplectic space. A vector ~x in V is said to be unimodular if there is an f in V ∗
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with f(~x) = 1; equivalently, if ~x = α1
~b1 + · · · + α2ν

~b2ν , where {~b1, . . . ,~b2ν} is a

basis for V , then the ideal (α1, . . . , α2ν) = R. If ~x is unimodular, then the line R~x

is a free R-direct summand of dimension one.

A hyperbolic pair {~x, ~y} is a pair of unimodular vectors in V with the prop-

erty that β (~x, ~y) = 1. The module H = R~x⊕R~y is called a hyperbolic plane. Let

(V, β) be a symplectic space. An R-module automorphism σ on V is an isometry

on V if β(σ(~x), σ(~y)) = β (~x, ~y) for all ~x, ~y ∈ V . The group of isometries on V is

called the symplectic group of (V, β) over R and denoted by Sp
R
(V ).

Define the graph GSpR(V ) with the vertex set is the set of lines {R~x : ~x is a

unimodular vector in V } and with adjacency given by

R~x is adjacent to R~y if and only if β(~x, ~y) ∈ R×.

Here, R× denotes the group of invertible elements in R. We call GSpR(V ), the

symplectic graph of (V, β) over R.

Example 1.2.1. Let p be a prime number and let R be the ring of integers mod-

ulo pn, Zpn , or the field of pn elements, Fpn , where n ∈ N. For ν ≥ 1, let V denote

the set of 2ν-tuples (a1, . . . , a2ν) of elements in R. Define β : V × V → R by

β
(

(a1, . . . , a2ν), (b1, . . . , b2ν)
)

= (a1, . . . , a2ν)





0 Iν

−Iν 0





2ν×2ν

(b1, . . . , b2ν)
t ,

where Iν is the ν × ν identity matrix, for all vectors (a1, . . . , a2ν), (b1, . . . , b2ν)

in V . Then (V, β) is a symplectic space, and unimodular vectors in V are those

(a1, . . . , a2ν) of elements in R such that ai ∈ R× for some i ∈ {1, 2, . . . , 2ν}. We

generalize this result in Theorem 2.1.2. We write Sp(2ν)(R) for this symplectic

graph.

Theorem 1.2.2. [12, 13] Let p be a prime number and let n and ν be positive integers.

For R = Fpn or R = Zpn , the graph Sp(2ν)(R) is (pn)2ν−1-regular and every two

adjacent vertices of Sp(2ν)(R) has (pn)2ν−2(pn − pn−1) common neighbors.
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1.3 Terminologies and literature reviews

A strongly regular graph with parameters (v, k, λ, µ) is a k-regular graph on v

vertices such that for every pair of adjacent vertices there are λ vertices adjacent

to both, and for every pair of non-adjacent vertices there are µ vertices adjacent

to both.

Theorem 1.3.1. Let p be a prime number and let n and ν be positive integers.

(1) [13] The symplectic graph Sp(2ν)(Fpn) is a strongly regular graph with parame-

ters
(

(pn)2ν − 1

pn − 1
, (pn)2ν−1, (pn)2ν−2 (pn − 1) , (pn)2ν−2 (pn − 1)

)

.

(2) [12] The symplectic graph Sp(2)(Zpn) is a strongly regular graph with parameters

(

pn + pn−1, pn, pn − pn−1, pn
)

and Sp(2ν)(Zpn) is not strongly regular when ν ≥ 2 and n ≥ 2.

Example 1.3.2. The following figure shows the symplcetic graph Sp(4)(F2). This

graph is strongly regular with parameters (15, 8, 4, 4).

As a generalization of strongly regular graphs, Erickson and Fernando [3]

introduced Deza graphs, which were firstly introduced in a slightly more re-

stricted form by Deza and Deza [2]. A regular graph with degree k on v vertices

is said to be a (v, k, λ, µ)-Deza graph if any two distinct vertices x and y have λ
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or µ common adjacent vertices. A Deza graph of diameter two is called a strictly

Deza graph if it is not strongly regular.

Example 1.3.3. The following figure shows a (8, 5, 4 2)-Deza graph. It is also a

strictly Deza graph.

Li, Wang and Guo [10] showed that:

Theorem 1.3.4. [10] The symplectic graph Sp(2ν)(Zpn) is a strictly Deza graph when

ν ≥ 2 and n ≥ 2 with parameters

(

(pn)2ν − 1

pn − 1
, (pn)2ν−1, (pn)2ν−2(pn − pn−1), (pn)2ν−1

)

.

For a graph G, we write V(G) for its vertex set and E(G) for its edge set. Let

G and H be graphs. A function f from V(G) to V(H) is a homomorphism from

G to H if f(g1) and f(g2) are adjacent in H whenever g1 and g2 are adjacent in G.

It is called an isomorphism if it is a bijection and f−1 is a homomorphism from

H onto G. Moreover, an isomorphism on G is called an automorphism. The set

of all automorphisms of a graph G is denoted by Aut(G). It is a group under

composition, called the automorphism group of G.

Theorem 1.3.5. Let R be a commutative ring and (V, β) a symplectic space over R.

For each σ ∈ SpR(V ), σ can be considered as an automorphism of GSpR(V ). That is, we

have the imbedding SpR(V ) →֒ Aut(GSpR(V )).

Proof. Let σ ∈ SpR(V ). Define the map σ̄ on GSpR(V ) by

σ̄ : R~x 7→ Rσ(~x)

for all unimodular vectors ~x ∈ V . Since σ is an isometry, σ̄ is a bijection and
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β(~x, ~y) = β(σ(~x), σ(~y)) for all unimodular vectors ~x, ~y ∈ V . Thus,

β(~x, ~y) ∈ R× ⇔ β(σ(~x), σ(~y)) ∈ R×

for all unimodular vectors ~x, ~y ∈ V . Hence, σ̄ ∈ Aut(GSpR(V )).

We give more reviews and study the automorphism group of symplectic

graphs and their subconstituents in Sections 2.4 and 3.3, respectively.

A graph G is vertex transitive if its automorphism group acts transitively

on the vertex set. That is, for any two vertices of G, there is an automorphism

carrying one to the other. An arc in G is an ordered pair of adjacent vertices, and

G is arc transitive if its automorphism group acts transitively on its arcs. Note

that an arc transitive graph is necessarily vertex and edge transitive. More on

transitive graphs can be found in Chapter 3 of Godsil’s book [4]. We have the

next results.

Theorem 1.3.6. [10, 12, 13] Let p be a prime number and let n be a positive integer.

For R = Fpn or R = Zpn , the symplectic graph Sp(2ν)(R) is arc transitive.

Theorem 1.3.7. [11] Let m ≥ 2 be an integer. For R = Zm, the symplectic graph

Sp(2ν)(R) is arc transitive.

The chromatic number of a graph G is the smallest number of colors needed

to color the vertices of G so that no two adjacent vertices share the same color.

The chromatic number of a graph G is commonly denoted by χ(G). Some results

on chromatic numbers are as follows. We refer the reader to Sections 2.3, 3.2 and

4.2 for our work on chromatic numbers.

Theorem 1.3.8. 1. [13] If k is the field of q elements and V is the symplectic graph

of dimension 2ν, ν ≥ 1, then χ(GSpk(V )) = qν + 1.

2. [12] χ(Sp(2)(Zpn)) = p+ 1 for all n ≥ 1.
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Example 1.3.9. The symplectic graph Sp(4)(F2) has the chromatic number equal

to 22 + 1 = 5. We can assign a coloring as shown below.



CHAPTER II

SYMPLECTIC GRAPHS OVER FINITE LOCAL RINGS

A local ring is a commutative ring which has a unique maximal ideal. Note

that for a local ring R, its unique maximal ideal is given by M = R r R× and

we call the field R/M , the residue field of R. For example, if p is a prime, then

Zpn , n ∈ N, is a local ring with maximal ideal pZpn and residue field Zpn/pZpn

isomorphic to Zp. Moreover, every field is a local ring with maximal ideal {0}.

In this chapter, we study the symplectic graph GSpR(V ) when R is a finite

local ring. We obtain a classification for our graph to be strongly regular or to

be a strictly Deza graph. Moreover, we prove that this graph is vertex and arc

transitive and study the chromatic number. In the final section, we work on the

automorphism group.

2.1 Strong regularity

Let R be a local ring with unique maximal ideal M and let (V, β) be a symplectic

space of R-dimension 2ν, where ν ≥ 1. By Theorem 1 of [8], V possesses a

canonical basis {~e1, . . . , ~e2ν} such that {~ej, ~eν+j} is a hyperbolic pair for all 1 ≤

j ≤ ν and V is an orthogonal direct sum V = H1⊥H2⊥ . . .⊥Hν , where Hj =

R~ej ⊕ R~eν+j is a hyperbolic plane for all 1 ≤ j ≤ ν. Recall a common theorem

about local rings that:

Theorem 2.1.1. Let R be a local ring with unique maximal ideal M . Then 1 +m is a

unit in R for all m ∈ M .

Proof. Let m ∈ M . Assume that 1+m is not invertible. Then 1+m ∈ M because

R is a local ring. Thus, (1 +m)−m = 1 ∈ M , a contradiction. Hence, 1 +m is a

unit of R.
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We have a criterion to determine whether a vector in V is unimodular as

follows.

Theorem 2.1.2. A vector ~x = a1~e1 + · · ·+ a2ν~e2ν in V is unimodular if and only if ai

is a unit of R for some i ∈ {1, . . . , 2ν}.

Proof. If some ai is a unit in R, then (a1, . . . , a2ν) = R, so ~x is unimodular. Con-

versely, assume that ~x is unimodular. Then there exists an f ∈ V ∗ such that

1 = f(~x) = a1f(~e1) + · · · + a2νf(~e2ν). Suppose that ai is not a unit in R for all i.

Since R is a local ring, ai ∈ M for all i, and thus a1f(~e1) + · · · + a2νf(~e2ν) ∈ M .

By Theorem 2.1.1, 0 = 1 − (a1f(~e1) + · · · + a2νf(~e2ν)) is a unit in R, which is a

contradiction. Therefore, ai is a unit of R for some i ∈ {1, . . . , 2ν}.

If R is finite, the above theorem gives the number of vertices of GSpR(V ),

namely,

∣

∣V(GSpR(V ))
∣

∣ = |{R~x : ~x is a unimodular vector in V }| =
|R|2ν − |M |2ν

|R×|
.

Write unimodular vectors ~a = a1~e1 + · · · + a2ν~e2ν and ~b = b1~e1 + · · · + b2ν~e2ν

for some ai, bi ∈ R. Then

β(~a,~b) = β(a1~e1 + . . .+ a2ν~e2ν , b1~e1 + . . .+ b2ν~e2ν)

=
2ν
∑

i=1

2ν
∑

j=1

aibjβ(~ei, ~ej) =
ν
∑

i=1

(aibν+i − aν+ibi)

because β(~ei, ~ei) = 0, β(~ei, ~eν+i) = 1 and β(~ei, ~ej) = −β(~ej, ~ei) for all i, j ∈

{1, . . . , 2ν}. Hence, the adjacency condition becomes

R~a is adjacent to R~b if and only if
ν
∑

i=1

(aibν+i − aν+ibi) ∈ R×. (2.1.1)

We shall use it in the next lemma.
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Lemma 2.1.3. Let ~a = a1~e1 + · · ·+ a2ν~e2ν and~b = b1~e1 + · · ·+ b2ν~e2ν be unimodular

vectors in V and assume that ai ∈ R× for some i ∈ {1, . . . , 2ν}. If R~a is adjacent to

R~b, then aibl − albi is a unit for some l ∈ {1, . . . , 2ν} and l 6= i.

Proof. Assume that aibl − albi ∈ M for all l ∈ {1, . . . , 2ν}. Then

ν
∑

j=1

(aiajbν+j−aν+jajbi)+
ν
∑

j=1

(aiaν+jbj−ajaν+jbi) = −
ν
∑

j=1

(aiajbν+j−aiaν+jbi) ∈ M,

which implies
∑ν

j=1(aibν+j − aν+jbj) ∈ M . Thus, R~a is not adjacent to R~b.

Theorem 2.1.4. Let R be a finite local ring and let (V, β) be a symplectic space of

dimension 2ν, where ν ≥ 1.

(1) The symplectic graph GSpR(V ) is |R|2ν−1-regular with
|R|2ν − |M |2ν

|R×|
vertices.

(2) Every two adjacent vertices of GSpR(V ) has |R|2ν−2 |R×| common neighbors.

(3) Every two non-adjacent vertices of GSpR(V ) has |R|2ν−2|R×| or |R|2ν−1 common

neighbors.

Proof. Let ~a = a1~e1+ · · ·+a2ν~e2ν and~b = b1~e1+ · · ·+b2ν~e2ν be unimodular vectors

in V and assume that R~a is adjacent to R~b. Since ~a is unimodular, there exists an

i ∈ {1, . . . , 2ν} such that ai ∈ R×. If i ≤ ν, then

bν+i = a−1
i

(

r + (aν+1b1 − a1bν+1) + (aν+2b2 − a2bν+2) + · · ·

+ (aν+i−1bi−1 − ai−1bν+i−1) + aν+ibi + (aν+i+1bi+1 − ai+1bν+i+1) + · · ·

+ (a2νbν − aνb2ν)
)

for some r ∈ R× and if i > ν, then

bi−ν = a−1
i

(

(a1bν+1 − aν+1b1) + (a2bν+2 − aν+2b2) + · · ·+ (ai−1−νbi−1 − ai−1bi−1−ν)

+ ai−νbi + (ai+1−νbi+1 − ai+1bi+1−ν) + · · ·+ (aνb2ν − a2νbν)− s
)
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for some s ∈ R×. Therefore, there are |R|2ν−1 classes adjacent to the vertex R~a,

and hence GSpR(V ) is |R|2ν−1-regular. This proves (1).

Next, we let ~x = x1~e1+ · · ·+x2ν~e2ν be a unimodular vector in V such that R~x

is a common neighbor of R~a and R~b. Then

(a1xν+1 − aν+1x1) + (a2xν+2 − aν+2x2) + · · ·+ (aνx2ν − a2νxν) = r′ (2.1.2)

and

(b1xν+1 − bν+1x1) + (b2xν+2 − bν+2x2) + · · ·+ (bνx2ν − b2νxν) = s′ (2.1.3)

for some r′, s′ ∈ R×. Since ai ∈ R× and we may assume without loss of general-

ity that i ≤ ν, from Eq. (2.1.2) we have

xν+i = a−1
i

(

r′ + (aν+1x1 − a1xν+1) + (aν+2x2 − a2xν+2) + · · ·

+ (aν+i−1xi−1 − ai−1xν+i−1) + aν+ixi + (aν+i+1xi+1 − ai+1xν+i+1) + · · ·

+ (a2νxν − aνx2ν)
)

.

Subtracting bi× (2.1.2) from ai×(2.1.3) gives

−

ν
∑

j=1

(aibν+j − aν+jbi)xj +
ν
∑

j=1

j 6=i

(aibj − ajbi)xν+j = ais
′ − bir

′. (2.1.4)

Assume that R~a is adjacent to R~b. By Lemma 2.1.3, we have aibl − albi is a unit

for some l ∈ {1, . . . , 2ν} and l 6= i. If l ≤ ν, then

xν+l = (aibl − albi)
−1
(

ais
′ − bir

′ +
ν
∑

j=1

(aibν+j − aν+jbi)xj −

ν
∑

j=1

j 6=i,l

(aibj − ajbi)xν+j

)
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and if l ≥ ν + 1, then

xl−ν = (aibl − albi)
−1
(

ais
′ − bir

′ +
ν
∑

j=1

j 6=l−ν

(aibν+j − aν+jbi)xj −
ν
∑

j=1

j 6=i

(aibj − ajbi)xν+j

)

.

Hence, there are |R|2ν−2|R×||R×|
|R×|

= |R|2ν−2|R×| classes of common neighbors of

adjacent vertices R~a and R~b, and so we have (2).

Finally, suppose that R~a is not adjacent to R~b. If aibl − albi is a unit for

some l ∈ {1, . . . , 2ν} and l 6= i, then Eq. (2.1.4) implies that xν+l or xl de-

pends on other 2ν − 2 variables similar to the previous paragraph, so that there

are |R|2ν−2|R×||R×|
|R×|

= |R|2ν−2|R×| classes of common neighbors. Assume that

aibl − albi ∈ M for all l ∈ {1, . . . , 2ν}r {i}. Then bi is a unit, so

xν+i = b−1
i

(

s′ + (bν+1x1 − b1xν+1) + (bν+2x2 − b2xν+2) + · · ·

+ (bν+i−1xi−1 − bi−1xν+i−1) + bν+ixi + (bν+i+1xi+1 − bi+1xν+i+1) + · · ·

+ (b2νxν − bνx2ν)
)

.

Clearly, if xk ∈ M for all k ∈ {1, . . . , 2ν}r {ν + i}, then xν+i ∈ R×. Hence, there

are |R|2ν−1 classes of common neighbors. This completes the proof of (3).

Furthermore, the above proof gives the following result.

Theorem 2.1.5. Let ~a = a1~e1+ · · ·+a2ν~e2ν and~b = b1~e1+ · · ·+ b2ν~e2ν be unimodular

vectors in V and assume that ai ∈ R× for some i ∈ {1, . . . , 2ν}. If R~a and R~b are

non-adjacent vectices of GSpR(V ), then the number of common neighbors are











|R|2ν−2|R×|, if aibl − albi ∈ R× for some l ∈ {1, . . . , 2ν}r {i},

|R|2ν−1, if aibl − albi ∈ M for all l ∈ {1, . . . , 2ν}r {i}.

We conclude some direct consequences of Theorems 2.1.4 and 2.1.5 in our

main classification theorem.
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Theorem 2.1.6. Let R be a finite local ring with unique maximal ideal M and let (V, β)

be a symplectic space of dimension 2ν.

(1) If ν = 1, then GSpR(V ) is a strongly regular graph with parameters

(|R|+ |M |, |R|, |R×|, |R|).

Moreover, if ν = 1 and R is a field, then GSpR(V ) is a complete graph.

(2) If ν ≥ 2 and R is a field, then GSpR(V ) is a strongly regular graph with parameters

(

|R|2ν − 1

|R| − 1
, |R|2ν−1, |R|2ν−2(|R| − 1), |R|2ν−2(|R| − 1)

)

.

(3) If ν ≥ 2 and R is not a field, then GSpR(V ) is a strictly Deza graph with parameters

(

|R|2ν − |M |2ν

|R×|
, |R|2ν−1, |R|2ν−2|R×|, |R|2ν−1

)

.

2.2 Vertex and arc transitivities

In this section, we show that our symplectic graph GSpR(V ) is arc transitive. We

recall Proposition 2.3 of [8] as follows.

Proposition 2.2.1. [8] Let R be a local ring. If {~x,~a} and {~x,~b} are hyperbolic pairs

of unimodular vectors in V , then there exists an isometry σ in SpR(V ) which leaves ~x

invariant and carries ~a to~b.

Lemma 2.2.2. Let R be a finite local ring and let (V, β) be a symplectic space of dimen-

sion 2ν. Then symplectic group SpR(V ) acts transitively on unimodular vectors and

on hyperbolic planes.

Proof. Let ~a and ~b be unimodular vectors in V such that R~a 6= R~b. By Theorem

2.1.4 (2) and (3), for every two distinct vertices of GSpR(V ), there exists a unimod-

ular vector ~x such that {~x,~a} and {~x,~b} are hyperbolic pairs. Then Proposition
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2.2.1 gives an isometry σ in SpR(V ) which leaves ~x invariant and carries ~a to ~b.

Hence, SpR(V ) acts transitively on unimodular vectors.

Next, let {~a,~b} and {~c, ~d} be two distinct hyperbolic pairs of unimodular

vectors in V . Then there exists an isometry ρ in SpR(V ) carries ~a to ~c. Since {~a,~b}

is hyperbolic pair, so is the pair {ρ(~x), ρ(~a)} = {~c, ρ(~b)}. Again, Proposition 2.2.1

implies an isometry τ in SpR(V ) which leaves ~c invariant and carries ρ(~b) to ~d. It

follows that τ ◦ ρ ∈ SpR(V ) maps {~a,~b} to {~c, ~d} as desired.

Theorem 2.2.3. Let R be a finite local ring and let (V, β) be a symplectic space of

dimension 2ν. Then symplectic graph GSpR(V ) is vertex transitive and arc transitive.

Proof. The previous lemma proves that our graph is vertex transitive. Observe

that for any automorphism σ of V , we have the induced automorphism Tσ on

the vertex set of the symplectic graph GSp(V ) given by

Tσ : R~a 7→ Rσ(~a)

for all unimodular vectors ~a ∈ V . Let ~a and ~b be unimodular vectors in V . By

Lemma 2.2.2, there is an isometry σ ∈ SpR(V ) such that σ(~a) = ~b. Thus, we have

Tσ ∈ AutGSpR(V ) and Tσ : R~a 7→ Rσ(~a) = R~b.

For edge transitivity, we let ~a,~b,~c, ~d be unimodular vectors in V such that

{~a,~b} and {~c, ~d} are hyperbolic pairs. Again, by Lemma 2.2.2, there exists an

isometry σ ∈ SpR(V ) such that σ(~a) = ~c and σ(~b) = ~d. Hence, Tσ ∈ AutGSpR(V )

sends R~a to R~c and R~b to R~d. This proof also shows that the symplectic graph

GSpR(V ) is arc transitive.

2.3 Chromatic numbers

Let R be a finite local ring with unique maximal ideal M and the residue field

k = R/M . Let V be a free R-module of R-dimension 2ν, ν ≥ 1, and let V ′ be
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the 2ν-dimensional vector space over k induced from V via the canonical map

π : R → k given by

π : r 7→ r +M.

Moreover, if (V, β) is a symplectic space, then (V ′, β′) is a symplectic space,

where β′ is given by

β′(π(~a), π(~b)) = π(β(~a,~b))

for all ~a,~b ∈ V . Here, we write π(~a) = (π(a1), π(a2), . . . , π(a2ν)) for all ~a =

(a1, a2, . . . , a2ν) ∈ V . Note that the relation

R~x ∼ R~y ⇔ kπ(~x) = kπ(~y) (2.3.1)

is an equivalence relation on the vertex set of the graph GSpR(V ). Since R is a

local ring, it follows that

β(~a,~b) ∈ R× ⇔ π(β(~a,~b)) 6= M ⇔ β′(π(~a), π(~b)) ∈ k×.

This gives (3) of the next theorem.

Theorem 2.3.1. Let κ = |k|2ν−1
|k|−1

and ~x1, ~x2, . . . , ~xκ be unimodular vectors in V such

that the vertex set

V(GSpk(V
′)) = {kπ(~xi) : i = 1, 2, . . . , κ}.

(1) The set Π = {R(~x1 + M2ν), R(~x2 + M2ν), . . . , R(~xκ + M2ν)} is a partition

of V(GSpR(V )), where R(~xi + M2ν) = {R(~xi + ~m) : ~m ∈ M2ν} for all ∈

{1, 2, . . . , κ}. Moreover, for each i ∈ {1, 2, . . . , κ}, any two distinct vertices

in R(~xi +M2ν) are non-adjacent vertices.

(2) |R(~xi +M2ν)| = |M |2ν−1 for all i ∈ {1, . . . , κ}.

(3) For unimodular vectors ~a,~b ∈ V , we have R~a and R~b are adjacent vertices in

V(GSpR(V )) if and only if kπ(~a) and kπ(~b) are adjacent vertices in V(GSpk(V
′)).
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(4) For i, j ∈ {1, 2, . . . , κ}, if kπ(~xi) and kπ(~xj) are adjacent vertices, then R(~xi +

~m1) and R(~xj + ~m2) are adjacent vertices in V(GSpR(V )) for all ~m1, ~m2 ∈ M2ν .

Proof. The first part of (1) follows from (2.3.1) and (4) is an immediate conse-

quence of (3). Note that

β(~xi + ~m1, ~xi + ~m2) = β(~xi, ~m1) + β(~m2, ~xi) + β(~m1, ~m2) ∈ M

for all i ∈ {1, 2, . . . , κ} and ~m1, ~m2 ∈ M2ν . This proves the second part of (1).

Next, let ~m1, ~m2 ∈ M2ν and assume that R(~xi + ~m1) = R(~xi + ~m2). Then

~xi + ~m1 = λ(~xi + ~m2) for some λ ∈ R×. Thus

(1− λ)~xi = λ~m2 − ~m1 ∈ M2ν .

Since ~xi is unimodular, 1 − λ ∈ M , so λ = 1 + µ for some µ ∈ M . Hence,

~xi+ ~m1 = (1+µ)(~xi+ ~m2). Finally, we show that R(1+µ)(~x+ ~m) = R(~x+ ~m) for

all µ ∈ M , ~x ∈ V unimodular, and ~m ∈ M2ν and we therefore have (2). Clearly,

R(1 + µ)(~x + ~m) ⊆ R(~x + ~m). Since µ ∈ M , 1 + µ ∈ R×. Then r(~x + ~m) =

(r(1 + µ)−1)(1 + µ)(~x+ ~m) for all r ∈ R, which gives another inclusion.

Recall that the chromatic number of a graph G is the smallest number of

colors needed to color the vertices of G so that no two adjacent vertices share

the same color. It follows from Proposition 2.3 of [13] that GSpk(V
′) is |k|ν + 1-

partite with partite sets Y1, Y2, . . . , Y|k|ν+1, where Yi ∩ Yj = ∅ for all i 6= j and

there is no edge of GSpk(V
′) joining two vertices of the same subset. Moreover, the

subsets Y1, Y2, . . . , Y|k|ν+1 can be chosen so that for any distinct indices i and j,

every y ∈ Yi is adjacent to exactly |k|ν−1 vertices in Yj . In addition, the chromatic

number of GSpk(V
′) is |k|ν + 1 (Theorem 1.3.8). The canonical map π : R → k and

Theorem 2.3.1 give the following theorem.

Theorem 2.3.2. The symplectic graph GSpR(V ) is |k|ν + 1-partite with partite sets

π−1(Y1), π
−1(Y2), . . . , π

−1(Y|k|ν+1), where Yj , j = 1, 2, . . . , |k|ν + 1, are subsets of

GSpk(V
′) discussed above. Moreover, for any distinct indices i and j, every a ∈ π−1(Yi)
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is adjacent to exactly |M |2ν−1|k|ν−1 vertices in π−1(Yj). As a result, the chromatic

number χ(GSpR(V )) is |k|ν + 1.

Proof. It remains to derive the chromatic number of GSpR(V ). Since our graph is

|k|ν+1-partite, χ(GSpR(V )) ≤ |k|ν+1. To prove the reverse inequality, we consider

the induced subgraph of GSpR(V ) whose vertex set is {Rx1, Rx2, . . . , Rxκ}. By

Theorem 2.3.1 (3), this subgraph is isomorphic to the symplectic graph GSpk(V
′).

Thus, it has chromatic number |k|ν +1. Hence, the chromatic number χ(GSpR(V ))

is |k|ν + 1 as desired.

2.4 Automorphisms

In this section, we study the automorphism group of our symplectic graph. We

begin by recalling the results of Tang and Wan [13] for symplectic graphs over

finite fields.

Let k be a field and write Aut(k) for the group of automorphisms of k. Let

ϕ be the natural action of Aut(k) on the group (k×)ν = k× × · · · × k× (ν copies)

defined by

ϕ(φ)((a1, . . . , aν)) = (φ(a1), . . . , φ(aν)),

for all φ ∈ Aut(k) and a1, . . . , aν ∈ k×. The semidirect product of (k×)ν by Aut(k)

corresponding to ϕ, denoted by (k×)ν ⋊ϕ Aut(k), is the group consisting of all

elements of the form ((a1, . . . , aν), φ), where a1, . . . , aν ∈ k× and φ ∈ Aut(k) with

multiplication defined by

((a1, . . . , aν), φ)((a
′
1, . . . , a

′
ν), φ

′) = ((a1, . . . , aν)(ϕ(φ)((a
′
1, . . . , a

′
ν))), φ ◦ φ′)

= ((a1φ(a
′
1), . . . , aνφ(a

′
ν)), φ ◦ φ′).

The set of all permutations of a set S is denoted by Sym(S) or just Sym(n) if

|S| = n. Note that | Sym(n)| = n!. The automorphism group of the symplectic

graph over a finite field can be described as follows.
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Theorem 2.4.1. (Theorem 3.4 and Corollary 3.6 of [13]) Let k be a field and V

be a symplectic space over k of dimension 2ν, ν ≥ 1. Regard the symplectic group

Spk(V )/{±I2ν} as a subgroup of Aut(GSpk(V )) (as shown in Theorem 1.3.5) and let E

be the subgroup of Aut(GSpk(V )) defined as follows:

E = {σ ∈ Aut(GSpk(V )) : σ(k~ei) = k~ei for all i = 1, . . . , 2ν},

where {~e1, ~e2, . . . , ~e2ν} is the standard basis of V . Then

Aut(GSpk(V )) = (Spk(V )/{±I2ν}) · E,

where

E ∼=











Sym(k×) = Sym(|k| − 1), if ν = 1,

(k×)ν ⋊ϕ Aut(k), if ν ≥ 2.

Consequently, the number of automorphisms of the symplectic graph is given by

|Aut(GSpk(V ))| =















|k|(|k|2 − 1) · (|k| − 2)!, if ν = 1,

|k|ν
2

ν
∏

i=1

(|k|2i − 1) · [k : Fp], if ν ≥ 2,

where k is of characteristic p and [k : Fp] denotes the degree of extension of k over Fp.

For a finite local ring R, we have the following result.

Theorem 2.4.2. Let R be a finite local ring with unique maximal ideal M and residue

field k = R/M and let (V, β) be a symplectic space of dimension 2ν, ν ≥ 1. Then

Aut(GSpR(V )) ∼= Aut(GSpk(V
′))× (Sym(|M |2ν−1))κ,

where κ = |k|2ν−1

|k|−1
and V ′ is the symplectic space over k induced from V .

Proof. Let ~x1, ~x2, . . . , ~xκ be unimodular vectors in V such that

V(GSpk(V
′)) = {kπ(~xi) : i ∈ {1, 2, . . . , κ}}.
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Theorem 2.3.1 shows that the subgraph of GSpR(V ) induced from the vertex set

{R~xi : i ∈ {1, 2, . . . , κ}} is isomorphic to the symplectic graph GSpk(V
′). More-

over, each automorphism of GSpR(V ) corresponds with an automorphism of the

graph GSpk(V
′) and a permutation of vertices in the set R(~xi + M2ν) for all i ∈

{1, 2, . . . , κ}. Thus,

Aut(GSpR(V )) ∼= Aut(GSpk(V
′))×

κ
∏

i=1

Sym(|R(~xi +M2ν)|)

= Aut(GSpk(V
′))× (Sym(|M |2ν−1))κ

because |R(~xi +M2ν)| = |M |2ν−1 for all i ∈ {1, 2, . . . , κ}.



CHAPTER III

SUBCONSTITUENTS OF SYMPLECTIC GRAPHS OVER

FINITE LOCAL RINGS

In this chapter, we study the subconstituents G
(i)
SpR(V ), i = 1, 2, of symplectic

graphs over finite local rings. The first section presents the definition and re-

sults on strong regularity. Sections 3.2 and 3.3 include the work on chromatic

numbers and automorphism groups, respectively. This chapter generalizes the

work in [5], [6] and [9].

3.1 Subconstituents of symplectic graphs

Let R be a finite local ring with unique maximal ideal M . Another aspect in

studying the symplectic graph GSpR(V ) is to work on the subconstituents G
(i)
SpR(V ),

i = 1, 2, defined to be the induced subgraphs of GSpR(V ) on the vertex sets

Vi = {R~x : ~x is a unimodular vector in V and d(R~x,R~eν+1) = i}

i = 1, 2, respectively. Recall from Theorem 2.1.6 that our symplectic graph is a

strongly regular or strictly Deza graph, so for each modular vector ~x ∈ V , we

have d(R~x,R~eν+1) = 1 or 2, if R~x 6= R~eν+1. Thus, V1 consists of adjacent vertices

of R~eν+1 and V2 consists of non-adjacent vertices of R~eν+1, which are not R~eν+1.

Hence, G
(1)
SpR(V ) is the induced subgraph of GSpR(V ) on the vertex set

V1 = {R~x : ~x = ~e1 + a2~e2 + · · ·+ a2ν~e2ν , where ai ∈ R for all i ∈ {2, . . . , 2ν}}
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and G
(2)
SpR(V ) is the induced subgraph of GSpR(V ) on the vertex set

V2 =
{

R~x : ~x = m~e1 + a2~e2 + · · ·+ a2ν~e2ν is unimodular in V,

where ai ∈ R for all i ∈ {2, . . . , 2ν} and m ∈ M
}

.

This allows us to find that

|V1| = |R|2ν−1 and |V2| = |V(GSpR(V ))| − |V1| − |{~eν+1}| =
(|R|2ν−1−|M |2ν−1)|M |

|R×|
− 1.

Remark. Observe that we can define the subconstituents associated with other

vertices. However, since the symplectic graph GSpR(V ) is vertex and arc transi-

tive, it suffices to consider only the ones associated with R~eν+1.

Let ~a = ~e1 + a2~e2 + · · ·+ a2ν~e2ν and~b = ~e1 + b2~e2 + · · ·+ b2ν~e2ν be vectors in V .

Assume that R~a is adjacent to R~b. Thus,

bν+1 = r + aν+1 + (aν+2b2 − a2bν+2) + · · ·+ (a2νbν − aνb2ν).

for some r ∈ R×. Therefore, there are |R|2ν−2 |R×| classes adjacent to the vertex

R~a in G
(1)
SpR(V ), and hence G

(1)
SpR(V ) is |R|2ν−2 |R×|-regular. Next, we proceed to

prove the following theorem.

Theorem 3.1.1. Let R be a finite local ring and let (V, β) be a symplectic space of

dimension 2ν, where ν ≥ 1.

(1) The subconstituent graph G
(1)
SpR(V ) is |R|2ν−2 |R×|-regular with |R|2ν−1 vertices.

(2) Every two adjacent vertices of G
(1)
SpR(V ) has |R|2ν−3 |R×|

2 or |R|2ν−2 (|R×| − |M |)

common neighbors.

(3) Every two non-adjacent vertices of G
(1)
SpR(V ) has |R|2ν−3|R×|2 or |R|2ν−2 |R×| com-

mon neighbors.

Proof. We have proved (1) in the above discussion. Let ~x = ~e1+x2~e2+· · ·+x2ν~e2ν
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be a vector in V such that R~x is a common neighbor of R~a and R~b. Then

(xν+1 − aν+1) + (a2xν+2 − aν+2x2) + · · ·+ (aνx2ν − a2νxν) = r′ (3.1.1)

and

(xν+1 − bν+1) + (b2xν+2 − bν+2x2) + · · ·+ (bνx2ν − b2νxν) = s′ (3.1.2)

for some r′, s′ ∈ R×. From Eq. (3.1.1), we have

xν+1 = r′ + aν+1 + (aν+2x2 − a2xν+2) + · · ·+ (a2νxν − aνx2ν). (3.1.3)

Subtracting (3.1.1) from (3.1.2) gives

−(bν+1 − aν+1)−
ν
∑

j=2

(bν+j − aν+j)xj +
ν
∑

j=2

(bj − aj)xν+j = s′ − r′. (3.1.4)

Assume that R~a is adjacent to R~b. By Lemma 2.1.3, we have bl − al is a unit for

some l ∈ {2, . . . , 2ν}. If l ≤ ν, then

xν+l = (bl − al)
−1
(

s′ − r′ + bν+1 − aν+1 +
ν
∑

j=2

(bν+j − aν+j)xj −
ν
∑

j=2

j 6=l

(bj − aj)xν+j

)

and if l ≥ ν + 1, then

xl−ν = (bl − al)
−1
(

s′ − r′ + bν+1 − aν+1 +
ν
∑

j=2

j 6=l−ν

(bν+j − aν+j)xj −
ν
∑

j=2

(bj − aj)xν+j

)

.

(3.1.5)

If l 6= ν +1, then there are |R|2ν−3|R×|2 classes of common neighbors of adjacent

vertices R~a and R~b. Now, we assume that l = ν + 1 and bj − aj ∈ M for all

j ∈ {2, . . . , 2ν}r {l}. Then, by Eq. (3.1.4), we have

r′ − s′ = (bν+1 − aν+1) +
ν
∑

j=2

(bν+j − aν+j)xj −
ν
∑

j=2

(bj − aj)xν+j,
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which implies r′ − s′ ∈ R×. There are

|R|2ν−2(|R×|2 − |R×||M |)

|R×|
= |R|2ν−2(|R×| − |M |) = |R|2ν−2(|R| − 2|M |)

classes of common neighbors. This completes the proof of (2).

Finally, we suppose that R~a is not adjacent to R~b. If bl − al is a unit for some

l ∈ {2, . . . , 2ν} r {ν + 1}, then Eq. (3.1.3) and (3.1.4) imply that xν+1 and (xν+l

or xl) depend on other 2ν − 3 variables, so that there are |R|2ν−3|R×|2 classes of

common neighbors. Assume that bl − al ∈ M for all l ∈ {2, . . . , 2ν}r {ν + 1}. If

bν+1 − aν+1 ∈ R×, then

(bν+1 − aν+1)+
ν
∑

i=2

(aibν+i − aν+ibi)

= (bν+1 − aν+1) +
ν
∑

i=2

(

bν+i(ai − bi) + bi(bν+i − aν+i)
)

∈ R×,

which contradicts the fact that R~a is not adjacent to R~b. Thus, bν+1 − aν+1 ∈ M .

Eq. (3.1.4) implies that

s′ = r′ − (bν+1 − aν+1)−
ν
∑

j=2

(bν+j − aν+j)xj +
ν
∑

j=2

(bj − aj)xν+j

is a unit. Hence, there are |R|2ν−2|R×| classes of common neighbors.

Moreover, the proof of Theorem 3.1.1 gives the following results.

Theorem 3.1.2. Let ~a = ~e1 + a2~e2 + · · ·+ a2ν~e2ν and~b = ~e1 + b2~e2 + · · ·+ b2ν~e2ν be

unimodular vectors in V .

(1) If R~a and R~b are adjacent vectices of G
(1)
SpR(V ), then the number of common neigh-

bors are











|R|2ν−3|R×|2, if bl − al ∈ R× for some l ∈ {2, . . . , 2ν}r {ν + 1},

|R|2ν−2(|R×| − |M |), if bl − al ∈ M for all l ∈ {2, . . . , 2ν}r {ν + 1}.
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(2) If R~a and R~b are non-adjacent vectices of G
(1)
SpR(V ), then the number of common

neighbors are











|R|2ν−3|R×|2, if bl − al ∈ R× for some l ∈ {2, . . . , 2ν}r {ν + 1},

|R|2ν−2|R×|, if bl − al ∈ M for all l ∈ {2, . . . , 2ν}r {ν + 1}.

Results for the subconstituent graph G
(2)
SpR(V ) are similar as we shall see in the

next theorem. If ν = 1, then the graph G
(2)
SpR(V ) consists of |M | − 1 vertices with

no edges, so it is an empty graph. Thus, we may assume that ν ≥ 2.

Theorem 3.1.3. Let R be a finite local ring and let (V, β) be a symplectic space of

dimension 2ν, where ν ≥ 2.

(1) The subconstituent graph G
(2)
SpR(V ) is |R|2ν−2|M |-regular.

(2) Every two adjacent vertices of G
(2)
SpR(V ) has |R|2ν−3|R×||M | common neighbors.

(3) Every two non-adjacent vertices of G
(2)
SpR(V ) has |R|2ν−3|R×||M | or |R|2ν−2|M |

common neighbors.

Proof. Let ~a = m~e1 + a2~e2 + · · · + a2ν~e2ν and ~b = m′~e1 + b2~e2 + · · · + b2ν~e2ν be

unimodular vectors in V and assume that R~a is adjacent to R~b in G
(2)
SpR(V ). Since

~a is unimodular, there exists an i ∈ {2, . . . , 2ν} such that ai ∈ R×. If i ≤ ν, then

bν+i = a−1
i

(

r + (aν+1m
′ −mbν+1) + (aν+2b2 − a2bν+2) + · · ·

+ (aν+i−1bi−1 − ai−1bν+i−1) + aν+ibi + (aν+i+1bi+1 − ai+1bν+i+1) + · · ·

+ (a2νbν − aνb2ν)
)

for some r ∈ R× and if i ≥ ν + 1, then

bi−ν = a−1
i

(

(mbν+1 − aν+1m
′) + (a2bν+2 − aν+2b2) + · · ·+ (ai−1−νbi−1 − ai−1bi−1−ν)

+ ai−νbi + (ai+1−νbi+1 − ai+1bi+1−ν) + · · ·+ (aνb2ν − a2νbν)− s
)
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for some s ∈ R×. Hence, there are |R|2ν−2 |M | classes adjacent to the vertex R~a,

and thus G
(2)
SpR(V ) is |R|2ν−2 |M |-regular. Therefore, we have (1).

Next, let ~x = m′′~e1+x2~e2+ · · ·+x2ν~e2ν be a unimodular vector in V such that

R~x is a common neighbor of R~a and R~b. Then

(mxν+1 − aν+1m
′′) + (a2xν+2 − aν+2x2) + · · ·+ (aνx2ν − a2νxν) = r′ (3.1.6)

and

(m′xν+1 − bν+1m
′′) + (b2xν+2 − bν+2x2) + · · ·+ (bνx2ν − b2νxν) = s′ (3.1.7)

for some r′, s′ ∈ R×. Since ai ∈ R×, if i ≤ ν, we have

xν+i = a−1
i

(

r′ + (aν+1m
′′ −mxν+1) + (aν+2x2 − a2xν+2) + · · ·

+ (aν+i−1xi−1 − ai−1xν+i−1) + aν+ixi + (aν+i+1xi+1 − ai+1xν+i+1) + · · ·

+ (a2νxν − aνx2ν)
)

and if i ≥ ν + 1, we have

xi−ν = a−1
i

(

(mxν+1 − aν+1m
′′) + (a2xν+2 − aν+2x2) + · · ·

+ (ai−1−νxi−1 − ai−1xi−1−ν) + ai−νxi + (ai+1−νxi+1 − ai+1xi+1−ν) + · · ·

+ (aνx2ν − a2νxν)− s
)

.

In what follows, we shall prove (2) and (3) when i ≤ ν. The proof for the case

i ≥ ν + 1 is obtained in the same way. Subtracting bi× (3.1.6) from ai×(3.1.7)
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gives

ais
′ − bir

′ = −(aibν+1 − aν+1bi)m
′′ −

ν
∑

j=2

(aibν+j − aν+jbi)xj + (aim
′ −mbi)xν+1

+
ν
∑

j=2

j 6=i

(aibj − ajbi)xν+j.

(3.1.8)

Assume that R~a is adjacent to R~b. By Lemma 2.1.3, we have aibl − albi is a unit

for some l ∈ {2, . . . , 2ν} and l 6= i. If l ≤ ν, then

xν+l = (aibl − albi)
−1
(

ais
′ − bir

′ + (aibν+1 − aν+1bi)m
′′ +

ν
∑

j=2

(aibν+j − aν+jbi)xj

− (aim
′ −mbi)xν+1 −

ν
∑

j=2

j 6=i,l

(aibj − ajbi)xν+j

)

(3.1.9)

and if l ≥ ν + 1, then

xl−ν = (aibl − albi)
−1
(

ais
′ − bir

′ + (aibν+1 − aν+1bi)m
′′ +

ν
∑

j=2

j 6=l−ν

(aibν+j − aν+jbi)xj

− (aim
′ −mbi)xν+1 −

ν
∑

j=2

j 6=i

(aibj − ajbi)xν+j

)

.

(3.1.10)

Thus, there are |R|2ν−3|R×|2|M |
|R×|

= |R|2ν−3|R×||M | classes of common neighbors of

adjacent vertices R~a and R~b. This proves (2).

Finally, we suppose that R~a is not adjacent to R~b. If aibl − albi is a unit for

some l ∈ {2, . . . , 2ν} and l 6= i, then Eq. (3.1.8) implies that xi and (xν+l or xl)

depend on other 2ν−3 variables similar to the previous paragraph, so that there

are |R|2ν−3|R×||M | classes of common neighbors.

Assume that aibl−albi ∈ M for all l ∈ {2, . . . , 2ν}r{ν+ i}. If aibν+i−aν+ibi ∈



26

R×, then

(mbν+1−aν+1m
′) +

ν
∑

j=2

(ajbν+j − aν+jbj)

= (aibν+i − aν+ibi) + (mbν+1 − aν+1m
′) + a−1

i

ν
∑

j=2

j 6=i

ai(ajbν+j − aν+jbj)

= (mbν+1 − aν+1m
′) + +a−1

i

ν
∑

j=2

j 6=i

(

aj(aibν+j − aν+jbi) + aν+j(ajbi − aibj)
)

+ (aibν+i − aν+ibi)

is a unit, which contradicts the fact that R~a is not adjacent to R~b. Thus, aibν+i −

aν+ibi ∈ M . Again, Eq. (3.1.8) implies that

s′ = a−1
i (bir

′ − (aibν+1 − aν+1bi)m
′′ −

ν
∑

j=2

(aibν+j − aν+jbi)xj

+ (aim
′ −mbi)xν+1 +

ν
∑

j=2

j 6=i

(aibj − ajbi)xν+j)

is a unit. Hence, there are |R|2ν−2|M | classes of common neighbors. The proof

completes.

We may conclude some consequences from the proof of Theorem 3.1.3 in the

next theorem.

Theorem 3.1.4. Let ~a = m~e1+ a2~e2+ · · ·+ a2ν~e2ν and~b = m′~e1+ b2~e2+ · · ·+ b2ν~e2ν

be unimodular vectors in V , m,m′ ∈ M and assume that ai ∈ R× for some i ∈

{2, . . . , 2ν}.

(1) If R~a and R~b are adjacent vectices of G
(2)
SpR(V ), then the number of common neigh-

bors is |R|2ν−3|R×||M |.

(2) If R~a and R~b are non-adjacent vectices of G
(2)
SpR(V ), then for i ≤ ν, the number of



27

common neighbors are











|R|2ν−3|R×||M |, if aibl − albi ∈ R× for some l ∈ {2, . . . , 2ν}r {ν + i},

|R|2ν−2|M |, if aibl − albi ∈ M for all l ∈ {2, . . . , 2ν}r {ν + i},

and for i ≥ ν + 1, the number of common neighbors are











|R|2ν−3|R×||M |, if aibl − albi ∈ R× for some l ∈ {2, . . . , 2ν}r {i− ν},

|R|2ν−2|M |, if aibl − albi ∈ M for all l ∈ {2, . . . , 2ν}r {i− ν}.

For d ≥ 2, a k-regular graph G on v vertices is called a d-Deza graph with

parameters (v, k, {c1, . . . , cd}) if every two distinct vertices of G have c1, c2, . . . , cd

common adjacent vertices. In particular, a 2-Deza graph is just an ordinary Deza

graph.

Therefore, we can summarize the work on subconstituents of symplectic

graphs in this section as follows.

Theorem 3.1.5. Let R be a finite local ring with unique maximal ideal M and let (V, β)

be a symplectic space of dimension 2ν.

(1) If ν = 1, then G
(1)
SpR(V ) is a strongly regular graph with parameters

(

|R|,
∣

∣R×
∣

∣ , |R×| − |M |, |R×|
)

.

(2) If ν ≥ 2 and R is a field, then G
(1)
SpR(V ) is a strictly Deza graph with parameters

(

|R|2ν−1, |R|2ν−2 (|R| − 1), |R|2ν−3(|R| − 1)2, |R|2ν−2(|R| − 2)
)

.

(3) If ν ≥ 2 and R is not a field, then G
(1)
SpR(V ) is a 3-Deza graph with parameters

(

|R|2ν−1, |R|2ν−2
∣

∣R×
∣

∣ , {|R|2ν−3|R×|2, |R|2ν−2(|R×| − |M |), |R|2ν−2|R×|}
)

.
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Theorem 3.1.6. Let R be a finite local ring with unique maximal ideal M and let (V, β)

be a symplectic space of dimension 2ν, where ν ≥ 2. Then G
(2)
SpR(V ) is a strictly Deza

graph with parameters

(

|R|2ν−1 |M | − |M |2ν

|R×|
− 1, |R|2ν−2 |M | , {|R|2ν−2|M |, |R|2ν−3|R×||M |}

)

.

3.2 Chromatic Numbers

Let R be a finite local ring with unique maximal ideal M . Let V be a free R-

module of R-dimension 2ν, ν ≥ 1, and let V ′ be the 2ν-dimensional row vector

space over k induced from V via the canonical map as we have discussed earlier

in Section 2.3.

Recall that the subconstituents G
(1)
SpR(V ) is the induced subgraph of GSpR(V ) on

the vertex set

V1 = {R~x : ~x = ~e1 + a2~e2 + · · ·+ a2ν~e2ν , where ai ∈ R for all i ∈ {2, . . . , 2ν}}

and

V2 =
{

R~x : ~x = m~e1 + a2~e2 + · · ·+ a2ν~e2ν is unimodular in V,

where ai ∈ R for all i ∈ {2, . . . , 2ν} and m ∈ M
}

.

Thus, the canonical map π gives that

V ′
1 = π(V1) = {k~x′ : ~x′ = ~e1+b2~e2+· · ·+b2ν~e2ν , where bi ∈ k for all i ∈ {2, . . . , 2ν}}

and

V ′
2 = π(V2) =

{

k~x′ : ~x′ = b2~e2 + · · ·+ b2ν~e2ν is unimodular in V ′,

where bi ∈ k for all i ∈ {2, . . . , 2ν}
}
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are the vertex sets of the subconstituents G
(1)
Spk(V

′) and G
(2)
Spk(V

′), respectively. Let

κ1 = |V ′
1| = |k|2ν−1 and κ2 = |V ′

2| =
|k|2ν−1 − 1

|k| − 1
− 1,

and let ~x1, ~x2, . . . , ~xκ1 and ~y1, ~y2, . . . , ~yκ2 be unimodular vectors in V such that

V(G
(1)
Spk(V

′)) = {kπ(~x1), kπ(~x2), . . . kπ(~xκ1)}

and

V(G
(2)
Spk(V

′)) = {kπ(~y1), kπ(~y2), . . . kπ(~yκ2)}.

Similar to Theorem 2.3.1, the above observation yields the next theorem.

Theorem 3.2.1. Under the above set up, we have the following statements.

(1) (i) The set Π1 = {R(~x1 +M2ν), R(~x2 +M2ν), . . . , R(~xκ1 +M2ν)} is a parti-

tion of V(G
(1)
SpR(V )). Moreover, for each i ∈ {1, 2, . . . , κ1}, any two distinct

vertices in R(~xi +M2ν) are non-adjacent vertices.

(ii) The set Π2 = {R(~y1+M2ν), R(~y2+M2ν), . . . , R(~yκ2+M2ν)} is a partition

of V(G
(2)
SpR(V2)

). Moreover, for each j ∈ {1, 2, . . . , κ2}, any two distinct

vertices in R(~yj +M2ν) are non-adjacent vertices.

Here, R(~x+M2ν) = {R(~x+ ~m) : ~m ∈ M2ν} for all unimodular vectors ~x in V .

(2) |R(~x+M2ν)| = |M |2ν−1 for all unimodular vectors ~x in V .

(3) Let ~a and~b be unimodular vectors in V . For each i ∈ {1, 2}, we have R~a and R~b

are adjacent vertices in V(G
(i)
SpR(Vi)

) if and only if kπ(~a) and kπ(~b) are adjacent

vertices in V(G
(i)

Spk(V
′

i )
).

(4) For i ∈ {1, 2}, if kπ(~z) and kπ(~w) are adjacent vertices in the subconstituent

G
(i)
SpR(V ), then R(~z + ~m1) and R(~w + ~m2) are adjacent vertices in V(G

(i)
SpR(V )) for

all ~m1, ~m2 ∈ M2ν .

Proof. The proof is analogous to the proof of Theorem 2.3.1.
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It follows from Theorem 3.5 of [9] that the subconstituent G
(1)
Spk(V

′) is |k|ν-

partite with partite sets Z1, Z2, . . . , Z|k|ν , where Zi ∩ Zj 6= ∅ for all i 6= j and

there is no edge of G
(1)
Spk(V

′) joining two vertices of the same subset. Moreover,

the subsets Z1, Z2, . . . , Z|k|ν can be chosen so that for any distinct indices i and j,

every z ∈ Zi is adjacent to exactly |k|ν−1 vertices in Zj . Moreover, the chromatic

number of G
(1)
Spk(V

′) is |k|ν (Theorem 3.7 of [9]). The canonical map π : R → k and

Theorem 3.2.1 give the following theorem.

Theorem 3.2.2. The subconstituent G
(1)
SpR(V ) is |k|ν-partite with partite sets π−1(Z1),

π−1(Z2), . . . , π−1(Z|k|ν ), where Zj , j = 1, 2, . . . , |k|ν , are subsets of G
(1)
Spk(V

′) discussed

above. Moreover, the subsets π−1(Z1), π
−1(Z2), . . . , π

−1(Z|k|ν ) can be chosen so that

for any distinct indices i and j, every a ∈ π−1(Zi) is adjacent to exactly |M |2ν−1|k|ν−1

vertices in π−1(Zj). Consequently, the chromatic number χ(G
(1)
SpR(V )) is |k|ν .

Proof. Since the subconstituent G
(1)
SpR(V ) is |k|ν-partite, its chromatic number is at

most |k|ν . The reverse inequality follows from the fact that the induced sub-

graph of G
(1)
SpR(V ) whose vertex set is {R~x1, . . . , R~xκ1} is isomorphic to the graph

G
(1)
Spk(V

′) by Theorem 3.2.1 (3). Hence, χ(G
(1)
SpR(V1)

) = |k|ν .

The proof of Theorem 4.8 of [9] shows that the vertex set of subconstituent

G
(2)
Spk(V

′) can be partitioned into pairwise disjoint sets W1,W2, . . . ,W|k|ν−1+1, and

there is no edge of G
(2)
Spk(V

′) joining two vertices of the same subset. Moreover,

|Wj| =
|k|ν−|k|
|k|−1

for all 1 ≤ j ≤ |k|ν−1 + 1. In addition, Theorem 4.6 of [9] says that

χ(G
(2)
Spk(V

′)) = |k|ν−1 + 1. Again, the canonical map π : R → k and Theorem 3.2.1

give the following theorem.

Theorem 3.2.3. The subconstituent G
(2)
SpR(V ) is |k|ν−1 + 1-partite with partite sets

π−1(W1), π
−1(W2), . . . , π

−1(W|k|ν−1+1), where Wj , j = 1, 2, . . . , |k|ν−1+1, are subsets

of V(G
(2)
Spk(V

′)) discussed above. Moreover, there is no edge of G
(2)
SpR(V ) joining two vertices

of the same subset π−1(Wj) and |π−1(Wj)| =
|k|ν−|k|
|k|−1

|M |2ν−1 for all 1 ≤ j ≤ |k|ν−1+1.

Consequently, the chromatic number χ(G
(2)
SpR(V )) is |k|ν−1 + 1.

Proof. Since the subconstituent G
(2)
SpR(V ) is |k|ν−1+1-partite, its chromatic number

is at most |k|ν−1+1. The reverse inequality follows from the fact that the induced
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subgraph of G
(2)
SpR(V ) whose vertex set is {R~y1, . . . , R~yκ2} is isomorphic to the

graph G
(2)
Spk(V

′) by Theorem 3.2.1 (3). Therefore, χ(G
(2)
SpR(V )) = |k|ν−1 + 1.

3.3 Automorphisms

Let R be a commutative ring and let (V = R2ν , β) be a symplectic space with

the standard basis {~e1, ~e2, . . . , ~e2ν}. Recall from Section 1.2 that an R-module

automorphism σ on V is an isometry if β(σ(~x), σ(~y)) = β (~x, ~y) for all ~x, ~y ∈ V

and the group of isometries Sp
R
(V ) is called the symplectic group. Define

Sp
(1)
R (V ) = {σ ∈ Sp

R
(V ) : σ(~eν+1) = ~eν+1}.

Clearly, it is a subgroup of SpR(V ). Moreover, similar to Theorem 1.3.5, we have

the imbedding Sp
(1)
R (V ) →֒ Aut(G

(1)
SpR(V )) by considering the automorphisms fix-

ing ~eν+1. Gu and Wan [6] showed that:

Proposition 3.3.1. (Theorem 2.2 and Corollary 2.13 of [6]) Let k be a field and V a

symplectic space over k of dimension 2ν, ν ≥ 2. Let E1 be the subgroup of Aut(G
(1)
Spk(V ))

defined as follows:

E1 =
{

σ ∈Aut(G
(1)
Spk(V )) : σ(k~e1) = k~e1, σ(k(~e1 + ~eν+i)) = k(~e1 + ~eν+i),

σ(k(~e1 + ~ei)) = k(~e1 + c~ei), for all i = 2, 3, . . . , ν and c ∈ k×
}

,

where {~e1, ~e2, . . . , ~e2ν} is the standard basis of V . Then

Aut(G
(1)
Spk(V )) = (Sp

(1)
k (V )) · E1.

Moreover, the number of automorphisms of the subconstituent G
(1)
Spk(V ) is

|k|ν
2

(|k| − 1)
ν−1
∏

i=1

(|k|2i − 1) · [k : Fp],
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where k is of characteristic p and [k : Fp] denotes the degree of extension of k over Fp.

Gu and Wan also studied the automorphism group of the subconstituent

G
(2)
Spk(V ). Their result is as follows.

Proposition 3.3.2. (Theorem 3.1 and Corollary 3.2 of [6]) Let k be a field and V

a symplectic space over k of dimension 2ν, ν ≥ 2. The automorphism group of the

subconstituent G
(2)
Spk(V ) is isomorphic to

Aut(GSpk(W ))× (Sym(k))κ
′

2 ,

where W is the subspace of V generated by the set {~e2, . . . , ~eν , ~eν+2, . . . , ~e2ν} and κ′
2 =

|k|2(ν−1)−1−1
|k|−1

− 1 is the number of vertices in the graph G
(2)
Spk(W ). In addition,

|Aut(G
(2)
Spk(V ))| =















(|k|+ 1)!(|k|!)|k|+1, if ν = 2,

|k|(ν−1)2(|k|!)κ
′

2

ν−1
∏

i=1

(|k|2i − 1) · [k : Fp], if ν ≥ 3,

where k is of characteristic p and [k : Fp] denotes the degree of extension of k over Fp.

For our results, we let R be a finite local ring with unique maximal ideal M

and residue field k = R/M and let (V, β) be a symplectic space of dimension

2ν and V ′ the 2ν-dimensional row vector space over k induced from V via the

canonical map. By Theorem 3.2.1 (1), for i ∈ {1, 2}, the set Πi is a partition

of V(G
(i)
SpR(V )) and any two distinct vertices in each partite set are non-adjacent.

Moreover, the induced subgraph of G
(1)
SpR(V ) [resp. G

(2)
SpR(V )], whose vertex set is

{R~x1, . . . , R~xκ1} [resp. {R~y1, . . . , R~yκ2}], is isomorphic to graph G
(1)
Spk(V

′) [resp.

G
(2)
Spk(V

′)] (by Theorem 3.2.1 (3) and (4)). Thus, for i ∈ {1, 2}, an automorphism of

G
(i)
SpR(V ) corresponds with an automorphism of G

(i)
Spk(V

′) (studied in the previous

two propositions) and a permutation of vertices of the subconstituent G
(i)
SpR(V ) in

each partite set of Πi. Recall also that each partite set is of cardinality |M |2ν−1 by

Theorem 3.2.1 (2). Hence, we have the following theorem on the automorphism

groups.
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Theorem 3.3.3. Let R be a finite local ring with unique maximal ideal M and residue

field k = R/M and let (V, β) be a symplectic space of dimension 2ν, ν ≥ 2. Then for

i ∈ {1, 2},

Aut(G
(i)
SpR(V )) = Aut(G

(i)
Spk(V

′))× Sym(|M |2ν−1)κi ,

where V ′ is the 2ν-dimensional row vector space over k induced from V via the canonical

map, κ1 = |k|2ν−1 and κ2 =
|k|2ν−1 − 1

|k| − 1
− 1.



CHAPTER IV

SOME RESULTS OVER FINITE COMMUTATIVE RINGS

It is well known that any finite commutative ring is a product of finite local rings

(Theorem 8.7 of [1]) and we completely study our graphs over finite local rings

in the previous chapters. In this chapter, we show how to use the decomposition

of finite commutative rings into local rings and the work on symplectic graphs

in Chapter II to obtain some analogous results. We also include an example with

R = Zm, m > 1, to illustrate the theorems. Moreover, it generalizes [11].

4.1 Strong regularity

Let R be a finite commutative ring. Write

R = R1 ×R2 × · · · × Rt

as a direct product of finite local rings Ri, i = 1, 2, . . . , t. Consider V = R2ν ,

a free R-module of R-dimension 2ν, where ν ≥ 1. We have the canonical 1-1

correspondence

~x = (x1, x2, . . . , x2ν)
ϕ
7→ ((x

(j)
1 )tj=1, (x

(j)
2 )tj=1, . . . , (x

(j)
2ν )

t
j=1).
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Note that if ~x, ~y ∈ V , then this correspondence induces the symplectic map β

on V by

β(~x, ~y) = β(((x
(j)
1 )tj=1, (x

(j)
2 )tj=1, . . . , (x

(j)
2ν )

t
j=1), ((y

(j)
1 )tj=1, (y

(j)
2 )tj=1, . . . , (y

(j)
2ν )

t
j=1))

= (β1(~x
(1), ~y(1)), β2(~x

(2), ~y(2)), . . . , βt(~x
(t), ~y(t)))

=
(

ν
∑

i=1

(x
(1)
i y

(1)
ν+i − x

(1)
ν+iy

(1)
i ),

ν
∑

i=1

(x
(2)
i y

(2)
ν+i − x

(2)
ν+iy

(2)
i ), . . . ,

ν
∑

i=1

(x
(t)
i y

(t)
ν+i − x

(t)
ν+iy

(t)
i )
)

,

where ~x(j) = (x
(j)
1 , ~x

(j)
2 , . . . , ~x

(j)
2ν ) ∈ V (j) := R2ν

j and (V (j), βj) is a 2ν-dimensional

symplectic space of Rj , for all j = 1, 2, . . . , t. Since R× = R×
1 ×R×

2 ×· · ·×R×
t , we

have

β(~x, ~y) ∈ R× ⇔
ν
∑

i=1

(x
(j)
i y

(j)
ν+i − x

(j)
ν+iy

(j)
i ) ∈ R×

j for all j ∈ {1, 2, . . . , t}, (4.1.1)

it follows from Eq. (2.1.1) that

GSpR(V )
∼= GSpR1

(V (1)) ⊗ GSpR2
(V (2)) ⊗ · · · ⊗ GSpRt

(V (t)), (4.1.2)

as a graph isomorphism. Here, for two graphs G and H , we define their tensor

product G ⊗ H to be the graph with vertex set V(G) × V(H), where (u, v) is

adjacent to (u′, v′) if and only if u is adjacent to u′ and v is adjacent to v′.

From Theorem 2.1.4 (1) and the above discussion, we have the number of

vertices of GSpR(V ) is equal to

|V(GSpR(V ))| =
t
∏

j=1

|V(GSpRj
(V (j)))| =

t
∏

j=1

|Rj|
2ν − |Mj|

2ν

|R×
j |

.

and GSpR(V ) is regular of degree |R1|
2ν−1|R2|

2ν−1 . . . |Rt|
2ν−1 = |R|2ν−1. Moreover,

every two adjacent vertices of GSpR(V ) has |R|2ν−2|R×| common neighbors by

Theorem 2.1.4 (2). We record these results in the next theorem.

Theorem 4.1.1. Let R be a finite commutative ring and (V, β) be the induced symplec-

tic space of dimension 2ν, ν ≥ 1, discussed above.
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(1) The symplectic graph GSpR(V ) is a |R|2ν−1-regular and isomorphic to the graph

GSpR1
(V (1)) ⊗ GSpR2

(V (2)) ⊗ · · · ⊗ GSpRt
(V (t)).

(2) Every two adjacent vertices of GSpR(V ) has |R|2ν−2|R×| common neighbors.

Example 4.1.2. If m > 1 and m = pn1
1 pn2

2 . . . pnt

t , where ni ∈ N and pi are distinct

primes for all i ∈ {1, 2, . . . , t}, then by Chinese remainder theorem we have

R = Zm
∼= Zp1

n1 × Zp2
n2 × · · · × Zptnt .

Consider V = R2ν , the induced symplectic space of dimension 2ν, ν ≥ 1. By

Theorem 4.1.1, we have

(1) the symplectic graph GSpR(V ) is a m2ν−1-regular and isomorphic to the graph

product

Sp(2ν)(Zp1
n1 )⊗ Sp(2ν)(Zp2

n2 )⊗ · · · ⊗ Sp(2ν)(Zptnt ),

(see Example 1.2.1), and

(2) every two adjacent vertices of GSpR(V ) has m2ν−2φ(m) common neighbors,

where φ is the Euler φ-function.

The numbers of common neighbors for two non-adjacent vertices are stud-

ied in the following theorem, where we apply Theorem 2.1.5 on each factor.

Theorem 4.1.3. Let R and V be as in Theorem 4.1.1, and let

~a =
(

(a
(j)
1 )tj=1, (a

(j)
2 )tj=1, . . . , (a

(j)
2ν )

t
j=1

)

and~b =
(

(b
(j)
1 )tj=1, (b

(j)
2 )tj=1, . . . , (b

(j)
2ν )

t
j=1

)

be unimodular vectors in V and assume that (a
(j)
i )tj=1 ∈ R× for some i ∈ {1, 2, . . . , 2ν}.

Assume that R~a and R~b are non-adjacent vertices of GSpR(V ). Let {j1, j2, . . . , js} ⊆

{1, 2, . . . , t} be such that Rjk

(

a
(jk)
1 , a

(jk)
2 , . . . , a

(jk)
2ν

)

and Rjk

(

b
(jk)
1 , b

(jk)
2 , . . . , b

(jk)
2ν

)

are

non-adjacent vertices for all k ∈ {1, 2, . . . , s}. Then the number of common neighbors
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of R~a and R~b are





∏

j∈{1,2,...,t}r{j1,j2,...,js}

|Rj|
2ν−2|R×

j |





∏

k∈{1,2,...,s}

Ck,

where

Ck =











|Rjk |
2ν−2|R×

jk
|, if a

(jk)
i b

(jk)
l − a

(jk)
l b

(jk)
i ∈ R×

jk
for some l ∈ {1, 2, . . . , 2ν}r {i},

|Rjk |
2ν−1, if a

(jk)
i b

(jk)
l − a

(jk)
l b

(jk)
i ∈ Mjk for all l ∈ {1, . . . , 2ν}r {i},

for all k ∈ {1, 2, . . . , s}.

Proof. It follows directly from the isomorphism (4.1.2) and Theorem 2.1.5.

Remark. Theorem 4.1.3 tells us that, in general, the symplectic graphs over fi-

nite commutative rings are neither strongly regular nor strictly Deza. Thus, we

shall not talk about their subconstituents.

Let G and H be two graphs. Let σ and τ be automorphisms of G and H ,

respectively. It is easy to see that the map

ρ : (g, h) 7→ (σ(g), τ(h)) for all g ∈ V(G), h ∈ V(H),

is an automorphism of G⊗H . Thus, we have showed that:

Theorem 4.1.4. For graphs G and H , Aut(G)× Aut(H) ⊆ Aut(G⊗H).

Remark. Unfortunately, another inclusion is false in general. Hence, the iso-

morphism (4.1.2) does not imply the automorphism group of GSpR(V ), which is

usually larger than the product Aut(GSpR1
(V (1)))×· · ·×Aut(GSpRt

(V (t))). However,

the fact in the above theorem can be use to prove results on transitivities in the

next section.



38

4.2 Vertex and arc transitivities and chromatic numbers

If a finite commutative ring R is decomposed as R = R1 × R2 × · · · × Rt, where

Ri is a local ring for all i = 1, 2, . . . , t, then

GSpR(V )
∼= GSpR1

(V (1)) ⊗ GSpR2
(V (2)) ⊗ · · · ⊗ GSpRt

(V (t))

as we have seen in Subsection 4.1. Recall from Theorem 2.2.3 that for each i, we

have GSpRi
(V (i)) is vertex transitive and arc transitive. By Theorem 4.1.4,

Aut(GSpR1
(V (1)))× Aut(GSpR2

(V (2)))× · · · × Aut(GSpRt
(V (t))) ⊆ Aut(GSpR(V )),

it follows that GSpR(V ) is also vertex transitive and arc transitive. Hence, we have

proved:

Theorem 4.2.1. If (V, β) is a symplectic space over a finite commutative ring R, then

the symplectic graph GSpR(V ) is vertex transitive and arc transitive.

A set I of vertices of a graph G is called an independent set if no two distinct

vertices of I are adjacent. Write α(G) for the size of largest independent set of G.

For example, if R is a local ring, Theorem 2.3.1 implies that the sets R(~xi+M2ν),

i ∈ {1, 2, . . . , κ}, are independent sets in the symplectic graph GSpR(V ). Since the

symplectic graph is regular, it follows from Theorem 2.3.2 that:

Theorem 4.2.2. Let R be a finite local ring with unique maximal ideal M and residue

field k = R/M and let (V, β) be a symplectic space of dimension 2ν, ν ≥ 1. Then

α(GSpR(V )) =
( |k|ν − 1

|k| − 1

)

|M |2ν−1.

A fractional coloring of a graph G is a mapping f which assigns to each

independent set I of G a real number f(I) ∈ [0, 1] such that for any vertex v,
∑

v∈I f(I) = 1. The total weight w(f) of a fractional coloring f of G is the sum

of f(I) over all the independent sets I of G. The fractional chromatic number



39

of G, denoted by χ∗(G), is the minimum total weight of a fractional coloring of

G.

The color classes of a proper l-coloring of G form a collection of l pairwise

disjoint independent sets I1, I2, . . . , Il whose union is V(G). The function f such

that f(Ij) = 1 for all j ∈ {1, 2, . . . , l} and f(S) = 0 for all other independent sets

S is a fractional coloring of weight l. Therefore, χ∗(G) ≤ χ(G). Moreover, when

G is vertex transitive, we have the following proposition.

Proposition 4.2.3. (Corollary 7.5.2 of [4]) If G is a vertex transitive graph, then

χ∗(G) =
|V(G)|

α(G)
.

Let R be a finite local ring with unique maximal ideal M and residue field

k = R/M and let (V, β) be a symplectic space of dimension 2ν, ν ≥ 1. By

Theorems 2.1.4 (1) and 4.2.2, we have

|V(GSpR(V ))| =
|R|2ν − |M |2ν

|R×|
and α(GSpR(V )) =

( |k|ν − 1

|k| − 1

)

|M |2ν−1,

respectively. Thus, it follows from Proposition 4.2.3 that

χ∗(GSpR(V )) =

|R|2ν − |M |2ν

|R×|
( |k|ν − 1

|k| − 1

)

|M |2ν−1

=
|R|2ν − |M |2ν

|M |2ν
|k| − 1

|k|ν − 1

|M |

|R| − |M |
= |k|ν + 1,

which is equal to the chromatic number of GSpR(V ). We record this result in the

next theorem.

Theorem 4.2.4. Let R be a finite local ring with unique maximal ideal M and residue

field k = R/M and let (V, β) be a symplectic space of dimension 2ν, ν ≥ 1. Then

χ∗(GSpR(V )) = |k|ν + 1 = χ(GSpR(V )).

It is easy to see that if there is a homomorphism from a graph X to a graph Y ,
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then χ(X) ≤ χ(Y ). Let G and H be graphs. Since both G and H are homomor-

phic images of G×H (using the projection homomorphisms), we have that

χ(G⊗H) ≤ min{χ(G), χ(H)}.

Hedetniemi [7] has conjectured that for all graphs G and H equality occurs in

the above bound. This conjecture is still open. However, Zhu [14] showed that

Hedetniemi’s conjecture is true for fractional chromatic numbers.

Proposition 4.2.5. (Theorem 2 of [14]) For any graphs G and H ,

χ∗(G⊗H) = min{χ∗(G), χ∗(H)}.

Let R be a finite commutative ring decomposed as R = R1 × R2 × · · · × Rt,

where Ri is a local ring for all i = 1, 2, . . . , t. Then

GSpR(V )
∼= GSpR1

(V (1)) ⊗ GSpR2
(V (2)) ⊗ · · · ⊗ GSpRt

(V (t)).

as we have seen earlier. By Proposition 4.2.5 and the above discussion,

min
1≤i≤t

χ∗
(

GSpRi
(V (i))

)

= χ∗(GSpR(V )) ≤ χ(GSpR(V )) ≤ min
1≤i≤t

χ
(

GSpRi
(V (i))

)

.

Since χ∗(GSpRi
(V (i))) = χ(GSpRi

(V (i))) for all i = 1, 2, . . . , t, it forces that

χ∗(GSpR(V )) = χ(GSpR(V )) = min
1≤i≤t

χ
(

GSpRi
(V (i))

)

.

Together with Theorem 2.3.2, we have our final result.

Theorem 4.2.6. Let R be a finite commutative ring decomposed as R = R1 × R2 ×

· · · × Rt, where Ri is a local ring and ki is its residue field, for all i = 1, 2, . . . , t. If

(V, β) is a symplectic space over R of dimension 2ν, ν ≥ 1, then

χ∗(GSpR(V )) = χ(GSpR(V )) = min
1≤i≤t

|ki|
ν + 1.
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Corollary 4.2.7. Let m > 1 and R = Zm
∼= Zp1

n1 ×Zp2
n2 × · · · ×Zptnt , where ni ∈ N

and pi are primes such that p1 < p2 < · · · < pt. For the symplectic space V over R of

dimension 2ν, ν ≥ 1, we have the chromatic number of the graph GSpR(V ) given by

χ∗(GSpR(V )) = χ(GSpR(V )) = |p1|
ν + 1.
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