STOPPING CRITERIA FOR REGRESSION TESTING IN GUI APPLICATION USING FAILURE
INTENSITY AND FAILURE RELIABILITY

Miss Chalita Somsorn

A Thesis Submitted in Partial Fulfillment of the Requirements
undngouay it Dediedutaiiverbnsicuedlprogam RSe8 MmN el A AT AGOHR)
LﬁuLLﬁu%’aga%aqﬁﬁmLﬁgﬁsuaﬁw&JTﬁwmﬁo%gwimmﬂﬁm%iwmé’a
The abstract and full text of theses frorRéipadrngainefyMathematiashans dreropytanagiendatellectual Repository (CUIR)

are the thesis authors' files submittE@yRHSF8NIRIversity Graduate School.
Chulalongkorn University

Academic Year 2015

Copyright of Chulalongkorn University

wnainsngadmiummegeukuuanaeglulusinsudusieUsaunsmiindugl¥anudy

Y99ANUTATD AL ANUT N D lAUDIANUTATD

UNFNVIANT dUAT

a Y

f‘mmﬁwuéﬁlﬂudauwﬁwaaﬂ'1'iﬁmsnmwé’iﬂqm3U§§gzgnm’1mamumumsﬁm
FNUTIVNINYINITABUN UMD LALNALULATENTAUYNA NIAIVIAUNFIEASLALINGINTS
ABUNIMDS
ANEINGIANANT THIAINTAINNINGTSY
Un1sfinen 2558

SvavzveIIANIAlUMINESY

Thesis Title STOPPING CRITERIA FOR REGRESSION TESTING IN
GUI APPLICATION USING FAILURE INTENSITY AND
FAILURE RELIABILITY

By Miss Chalita Somsorn
Field of Study Computer Science and Information Technology
Thesis Advisor Associate Professor Peraphon Sophatsathit, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial

Fulfillment of the Requirements for the Master's Degree

___ Dean of the Faculty of Science

(Associate Professor Polkit Sangvanich, Ph.D.)

THESIS COMMITTEE
___ Chairman
(Professor Chidchanok Lursinsap, Ph.D.)
e A WAANN ST UK AN LA Besis Advisor

(Associate Professor Peraphon Sophatsathit, Ph.D.)

___ External Examiner

(Assistant Professor Kriengkrai Porkaew, Ph.D.)

YA auas : inaginsngadmiummegeukuuannsglulusunsudusieysEay
nsmiindugldainuduresainudadesuazaindedeldvesniudntos
(STOPPING CRITERIA FOR REGRESSION TESTING IN GUI APPLICATION USING
FAILURE INTENSITY AND FAILURE RELIABILITY) 8. fiUsnuAnendnusudn: se. as.

NsENUS Landanng, 68 wun.

MmATetiauanueinmeanegeuluuanneglulusunsuadiuseUssaunsminiy
v oA a - = 0 v - o w
AldiiteUseliussviianvansalunmmesiieldivduldessudssnadmiunimeasy

Wil Fedudsdndudmsunisudlalsulgmendwisiiannsadrluldnulalunaisu

A & [y [y

du uadanadinunn Jymnilailuguasserenisussgaudmanelusgiuaisuvesnsd

[] [£
[y 1 [J v Y

nagountadudeyatingy svuiiiinadediuiuvesnnudadosiny duuanuideiauedi
= a o Ao = ¢ s PG
wuunIngageiatsundafeniinansenuaiiuintetevesgenduisuazalying
lnguszunalunisdnfiunisneaeuss JunewisAednaidunsdinaaevesniudidud
wansnsfuiieldiluteyatndrdmsunisneaeunuuannes Wenuarudados Anudades
Tuazgnunluiufineunagdliunisvaasuse n1snaaeuiineailaduiudetndasuas

AtraelaiAuauUsTununmall

N5 IPNAANTTOULVBUNUANUNAUDATOUARUAITIAAUUTELAN bALA ALY
Y99PNUTATD9 AT ElUNITNAADULAZLALY haY ANNUILTDND ANULTUVDIANUTATD
= ¢ o Y a] ~ ' D z ¢ o g v v
L UNIAT UV IT0RANAIALAZORITIANY AT 0 UNIATUVDILIBTA LY LA LY

Y a) A a & & v A v ¥ ¥
Torana1n anduvesrnudeiallunisuaniasuuliyadinuiiveasvieudeyanagey
1&]}45 Y a

AU Mwvunitauslagnyaasuiulusunsudssenanldauassdmivdiudeussaiu

nsWnAudly Felvinadnsinaeinisveaniiinela

'
=

AR ARANERSLAZINGINTS anwilevallan

ADUNILADS aeileve enlsnwven

41973 ANeIN1sARURLADSkazINALULaE

AN UNA

UnsAnw 2558

5772608523 : MAJOR COMPUTER SCIENCE AND INFORMATION TECHNOLOGY
KEYWORDS: GUI;REGRESSION TESTING; FAILURE; RELIABILITY; TEST CASES
CHALITA SOMSORN: STOPPING CRITERIA FOR REGRESSION TESTING IN GUI
APPLICATION USING FAILURE INTENSITY AND FAILURE RELIABILITY. ADVISOR:
ASSOC. PROF. PERAPHON SOPHATSATHIT, Ph.D., 68 pp.

This research proposes some criteria for GUI regression testing to determine
the appropriate time to stop without wasting too much testing cost. This is essential
for all software upgrades that can be released in a reasonably short time, yet still
guarantees the product quality. One difficulty to achieve such a target depends on the
sequence of test cases being input. The order of the input test case input sequence
affects the number of failures found. As such, a test-stoppage model is proposed by
determining factors that affect software reliability and the expected cost of continuing
test. The procedure prioritizes the order of test cases into different sequences for the
regression test input. When a failure is found, it is immediately edited before the test
resumes. The test terminates when the failure intensity is within the predetermined

threshold and the expected cost does not exceed the allotted budget limit.

Performance of the proposed criteria encompasses three measures, namely,
failure intensity, cost of testing and editing, and reliability. Failure intensity is a function
of faults and fault detection rate. The costs are function of time spent on fixing errors.
The reliability function incorporates Weibull distribution to better reflect the test data.
The proposed model is tested using real GUI applications as test data. Performance

shows satisfactory results on stopping criteria.

Department: ~ Mathematics and Student's Signature

Computer Science Advisor's Signature ...
Field of Study: Computer Science and
Information Technology

Academic Year: 2015

ACKNOWLEDGEMENTS

Though the following dissertation is an individual work but | would never
have been able to finish without the help, support, guidance and efforts from my
advisor, friends, and my family. Firstly, | would like to thank my advisor, Dr.
Peraphon Sophatsathit for his excellent guidance, caring, patience, and providing
me with an excellent atmosphere. Without your pearls of wisdom, it would have
been nearly impossible to finish this dissertation. It was favored that | had the
chance of being one of your students. | would like to thank my committee members
Dr. Chidchanok Lursinsap and Dr. Kriengkrai Porkaew for taking the time and effort
to read and examine my dissertation and for providing me with your inventive and
enriching comments. My very special thanks are for my parents whom | owe
everything | am today, my father and my mother, Bancha and Angelita G. Somsorn.
There is no single day that you would never support and encourage me with your
best wishes and your love. You both are the most wonderful things that ever

occurred in my life.

Vi

CONTENTS

Page

THAT ABSTRACT <.ttt v
ENGLISH ABSTRACT ...ttt v
ACKNOWLEDGEMENTS ..ottt Vi
CONTENTS ettt vii
Chapter 1 INtrOAUCTION ... 3
L L INErOTUCTION et 3
1.2. Problem StatemMENnT aq
1.3, EXPECLEd BENEFIES ...t a4
1.8, SCOPE Of RESEAICH ..ot 4
1.5, CONTIDULIONS. ...t 5
1.6. RESEAICH PLAN L.ttt 6
1.7. DOCUMENT OrGANIZATION ...ttt ettt 6
Chapter 2 LIiterature REVIEW..........ccuiiciicie ettt 7
2.1 REGIESSION TOSTING ..ttt 7
2.1.1 Techniques based on textual differencingcccooevenirvencncnce 7

2.1.2 Techniques based on program dependence graphs........ccoovcericirninccrnenes 7

2.2 GUL T ESEING ettt n et 8
2.3 FAULL SEEAING ...t 8
2.4 Criteria for when t0 Stop teSHING ... 9
Chapter 3 Research MethOdOlOgYcciiuriiiieiriieires e 12
3.1, COST @STMATION .ttt 12

3.2. RElI@bility MOAELS. ... 13

viii

Page

3.3. APPLYING fAULL SEEAING ..o s 13
3.4.The proposed StOPPING CIILENIA ...v.cviueiiieieirieiriei et 15
3.5.Research MethOdOlOGY ..o 16
Chapter 4 Experiments and RESULES ... 18
B 1 JSYNTAXPANE ..ottt 18
.2, JEXITVIBWET ..ottt 24
.3 RESULES OF i 31
REFERENCES. ...ttt a2

TABLE OF FIGURES

Figure 1: Research methodOlOgYoceiicriiiee s 17
Figure 2: Example of JSyntaxPane invoked by NetBeanscccoeienincinicneccnes 18
Figure 3 Example code of initial faull.. ..o 20
Figure 4 GUI of JSyntaxpane after running through NetBeans..........ccocccvivcnicninninnnee 21
Figure 5 Example of fault seeding (logic or boolean fault) ..., 22
Figure 6: Example of JExifViewer invoked by NetBeanscccoevenieniecinicniccenes 24
Figure 7 Example of JACOCO COVEIAGEcuimiimiiiiriiisieiste et 26
Figure 8 Establishing prioritzation SEQUENCEcceuvieiicinircc s 26
Figure 9 Example of drawing tree diagram ... 28
Figure 10 Graph of number of failures in each sequence and m(t) of Jsyntaxpane.....34
Figure 11 Graph of number of failure in each sequence and m(t) of JExifviewer 37

Figure 12 Graph of reliability comparison for JSyntaxpne and JExifviewer 39

file:///C:/Users/Chalita/Documents/MS%20DEGREE/Thesis/real%20proposal2/Thesis%20book/Final%20edit/Thesis%20Titl1.docx%23_Toc437518615
file:///C:/Users/Chalita/Documents/MS%20DEGREE/Thesis/real%20proposal2/Thesis%20book/Final%20edit/Thesis%20Titl1.docx%23_Toc437518618
file:///C:/Users/Chalita/Documents/MS%20DEGREE/Thesis/real%20proposal2/Thesis%20book/Final%20edit/Thesis%20Titl1.docx%23_Toc437518619

TABLE OF TABLES

Table 1 RESEAICH PLAN ...t 6
Table 2: Faults distribution for JSYNtaXxPane ... 23
Table 3: Faults distribution for JEXIfVIEWET ... 25
Table 4 JaCoCo coverage data used for test case prioritization technique.................... 26
Table 5 Coverage statistic of JEXifviewer test CaSES.......coirriirriierreercee s 29
Table 6: Test sequences for JEXIFVIEWET ..o 30
Table 7: Experimental results of JSyntaxPane.........ccceerincnieeseeee s 33
Table 8: Experimental results of JEXITVIEWETc.cocuriiiriniicceeee s 36
Table 9 Comparative reliability with Weibull and without Weibull distribution............ 38
Table 10 Test cases for JSYNtaXPane......cco i aa

Table 11 Test CASES TOr JEXIVIEWET ...ttt ettt eeee s 64

Chapter 1 Introduction

1.1. Introduction

Graphical user interface (GUI) is an important part of a software system. It
makes software applications easy to use by providing a front end that receives events
from users and interacting with the underlying application through messages or
method calls. Compared to traditional software systems, GUI applications have wider
range of user bases which increase the chance of encountering failures and repeated
requirement changes. This results in frequent code modifications that may introduce
new faults which lead to new failures in already tested application. Nonetheless, it is
imperative that testing for their correctness be essential to ensure safety, robustness,
and usability of the software. The process of testing a software system after changes
has two main parts: (1) regression testing for ensuring that the modifications have not
affected existing software functionalities, and (2) non-regression testing which make
sure that new functionalities are implemented correctly.

The nature of GUI applications poses unique challenges for regression
testing. Firstly, because GUI inputs and outputs depend on the graphical layout of
components, the expected results of existing test cases may become obsolete when
there are changes in input-output mapping. Secondly, in addition to technical
understanding, GUI application testers is required to understand the normal mode of
operation in order to produce failures that are not expected by the developer team.
Lastly, detecting frequent code modifications and adapting the old test cases to them
or create new ones demand efficient testing mechanisms.

From the business perspective, releasing software quickly has the benefits
of an earlier market introduction. However, hurriedness of releasing may lead to
insufficient testing time and inadequate software quality. The software quality depends
on many factors, such as the intricacy of the requirements, the complexity of the code,
the level of reliability that needs to be reached, and the target release date of the
software. An exhaustive testing, while providing the best software quality, requires too

much time, cost, and effort that can cause loss effect. Therefore, determining the

appropriate time to stop testing is important for maximizing the profits from early
software release and reducing the risks of inadequate software quality.

In this work, a new method to assess when regression testing should be
stopped is proposed. By measuring estimated failure intensity and participating test
cases in many sequences, test effect when failures are detected from the test cases
will appear. In this study, each sequence contains many test iterations. The number
of iterations depends on the number of failures. Statistics are collected, namely,
failure intensity and cumulative average failure to determine the reliability of test
results. Details will be discussed in the section that follows.

1.2. Problem Statement

Given a GUI application, this research focuses on the following problems:

1) Determine the trial-and-error threshold limits on the number of regression
test iterations and test expenditure to ensure acceptable regression test
outcome.

2) Determine the appropriate stopping criteria of the regression testing for
GUl-based applications, provided that the test runs must not exceed the

predefined threshold limits.

1.3. Expected Benefits

The following benefits are expected from this research:

1) Decrease the costs, especially cost of editing and testing.

2) Save testing time.

3) Decrease the risk of releasing software with poor quality.
1.4. Scope of Research

This research will limit the scope to the followings:
1) Testing will be done on GUI in JAVA language to maintain compatibility
with Netbeans IDE 8.0.2.

2) The size of source file is less than 6,000 LOC.

3)

a)

1.5.

The thresholds of testing are limited to:

3.1. The proposed method will employ JAVA GUI applications, namely,
JSyntaxPane and JExifViewer.

3.2. The number of test sequences for each test iteration is 3.

3.3. Testing cost < $600 [1].

Fault seeding is placed based on the technique recommended by fault

distribution of bug taxonomy [1]. Select faults that have the most

dispersion value as shown in Table 1.

Contributions

The main contributions of this research include:

1)
2)

Stopping criteria for GUI regression testing.

Formula for computing software reliability threshold.

1.6.

Research Plan

Table 1 depicts the research plan and its corresponding schedule.

Table 1 Research Plan

Step

description

11

12

13

14

15

16

17

Research
problem

identification

Literature review

Establish
research

imethodology

IChoose program

under test

Perform the

lexperiment

Analyze
lexperimental

results

Prepare draft
for conference

paper

[Thesis write-up

1.7.

work. The proposed methodology is described in Chapter 3. Chapter 4 shows the

Document organization

This document is organized as follows. Chapter 2 reviews some related

experiment and the results so obtained. Some concluding remarks and future work

are given in Chapter 5.

Chapter 2 Literature Review

There are three issues that involve with this work: regression testing, GUI
Testing, and criteria for when to stop testing.

2.1 Regression Testing

Regression testing focuses mainly on testing to ensure that modifications
of the previous version of the application do not alter existing software
functionalities. Normally, regression testing is done by rerunning old test cases. As
the software system grows, the number of test cases increases tremendously. Of
these test cases, only a fraction is relevant to the modifications. To save time and
resources, test case selection must be employed to select only the test cases that
are pertinent to the modifications. Many techniques have been proposed in the
literature based on methods such as textual differencing, dataflow analysis, etc. A
detailed list of regression test selection techniques can be found in Biswas, et al [2].

A few related techniques are discussed in the following subsections.

2.1.1 Techniques based on textual differencing

Techniques based on textual differencing in the easiest form directly
compare two versions of the program under test — original and modified versions —
including irrelevant differences such as comments, styles, and formatting. To avoid
these extraneous differences, the code is first transformed into their respective
canonical form before comparing [3, 4] to guarantee that the same syntactic and
formatting guidelines are applied to the original and the modified versions. The
canonical form of original version is instrumented and then executed to produce test
coverage information. Code modifications are located by syntactically comparing the
canonical forms of original and modified versions. Relevant test cases that exercise
the altered code are identified by using test coverage information. In this research,
this technique is not applicable to the GUI testing.
2.1.2 Techniques based on program dependence graphs

For object-oriented programming, the original and the modified versions

of the program can be modelled by constructing Program Dependence Graph (PDG)

for the application program and the derived classes [5, 6]. The advantage of using
PDG is that it models control dependence and data dependence in one graph. To
select the tests, information pertaining to test history in terms of PDG predicates and
regions traversed in the original version is used. This PDGs information is then
compared with that of the modified version to uncover the regions from which
different results may occur. However, the PDG technique is not very efficient in a
large system due to considerable overhead during program dependence analysis.

2.2 GUI Testing

There are several works relating to GUI regression testing. White [7]
proposed a method using Latin Square to perform automated regression test
generation to handle GUI static and dynamic event interactions. A method based on
function diagram proposed by Hui, et al. [8] could improve the efficiency of object-
oriented software. Their method compared software function diagram of the
previous version with the modified version to determine which test cases should be
used. Memon, et al. [9] used GUI control flow graph (G-CFG) and GUI call-graph to
represent the event behavior and the invoking behavior of components. The original
and modified GUI representations were compared to detect obsolete test cases and
modified accordingly so that these test cases could be reused. However, constructing
G-CFG of the application under test could be time-consuming for large applications
and therefore was not very practical in some cases. Instead of G-CFG, Falah, et al.
[10] proposed Event Interaction Graph (EIG) to identify infeasible and unusable test
cases. The edges of the EIG that were not covered by the usable test cases were
used to generate new test cases to achieve edge coverage.

23 Fault seeding

Fault seeding [11, 12] is one of software testing techniques that inserts
faults as a controlled variable in the program under test. It is based on planting errors
with a robustly human knowledge of the programming language and nature of the
system to be seeded. This technique relies on the assumption that if known and
controlled number of seeded faults are inserted and measured the proportion of these

faults discovered by the test process, that proportion could be used to predict the

number of real (non-seeded) faults yet to be exposed. Properly used, fault insertion
can give an insight as to where testing should be concentrated and how much testing
should be done. For fault-seeding purposes, faults should be “representative” of
naturally-occurring faults; otherwise, any results obtained from the seeded faults may
to be inaccurate or biased.

2.4 Criteria for when to stop testing

The question of when to stop testing involves many factors. Some of
them are related to economic reasons, such as the cost of continued testing and the
expected losses due to faults that remain in the modified program. Others depend
on the quality of the software system, such as fault detection rate, mean time
between failures (MTBF), the complexity and difficulty of the system, and the
severity of failures that may occur.

One way to determine the appropriate stoppage is by quantifying the
reliability of a software system. This leads to the development of models collectively
known as Software Reliability Models (SRMs). These models try to estimate system
reliability by fitting a theoretical distribution to failure data and use it to design stopping
criteria of testing.

The followings assumptions are used in software reliability modeling [8, 9]

1) The software system is subject to failures at random times caused by the
manifestation of remaining faults in the system.

2) The total number of faults at the beginning of testing is finite and the
failures caused by it are also finite.

3) The mean number of expected failures in the time interval (t,t+At] is
proportional to the mean number of remaining faults in the system. It is
equal likely that a fault will generate more than one failure and a failure
may be caused by a series of dependent faults.

a) Each time a failure occurs, the fault that caused it is perfectly removed

and no new faults are introduced.

From the above assumptions , the following parameters are defined :

10

m(t) is the expected number of software failures at time t,

I is the failure detection rate per remaining fault,

a is the expected number of initial faults,

o is the quantified ratio of faults to failures, and

k(t) is the failure intensity function.

The expected number of failure found from the start of the test until
time t can be calculated from a x m(t).The number of remaining failures in
assumption 3 can then be determined by subtracting the expected number of failure
found at the time from the number of initial faults, yieldinga —ar x m(t). Using r as
the proportionality constant in assumption 3, the following relationships can be

derived:
dm(t)
dt
which, by solving under boundary condition m(O) =0, leads to

:rx(a—axm(t)) (1)

a

m(t)= Zx(l—exp(—rat)))

Since A(t) is defined as the derivative of m(t) with respect to t, A(t) becomes

A(t)=arxexp(-rat) (3)
Software reliability can be defined as follows [13]:

R(At|t)=exp(—(m(t+At)—m(t))) (@)
where At>0, t>0. The function R(At |t) represents the probability that a software
failure doesn’t occur during the time interval (t,t+At].

During testing the software, it is often assumed that fault correction
process does not introduce any new faults and software reliability increases as faults
are uncovered and fixed. Unfortunately, in practice, it is difficult to meet the
assumptions of the above ideal case.

Lin and Huang [14] proposed using A(t) and R(At|t) as stopping
criteria by calculating the time needed for the software to meet failure intensity
objective and acceptable reliability as follows. If the failure intensity objective is F,,
and T, which is the time to meet the desired failure intensity satisfying A(T;) = F,can

be determined from

11

In(F‘)j
T =——2 (5)

If the acceptable reliability R, is given, T, which is the time to meet the desired

reliability satisfying R(At|T,) =0 can be obtained from

n { a(1-exp[-rax At])J
T, =

—axInR,
(6)

ra
The above Equation (1) - (6) were taken mostly from reliability theory and set up to

be adopted by the proposed methodology in the next chapter.

12

Chapter 3 Research Methodology

In this research, a model to determine a set of stopping test criteria in
order to guarantee software application reliability is proposed. Several factors
affecting software reliability are considered, namely, number of faults, number of
failures, testing time, editing time, fault detection rate (FDR), failure intensity, testing
cost, editing cost, and reliability. A concise description of each factor is given below.
A fault is defined as a mistake in the software application, and a failure occurs when
the application does not comply with the specifications due to a fault or
combination of faults. Testing time is the time the test team needs to execute the
previously planned test cases. Editing time is the time the developer team needs to
edit the software application. Failure intensity is the number of failures divided by
testing time. Fault detection rate is the number of faults divided by the sum of
testing time and editing time. Testing cost and editing cost are estimated from testing
time and editing time using average salary given in [1].

3.1. Cost estimation

As test process may continue when all test executions are closed to
satisfying the predetermined conditions, the expense escalates. One way to stop the
infinitesimal on-going test is setting a limit for test costs. This limit is not known in
advance. A probable solution is by estimating the expected cost incurred during such
indefinite repetitions. The estimation can be performed based on various parameters
used in most of the related work. The equation proceeds as follows.

Expected Cost = (Ciging X T,) +(Coaitng <T:) (7

testing editing
where T, is the expected testing time estimated from the failure intensity function
A (t) of equation (3) and the failure intensity objective F;, which is set to 0.01 in this
study, Ciesting and Ceqping are cost of testing and editing, respectively, and T, is the
expected editing time estimated from expected number of remaining faults divided by
the editing speed of the previous iteration. Finding T, such that A4 (TtJthp)SFO

yields

13

(8)

where T,

is the summation of actual testing time of the previous iterations, and T,
can be computed by the following equation:

#remaining faults
v

T, = 9)

previous

3.2 Reliability Models

The reliability function [13] is modified to use stretched exponential
function known as the complementary cumulative Weibull distribution [15]. Because
of its versatile ability to take on the characteristics of other distributions, Weibull
distribution has become one of the most widely used distributions in reliability
engineering. The distribution characteristics depend on the value of the parameters.
Here, the 2-parameter Weibull being used are the shape parameter f and the scale

parametern . Thus, the modified reliability function becomes
R(At|t):exp(—77(m(t+At)ﬂ —m(t)ﬂ)) (10)
where >0 and 7>0. In this study, the proper value obtained from preliminary

experiment are #=0.75 and 7=0.1.

3.3. Applying fault seeding

Fault seeding technique was carefully distributed in the regression test
process based on Bug taxonomy [16]. The advantage is that seeder could be directed
to seed some precise kind of faults, and would be able to classify faults once
seeded and checked for any gap in the coverage. Second, a seeder could generate
the same kind of errors not as an automated task, but considering different context
in which same type of errors could lead to different results; and finally, a seeder
could assure the selection of all kind of errors by classifying them and weeding out

the excesses, then granting error representativeness.

14

Seeded faults are injected into production software as follows.

1) Run all test case and collect coverage data.

2) Sort the classes in the production software in decreasing order of coverage
percentage.

3) Choose 5 classes with the most coverage percentage.

a4) Add seeded fault which have distribution from bug taxonomy [16] into the

chosen classes by scattering the fault from ratio of coverage percentage

and size of class (in LOC).

3.4,

15

The proposed stopping criteria

The stopping criteria are set up as follows:

If failure intensity ﬂ(t) is less than or equal to cumulative average failure intensity in current iteration,

then consider the total cost of editing and testing as follows:

a)

If failure intensity ﬂ«(t) is greater than cumulative average failure intensity in current iteration,

a)

b)

If the cumulative costs in current iteration plus the expected cost of the next iteration are less than

or equal to threshold cost, determine reliability R(t) as the stopping criterion
D fR (At | t) is greater than or equal to Rl, stop;

i If R (At | t) is less than Rl, continue testing; or

If the cumulative costs in current iteration plus the expected cost of the next iteration are greater

than threshold cost, determine reliability R(t) as the stopping criterion

oI R (At | t) is greater than or equal to R2 , stop;

i If R (At | t) is less than Rz , continue testing.

If the cumulative cost is less than or equal to threshold cost, continue testing; or

If the cumulative cost is greater than threshold cost, determine reliability R(t) as the stopping criterion
n if R (At | t) is greater than or equal to RZ , stop;

i If R (At | t) is less than RZ , continue testing.

The threshold values for reliability are computed from Eq.10 using the

expected number of initial faults in the program under test. Suppose there are f,

faults in the production software, R, and R, can be defined as follows:

and

R, :exp(—n(0.03>< f, +0.0004x LOC)’) (11)

R, =exp(~77(0.06x f, +0.00075x LOC)’ (12)

The constants used in the above equations were determined from

production software in a preliminary test.

16

3.5. Research Methodology

The research methodology is shown in Figure 1. The process starts from
production software. It is used in a preliminary test to decide the threshold limit of
initial total cost and software reliability. Test code is added to make it an enhanced
version. Seeded faults are injected which will be tested by selected data set and test
cases. The selection process considers how each GUI function of the software works.
A set of test cases is then created based on the guidelines in [16] to comply with the
software function. Since execution sequence of the test cases affects the occurrence
of faults and failures, all test cases will be organized into many sequences of tests in
different orders. Some test case prioritization techniques from [17, 18] are employed.

1) Prioritize in order of coverage of statements: measure statement coverage
in a program under test by instrumenting the program. Test cases are

prioritized by sorting the total number of coverage statements in
decreasing order.

2) Prioritize in order of coverage of branches: Same as 1 above, but use the
number of decisions (branches) in the program that are exercised by each

test case.
3) Prioritize in order of coverage of functions: Same as 1 above, but use the

number of functions that are executed by each test case.

These 3 prioritization techniques were chosen of their performance in
terms of average percentage faults detected (APFD), while not introducing too much
complexity and overhead in the prioritization process. Detailed comparisons of
various test case prioritization techniques can be found in [17, 18].

The actual regression test proceeds as follows. Starting with the first
sequence, the first test case is executed. If a fault occurs, the corresponding faulty
code is fixed. The second test case is then executed. This process repeats until all
test cases in the first sequence are exhausted. The first regression test iteration is said

to finish. Meanwhile, test statistics are collected to analyze if the test stopping

criteria are met and the entire process terminates. Otherwise, the test continues on

next iteration.

Begin
regression
test process

Figure 1: Research methodology

17

18

Chapter 4 Experiments and Results

The proposed method was tested with two open-source GUI applications
named JSyntaxPane [9] and JExifViewer [19]. JSyntaxpane was set up to run
randomized test sequence, while JExifviewer employed prioritized the test
sequences in order to measure how different input test sequences affected the
outcome. The set up will be described subsequently. Fault seeding was performed
to initialize the test process and the regression test began as described earlier. The
test toolset and their environment were NetBeans IDE 8.0.2 [9] running on Windows7
64-bit operating system with Intel(R) Core(TM) i7-3520M CPU and 8.00 GB RAM. Code
coverage was measured using JaCoCo [20] plugin for NetBeans, which is a free code
coverage library for Java.

4.1. JSyntaxPane

JSyntaxPane is a sub-class of Java jEditorPane with added support for
syntax highlighting of 22 file types. Each file type has its own lexical analyzer to serve
different functionalities. Additional functionalities can also be added. This application

consists of 99 classes of size approximately 3,550 lines of code.

() jsyntaxpane_addbutton - NetBeans IDE 8.0.2 = =
File Edit View Mavigate Source Refactor Run Debug Profile Team Tools Window Help [Q Search (cu+1)
PEHES DO o T DB G-

Projects * |Files |Services | G| startPage [0 Data FEE][] syt t = e

EE e BE-E-RTSEGIPEDISulen

274

- [#] CompoundundoMan.java
5

a
g () .gecPropertyList (<
1Barltens. length ==

[JavaRegexkit.jova
[Lexerjava

278

© addActions(JEditorPane editorPane)
© addComponents(JEditorPane editorPa |
@ addPopupMenu(EditorPane editorPar

I —— v

© addToolBarActions(¥EditorPane editorl ~ || (]

textijava -

I [Javadpplication 14 (dean) # | Run (isyntaxpane_addbutton)

T Building jsyntaxpane_addbutton 0.9.6

- exec-maven-plugin:l.liexec (default-cli) @ jsyn

& MIDEE = 0D

@
%

< i]

276 e
& syntaxDoament.java 277 ool tConzig) .
@ syntaxste.java 278 if (toolBarltems —- null || toolBazltems.leng:) |
[SyntaxStyles.java 279 return;
2 : o = 3
-8 s || 2) py—— P
@ syntaxviewjava 281 } indadE X000 E 9 BE4#0 g B & 0 DLUDEE @@
& Token.jova z82 boolean btnRoll = getConfi 2 =
-8 TokenComparators.java 283 beolean btnBorderPainted = getConfig(||| &3 (compounded: wil) { m
8] TokenGonstants.java 288 beolean btnOpaqus nfigl).getBoo]|| 64 compoundEd: artCorpoundEdit (¢.getEdit ()
285 int btnBorderSi: tConfig() .getInt{|| & tartCombine = false;
E [TokeriType.java 2 i) 6 return;
ons 28€ = (1) b
@ L
= | 222 menuString.scercsWich(|l| 6o) docEve . gethx ()] -gecl (docEvt..gerdffaet (|
289 menuString.starcswich(|l 70
250 coolbar. adaseparavor Off] 72 o e b
291 } eloe { 73 I
292 Retion action = editer|ll 74 etlength()) == 1) s& editline == lestline) {
233 if (action != null sz (Il 75 1 e
/5 Generated Sources (iflex) 294 JButten b = toffl 7€ STArECombing [y and Replace =]
& Dependencies 255 b.setRolloverefll etuzn;
& Java Dependendies 236 b.secsorderrasl| 1o ' [=® |
A Project Fiies 297 b.setopaque (btlff 50 /7 Mot incremeni find ‘d”m "l Bext
jsyntaxpane_addseededfaut 2 . 81 lastline = editl;
B ssyntaxpane : £ b.sectocusanicl] 21 T ‘ "H @ Previous ‘
B jsyntaxpane_test_al_rev. 235 b.setBorder (Bof
resodll 22 compoundEdit.end
-8 mmipmn 00 84 compoundEdit = s [] Wrap around 7 Replace
& syntapar | =01 } -)
jsyntaxpane_test_one_seql_rev 302 } & [Regular Expression 42 Replace Al
- jsyntaxpane_test_one s03 1 1l T"i 5 =
i = Ignore Case Highlight
& syniapane test one_seq revi & jsmtaxpanc D > e 5 for = LRl
51| [scarch Resuts._[output IDENTIFIER (2168, 6): docEve

61:41 -61:47 (6)

Rur

. addbutton)

Figure 2: Example of JSyntaxPane invoked b

y NetBeans

19

The version of JSyntaxPane used in the experiment contained two types
of faults, namely, initial faults and seeded faults. An initial fault is an unintended
fault that exists in the application before enhancement. Bug reports provided in the
application project page and selected test cases were employed to uncover the
initial faults. The following sample statements contain some of the initial faults

shown in Figure 3.

20

N T MO,
El @ JExifDataModel.java E| @ IMainFrame.java El @ IMainFrame.java E| @ JIr
oy [@B-H-ATFLH(FPe[Eule d

*

public ToggleCommentsAction() |
super ("toggle-comment™) ;

I

* [EinheritDoc]
* Eparam e
@0verride
public void actionPerformed (JTextComponent target, SyntaxDocumer
int dot, ActiocnEvent e) !
if (lineCommentPattern = null) |
lineCormentPattern = Pattern.compile(” (*" + lineCommepts

!
String[] lines = REctionUtils.getSelectedlines (target):

int start = target.getSelectionStart():

—- . -

StringBuffer toggled; = new StringBuffer():;
for (int i = 0; 1 < lines.length; i++) |
Matcher m = lineCommentPattern.matcher {lines[i]):
if (m.find()) {
toggled.append (m.replaceFirst("z2"));
} else |
toggled.append (lineCommentStart) ;
toggled.append {(lines[i])
1
toggled.append ("\n') ;
1
target.replacelfelection{toggled.toString ()}
target.select(start, start + toggled.length()):

Figure 3 Example code of initial fault
As shown in this figure, this production code will not perform toggle
comment function as it is supposed to after running through NetBeans. This is shown
in Figure 4 where the highlighted code on line 16 is not commented out due to the

initial fault.

& SsyntaxPane Tester el

@@ BE#0U a2 3F & B TDkDHARE

*/
package jsyntaxpane.lexers;

Copyvright 2008 Avman Al-53irafl ayman.alsairafifgmsil.com

Licensed under the Apache License, Version 2.0 (the "License")
you may not use this file except in compliance with the License.
¥ou may ohtain a copy of the License

at http://vw¥W.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to 1n writing, software
distributed under the License 1s distributed on an "AS IS™ BASIE,
FITHOUT WARRANTIES QR CONDITIONS OF ANY KIND, =ither express or implied.
Zee the License for the specific language governing permissions and
limitations under the License.

import java.io.CharArrayReader;

fimpocrt jsyntaxpane.*;

import java.lo.IOException:
import java.io.Reader;

import java.util.List;

import java.util.logging.level;
import java.util.logging.logger;
import javax.3wing.text.Segment:

_Ifa-x

*

-

This 15 & default, and abstract implemenatation of a Lexer using JFLex
with some uwtility methods that Lexers can implement.

fauthor Ayman A1-Sairafi

HEEYWORD (694, 6): import

‘textrja\ra | - | 16

Figure 4 GUI of JSyntaxpane after running through NetBeans

21

22

Seeded faults were added during test execution according to the average fault
distribution of the software systems provided in [1].
Seeded faults are injected into production software as follows.

1. Run all test cases and collect coverage data. Using JaCoCo coverage to
record percentage of data which being covered in each test case and each
class of the production software.

2. Sort the classes in the production software from largest to smallest in
decreasing order of coverage percentage to obtain the sequence of classes.

3. Choose 5 classes with the most coverage percentages.

a. Add the seeded faults according to the distribution from bug taxonomy
[16] into the chosen classes by scattering the faults based on ratio of

coverage percentage and size of class (in LOC).

Here are sample seeded faults being injected into the test code which shown in

Figure 5 .

El public void setPattern(Pattern pattern) {
this.pattern = pattern;
+

pat pat
regex regex
ignoreCase ignoreCase

public void setPattern(String pat, boolean regex, boclean ignoreCase)
throws PatternSyntaxException {
if (pat != null && pat.length() > 0) {

lic void setPattern(String pat, boolean regex, boolean ignoreCase)

throws PatternSyntaxException {

if (pat != null s& pat.length() > 0) {
flag= (regey) 2 0 - Partern

flag &= (ignoreCase) ? Pattern.

eI PRI TP T e AT, LT
} else | } else |
setPattern(null); setPattern(null);
+ t
¥ - }

Figure 5 Example of fault seeding (logic or boolean fault)

The type of seeded faults which are shown in this figure is either logic or
boolean faults. This fault in turn causes failure which appears in find and replace
function#4 (test case No.9 in JSyntaxpane of the appendix). There were 21 and 19
lines of code that contained initial faults and seeded faults, respectively. The total
40 faults produced 37 failures in the application. Table 2 summarizes the types of

faults in the experiment.

Table 2: Faults distribution for JSyntaxPane

23

Type of faults

#lines

Initial faults

Seeded faults

FUNCTIONALITY AS IMPLEMENTED

Feature misunderstood, wrong 9

Feature interactions 4

Missing feature 8

STRUCTURAL BUGS

Control logic and predicates 2
Loops and iterations 1
Arithmetic expressions 2
Logic or Boolean, not control 1
Initialization 1
Other processing 6
DATA

Other data definition, structure, declaration bugs 1
Value 2
Wrong object accessed 1
Other access and handling 2
Total 21 19

Total #lines

40

24

4.2, JExifViewer

JExifViewer is a Java program for displaying and comparing Exif
information stored in JPEG files created by digital cameras. This program also has an
image viewer which can rotate and/or flip, zoom in/out the selected image, and
other basic file operations such as rename, copy, move, and delete images. This

application consists of 210 classes of size approximately 5,256 lines of code.

ig - NetBeans IDE 8.0.2

[Q- search (crl+1)

Navigate Source Refactor Run Debug Profile Team Tools Window Help

| & @ [t o] W DB

rices |Files | O || StartPage [[& ExifbataModel java |
‘E':"ssmjd'ﬁ““‘ [) vy @ B-H-QRFRL P LB 0E
ernhance: =
erorig 2 i ((date = JlZdData.getDateFremString(data.getOriginallatelime())) != null)
= Packages =2 t
defoult package> 2 strBuf = new StringBuffer();
i E Main.m_shortD Format.format (date, stzBuf, new FieldPosition{0});
235 obj = strBuf + " T HORT, HORT) . format (date) ;
IBatchData.java =)
JBstchDislog java 297 else obl = "; -t JExifViewer - P1010023.PG (6.21 MByte - swisn<. 6 nsngnas 2556 6:15:55) - Zoom: 472%
3ColchooserDislog.java ot breats
Exifijava 295 case JExifTag. 1ag prorffSideshow Edras Help
JExifDataModel java 300 if ((dete = JIfdData.getD: Name + Original date FHumber Fiosh Exposure Orientation
ExifTag.java 301 1 cralta 1010033 53, 6/7/2556, 6:25 . /5.6 no 1125 o
JExportDialog java 302 strBuf = new StringBuf b Rapidiner P 1010032 53, 6/7/25%, 622w, 5.4 no 180 o
TIfd. java 303 Main.m shortDayOrWeskEy - P10100334 Sa, 6/7/2556, 6:22 u. ffl5.6 no 1/80 o=
IfdDatajava 304 ob3 = strBuf + ", " + - 1010029 53, 6/7/2556, 6:20 u, RS no 1150 o
mgliew.java 308) e beme Pinio0zs 5, 6/7/25%, 6:30 . s no 1/160 o
LiPEGHeloer java e clse obj = "7 il Pi010027 5, 5/7/25%, G- 15 . 756 no 150 =
Wanrrame o 207 breck: Uy ritone | POI0Z 5, 5/7/25%, &35 . 56 no 150 =
FathTreeNode java 308 case JExiflag ZXIFTAG 725 COVEQll s Contacts il e 7 i 10 <
iy a0s o9 = dam % Contact Sa, 672556, 6:151. z
o <[] » |l[powon 2, 6/7/2556, 6:13 . no 1130 o
ISettingsDislog.java e preaki 1010018 53, 6/7/2556, 611, 1 no 1/80 o
ffHeader java o case JERLEIag. S0 = 1010017 53, 6/7/255%, 611, . no 1/80 o
Main java a2 ob) = data.getCompressedsi P1010015 53, 6/7/2556, 6:10 %, 1 no 180 0
PrcFcndse i M| = preski 1010015 53, 6/7/25%, 110 . X no 180 o
ol case JExiflag.ZXIFTAG TAS SHUT 1010014 53, 6/7/25%, :10 . 1 no 180 3
ais obj = date.getShurezSpeedy el Fr, 5/2/2556, 2275 . no 1/50 o
T || <empty> 316 break; mic Fr, 5/7/2556, 22:37 u. no 1/60 0
\Comparator :: Comparator <JIFeD: « || 817 case JExifTag.EXIFTAG TAG APER firgrae Fr. 5/7/2556, 2337w o 160 e
JataComparator(TTableColsortnat| ||| 318 obj = data.getApertureValus icamera Fr, 5/7/2556, 22:18 u. no 1/60 0=
sre(TTfdData datal, TfDsta dEEH a1s break; BAMboo Fr, 5/7/2556, 2153 . no 1/60 3
s(Obiect o) : booiean 0 desk Fr, 5/7/2556, 2153 . no 1/80 3
. 5 Fr, 5/7/2556, 2153 . no 130 3
Fr, 5/2/2556, 2152w, . no 1450 o
Data : TTebleColSortDatal] Search Results | Output # | Fr, 5/7/2556, 2L:51w. 3 no 1/60 0
Model 12 AbstractTableMode! » - Fr, 5/7/2556, 2L:51 u. X no 1440 g
SataModel(R esourceBundie resBun Jexifiewer (run) % | ExifiiewerOrig (acocover
ata(7IfdData dats) W ared.jar:
ata(ArrayLst<ifdDats> amaylst _ ||| Copying default language to en
- = gy| comwile
33 subdiectories were found.

JaCoCoverage Collection Task - (more.) (@)

Figure 6: Example of JExifViewer invoked by NetBeans
For JExifViewer, there were total of 16 faults which caused 9 failures during

execution. Table 3 summarizes each types of faults in the experiment.

Table 3: Faults distribution for JExifViewer

25

Type of faults

#lines

Initial faults

Seeded faults

FUNCTIONALITY AS IMPLEMENTED

Missing feature 7

STRUCTURAL BUGS

Control logic and predicates 5

Arithmetic expressions 1 1

DATA

Value 2

Total 1 15
Total 16
#lines

Coverage criteria were measured using JaCoCo[20]. When running

Jexifviewer through NetBeans IDE by the function ‘run with JaCoCo coverage’, JaCoCo

would instrument the code in Jexifviewer to measure several coverage criteria, namely,

instructions, branches, cycromatic complexity, lines of code, methods, and classes.

The coverage criteria used for each prioritization technique are shown in Table 4

26

Table 4 JaCoCo coverage data used for test case prioritization technique

Instructions

Branches

Methods

The results are shown as HTML files in Figure 7.

[Ew JaCoCovel analysis of project "JExifViewerQrig" ered by JaCoCo from EclEmma) > 8 jexifviewer
jexifviewer
B3 vissod Insirucions SWGov. SMissod Branches RiCov. MiMissed SCxiy Mihissed 3L nes Sliissod MMeihods Bihissed HCiassestd

@ JimgView] 14% = 4% 183 1838 457 519 R 37 0 1
© JMainFrame = 9%) 1% 203 234 495 764 28 47 o 1
@ Jiid] 0% == 0% 230 230 444 444 m 71 1 1
® JSettingsDialog] 0% B 0% 32 32 272 272 3 3 1 1
® JExifDataModel | 19% === 5% 113 120 238 259 16 2 o 1
© JExifTag == 0% === 0% 122 12 194 194 20 20 1 1
® JBatchDialog — 0% = 0% 26 26 164 164 4 1 1
@ PngEnceder == 0% = 0% 50 50 169 169 26 26 1 1
® PngEncoderB == 0% == 0% 49 49 174 174 13 13 1 1
® JExifDataCemparator = 1% == 0% 118 116 198 202 2 3 o 1
® JMainFrame new MouseAdapter() { .} = 0% = 0% 21 pal 105 105 2 2 1 1
® JMainFrame new MouseAdapter(} { } = 1% = 0% 20 21 104 105 1 2 0 1
© JExportDialog = 0% I 0% 14 14 89 89 6 6 1 1
® JMainFrame new MouseAdapter() {_} = 1% = 0% 14 15 56 57 1 2] 1
@ JSettings = 30% = 4% il 123 19 333 55 33 0 1
® JMainFrame new Runnable() { } | | 0% I 0% 12 12 4 “ 2 2 1 1
@ JMainFrame new Runnable() {...} | 0% I 0% 12 12 4 M 2 2 1 1
® JExportDialog.new ActionListener() {_} | | 0% = 0% 13 13 40 40 2 2 1 1
® JMainFrame new MouseAdapter(} { } 1] 0% = 0% 16 18 41 a4 5 5 1 1
® JMainFrame new MouseAdapter() { .} g 3% E 0% 15 16 40 4 4 5 o 1
® JColChoeserDialog - 0% 0% 4 4 38 38 3 3 1 1
© JifdData B 0% & 0% 21 21 44 44 1 1 1 1
@ JMainFrame new MouseAdapter() { } L 0% | 0% 8 8 33 33 4 4 1 1
(@ JSettingsDialog.new ActicnListener() {...} - 0% & 0% 12 12 25 25 2 2 1 1
© JMainFrame new KeyEventDispatcher() { .} 1 3% = 0% 22 23 29 30 1 2 0 1
@ JMainFrame. new MouseAdapter(} {..} 1 0% | 0% 6 6 n 3 4 4 1 1
® JMainFrame new MouseAdapter() { .} H 3% I 0% 7 8 32 33 3 4 o 1
® JJPEGHelper L 0% & 0% 17 17 50 50 6 6 1 1
© JMainFrame.new MouseAdapteri} {...} B 3% | 0% 5 6 30 kil 3 4 0 1
® JimageCache L] 8% = 0% 25 26 38 43 6 7] 1
(@ JSettingsDialog.new ActicnListener() {...} H 0% I 0% 1 1" 25 25 2 2 1 1

Figure 7 Example of JaCoCo coverage

Test case prioritization proceeded as shown in Figure 8. Each test case is
executed in Netbeans one at a time. The coverage results obtained from JaCoCo are
then recorded. When all test case are exhausted, the test sequence for each
prioritization technique is determined by ordering the corresponding coverage data of

each test case according to the criteria in Table 4

27

Draw a flow Create the test -
s I e >
diagram cases from diagram
representing
the GUI e
P '
function of -7
A 4 L’ -
production s/w Run all test cases | -~ Add seeded faults
o~
through NetBeans
Record coverage Sort coverage Choose 5 largest
percentage > percentage data coverage classes
(in descending

order)

Sort coverage percentage

data by instruction,

A 4

Get 3 prioritization

sequences

Figure 8 Establishing prioritization sequence

28

From Figure 8, a flow diagram representing the GUI function of
production software is drawn as shown in Figure 9. Then, test cases are created and
run through NetBeans with JaCoCo coverage. Record the coverage percentage data of
each class and sort in descending order to find the 5 largest coverage percentage
classes. Add seeded faults into these clasess. Run all test cases and record the
coverage percentage data of these 5 classes for each test case as shown in Table 5.
Sort the covergae percentage data by branches, instructions, and methods. Run all

test cases based on the prioritization sequences as shown in Table 5.

«fViewer
—
M MB ras Help
: ; +90° = Original date
E\a 90 5 53, 6/7/2556, 6:25 1,
Dj\ T B2 53, 6/7/2556, 6:22 1.
5 B34 53, 6/7/2556, 6:22 .
A Flip horizontal 59 5a, 6/7/2556, 6:20 u.
Hi\ 5 e mirer gy
P @ Ft Ctrl+Enter ™
it 200% A
Tint u.
00% L 9 9
o e o a Image Zoom Scale up
— x lu
Eipen 100% Ctrl+NumPad o

5% ™
50% Ctrl+NumPad/)%

U,
B% Bu
125% Tu

6,25% T
8

Scale down Ctrl+NumPad - 3%

3u
(Scaleup) Ctel+NumPad + .

Fr, 5/7/25%, 21:52w.

Figure 9 Example of drawing tree diagram

29

Table 5 Coverage statistic of JExifviewer test cases

e 0z 1z 85 (1T QLT 16T 74 TIZ (67T 121 191T C2ET %6 THL [
oz &1 88 (1T SHOT L6T %L T (evl 1Z1 FSTT |790°L C2ET TEL o Bl
oz &1 68 (1T 50T 16T T T (erT 121 1) 4 C2ET e TEL TA:
oz 61 68 (1T 2307 16T i1z T (e 121 SFTT [0TTL o2ET T T8

a0t 61 IF 6 o6& 154 61T SET (&1 Tot i) 1 ED6:
oz &1 85 (1T 25T 16T LT (&1 121 C2ET GELT TEL o &1
8T g A 4 &9 (9821 i1 T5T 2T (08T 2T ey wET 18T 1] ropd 1|T mTsT €1
£ o A 4 99 [EIET T5T 2T (08T 2T BigT |TTEE oreT 1] ropd 0T S6LTT s
£ o A [t e (9121 F5T 218 (D& £ET 58T [5-10r o1eT 1] o =TT 3
&1 o 8 (1T 50T 154 TLT (&1 1z1 18T (TLE'® EET TEL ot

124 L 0’7 6T TET TLT (&1 121 lind o [

81 124 88 (1T Laip 06z oiT Tz (6T 1Z1 SOTL STET EET THL 3y Jd B

i 174 iF & o1 LB6 gz 05T &€z [S¥T oa1 o G519 a5 9L L

124 85 (1T o1 faip TiT LT (&1 i I1STT [Zh&E'9 TEL 20T Ll G

€01 i3 12 IF (& 986 LET 101 5957 9L Ll g
¥ 12 iF |8 o1 LBE T &gz [SPT 85 2T LZET E2TT |TeL L ¥

oz 124 L SIO'T 66T TET TLT (&1 1z1 06T o 3

11 It o Fici - vS0T e 75T i e ot #9TT [EETL oTeT 9L E06 L z
L1 T4 o 0 (1T] R 75T €Lz (&1 9z 5 o1 TEL S50°T L1 T

WP
FoueyugEIel

=1
el

M
AL

v ap=

JueyuI|el0]

Il
IRITT=TN T

M
2ipbwC

i

be [EE
1AL | oWeIR A

P2
JuBLuIjEl0 |

M pIIc
=TT Iy

be
1Px30

=P
ClHERaXIC

[TIES

puelg 20eiaA0]) passik

UORONOSU]T 2

Des2n0]) pRssild

osT o

FPS T

THET

1] ropd

Table 6: Test sequences for JExifViewer

Prioritize in order of

coverage of

Prioritize in order of

Prioritize in order of

TestCaseNo. statements coverage of branches | coverage of functions
1 5 5 15
2 4 q 7
3 15 7 a
4 7 15 5
5 10 6 2
6 6 2 6
7 16 16 16
8 14 14 14
9 17 10 10
10 18 17 17
11 8 8 18
12 9 18 19
13 19 9 8
14 3 19 9
15 2 3 3
16 1 1 1
17 11 11 11
18 12 12 12
19 13 13 13

30

31

4.3, Results of

The results of JSyntaxPane are shown in Table 7. The expected testing
time, expected editing time, and expected cost of each iteration are computed
from previous iteration using equation (5). The cost is estimated in dollars ($) using
average salary given in [8]. The variables #rem, #faults, and #fails denote number
of remaining faults at the beginning of each iteration, number of faults that have
been corrected, and number of failures that have occurred in each iteration,
respectively. a is the ratio of cumulative number of faults in each sequence to
cumulative number of failures in that sequence. r is the failure detection rate per
remaining faults. FDR is fault detection rate which is the number of faults per minute.
Failure intensity is the number of failures per minute of testing time. l(t) is the
expected failure intensity calculated from equation (3). i(t) avg is the average of
A(t) from the start of each sequence. m(t) and m(t+At) is the expected
number of failures used to calculate the reliability R(t) by means of equation (8),
where At is set to one year time period.

It can be seen that the expected testing time and expected editing time

tend to overestimate the actual testing time and actual editing time. At any rate,
both the expected and actual time tend to go in the same direction. The QL

calculated in each iteration is used to estimate the actual O, which turned out to be
1.081. Meanwhile, At) gives a projection of how future failure intensity will behave. As
the number of faults decreases in each iteration, the reliability increases. Note that
the final value of reliability in each sequence is not equal to one another. This is
because the sequence of test cases affects the number of test iterations, the
number of uncovered faults, and failures in each iteration, all of which affect the
value of reliability.

Substituting the number of initial faults and lines of code into Eq. 11 and
12 yields Ry = 0.84361 and R, = 0.75827.
In the first sequence, A of the first iteration was equal to At) ave. The summation of

actual cost in first iteration and expected cost of second iteration was greater than

32

threshold cost which was set as $600. The value of reliability was greater than R,, so
the first sequence could be stopped in this iteration.

In the second sequence, the test continued until the third iteration in
which no failure occurred and A was less than At) avg. The expected testing time,
editing time, and expected cost could not be calculated due to division by 0. So the
summation of actual cost of the first iteration to third iteration did not exceed $600.
Since the reliability was greater than R, the second sequence could be stopped at
its third iteration.

In the third sequence, the test continued in the second iteration where
Aty was less than At) avg , the expected cost was less than threshold cost and the

reliability value was greater than Ry, the sequence stopped in the second iteration.

33

tal results of JSyntaxPane

Experimen

Table 7

/N /N /N b
00'T| 000/ 000/ 4800 0 0 0 0| ¢b'¢ 0 0 9 69¢l 000| ¢v'1c| <096 ¢C'LL 9.°¢S ¢
06'0| G¢'q| GC'¢ T1¢10] v600 6£¢°0| €900/ p8I00| ¢v'¢ S L ¢l 1¢°68 0106/ 160¢| 696v1| S0'60T 0086 4
GL°0| ¢e€T| P99 ¢910] ¢910 81¢°0| 901°0] 6,000/ 00¢ 6 Y4 Ob| L6861 8Y'9CC| 1e'8C V/N V/N V/N T ¢
/N V/N V/N b
00'T| 000/ 000 ¢900 0 0 0 0| 9v'¢ 0 0 8| 8.L¢S be'ab| G6'GC| PI99T| SP90T eIl €
08'0| 69'G| 6917 /L800| 1500 €.0°0| 9500/ ¢S000| 9v¢ 4 9 b1l 6218 v8'6L| PYLC| Y8LbC| vl661 88'8¢T 4
0,0 ¢691| 608 vv1'0] vv1'0 L12°0| £90°0| 69000| 9¢¢ 17 9¢ Op| 06'0ce| <¢00Le| 9L6¢ V/N V/N V/N T 4
V/N V/N V/N S
00'T| 000/ 000/ 8v00 0 0 0 0| 12¢C 0 0 ¢l 99¢l 000) ¢Cle| Lgee, 199¢ aTe b
/80| G6¢| G980, 69500, €00 ¢pv0'0| 8S0°0f <5000 TL¢C 1 9 8| ¢0'6L P86L| T6'¢C| €999 GT9TT LY'GTl €
8.°0| €18 9T¢ 9800 9500 160°0| 4900/ SP0O00| 9b'C b 4 0Z| veL9T| C€TVLT| bI'bb| ¢L'19Y| ¢8'99b A0 4
90| 0081 80| 82C0| 8ZC0 9.¢°0| Tv00| v6000| ¢C¢ 6 0¢ Opv| 6C/8¢| ¢899 D6'CC /N V/N V/N T I
(urw)
(uu| - (uiw)
©)| swn (uw)
oy Sne Aysuszul spney|($) 3502 awn swn ‘bas
Anigenay @w (OO0 4a4 1 V| syeys| syneys 350D pa3| Suipslswiy Sunsay| "AsYy
+Hw My ain)eq ‘wialg| jenydy| Supipa| Supsal 1591
10adx3 pa pa3oadx3
1enpy| jeniy

10adx3

34

18

16 rF.
14

12

10

—®—Sequence 1
—®—Sequence 2
—®—Sequence 3

0.00 1000.00 2000.00 3000.00 4000.00 5000.00 6000.00 7000.00

Figure 10 Graph of number of failures in each sequence and m(t) of Jsyntaxpane

Figure 10 plots the number of failures found for each test sequence and
the expected number of failures predicted by m(t). It can be seen that the order of
the test cases affected the rate at which failures were found. m(t) gives the
theoretical projection of the number of failures found. The results from Sequencel
and Sequence 3 are fairly close to m(t), whereas Sequence 2 is not as closed. It

shows that m(t) performs quite well for 2 out of 3 randomized sequences.

35

Table 8 shows the results of JExifViewer. The column name uses the

same convention as Table 7. The results followed the same trends as JSyntaxPane.

In this case, QL turned out to be 1.78 and R; = 0.8382 and R, = 0.7536. The input test
sequence prioritization was performed according to test coverage technique in
Table 4.

In the first sequence (prioritize in order of coverage of instructions), Aw) of
the first iteration was equal to A avg and the summation of actual cost in first
iteration and the expected cost of second iteration did not exceed the threshold
cost of $600. Since the value of reliability was greater than Ry, the first sequence

could be stopped in this iteration.

In the second sequence (prioritize in order of coverage of branches), the

test continued until the second iteration in which no failure occurred and At was
less than A ave. The expected testing time, editing time, and expected cost could
not be calculated due to division by 0. So the summation of actual cost of the first
iteration did not exceed $600. The value of reliability was greater than R;. So the
second sequence could be stopped at its third iteration.
In the third sequence (prioritize in order of coverage of functions), the test continued
on the second iteration where A was less than At) ave. The expected cost was less
than the threshold cost and reliability was greater than R;. So it could be stopped in
the second iteration.

Compared with randomization in JSyntaxPane, test case prioritization in
JExifViewer helped lower the cost of testing and editing. Because similar functions
tended to have a nearer coverage, they were more likely to be edited
uninterruptedly. If editing other functions affected previous test case, it wouldn’t be

found until the next iteration.

36

lewer

Experimental results of JExifVi

Table 8

i0/NIa# i0/NI0# i0/NIa# v
1 veo 0 0 0 0 0 €v0°0 0 et 0 0 S 189°C 0 SOY 15°621 ST'STl 68.'85 €
8.0 050 4 16 060 §9C0 1€0°0 2900 92v0°0 et T T 9 68°0C 4 916 420 L1y ogeee 4
.0 €80 80 8¢l v6's €991 11’0 1600 11600 T 8 o1 91 0209 62'1L 91T’ V/N V/N V/N T 1
i0/Na# i0/AIa# i0/AIa# €
1 820 0 0 0 0 0 000 0 JANA 0 0 1 26T 0 €89V 6€9°LC 98'61 6,281 4
§8°0 190 S0 8¢, (U872 G821 12250 080°0 080°0 JANA 9 el 91 TLTL 1098 999V V/N V/N V/N T 4
0/NIa# i0/AI0# i0/AIa# 14
T 12°0 0 000 000 0 0 0¢0°0 0 A 0 0 € €9C 000 457 w'ls §0'5e 669'9¢ €
080 820 20 vs's 89'T [0 6.0°0 6€£0°0 11900 Al 4 S 8 vL'6v cy'8s €8y 09'¢ct 0g°00T 16089 4
69°0 S0 0 vl 19°9 evl’0 €.0°0 91v0'0 S9v0°0 vl L 8 91 2198 0¢’00T 6 V/N V/N V/N T 1
2 I I o) = - > I* * ¥ > o > o > =3 o P -
& 5 5 E E g 3 9 F|l5| §E 3 2| 5% |5 % £ 5 8|8 |a
o + ~ c = w = = c & 3 c o < o< ® o [CI) -+
g & & g 3 I & 5 g B2 2 32 |32 g g9 %
Z 2 = 5 a & £ o2 8 S8 |28 a8 g8
[} o m e 2 & & a 7
a 2 = e 2 2 2 &
[} < 2

10

—e—5eq1 coverage of statements

Cumulative failure

—a— 5eq2 coverage of branches

3 Seq3 coverage of functions
mit)
2
0 4
0 200 400 600 800 1000 1200 1400

time

Figure 11 Graph of number of failure in each sequence and m(t) of JExifviewer

Figure 11 shows the trend of failure discovery of JExifviewer using each
prioritization technique. All techniques behave in the same trend but keep difference
failure detection rate (r). From the graph, the expected software failure at time t or
m(t) was able to predict the number of failures found rather well, especially from
sequence 1 which was very close to the result. Compared with JSyntaxpane which
randomized the test sequences, the use of test case prioritization in JExifviewer
resulted in less testing time and editing time by almost five folds. Between the 3
prioritization arrangements, prioritization by function achieve the best result of both

uncovered failure and testing and editing time.

38

Table 9 Comparative reliability with Weibull and without Weibull distribution

JSyntaxPane JExifViewer

w/o Weibull | w/ Weibull | w/o Weibull | w/ Weibull

1.81E-05 0.644206 0.000205 0.694755

0.00697 0.783253 0.021073 0.807712
0.122536 0.872341 1 1
1 1

0.000146 0.701349 0.037745 0.852629

0.018292 0.802263 1 1

1 1

0.001126 0.749327 0.001058 0.743925

0.122034 0.895928 0.018236 0.788964

1 1 1 1

Table 9 shows reliability values of both applications when computed
with and without Weibull distribution (Equation 10 and Equation 4, respectively). The
former is proposed technique, whereas the latter is a comparative existing technique
[14]. It can be seen from the comparison that the reliability with Weibull distribution
is applicably suitable for the stopping criteria. The initial value of reliability in the first
iteration w/Weibull is higher than that of the w/o Weibull.

Figure 12 summarizes graphical comparisons of both tests. From the
graph, the values computed by Weibull distribution increase in a more stable rate
than those without Weibull whose increment goes up drastically in the final

distribution.

JSyntaxpane reliability

o—Seql w/o Weibull ==e=—Seql w/ Weibull ==e=Seq2 w/o Weibull

—e—Seq2 w/ Weibull o— Seq3 w/o Weibull ==e=—Seq3 w/ Weibull

JExifviewer reliability

o—Seql w/o Weibull =e=—Seql w/ Weibull =——e=Seq2 w/o Weibull

—e—Seq2 w/ Weibull o Seq3 w/o Weibull ==e=—Seq3 w/ Weibull

Figure 12 Graph of reliability comparison for JSyntaxpne and JExifviewer

39

40

Chapter 5 Discussion and Conclusion
5.1. Discussion

This research proposed the stopping criteria for GUI application regression
testing. Software reliability model was used to determine the appropriate time to
stop. An equation to estimate the cost of testing and editing was proposed by using
SRM to calculate the expected testing and editing time. Weibull distribution was
integrated into reliability function for flexibility purpose. Stopping criteria involved 3
factors computed from test statistics, namely, failure intensity, cost of editing and
testing, and reliability. The proposed methodology was successful in controlling test
process to stop earlier than it normally should buy virtue of the 3 combined factors
of stopping criteria. The rationale was straightforward in that as failure intensity
decreased owing to spontaneous bug fixes, reliability increased. On the contrary, if
erroneous situation dragged on, test cost escalated. Upon reaching the proposed
costing limit, test process terminated. In either case, the approach could practically
be tailored to work in production environment. One validity measure was resulted
from threshold cost figure, which was derived from non- authoritative source of

salary. Nonetheless, the issue was relatively minor.

Test cases were organized into test sequences using randomization and
prioritization based on 3 coverage measures, i.e., statements, branches, and
functions. The 3 prioritization techniques chosen in this research are the most
suitable in terms of fault detection without adding too much complexity. However,
they may not be the best technique to uncover all the faults as the results
depended largely on the input test sequence. This fact was apparent in the resulting
experiment.

The proposed methodology was tested using 2 GUI applications.
Constants and thresholds used in the equations were calculated in a preliminary test
using production software. The results show that the stopping criteria are suitable for
determining appropriate time to stop regression testing and can help lower both
time and cost of testing and editing which is beneficial from business perspective.

One many contend that GUI testing in many cases is dependent on the application

a1

set up, system requirements, domain of applicability, etc. Thus, test results could

vary inconsistently which might lead to inconclusive outcome.

5.2. Conclusion

This research proposes a practical stopping criteria for GUI regression
testing. The ultimate objective is to end the test process faster than running the test
normally, thereby saving considerable time and costs, yet still preserving test
outcome reliability. The approach exploits 3 factors of test process, while organizes
the input test cases in two different scenarios. Test coverage is set up to measure

the impact of input sequence. And findings turn out satisfactorily.
Future works include optimizing regression test techniques to achieve minimal cost

and finding more efficient test sequence generation.

10.

11.

a2

REFERENCES

Software Engineer | Salary. Salary.com.

Biswas, S., et al., Regression test selection techniques: A survey. Informatica: An
International Journal of Computing and Informatics, 2011. 35: p. 289-321.
Vokolos, F.I. and P.G. Frankl, Pythia: A regression test selection tool based on
textual differencing, in Reliability, Quality and Safety of Software-Intensive
Systems, D. Gritzalis, Editor. 1997, Springer US. p. 3-21.

Vokolos, F.I. and P.G. Frankl. Empirical evaluation of the textual differencing
regression testing technique. in, International Conference on Software
Maintenance, 1998. Proceedings. 1998.

Rothermel, G. and M.J. Harrold. Selecting regression tests for object-oriented
software. in Software Maintenance, 1994. Proceedings., International
Conference on. 1994.

Rothermel, G. and M.J. Harrold, Selecting tests and identifying test coverage
requirements for modlified software, in Proceedings of the 1994 ACM SIGSOFT
international symposium on Software testing and analysis. 1994, ACM: Seattle,
Washington, USA. p. 169-184.

White, L.J. Regression testing of GUI event interactions. in Software
Maintenance 1996, Proceedings., International Conference on. 1996.

Hui, Z., et al. GUI regression testing based on function-diagram. in 2010 IEEE
International Conference on Intelligent Computing and Intelligent Systems
(ICIS). 2010.

Memon, A.M. and M.L. Soffa. Regression Testing of GUIs. 2003. ACM.

Falah, B., R. Nouasse, and Y. Laghlid, GUI Regression Test Selection Based on
Event Interaction Graph Strategy. 2013, IJCSET.

Grigorjev, F., N. Lascano, and J.L. Staude. A fault seeding experience. in

Simposio Argentino de Ingenieria de Software (ASSE 2003). 2003. Citeseer.

12.

13.
14.

15.

16.
17.

18.

19.

20.

a3

Harrold, M.J., AJ. Offutt, and K. Tewary, An approach to fault modeling and
fault seeding using the program dependence graph. Journal of Systems and
Software, 1997. 36(3): p. 273-295.

Xie, M., Software Reliability Modelling. 1991: World Scientific. 232.

Lin, C.-T. and C.-Y. Huang. Software Release Time Management: How to Use
Reliability Growth Models to Make Better Decisions. in 2006 IEEE International
Conference on Management of Innovation and Technology. 2006.

Ahmad, N,, et al., The exponentiated Weibull software reliability growth model
with various testing =efforts and optimal release policy. International Journal of
Quality & Reliability Management, 2008. 25: p. 211-235.

Beizer, B. bug taxonomy - Otto Vinter.

Elbaum, S., A.G. Malishevsky, and G. Rothermel, Test case prioritization: a
family of empirical studies. Software Engineering, IEEE Transactions on, 2002.
28(2): p. 159-182.

Elbaum, S., A. Malishevsky, and G. Rothermel, Incorporating varying test costs
and fault severities into test case prioritization, in Proceedings of the 23rd
International Conference on Software Engineering. 2001, IEEE Computer
Society: Toronto, Ontario, Canada. p. 329-338.

Jexifviewer Java program for displaying and comparing Exif informations stored
in JPEG files created by digital cameras. JExifViewer is an Open Source project
released under the GPL.

JaCoCo Java Code Coverage Library

APPENDIX

As mentioned before, test cases for both JSyntaxpane and JExifviewer
were generated according to their GUI functionalities as well as existing bug reports

from other users. The detail of all test cases used are given in Table 10 and Table 11

Table 10 Test cases for JSyntaxpane

1 Test case name Test CUT function Expected
result
Test Open file under test File is open
Step/Substep correctly
Select some Text Selected text

is highlighted

Press CUT button Selected text
disappears
Paste in other text editor Selected text
is pasted
correctly
2 Test case name Test COPY function Expected
result
Test Open file under test File is open
Step/Substep correctly
Select some Text Selected text
is highlighted

Press COPY button
Paste in other text editor Selected text
is pasted

correctly

3 Test case name

Test
Step/Substep

4 Test case name

Test
Step/Substep

5 Test case name

Test
Step/Substep

Test PASTE function

Copy some text from other
editor

Press PASTE button

Test SELECT ALL function

Open file under test

Press SELECT ALL button

Press Backspace

Test UNDO REDO function

Do something

Expected

result

Selected text
is pasted

correctly

Expected

result

File is open
correctly

All texts in
syntaxpane are
highlighted

All texts
disappear

Expected

result

The action is

done correctly

a5

6 Test case name

Test
Step/Substep

Press UNDO button

Press REDO button

Test FIND/REPLACE function #1

Open file under test

Press DISPLAY FIND AND
REPLACE DIALOG button

Type some text in FIND text
field

Press NEXT button

The previous
action is
undone
The previous
action is

redone

Expected

result

File is open
correctly

FIND AND
REPLACE
dialog appears

The typed text
appears in text
field

A matching

text is hilighted

in jsyntaxpane
or a warning
appears in
case no
matching text

exists

a6

7 Test case name

Test
Step/Substep

If a match is found, proceed to
the next step

Press NEXT button

Press PREVIOUS button

Test FIND/REPLACE function #2

Open file under test

Press DISPLAY FIND AND
REPLACE DIALOG button

Type some text in FIND text
field

Select IGNORE CASE check box

Press NEXT button

The next
matching text
is hilighted in
jsyntaxpane
The matching
text from step
4 is hilighted in

jsyntaxpane

Expected

result

File is open
correctly

FIND AND
REPLACE
dialog appears
The typed text
appears in text
field

IGNORE CASE
check box
becomes
selected

A matching
text is hilighted

in jsyntaxpane

ar

8 Test case name

Test
Step/Substep

Press NEXT button

Press NEXT button

Test FIND/REPLACE function #3

Open file under test

or a warning
appears in
case no
matching text
exists

A next
matching text
is hilighted in
jsyntaxpane or
a warning
appears in
case no
matching text
exists

A next
matching text
is hilighted in
jsyntaxpane or
a warning
appears in
case no
matching text

exists

Expected

result

File is open

correctly

a8

Press DISPLAY FIND AND
REPLACE DIALOG button

Type some text in FIND text
field

Select REGULAR EXPRESSION

check box

Press NEXT button

Press NEXT button

FIND AND
REPLACE
dialog appears
The typed text
appears in text
field

REGULAR
EXPRESSION
check box
becomes
selected

A matching
text is hilighted
in jsyntaxpane
or a warning
appears in
case no
matching text
exists

The next
matching text
is hilighted in
jsyntaxpane or
a warning
appears in
case no
matching text

exists

9 Test case name

Test
Step/Substep

Test FIND/REPLACE function #4

Open file under test

Press DISPLAY FIND AND
REPLACE DIALOG button

Type some text in FIND text
field

Type another text in REPLACE

text field

Press NEXT button

Press REPLACE button

Press REPLACE button

Expected

result

File is open
correctly

FIND AND
REPLACE
dialog appears
The typed text
appears in
FIND text field
The typed text
appears in
REPLACE text
field

A matching
text is hilighted
in jsyntaxpane
The hilighted
text is
replaced with
the text in
REPLACE text
field and the
next matching
text is hilighted
in jsyntaxpane
The hilighted
text is

replaced with

10 Test case name

Test
Step/Substep

Test FIND/REPLACE function #5

Open file under test

Press DISPLAY FIND AND
REPLACE DIALOG button

Type some text in FIND text
field

Type another text in REPLACE
text field

Press REPLACE ALL button

the text in
REPLACE text
field and the
next matching
text is hilighted

in jsyntaxpane

Expected

result

File is open
correctly

FIND AND
REPLACE
dialog appears
The typed text
appears in
FIND text field
The typed text
appears in
REPLACE text
field

AWl matching
texts are
replaced with
the text in
REPLACE text
field

51

11 Test case name

Test
Step/Substep

12 Test case name

Test FIND NEXT function

Open file under test

Press DISPLAY FIND AND
REPLACE DIALOG button

Type some text in FIND text
field

Press NEXT button

Close FIND AND REPLACE

dialog

Press REPEAT LAST FIND

Press REPEAT LAST FIND

Test GOTO LINE function

Expected

result

File is open
correctly

FIND AND
REPLACE
dialog appears
The typed text
appears in
FIND text field
A matching
text is hilighted
in jsyntaxpane
FIND AND
REPLACE
dialog
disappears
The next
matching text
is hilighted in
jsyntaxpane
The next
matching text
is hilighted in

jsyntaxpane

Expected

result

52

Test
Step/Substep

13 Test case name

Test
Step/Substep

Open file under test

Press GOTO LINE NUMBER
button

Type some number in to the
text field

Press GO button

Test JUMP TO PAIR function

(for programming language)

Open file under test

53

File is open
correctly
GOTO LINE
dialog appears

The caret
moves to the
beginning of
the entered
line number or
the nearest
line number if
the entered
line number

does not exist

Expected

result

File is open

correctly

Choose the corresponding language in the

combobox

Click on one of the following
brackets [({ <

Press JUMP TO PAIR button

The caret

moves to the

14 Test case name

Test
Step/Substep

15 Test case name

Test JUMP TO PAIR function

(for markup language)

Open file under test

corresponding

131>

Expected

result

File is open

correctly

Choose the corresponding language in the

combobox
Click on a tag
Press JUMP TO PAIR button

Press JUMP TO PAIR button

Press JUMP TO PAIR button

Test TOGGLE COMMENTS

The caret
moves to the
corresponding
tag

The caret
moves to the
corresponding
tag

The caret
moves to the
corresponding

tag

Expected

result

54

Test
Step/Substep

16 Test case name

Javascript
Java

Python

Test
Step/Substep

Open file under test

55

File is open

correctly

Choose the corresponding language in the

combobox

Click on a line

Press TOGGLE COMMENTS
button

Select the commented line
Press TOGGLE COMMENTS

button again

Test INDENT/UNINDENT

Open file under test

The line is
commented
according to te
rule of
associated

language
The line is

uncommented

Expected

result

File is open

correctly

Choose the corresponding language in the

combobox
Select some lines

Click INDENT button

The selected
lines are

indented from

56

the beginning
by one tab

Select some other lines

Click UNINDENT button The spaces at
the beginning
of each
selected lines
are decreased
by one tab
(nothing
happen if that

line does not
begin with
space)
17 Test case name Test TOGGLE LINES Expected

result

Javascript

Java

xhtml,xml,xpath

Test Open file under test File is open

Step/Substep correctly

Choose the corresponding language in the

combobox

Press TOGGLE LINES button Line numbers
disappear

Press TOGGLE LINES button Line numbers

reappear

18 Test case name Test SURROUND WITH TRY Expected

CATCH result
Java
Test Open file under test File is open
Step/Substep correctly
Choose the corresponding language in the
combobox
Click on a blank line
Press SURROUND WITH TRY A try/catch
CATCH button block appear
at that
position
Select some texts that span across multiple
lines
Press SURROUND WITH TRY Al lines that
CATCH button contain the
selected texts
are surrounded
by a try/catch
block
19 Test case name Test SURROUND SELECTION Expected
WITH WHILE result
Java
Test Open file under test File is open
Step/Substep correctly

Choose the corresponding language in the
combobox

Click on a blank line

20 Test case name

Java
Test
Step/Substep

Press SURROUND SELECTION A while block

WITH WHILE button appear at that
position
Select some texts that span across multiple
lines

Press SURROUND SELECTION Al lines that
WITH WHILE button contain the
selected texts
are surrounded
by a while

block

Test SURROUND WITH IF Expected

result
Open file under test File is open
correctly
Choose the corresponding language in the
combobox

Select some texts that span across multiple

lines
Press SURROUND WITH IF All lines that
button contain the

selected texts
are surrounded

by an if block

58

21 Test case name

Java
Test
Step/Substep

22 Test case name

Java
Test
Step/Substep

Test OUTPUT EXPRESSION TO

SYSTEM.OUT

Open file under test

59

Expected

result

File is open

correctly

Choose the corresponding language in the

combobox

Select some texts that span across multiple

lines

Press OUTPUT EXPRESSION TO

SYSTEM.OUT button

Test SURROUND LINES WITH

BLOCK COMMENTS

Open file under test

The selected
texts are
surrounded by
System.out.pri
ntin("The
value of
SELECTED
TEXTS =" +
(SELECTED
TEXTS));

Expected

result

File is open

correctly

Choose the corresponding language in the

combobox

Select some texts that span across multiple

lines

Press SURROUND LINES WITH
BLOCK COMMENTS button

23 Test case name Test language combobox

Test Open file under test
Step/Substep
Choose the corresponding

language in the combobox

Choose some other language

in the combobox

Change back to the
corresponding language in the

combobox

24 Test case name Test QUICK FIND function

Test Open file under test
Step/Substep

All lines that
contain the
selected texts
are surrounded

by /* and */

File is open
correctly
The Ul
components
are displayed
correctly
The Ul
components
are displayed
correctly
The Ul
components
are displayed

correctly

File is open

correctly

60

Press Ctrl+F

Type some text in QUICK FIND
text field

If a match is found, proceed to
the next step
Press NEXT button

Press PREVIOUS button

25 Test case name Test FIND/REPLACE function
(WRAP AROUND#1)

Test Open file under test
Step/Substep

QUICK FIND
dialog appears
The typed text
appears in text
field and the
first matching
text is hilighted
in real time or
a warning
appears in
case no
matching text

exists

The next
matching text
is hilighted in
jsyntaxpane
The matching
text from step
4 is hilighted in

jsyntaxpane

Expected

result

File is open

correctly

26 Test case name

Test
Step/Substep

Press DISPLAY FIND AND
REPLACE DIALOG button

Type some text in FIND text
field

Press NEXT button until the

last matching text is reached

Make sure that the WRAP
AROUND is not selected then
press NEXT button

Select WRAP AROUND check

box

Press NEXT button

Test

Type some characters

Press ENTER button

FIND AND
REPLACE
dialog appears
The typed text
appears in text
field

The last
matching text
is hilighted

A warning
dialog appears
informing that
Serch String
not found
WRAP AROUND
check box
becomes
selected

The first
matching text

is hilighted

Expected

result

The characters
appear
The caret

moves to a

62

=

o
FWIANNTUAUWI

ne

63

Sq

64

Table 11 Test cases for JExifviewer

Test step/Substep

Navigate to a directory

Click on a column name

Hover the mouse over an image

file

Check the tooltip information

Left-click on a row in the right

panel

Right-click on a row in the right
panel

Choose Rename command

Type a new name in text field and

click OK button

Expected result

That folder is selected and
the image files inside are
shown correctly

The image files are sorted by

that column attribute

The image tooltip information
is shown according to tooltip
setting

The information is consistent

with image properties

An image appears in the

bottom-left panel

List pop-up menu appears

Rename dialog appears
The name changes while
other information remains the

Same

5

10

Right-click on a row in the right
panel

Choose Copy command
Choose directory and press OK
button

Right-click on a row in the right
panel

Choose Move command
Choose directory and press OK
button

Right-click on a row in the right
panel
Choose Delete command

Choose Yes button

Right-click on a row in the right
panel
Choose Delete command

Choose No button

Right-click on a row in the right

panel

Choose Cancel command

Select an image

Double-click on the image

List pop-up menu appears

A directory chooser appears
The copied image appears in
the chosen directory

List pop-up menu appears

A directory chooser appears
The image is moved to the
chosen directory

List pop-up menu appears

Delete dialog appears

The image is removed

List pop-up menu appears

Delete dialog appears
Delete dialog disappears

List pop-up menu appears

List pop-up menu disappears

An image appears in the

bottom-left panel

Full screen image is shown

65

11

12

13

14

15

16

Double-click on the image again

Right-click on a directory

Choose Add shortcut command

Right-click on a shortcut
Choose Remove shortcut

command

Right-click on a directory in the
top-left panel

Choose Cancel command

Right-click on the image

Choose +90 command

Right-click on the image

Choose -90 command

Right-click on the image

Full screen image disappears

Tree pop-up menu appears
A shortcut with the same
directory name appears at the

root of the directory tree

Tree pop-up menu appears

The shortcut disappears

Tree pop-up menu appears

Tree pop-up menu disappears

Image pop-up menu appears

The image is rotated 90

degrees clockwise

Image pop-up menu appears
The image is rotated 90

degrees counterclockwise

Image pop-up menu appears

66

17

18

19

Choose 180 command

Right-click on the image

Choose Flip horizontal command

Middle-click on the image
Right-click on the image

Choose Original command

Right-click on the image

Choose Cancel command

67

The image is rotated 180

degrees

Image pop-up menu appears
The image is flipped

horizontally

The image is flipped
horizontally

Image pop-up menu appears
The image is reverted back to

original

Image pop-up menu appears
Image pop-up menu

disappears

68

VITA

Chalita Somsorn was born in Bangkok and received the B.S. in Computer
Science from Chulalongkorn University in 2013. Currently, studying for a M.S. in
Computer Science, Chulalongkorn University. The areas of interest are software

engineering,GUI application ,regression testing and software reliability models.

69

	THAI ABSTRACT
	ENGLISH ABSTRACT
	ACKNOWLEDGEMENTS
	CONTENTS
	Chapter 1 Introduction
	1.1. Introduction
	1.2. Problem Statement
	1.3. Expected Benefits
	1.4. Scope of Research
	1.5. Contributions
	1.6. Research Plan
	1.7. Document organization

	Chapter 2 Literature Review
	2.1 Regression Testing
	2.1.1 Techniques based on textual differencing
	2.1.2 Techniques based on program dependence graphs

	2.2 GUI Testing
	2.3 Fault seeding
	2.4 Criteria for when to stop testing

	Chapter 3 Research Methodology
	3.1. Cost estimation
	3.2. Reliability Models
	3.3. Applying fault seeding
	3.4. The proposed stopping criteria
	3.5. Research Methodology

	Chapter 4 Experiments and Results
	4.1. JSyntaxPane
	4.2. JExifViewer
	4.3. Results of

	REFERENCES
	VITA

