

STOPPING CRITERIA FOR REGRESSION TESTING IN GUI APPLICATION USING FAILURE
INTENSITY AND FAILURE RELIABILITY

Miss Chalita Somsorn

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science Program in Computer Science and Information

Technology
Department of Mathematics and Computer Science

Faculty of Science
Chulalongkorn University

Academic Year 2015
Copyright of Chulalongkorn University

เกณฑ์การหยุดส าหรับการทดสอบแบบถดถอยในโปรแกรมส่วนต่อประสานกราฟฟิกกับผู้ใช้ความเข้ม
ของความขัดข้องและความเช่ือถือได้ของความขัดข้อง

นางสาวชาลิตา สมสร

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปรญิญาวิทยาศาสตรมหาบัณฑติ
สาขาวิชาวิทยาการคอมพิวเตอร์และเทคโนโลยีสารสนเทศ ภาควิชาคณิตศาสตร์และวิทยาการ

คอมพิวเตอร์
คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

ปีการศึกษา 2558
ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

Thesis Title STOPPING CRITERIA FOR REGRESSION TESTING IN
GUI APPLICATION USING FAILURE INTENSITY AND
FAILURE RELIABILITY

By Miss Chalita Somsorn
Field of Study Computer Science and Information Technology
Thesis Advisor Associate Professor Peraphon Sophatsathit, Ph.D.

 Accepted by the Faculty of Science, Chulalongkorn University in Partial
Fulfillment of the Requirements for the Master's Degree

 Dean of the Faculty of Science

(Associate Professor Polkit Sangvanich, Ph.D.)

THESIS COMMITTEE

 Chairman

(Professor Chidchanok Lursinsap, Ph.D.)

 Thesis Advisor

(Associate Professor Peraphon Sophatsathit, Ph.D.)

 External Examiner

(Assistant Professor Kriengkrai Porkaew, Ph.D.)

 iv

THAI ABSTRACT

ชาลิตา สมสร : เกณฑ์การหยุดส าหรับการทดสอบแบบถดถอยในโปรแกรมส่วนต่อประสาน
กราฟฟิกกับผู้ ใช้ความเข้มของความขัดข้องและความเชื่อถือได้ของความขัดข้อง
(STOPPING CRITERIA FOR REGRESSION TESTING IN GUI APPLICATION USING
FAILURE INTENSITY AND FAILURE RELIABILITY) อ.ที่ปรึกษาวิทยานิพนธ์หลัก: รศ. ดร.
พีระพนธ ์โสพัศสถิตย{์, 68 หน้า.

งานวิจัยนี้เสนอเกณฑ์การหยุดทดสอบแบบถดถอยในโปรแกรมส่วนต่อประสานกราฟิกกับ
ผู้ใช้เพื่อประเมินระยะเวลาที่เหมาะสมในการหยุดเพื่อไม่ให้สิ้นเปลืองงบประมาณส าหรับการทดสอบ
มากเกินไป ซึ่งเป็นสิ่งจ าเป็นส าหรับการแก้ไขปรับปรุงซอฟต์แวร์ที่สามารถน าไปใช้งานได้ในเวลาอัน
สั้น แต่ยังคงมีคุณภาพ ปัญหาหนึ่งที่เป็นอุปสรรคต่อการบรรลุตามเป้าหมายขึ้นอยู่กับล าดับของกรณี
ทดสอบที่ใส่เป็นข้อมูลน าเข้า ล าดับนี้มีผลต่อจ านวนของความขัดข้องที่พบ ดังนั้นงานวิจัยนี้เสนอตัว
แบบการหยุดซึ่ งพิจารณาปัจจัยที่มีผลกระทบความน่าเชื่อถือของซอฟต์แวร์และค่าใช้จ่าย
โดยประมาณในการด าเนินการทดสอบต่อ ขั้นตอนวิธีคือจัดล าดับกรณีทดสอบออกเป็นล าดับที่
แตกต่างกันเพื่อใช้เป็นข้อมูลน าเข้าส าหรับการทดสอบแบบถดถอย เมื่อพบความขัดข้อง ความขัดข้อง
น้ันจะถูกแก้ไขทันทีก่อนที่จะด าเนินการทดสอบต่อ การทดสอบนี้หยุดเมื่อจ านวนข้อขัดข้องและ
ค่าใช้จ่ายไม่เกินงบประมาณที่ตั้งไว ้

การวัดผลสมรรถนะของเกณฑ์ที่น าเสนอครอบคลุมตัวชี้วัดสามประเภท ได้แก่ ความเข้ม
ของความขัดข้อง ค่าใช้จ่ายในการทดสอบและแก้ไข และ ความน่าเชื่อถือ ความเข้มของความขัดข้อง
เป็นฟั งก์ ชันของข้อผิดพลาดและอัตราที่ พบ ค่ า ใช้ จ่ าย เป็นฟั งก์ ชันของ เวลาที่ ใ ช้ แก้ ไข
ข้อผิดพลาด ฟังก์ชันของความเชื่อถือเป็นการแจกแจงแบบไวบุลล์เข้ามาเพื่อให้สะท้อนข้อมูลทดสอบ
ได้ดีขึ้น ตัวแบบที่น าเสนอได้ถูกทดสอบกับโปรแกรมประยุกต์ที่ใช้งานจริงส าหรับส่วนต่อประสาน
กราฟิกกับผู้ใช้ ซึ่งให้ผลลัพธ์เกณฑ์การหยุดที่น่าพอใจ

ภาควิชา คณิตศาสตร์และวิทยาการ
คอมพิวเตอร์

สาขาวิชา วิทยาการคอมพิวเตอร์และเทคโนโลยี
สารสนเทศ

ปีการศึกษา 2558

ลายมือช่ือนิสิต

ลายมือช่ือ อ.ทีป่รึกษาหลัก

 v

ENGLISH ABSTRACT

5772608523 : MAJOR COMPUTER SCIENCE AND INFORMATION TECHNOLOGY
KEYWORDS: GUI;REGRESSION TESTING; FAILURE; RELIABILITY; TEST CASES

CHALITA SOMSORN: STOPPING CRITERIA FOR REGRESSION TESTING IN GUI
APPLICATION USING FAILURE INTENSITY AND FAILURE RELIABILITY. ADVISOR:
ASSOC. PROF. PERAPHON SOPHATSATHIT, Ph.D.{, 68 pp.

This research proposes some criteria for GUI regression testing to determine
the appropriate time to stop without wasting too much testing cost. This is essential
for all software upgrades that can be released in a reasonably short time, yet still
guarantees the product quality. One difficulty to achieve such a target depends on the
sequence of test cases being input. The order of the input test case input sequence
affects the number of failures found. As such, a test-stoppage model is proposed by
determining factors that affect software reliability and the expected cost of continuing
test. The procedure prioritizes the order of test cases into different sequences for the
regression test input. When a failure is found, it is immediately edited before the test
resumes. The test terminates when the failure intensity is within the predetermined
threshold and the expected cost does not exceed the allotted budget limit.

Performance of the proposed criteria encompasses three measures, namely,
failure intensity, cost of testing and editing, and reliability. Failure intensity is a function
of faults and fault detection rate. The costs are function of time spent on fixing errors.
The reliability function incorporates Weibull distribution to better reflect the test data.
The proposed model is tested using real GUI applications as test data. Performance
shows satisfactory results on stopping criteria.

Department: Mathematics and
Computer Science

Field of Study: Computer Science and
Information Technology

Academic Year: 2015

Student's Signature

Advisor's Signature

 vi

ACKNOWLEDGEMENTS

ACKNOWLEDGEMENTS

Though the following dissertation is an individual work but I would never
have been able to finish without the help, support, guidance and efforts from my
advisor, friends, and my family. Firstly, I would like to thank my advisor, Dr.
Peraphon Sophatsathit for his excellent guidance, caring, patience, and providing
me with an excellent atmosphere. Without your pearls of wisdom, it would have
been nearly impossible to finish this dissertation. It was favored that I had the
chance of being one of your students. I would like to thank my committee members
Dr. Chidchanok Lursinsap and Dr. Kriengkrai Porkaew for taking the time and effort
to read and examine my dissertation and for providing me with your inventive and
enriching comments. My very special thanks are for my parents whom I owe
everything I am today, my father and my mother, Bancha and Angelita G. Somsorn.
There is no single day that you would never support and encourage me with your
best wishes and your love. You both are the most wonderful things that ever
occurred in my life.

CONTENTS
 Page

THAI ABSTRACT .. iv

ENGLISH ABSTRACT .. v

ACKNOWLEDGEMENTS ... vi

CONTENTS .. vii

Chapter 1 Introduction ... 3

1.1. Introduction ... 3

1.2. Problem Statement ... 4

1.3. Expected Benefits .. 4

1.4. Scope of Research ... 4

1.5. Contributions ... 5

1.6. Research Plan ... 6

1.7. Document organization .. 6

Chapter 2 Literature Review .. 7

2.1 Regression Testing .. 7

2.1.1 Techniques based on textual differencing ... 7

2.1.2 Techniques based on program dependence graphs .. 7

2.2 GUI Testing ... 8

2.3 Fault seeding ... 8

2.4 Criteria for when to stop testing .. 9

Chapter 3 Research Methodology ... 12

3.1. Cost estimation .. 12

3.2. Reliability Models ... 13

 viii

 Page

3.3. Applying fault seeding .. 13

3.4. The proposed stopping criteria .. 15

3.5. Research Methodology ... 16

Chapter 4 Experiments and Results .. 18

4.1. JSyntaxPane .. 18

4.2. JExifViewer ... 24

4.3. Results of ... 31

REFERENCES ... 42

VITA ... 68

1

TABLE OF FIGURES
Figure 1: Research methodology .. 17

Figure 2: Example of JSyntaxPane invoked by NetBeans .. 18

Figure 3 Example code of initial fault ... 20

Figure 4 GUI of JSyntaxpane after running through NetBeans .. 21

Figure 5 Example of fault seeding (logic or boolean fault) ... 22

Figure 6: Example of JExifViewer invoked by NetBeans ... 24

Figure 7 Example of JaCoCo coverage ... 26

Figure 8 Establishing prioritzation sequence ... 26

Figure 9 Example of drawing tree diagram .. 28

Figure 10 Graph of number of failures in each sequence and m(t) of Jsyntaxpane 34

Figure 11 Graph of number of failure in each sequence and m(t) of JExifviewer 37

Figure 12 Graph of reliability comparison for JSyntaxpne and JExifviewer 39

file:///C:/Users/Chalita/Documents/MS%20DEGREE/Thesis/real%20proposal2/Thesis%20book/Final%20edit/Thesis%20Titl1.docx%23_Toc437518615
file:///C:/Users/Chalita/Documents/MS%20DEGREE/Thesis/real%20proposal2/Thesis%20book/Final%20edit/Thesis%20Titl1.docx%23_Toc437518618
file:///C:/Users/Chalita/Documents/MS%20DEGREE/Thesis/real%20proposal2/Thesis%20book/Final%20edit/Thesis%20Titl1.docx%23_Toc437518619

2

TABLE OF TABLES
Table 1 Research Plan .. 6

Table 2: Faults distribution for JSyntaxPane ... 23

Table 3: Faults distribution for JExifViewer.. 25

Table 4 JaCoCo coverage data used for test case prioritization technique 26

Table 5 Coverage statistic of JExifviewer test cases .. 29

Table 6: Test sequences for JExifViewer .. 30

Table 7: Experimental results of JSyntaxPane.. 33

Table 8: Experimental results of JExifViewer .. 36

Table 9 Comparative reliability with Weibull and without Weibull distribution............ 38

Table 10 Test cases for JSyntaxpane .. 44

Table 11 Test cases for JExifviewer ... 64

3

Chapter 1 Introduction

1.1. Introduction

Graphical user interface (GUI) is an important part of a software system. It
makes software applications easy to use by providing a front end that receives events
from users and interacting with the underlying application through messages or
method calls. Compared to traditional software systems, GUI applications have wider
range of user bases which increase the chance of encountering failures and repeated
requirement changes. This results in frequent code modifications that may introduce
new faults which lead to new failures in already tested application. Nonetheless, it is
imperative that testing for their correctness be essential to ensure safety, robustness,
and usability of the software. The process of testing a software system after changes
has two main parts: (1) regression testing for ensuring that the modifications have not
affected existing software functionalities, and (2) non-regression testing which make
sure that new functionalities are implemented correctly.

The nature of GUI applications poses unique challenges for regression
testing. Firstly, because GUI inputs and outputs depend on the graphical layout of
components, the expected results of existing test cases may become obsolete when
there are changes in input-output mapping. Secondly, in addition to technical
understanding, GUI application testers is required to understand the normal mode of
operation in order to produce failures that are not expected by the developer team.
Lastly, detecting frequent code modifications and adapting the old test cases to them
or create new ones demand efficient testing mechanisms.

From the business perspective, releasing software quickly has the benefits
of an earlier market introduction. However, hurriedness of releasing may lead to
insufficient testing time and inadequate software quality. The software quality depends
on many factors, such as the intricacy of the requirements, the complexity of the code,
the level of reliability that needs to be reached, and the target release date of the
software. An exhaustive testing, while providing the best software quality, requires too
much time, cost, and effort that can cause loss effect. Therefore, determining the

4

appropriate time to stop testing is important for maximizing the profits from early
software release and reducing the risks of inadequate software quality.

In this work, a new method to assess when regression testing should be
stopped is proposed. By measuring estimated failure intensity and participating test
cases in many sequences, test effect when failures are detected from the test cases
will appear. In this study, each sequence contains many test iterations. The number
of iterations depends on the number of failures. Statistics are collected, namely,
failure intensity and cumulative average failure to determine the reliability of test
results. Details will be discussed in the section that follows.
1.2. Problem Statement

Given a GUI application, this research focuses on the following problems:
1) Determine the trial-and-error threshold limits on the number of regression

test iterations and test expenditure to ensure acceptable regression test

outcome.

2) Determine the appropriate stopping criteria of the regression testing for

GUI-based applications, provided that the test runs must not exceed the

predefined threshold limits.

1.3. Expected Benefits

The following benefits are expected from this research:
1) Decrease the costs, especially cost of editing and testing.

2) Save testing time.

3) Decrease the risk of releasing software with poor quality.

1.4. Scope of Research

This research will limit the scope to the followings:
1) Testing will be done on GUI in JAVA language to maintain compatibility

with Netbeans IDE 8.0.2.

2) The size of source file is less than 6,000 LOC.

5

3) The thresholds of testing are limited to:

3.1. The proposed method will employ JAVA GUI applications, namely,

JSyntaxPane and JExifViewer.

3.2. The number of test sequences for each test iteration is 3.

3.3. Testing cost ≤ $600 [1].

4) Fault seeding is placed based on the technique recommended by fault

distribution of bug taxonomy [1]. Select faults that have the most

dispersion value as shown in Table 1.

1.5. Contributions

The main contributions of this research include:
1) Stopping criteria for GUI regression testing.

2) Formula for computing software reliability threshold.

6

1.6. Research Plan

Table 1 depicts the research plan and its corresponding schedule.

Table 1 Research Plan

1.7. Document organization

This document is organized as follows. Chapter 2 reviews some related
work. The proposed methodology is described in Chapter 3. Chapter 4 shows the
experiment and the results so obtained. Some concluding remarks and future work
are given in Chapter 5.

Step description 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 Research
problem
identification

2 Literature review

3 Establish
research
methodology

4 Choose program
under test

5 Perform the
experiment

6 Analyze
experimental
results

7 Prepare draft
for conference
paper

8 Thesis write-up

7

Chapter 2 Literature Review

There are three issues that involve with this work: regression testing, GUI
Testing, and criteria for when to stop testing.
2.1 Regression Testing

Regression testing focuses mainly on testing to ensure that modifications
of the previous version of the application do not alter existing software
functionalities. Normally, regression testing is done by rerunning old test cases. As
the software system grows, the number of test cases increases tremendously. Of
these test cases, only a fraction is relevant to the modifications. To save time and
resources, test case selection must be employed to select only the test cases that
are pertinent to the modifications. Many techniques have been proposed in the
literature based on methods such as textual differencing, dataflow analysis, etc. A
detailed list of regression test selection techniques can be found in Biswas, et al [2].
A few related techniques are discussed in the following subsections.

2.1.1 Techniques based on textual differencing
Techniques based on textual differencing in the easiest form directly

compare two versions of the program under test – original and modified versions –
including irrelevant differences such as comments, styles, and formatting. To avoid
these extraneous differences, the code is first transformed into their respective
canonical form before comparing [3, 4] to guarantee that the same syntactic and
formatting guidelines are applied to the original and the modified versions. The
canonical form of original version is instrumented and then executed to produce test
coverage information. Code modifications are located by syntactically comparing the
canonical forms of original and modified versions. Relevant test cases that exercise
the altered code are identified by using test coverage information. In this research,
this technique is not applicable to the GUI testing.

2.1.2 Techniques based on program dependence graphs
For object-oriented programming, the original and the modified versions

of the program can be modelled by constructing Program Dependence Graph (PDG)

8

for the application program and the derived classes [5, 6]. The advantage of using
PDG is that it models control dependence and data dependence in one graph. To
select the tests, information pertaining to test history in terms of PDG predicates and
regions traversed in the original version is used. This PDGs information is then
compared with that of the modified version to uncover the regions from which
different results may occur. However, the PDG technique is not very efficient in a
large system due to considerable overhead during program dependence analysis.
2.2 GUI Testing

There are several works relating to GUI regression testing. White [7]
proposed a method using Latin Square to perform automated regression test
generation to handle GUI static and dynamic event interactions. A method based on
function diagram proposed by Hui, et al. [8] could improve the efficiency of object–
oriented software. Their method compared software function diagram of the
previous version with the modified version to determine which test cases should be
used. Memon, et al. [9] used GUI control flow graph (G-CFG) and GUI call-graph to
represent the event behavior and the invoking behavior of components. The original
and modified GUI representations were compared to detect obsolete test cases and
modified accordingly so that these test cases could be reused. However, constructing
G-CFG of the application under test could be time-consuming for large applications
and therefore was not very practical in some cases. Instead of G-CFG, Falah, et al.
[10] proposed Event Interaction Graph (EIG) to identify infeasible and unusable test
cases. The edges of the EIG that were not covered by the usable test cases were
used to generate new test cases to achieve edge coverage.
2.3 Fault seeding

Fault seeding [11, 12] is one of software testing techniques that inserts
faults as a controlled variable in the program under test. It is based on planting errors
with a robustly human knowledge of the programming language and nature of the
system to be seeded. This technique relies on the assumption that if known and
controlled number of seeded faults are inserted and measured the proportion of these
faults discovered by the test process, that proportion could be used to predict the

9

number of real (non-seeded) faults yet to be exposed. Properly used, fault insertion
can give an insight as to where testing should be concentrated and how much testing
should be done. For fault-seeding purposes, faults should be “representative” of
naturally-occurring faults; otherwise, any results obtained from the seeded faults may
to be inaccurate or biased.
2.4 Criteria for when to stop testing

The question of when to stop testing involves many factors. Some of
them are related to economic reasons, such as the cost of continued testing and the
expected losses due to faults that remain in the modified program. Others depend
on the quality of the software system, such as fault detection rate, mean time
between failures (MTBF), the complexity and difficulty of the system, and the
severity of failures that may occur.

One way to determine the appropriate stoppage is by quantifying the
reliability of a software system. This leads to the development of models collectively
known as Software Reliability Models (SRMs). These models try to estimate system
reliability by fitting a theoretical distribution to failure data and use it to design stopping
criteria of testing.
The followings assumptions are used in software reliability modeling [8, 9]

1) The software system is subject to failures at random times caused by the

manifestation of remaining faults in the system.

2) The total number of faults at the beginning of testing is finite and the

failures caused by it are also finite.

3) The mean number of expected failures in the time interval (,]t t t is

proportional to the mean number of remaining faults in the system. It is

equal likely that a fault will generate more than one failure and a failure

may be caused by a series of dependent faults.

4) Each time a failure occurs, the fault that caused it is perfectly removed

and no new faults are introduced.

From the above assumptions , the following parameters are defined :

10

 m t is the expected number of software failures at time t ,
r is the failure detection rate per remaining fault,
a is the expected number of initial faults,
α is the quantified ratio of faults to failures, and

 λ t is the failure intensity function.
The expected number of failure found from the start of the test until

time t can be calculated from m t .The number of remaining failures in
assumption 3 can then be determined by subtracting the expected number of failure
found at the time from the number of initial faults, yielding a m t . Using r as
the proportionality constant in assumption 3, the following relationships can be
derived:

dm t
r a m t

dt
 (1)

which, by solving under boundary condition m 0 0 , leads to

 1 exp
a

m t r t

 (2)

Since t is defined as the derivative of m t with respect to t, t becomes
 expt ar r t (3)
Software reliability can be defined as follows [13]:

 | expR t t m t t m t (4)

where 0t , 0t . The function | R t t represents the probability that a software
failure doesn’t occur during the time interval , t t t .

During testing the software, it is often assumed that fault correction
process does not introduce any new faults and software reliability increases as faults
are uncovered and fixed. Unfortunately, in practice, it is difficult to meet the
assumptions of the above ideal case.

Lin and Huang [14] proposed using λ t and |R t t as stopping
criteria by calculating the time needed for the software to meet failure intensity
objective and acceptable reliability as follows. If the failure intensity objective is 0F ,
and 1T which is the time to meet the desired failure intensity satisfying 1 0()T F can
be determined from

11

0

1

ln
F

ar
T

r

 (5)

If the acceptable reliability 0R is given, 2T which is the time to meet the desired
reliability satisfying 2(|) 0R t T can be obtained from

0

2

1 exp
ln

ln

a r t

R
T

r

 (6)

The above Equation (1) - (6) were taken mostly from reliability theory and set up to
be adopted by the proposed methodology in the next chapter.

12

Chapter 3 Research Methodology

In this research, a model to determine a set of stopping test criteria in
order to guarantee software application reliability is proposed. Several factors
affecting software reliability are considered, namely, number of faults, number of
failures, testing time, editing time, fault detection rate (FDR), failure intensity, testing
cost, editing cost, and reliability. A concise description of each factor is given below.
A fault is defined as a mistake in the software application, and a failure occurs when
the application does not comply with the specifications due to a fault or
combination of faults. Testing time is the time the test team needs to execute the
previously planned test cases. Editing time is the time the developer team needs to
edit the software application. Failure intensity is the number of failures divided by
testing time. Fault detection rate is the number of faults divided by the sum of
testing time and editing time. Testing cost and editing cost are estimated from testing
time and editing time using average salary given in [1].
3.1. Cost estimation

As test process may continue when all test executions are closed to
satisfying the predetermined conditions, the expense escalates. One way to stop the
infinitesimal on-going test is setting a limit for test costs. This limit is not known in
advance. A probable solution is by estimating the expected cost incurred during such
indefinite repetitions. The estimation can be performed based on various parameters
used in most of the related work. The equation proceeds as follows.

 testing t editing eExpected Cost C T C T (7)
where tT is the expected testing time estimated from the failure intensity function

 t of equation (3) and the failure intensity objective 0F , which is set to 0.01 in this
study, Ctesting and Cediting are cost of testing and editing, respectively, and Te is the
expected editing time estimated from expected number of remaining faults divided by
the editing speed of the previous iteration. Finding t T such that t tp 0 T T F

yields

13

0ln

t tp

F

ar
T T

r

. (8)

where
tpT is the summation of actual testing time of the previous iterations, and eT

can be computed by the following equation:

e

previous

remaining faults
T

v
 (9)

3.2. Reliability Models

The reliability function [13] is modified to use stretched exponential
function known as the complementary cumulative Weibull distribution [15]. Because
of its versatile ability to take on the characteristics of other distributions, Weibull
distribution has become one of the most widely used distributions in reliability
engineering. The distribution characteristics depend on the value of the parameters.
Here, the 2-parameter Weibull being used are the shape parameter and the scale
parameter . Thus, the modified reliability function becomes

 | expR t t m t t m t

 (10)

where 0 and 0 . In this study, the proper value obtained from preliminary
experiment are 0.75 and 0.1 .

3.3. Applying fault seeding

Fault seeding technique was carefully distributed in the regression test
process based on Bug taxonomy [16]. The advantage is that seeder could be directed
to seed some precise kind of faults, and would be able to classify faults once
seeded and checked for any gap in the coverage. Second, a seeder could generate
the same kind of errors not as an automated task, but considering different context
in which same type of errors could lead to different results; and finally, a seeder
could assure the selection of all kind of errors by classifying them and weeding out
the excesses, then granting error representativeness.

14

Seeded faults are injected into production software as follows.
1) Run all test case and collect coverage data.

2) Sort the classes in the production software in decreasing order of coverage

percentage.

3) Choose 5 classes with the most coverage percentage.

4) Add seeded fault which have distribution from bug taxonomy [16] into the

chosen classes by scattering the fault from ratio of coverage percentage

and size of class (in LOC).

15

3.4. The proposed stopping criteria

The stopping criteria are set up as follows:

The threshold values for reliability are computed from Eq.10 using the

expected number of initial faults in the program under test. Suppose there are 0f
faults in the production software, 1R and 2R can be defined as follows:

 1 0exp 0.03 0.0004R f LOC

 (11)

and

 02 exp 0.06 0.00075R f LOC

 (12)

The constants used in the above equations were determined from
production software in a preliminary test.

1) If failure intensity t is less than or equal to cumulative average failure intensity in current iteration,

then consider the total cost of editing and testing as follows:

a) If the cumulative costs in current iteration plus the expected cost of the next iteration are less than

or equal to threshold cost, determine reliability R(t) as the stopping criterion

i) If R t | t is greater than or equal to 1R , stop;

ii) If R t | t is less than 1R , continue testing; or

b) If the cumulative costs in current iteration plus the expected cost of the next iteration are greater

than threshold cost, determine reliability R(t) as the stopping criterion

i) If is greater than or equal to 2R , stop;

ii) If is less than 2R , continue testing.

2) If failure intensity t is greater than cumulative average failure intensity in current iteration,

a) If the cumulative cost is less than or equal to threshold cost, continue testing; or

b) If the cumulative cost is greater than threshold cost, determine reliability R(t) as the stopping criterion

i) If is greater than or equal to , stop;

ii) If is less than , continue testing.

 R t | t

 R t | t

 R t | t 2R

 R t | t 2R

16

3.5. Research Methodology

The research methodology is shown in Figure 1. The process starts from
production software. It is used in a preliminary test to decide the threshold limit of
initial total cost and software reliability. Test code is added to make it an enhanced
version. Seeded faults are injected which will be tested by selected data set and test
cases. The selection process considers how each GUI function of the software works.
A set of test cases is then created based on the guidelines in [16] to comply with the
software function. Since execution sequence of the test cases affects the occurrence
of faults and failures, all test cases will be organized into many sequences of tests in
different orders. Some test case prioritization techniques from [17, 18] are employed.

1) Prioritize in order of coverage of statements: measure statement coverage

in a program under test by instrumenting the program. Test cases are

prioritized by sorting the total number of coverage statements in

decreasing order.

2) Prioritize in order of coverage of branches: Same as 1 above, but use the

number of decisions (branches) in the program that are exercised by each

test case.

3) Prioritize in order of coverage of functions: Same as 1 above, but use the

number of functions that are executed by each test case.

These 3 prioritization techniques were chosen of their performance in
terms of average percentage faults detected (APFD), while not introducing too much
complexity and overhead in the prioritization process. Detailed comparisons of
various test case prioritization techniques can be found in [17, 18].

The actual regression test proceeds as follows. Starting with the first
sequence, the first test case is executed. If a fault occurs, the corresponding faulty
code is fixed. The second test case is then executed. This process repeats until all
test cases in the first sequence are exhausted. The first regression test iteration is said
to finish. Meanwhile, test statistics are collected to analyze if the test stopping

17

criteria are met and the entire process terminates. Otherwise, the test continues on
next iteration.

Figure 1: Research methodology

18

Chapter 4 Experiments and Results

The proposed method was tested with two open-source GUI applications
named JSyntaxPane [9] and JExifViewer [19]. JSyntaxpane was set up to run
randomized test sequence, while JExifviewer employed prioritized the test
sequences in order to measure how different input test sequences affected the
outcome. The set up will be described subsequently. Fault seeding was performed
to initialize the test process and the regression test began as described earlier. The
test toolset and their environment were NetBeans IDE 8.0.2 [9] running on Windows7
64-bit operating system with Intel(R) Core(TM) i7-3520M CPU and 8.00 GB RAM. Code
coverage was measured using JaCoCo [20] plugin for NetBeans, which is a free code
coverage library for Java.
4.1. JSyntaxPane

JSyntaxPane is a sub-class of Java jEditorPane with added support for
syntax highlighting of 22 file types. Each file type has its own lexical analyzer to serve
different functionalities. Additional functionalities can also be added. This application
consists of 99 classes of size approximately 3,550 lines of code.

Figure 2: Example of JSyntaxPane invoked by NetBeans

19

The version of JSyntaxPane used in the experiment contained two types
of faults, namely, initial faults and seeded faults. An initial fault is an unintended
fault that exists in the application before enhancement. Bug reports provided in the
application project page and selected test cases were employed to uncover the
initial faults. The following sample statements contain some of the initial faults
shown in Figure 3.

20

Figure 3 Example code of initial fault

As shown in this figure, this production code will not perform toggle
comment function as it is supposed to after running through NetBeans. This is shown
in Figure 4 where the highlighted code on line 16 is not commented out due to the
initial fault.

21

Figure 4 GUI of JSyntaxpane after running through NetBeans

22

Seeded faults were added during test execution according to the average fault
distribution of the software systems provided in [1].
Seeded faults are injected into production software as follows.

1. Run all test cases and collect coverage data. Using JaCoCo coverage to

record percentage of data which being covered in each test case and each

class of the production software.

2. Sort the classes in the production software from largest to smallest in

decreasing order of coverage percentage to obtain the sequence of classes.

3. Choose 5 classes with the most coverage percentages.

4. Add the seeded faults according to the distribution from bug taxonomy

[16] into the chosen classes by scattering the faults based on ratio of

coverage percentage and size of class (in LOC).

Here are sample seeded faults being injected into the test code which shown in
Figure 5 .

The type of seeded faults which are shown in this figure is either logic or
boolean faults. This fault in turn causes failure which appears in find and replace
function#4 (test case No.9 in JSyntaxpane of the appendix). There were 21 and 19
lines of code that contained initial faults and seeded faults, respectively. The total
40 faults produced 37 failures in the application. Table 2 summarizes the types of
faults in the experiment.

Figure 5 Example of fault seeding (logic or boolean fault)

23

Table 2: Faults distribution for JSyntaxPane

Type of faults
#lines

Initial faults Seeded faults

FUNCTIONALITY AS IMPLEMENTED
Feature misunderstood, wrong 9

Feature interactions 4

Missing feature 8

STRUCTURAL BUGS

Control logic and predicates 2

Loops and iterations 1

Arithmetic expressions 2

Logic or Boolean, not control 1

Initialization 1

Other processing 6
DATA

Other data definition, structure, declaration bugs 1

Value 2

Wrong object accessed 1

Other access and handling 2

Total 21 19

 Total #lines 40

24

4.2. JExifViewer

 JExifViewer is a Java program for displaying and comparing Exif
information stored in JPEG files created by digital cameras. This program also has an
image viewer which can rotate and/or flip, zoom in/out the selected image, and
other basic file operations such as rename, copy, move, and delete images. This
application consists of 210 classes of size approximately 5,256 lines of code.

Figure 6: Example of JExifViewer invoked by NetBeans
For JExifViewer, there were total of 16 faults which caused 9 failures during

execution. Table 3 summarizes each types of faults in the experiment.

25

Table 3: Faults distribution for JExifViewer

Type of faults
#lines

Initial faults Seeded faults
FUNCTIONALITY AS IMPLEMENTED

Missing feature 7

STRUCTURAL BUGS
Control logic and predicates 5

Arithmetic expressions 1 1

DATA

Value 2

Total 1 15

Total
#lines

16

Coverage criteria were measured using JaCoCo[20]. When running
Jexifviewer through NetBeans IDE by the function ‘run with JaCoCo coverage’, JaCoCo
would instrument the code in Jexifviewer to measure several coverage criteria, namely,
instructions, branches, cycromatic complexity, lines of code, methods, and classes.
The coverage criteria used for each prioritization technique are shown in Table 4

26

Table 4 JaCoCo coverage data used for test case prioritization technique
Techniques Data column

Prioritize in order of coverage of
statements:

Instructions

Prioritize in order of coverage of
branches:

Branches

Prioritize in order of coverage of
functions:

Methods

The results are shown as HTML files in Figure 7.

Figure 7 Example of JaCoCo coverage

Test case prioritization proceeded as shown in Figure 8. Each test case is

executed in Netbeans one at a time. The coverage results obtained from JaCoCo are
then recorded. When all test case are exhausted, the test sequence for each
prioritization technique is determined by ordering the corresponding coverage data of
each test case according to the criteria in Table 4

27

Draw a flow

diagram
representing

the GUI
function of

production s/w

Create the test
cases from diagram Test cases

Run all test cases
through NetBeans

with JaCoCo

Sort coverage
percentage data
(in descending

order)

Add seeded faults

Choose 5 largest
coverage classes

Record coverage
percentage

Sort coverage percentage
data by instruction,

brunches,

Get 3 prioritization
sequences

Figure 8 Establishing prioritization sequence

28

From Figure 8, a flow diagram representing the GUI function of
production software is drawn as shown in Figure 9. Then, test cases are created and
run through NetBeans with JaCoCo coverage. Record the coverage percentage data of
each class and sort in descending order to find the 5 largest coverage percentage
classes. Add seeded faults into these clasess. Run all test cases and record the
coverage percentage data of these 5 classes for each test case as shown in Table 5.
Sort the covergae percentage data by branches, instructions, and methods. Run all
test cases based on the prioritization sequences as shown in Table 5.

Figure 9 Example of drawing tree diagram

Image Zoom Scale up

29

Table 5 Coverage statistic of JExifviewer test cases

30

Table 6: Test sequences for JExifViewer

TestCaseNo.

Prioritize in order of
coverage of
statements

Prioritize in order of
coverage of branches

Prioritize in order of
coverage of functions

1 5 5 15
2 4 4 7
3 15 7 4
4 7 15 5
5 10 6 2
6 6 2 6
7 16 16 16
8 14 14 14
9 17 10 10
10 18 17 17
11 8 8 18
12 9 18 19
13 19 9 8
14 3 19 9
15 2 3 3
16 1 1 1
17 11 11 11
18 12 12 12
19 13 13 13

31

4.3. Results of

The results of JSyntaxPane are shown in Table 7. The expected testing
time, expected editing time, and expected cost of each iteration are computed
from previous iteration using equation (5). The cost is estimated in dollars ($) using
average salary given in [8]. The variables #rem, #faults, and #fails denote number
of remaining faults at the beginning of each iteration, number of faults that have
been corrected, and number of failures that have occurred in each iteration,
respectively. α is the ratio of cumulative number of faults in each sequence to
cumulative number of failures in that sequence. r is the failure detection rate per
remaining faults. FDR is fault detection rate which is the number of faults per minute.
Failure intensity is the number of failures per minute of testing time. λ t is the
expected failure intensity calculated from equation (3). avgλ t is the average of

 t from the start of each sequence. m t and m t t is the expected
number of failures used to calculate the reliability R t by means of equation (8),
where t is set to one year time period.

It can be seen that the expected testing time and expected editing time
tend to overestimate the actual testing time and actual editing time. At any rate,

both the expected and actual time tend to go in the same direction. The

calculated in each iteration is used to estimate the actual , which turned out to be
1.081. Meanwhile, (t) gives a projection of how future failure intensity will behave. As
the number of faults decreases in each iteration, the reliability increases. Note that
the final value of reliability in each sequence is not equal to one another. This is
because the sequence of test cases affects the number of test iterations, the
number of uncovered faults, and failures in each iteration, all of which affect the
value of reliability.

Substituting the number of initial faults and lines of code into Eq. 11 and
12 yields R1 = 0.84361 and R2 = 0.75827.
In the first sequence, (t) of the first iteration was equal to (t) avg. The summation of
actual cost in first iteration and expected cost of second iteration was greater than

32

threshold cost which was set as $600. The value of reliability was greater than R2, so
the first sequence could be stopped in this iteration.

In the second sequence, the test continued until the third iteration in
which no failure occurred and (t) was less than (t) avg. The expected testing time,
editing time, and expected cost could not be calculated due to division by 0. So the
summation of actual cost of the first iteration to third iteration did not exceed $600.
Since the reliability was greater than R1, the second sequence could be stopped at
its third iteration.

In the third sequence, the test continued in the second iteration where
(t) was less than (t) avg , the expected cost was less than threshold cost and the
reliability value was greater than R1, the sequence stopped in the second iteration.

33

Table 7: Experimental results of JSyntaxPane

Te
st

se

q.

Re
v.

Ex
pe

ct
ed

te

st
in

g
tim

e
(m

in
)

Ex
pe

ct
ed

ed

iti
ng

tim

e
(m

in
)

Ex
pe

ct
ed

 c
os

t
($

)

Ac
tu

al

te
st

in
g

tim
e

(m
in

)

Ac
tu

al

ed
iti

ng

tim
e

(m
in

)

Ac
tu

al

co
st

 ($
) #r

em
.

fa
ul

ts

#f
au

lts

#f
ail

s

r

FD
R

Fa
ilu

re

in
te

ns
ity

(t)

(t)

av
g

m
(t)

m

(t+

t)

Re
lia

bi
lit

y

1
1

N/
A

N/
A

N/
A

23
.94

46

5.8
2

38
7.2

9
40

20

9

2.2
2

0.0
09

4
0.0

41

0.3
76

0.2

28

0.2
28

7.0

8
18

.00

0.6
4

2

14
0.4

5
46

5.8
2

46
1.7

3
44

.14

17
4.2

3
16

7.3
4

20

12

4
2.4

6
0.0

04
5

0.0
55

0.0

91

0.0
55

0.0

86

3.1
6

8.1
3

0.7
8

3

11
5.4

7
11

6.1
5

16
6.5

3
23

.91

79
.84

79

.03

8
6

1
2.7

1
0.0

05
2

0.0
58

0.0

42

0.0
3

0.0
59

0.8

5
2.9

5
0.8

7

4

3.1
5

26
.61

23

.27

21
.23

0.0

0
13

.56

2
0

0
2.7

1
0

0
0

0
0.0

48

0.0
0

0.0
0

1.0
0

5

N/
A

N/
A

N/
A

2
1

N/
A

N/
A

N/
A

39
.76

37

0.0
2

32
0.9

0
40

26

11

2.3

6
0.0

06
9

0.0
63

0.2

77

0.1
44

0.1

44

8.0
9

16
.92

0.7

0

2

13
8.8

8
19

9.2
4

24
7.8

4
27

.44

79
.84

81

.29

14

6
2

2.4
6

0.0
05

2
0.0

56

0.0
73

0.0

51

0.0
87

1.6

9
5.6

9
0.8

0

3

11
1.3

3
10

6.4
5

15
6.1

4
25

.95

45
.34

52

.78

8
0

0
2.4

6
0

0
0

0
0.0

63

0.0
0

0.0
0

1.0
0

4

N/
A

N/
A

N/
A

3
1

N/
A

N/
A

N/
A

28
.34

22

6.4
8

19
8.9

7
40

27

9

3.0
0

0.0
07

9
0.1

06

0.3
18

0.1

62

0.1
62

6.5

4
13

.33

0.7
5

2

98
.00

10

9.0
5

14
9.6

9
20

.91

90
.10

85

.31

13

7
5

2.4
3

0.0
18

4
0.0

63

0.2
39

0.0

94

0.1
21

3.2

5
5.3

5
0.9

0

3

53
.76

77

.23

96
.02

21

.43

0.0
0

13
.69

6

0
0

2.4
3

0
0

0
0

0.0
85

0.0

0
0.0

0
1.0

0

4

N/
A

N/
A

N/
A

34

Figure 10 Graph of number of failures in each sequence and m(t) of Jsyntaxpane

Figure 10 plots the number of failures found for each test sequence and

the expected number of failures predicted by m(t). It can be seen that the order of
the test cases affected the rate at which failures were found. m(t) gives the
theoretical projection of the number of failures found. The results from Sequence1
and Sequence 3 are fairly close to m(t), whereas Sequence 2 is not as closed. It
shows that m(t) performs quite well for 2 out of 3 randomized sequences.

0

2

4

6

8

10

12

14

16

18

0.00 1000.00 2000.00 3000.00 4000.00 5000.00 6000.00 7000.00

Sequence 1

Sequence 2

Sequence 3

35

Table 8 shows the results of JExifViewer. The column name uses the
same convention as Table 7. The results followed the same trends as JSyntaxPane.

In this case, turned out to be 1.78 and R1 = 0.8382 and R2 = 0.7536. The input test
sequence prioritization was performed according to test coverage technique in
Table 4.

In the first sequence (prioritize in order of coverage of instructions), (t) of

the first iteration was equal to (t) avg and the summation of actual cost in first

iteration and the expected cost of second iteration did not exceed the threshold

cost of $600. Since the value of reliability was greater than R1, the first sequence

could be stopped in this iteration.

In the second sequence (prioritize in order of coverage of branches), the
test continued until the second iteration in which no failure occurred and (t) was
less than (t) avg. The expected testing time, editing time, and expected cost could
not be calculated due to division by 0. So the summation of actual cost of the first
iteration did not exceed $600. The value of reliability was greater than R1. So the
second sequence could be stopped at its third iteration.
In the third sequence (prioritize in order of coverage of functions), the test continued
on the second iteration where (t) was less than (t) avg. The expected cost was less
than the threshold cost and reliability was greater than R1. So it could be stopped in
the second iteration.

Compared with randomization in JSyntaxPane, test case prioritization in
JExifViewer helped lower the cost of testing and editing. Because similar functions
tended to have a nearer coverage, they were more likely to be edited
uninterruptedly. If editing other functions affected previous test case, it wouldn’t be
found until the next iteration.

36

Table 8: Experimental results of JExifViewer

Test Sq

Rev

Expected testing
time

Expected editing

time

Expected cost

Actual testing

time(min)

Actual editing

time(min)

Actual cost($)

#remaining
faults(LOC)

#faults(LOC)

#failures

Alpha

r

r avg

FDR(LOC)

Failure intensity

m(t)

m(t+Dt)

Lamda

Lamda average

Reliability

1
1

N/
A

N/
A

N/
A

9.
42

10

0.
30

86

.1
2

16

8
7

1.
14

0.

04
65

0.

04
6

0.
07

3
0.

74
3

5.
51

14

.0

0.
4

0.
45

0.

69

2

68
.0

91

10
0.

30

12
3.

60

4.
83

58

.4
2

49
.7

4
8

5
2

1.
44

0.

05
17

0.

03
9

0.
07

9
0.

41
3

1.
68

5.

54

0.
2

0.
28

0.

80

3

36
.6

99

35
.0

5
51

.4
4

4.
12

0.

00

2.
63

3

0
0

1.
44

0

0.
03

0
0

0
0.

00

0.
00

0

0.
21

1

4

#D
IV

/0
!

#D
IV

/0
!

#D
IV

/0

2
1

N/
A

N/
A

N/
A

4.
66

6
86

.0
7

71
.7

1
16

13

6

2.
17

0.

08
04

0.

08
0

0.
14

3
1.

28
5

4.
10

7.

38

0.
5

0.
57

0.

85

2

18
.2

79

19
.8

6
27

.5
39

4.

58
3

0
2.

92

3
0

0
2.

17

0
0.

04
0

0
0

0
0

0
0.

28

1

3

#D
IV

/0
!

#D
IV

/0
!

#D
IV

/0
!

3
1

N/
A

N/
A

N/
A

5.
11

6
71

.2
9

60
.2

0
16

10

8

1.
25

0.

09
77

0.

09
7

0.
13

1
1.

56
3

5.
94

12

.8

0.
8

0.
83

0.

74

2

33
.3

30

42
.7

7
55

.4
52

3.

91
6

23
.0

3
20

.8
9

6
1

1
1.

22

0.
04

26

0.
06

2
0.

03
7

0.
25

5
0.

90

4.
91

0.

2
0.

50

0.
78

3

58
.7

89

11
5.

15

12
9.

51

4.
05

0

2.
58

7
5

0
0

1.
22

0

0.
04

3
0

0
0

0
0

0.
34

1

4

#D
IV

/0
!

#D
IV

/0
!

#D
IV

/0
!

Figure 11 Graph of number of failure in each sequence and m(t) of JExifviewer

Figure 11 shows the trend of failure discovery of JExifviewer using each
prioritization technique. All techniques behave in the same trend but keep difference
failure detection rate (r). From the graph, the expected software failure at time t or
m(t) was able to predict the number of failures found rather well, especially from
sequence 1 which was very close to the result. Compared with JSyntaxpane which
randomized the test sequences, the use of test case prioritization in JExifviewer
resulted in less testing time and editing time by almost five folds. Between the 3
prioritization arrangements, prioritization by function achieve the best result of both
uncovered failure and testing and editing time.

38

Table 9 Comparative reliability with Weibull and without Weibull distribution

Table 9 shows reliability values of both applications when computed

with and without Weibull distribution (Equation 10 and Equation 4, respectively). The

former is proposed technique, whereas the latter is a comparative existing technique

[14]. It can be seen from the comparison that the reliability with Weibull distribution

is applicably suitable for the stopping criteria. The initial value of reliability in the first

iteration w/Weibull is higher than that of the w/o Weibull.

Figure 12 summarizes graphical comparisons of both tests. From the

graph, the values computed by Weibull distribution increase in a more stable rate

than those without Weibull whose increment goes up drastically in the final

distribution.

Test sequence Revision Reliability

JSyntaxPane JExifViewer

 w/o Weibull w/ Weibull w/o Weibull w/ Weibull

1 1 1.81E-05 0.644206 0.000205 0.694755

 2 0.00697 0.783253 0.021073 0.807712

 3 0.122536 0.872341 1 1

 4 1 1

2 1 0.000146 0.701349 0.037745 0.852629

 2 0.018292 0.802263 1 1

 3 1 1

3 1 0.001126 0.749327 0.001058 0.743925

 2 0.122034 0.895928 0.018236 0.788964

 3 1 1 1 1

39

Figure 12 Graph of reliability comparison for JSyntaxpne and JExifviewer

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5 3 3.5

JExifviewer reliability

Seq1 w/o Weibull Seq1 w/ Weibull Seq2 w/o Weibull

Seq2 w/ Weibull Seq3 w/o Weibull Seq3 w/ Weibull

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

JSyntaxpane reliability

Seq1 w/o Weibull Seq1 w/ Weibull Seq2 w/o Weibull

Seq2 w/ Weibull Seq3 w/o Weibull Seq3 w/ Weibull

40

Chapter 5 Discussion and Conclusion
5.1. Discussion

This research proposed the stopping criteria for GUI application regression
testing. Software reliability model was used to determine the appropriate time to
stop. An equation to estimate the cost of testing and editing was proposed by using
SRM to calculate the expected testing and editing time. Weibull distribution was
integrated into reliability function for flexibility purpose. Stopping criteria involved 3
factors computed from test statistics, namely, failure intensity, cost of editing and
testing, and reliability. The proposed methodology was successful in controlling test
process to stop earlier than it normally should buy virtue of the 3 combined factors
of stopping criteria. The rationale was straightforward in that as failure intensity
decreased owing to spontaneous bug fixes, reliability increased. On the contrary, if
erroneous situation dragged on, test cost escalated. Upon reaching the proposed
costing limit, test process terminated. In either case, the approach could practically
be tailored to work in production environment. One validity measure was resulted
from threshold cost figure, which was derived from non- authoritative source of
salary. Nonetheless, the issue was relatively minor.

Test cases were organized into test sequences using randomization and
prioritization based on 3 coverage measures, i.e., statements, branches, and
functions. The 3 prioritization techniques chosen in this research are the most
suitable in terms of fault detection without adding too much complexity. However,
they may not be the best technique to uncover all the faults as the results
depended largely on the input test sequence. This fact was apparent in the resulting
experiment.

The proposed methodology was tested using 2 GUI applications.
Constants and thresholds used in the equations were calculated in a preliminary test
using production software. The results show that the stopping criteria are suitable for
determining appropriate time to stop regression testing and can help lower both
time and cost of testing and editing which is beneficial from business perspective.
One many contend that GUI testing in many cases is dependent on the application

41

set up, system requirements, domain of applicability, etc. Thus, test results could
vary inconsistently which might lead to inconclusive outcome.

5.2. Conclusion

This research proposes a practical stopping criteria for GUI regression
testing. The ultimate objective is to end the test process faster than running the test
normally, thereby saving considerable time and costs, yet still preserving test
outcome reliability. The approach exploits 3 factors of test process, while organizes
the input test cases in two different scenarios. Test coverage is set up to measure
the impact of input sequence. And findings turn out satisfactorily.

Future works include optimizing regression test techniques to achieve minimal cost

and finding more efficient test sequence generation.

42

REFERENCES

1. Software Engineer I Salary. Salary.com.
2. Biswas, S., et al., Regression test selection techniques: A survey. Informatica: An

International Journal of Computing and Informatics, 2011. 35: p. 289–321.
3. Vokolos, F.I. and P.G. Frankl, Pythia: A regression test selection tool based on

textual differencing, in Reliability, Quality and Safety of Software-Intensive
Systems, D. Gritzalis, Editor. 1997, Springer US. p. 3-21.

4. Vokolos, F.I. and P.G. Frankl. Empirical evaluation of the textual differencing
regression testing technique. in, International Conference on Software
Maintenance, 1998. Proceedings. 1998.

5. Rothermel, G. and M.J. Harrold. Selecting regression tests for object-oriented
software. in Software Maintenance, 1994. Proceedings., International
Conference on. 1994.

6. Rothermel, G. and M.J. Harrold, Selecting tests and identifying test coverage
requirements for modified software, in Proceedings of the 1994 ACM SIGSOFT
international symposium on Software testing and analysis. 1994, ACM: Seattle,
Washington, USA. p. 169-184.

7. White, L.J. Regression testing of GUI event interactions. in Software
Maintenance 1996, Proceedings., International Conference on. 1996.

8. Hui, Z., et al. GUI regression testing based on function-diagram. in 2010 IEEE
International Conference on Intelligent Computing and Intelligent Systems
(ICIS). 2010.

9. Memon, A.M. and M.L. Soffa. Regression Testing of GUIs. 2003. ACM.
10. Falah, B., R. Nouasse, and Y. Laghlid, GUI Regression Test Selection Based on

Event Interaction Graph Strategy. 2013, IJCSET.
11. Grigorjev, F., N. Lascano, and J.L. Staude. A fault seeding experience. in

Simposio Argentino de Ingenieria de Software (ASSE 2003). 2003. Citeseer.

43

12. Harrold, M.J., A.J. Offutt, and K. Tewary, An approach to fault modeling and
fault seeding using the program dependence graph. Journal of Systems and
Software, 1997. 36(3): p. 273-295.

13. Xie, M., Software Reliability Modelling. 1991: World Scientific. 232.
14. Lin, C.-T. and C.-Y. Huang. Software Release Time Management: How to Use

Reliability Growth Models to Make Better Decisions. in 2006 IEEE International
Conference on Management of Innovation and Technology. 2006.

15. Ahmad, N., et al., The exponentiated Weibull software reliability growth model

with various testing‐efforts and optimal release policy. International Journal of
Quality & Reliability Management, 2008. 25: p. 211-235.

16. Beizer, B. bug taxonomy - Otto Vinter.
17. Elbaum, S., A.G. Malishevsky, and G. Rothermel, Test case prioritization: a

family of empirical studies. Software Engineering, IEEE Transactions on, 2002.
28(2): p. 159-182.

18. Elbaum, S., A. Malishevsky, and G. Rothermel, Incorporating varying test costs
and fault severities into test case prioritization, in Proceedings of the 23rd
International Conference on Software Engineering. 2001, IEEE Computer
Society: Toronto, Ontario, Canada. p. 329-338.

19. jexifviewer Java program for displaying and comparing Exif informations stored
in JPEG files created by digital cameras. JExifViewer is an Open Source project
released under the GPL.

20. JaCoCo Java Code Coverage Library

APPENDIX

As mentioned before, test cases for both JSyntaxpane and JExifviewer
were generated according to their GUI functionalities as well as existing bug reports
from other users. The detail of all test cases used are given in Table 10 and Table 11

Table 10 Test cases for JSyntaxpane
1 Test case name Test CUT function Expected

result

 Test

Step/Substep
Open file under test File is open

correctly
 Select some Text Selected text

is highlighted
 Press CUT button Selected text

disappears
 Paste in other text editor Selected text

is pasted
correctly

2 Test case name Test COPY function Expected
result

 Test

Step/Substep
Open file under test File is open

correctly
 Select some Text Selected text

is highlighted
 Press COPY button
 Paste in other text editor Selected text

is pasted
correctly

45

3 Test case name Test PASTE function Expected
result

 Test

Step/Substep
Copy some text from other
editor

 Press PASTE button Selected text
is pasted
correctly

4 Test case name Test SELECT ALL function Expected
result

 Test

Step/Substep
Open file under test File is open

correctly
 Press SELECT ALL button All texts in

syntaxpane are
highlighted

 Press Backspace All texts
disappear

5 Test case name Test UNDO REDO function Expected
result

 Test

Step/Substep
Do something The action is

done correctly

46

 Press UNDO button The previous
action is
undone

 Press REDO button The previous
action is
redone

6 Test case name Test FIND/REPLACE function #1 Expected
result

 Test

Step/Substep
Open file under test File is open

correctly
 Press DISPLAY FIND AND

REPLACE DIALOG button
FIND AND
REPLACE
dialog appears

 Type some text in FIND text
field

The typed text
appears in text
field

 Press NEXT button A matching
text is hilighted
in jsyntaxpane
or a warning
appears in
case no
matching text
exists

47

 If a match is found, proceed to
the next step

 Press NEXT button The next
matching text
is hilighted in
jsyntaxpane

 Press PREVIOUS button The matching
text from step
4 is hilighted in
jsyntaxpane

7 Test case name Test FIND/REPLACE function #2 Expected
result

 Test

Step/Substep
Open file under test File is open

correctly
 Press DISPLAY FIND AND

REPLACE DIALOG button
FIND AND
REPLACE
dialog appears

 Type some text in FIND text
field

The typed text
appears in text
field

 Select IGNORE CASE check box IGNORE CASE
check box
becomes
selected

 Press NEXT button A matching
text is hilighted
in jsyntaxpane

48

or a warning
appears in
case no
matching text
exists

 Press NEXT button A next
matching text
is hilighted in
jsyntaxpane or
a warning
appears in
case no
matching text
exists

 Press NEXT button A next
matching text
is hilighted in
jsyntaxpane or
a warning
appears in
case no
matching text
exists

8 Test case name Test FIND/REPLACE function #3 Expected
result

 Test

Step/Substep
Open file under test File is open

correctly

49

 Press DISPLAY FIND AND
REPLACE DIALOG button

FIND AND
REPLACE
dialog appears

 Type some text in FIND text
field

The typed text
appears in text
field

 Select REGULAR EXPRESSION
check box

REGULAR
EXPRESSION
check box
becomes
selected

 Press NEXT button A matching
text is hilighted
in jsyntaxpane
or a warning
appears in
case no
matching text
exists

 Press NEXT button The next
matching text
is hilighted in
jsyntaxpane or
a warning
appears in
case no
matching text
exists

50

9 Test case name Test FIND/REPLACE function #4 Expected
result

 Test

Step/Substep
Open file under test File is open

correctly
 Press DISPLAY FIND AND

REPLACE DIALOG button
FIND AND
REPLACE
dialog appears

 Type some text in FIND text
field

The typed text
appears in
FIND text field

 Type another text in REPLACE
text field

The typed text
appears in
REPLACE text
field

 Press NEXT button A matching
text is hilighted
in jsyntaxpane

 Press REPLACE button The hilighted
text is
replaced with
the text in
REPLACE text
field and the
next matching
text is hilighted
in jsyntaxpane

 Press REPLACE button The hilighted
text is
replaced with

51

the text in
REPLACE text
field and the
next matching
text is hilighted
in jsyntaxpane

10 Test case name Test FIND/REPLACE function #5 Expected
result

 Test

Step/Substep
Open file under test File is open

correctly
 Press DISPLAY FIND AND

REPLACE DIALOG button
FIND AND
REPLACE
dialog appears

 Type some text in FIND text
field

The typed text
appears in
FIND text field

 Type another text in REPLACE
text field

The typed text
appears in
REPLACE text
field

 Press REPLACE ALL button All matching
texts are
replaced with
the text in
REPLACE text
field

52

11 Test case name Test FIND NEXT function Expected
result

 Test

Step/Substep
Open file under test File is open

correctly
 Press DISPLAY FIND AND

REPLACE DIALOG button
FIND AND
REPLACE
dialog appears

 Type some text in FIND text
field

The typed text
appears in
FIND text field

 Press NEXT button A matching
text is hilighted
in jsyntaxpane

 Close FIND AND REPLACE
dialog

FIND AND
REPLACE
dialog
disappears

 Press REPEAT LAST FIND The next
matching text
is hilighted in
jsyntaxpane

 Press REPEAT LAST FIND The next
matching text
is hilighted in
jsyntaxpane

12 Test case name Test GOTO LINE function Expected
result

53

 Test
Step/Substep

Open file under test File is open
correctly

 Press GOTO LINE NUMBER
button

GOTO LINE
dialog appears

 Type some number in to the
text field

 Press GO button The caret
moves to the
beginning of
the entered
line number or
the nearest
line number if
the entered
line number
does not exist

13 Test case name Test JUMP TO PAIR function
(for programming language)

Expected
result

 Test

Step/Substep
Open file under test File is open

correctly
 Choose the corresponding language in the

combobox
 Click on one of the following

brackets [({ <

 Press JUMP TO PAIR button The caret
moves to the

54

corresponding
]) } >

14 Test case name Test JUMP TO PAIR function
(for markup language)

Expected
result

 Test

Step/Substep
Open file under test File is open

correctly
 Choose the corresponding language in the

combobox
 Click on a tag
 Press JUMP TO PAIR button The caret

moves to the
corresponding
tag

 Press JUMP TO PAIR button The caret
moves to the
corresponding
tag

 Press JUMP TO PAIR button The caret
moves to the
corresponding
tag

15 Test case name Test TOGGLE COMMENTS Expected
result

55

 Test
Step/Substep

Open file under test File is open
correctly

 Choose the corresponding language in the
combobox

 Click on a line
 Press TOGGLE COMMENTS

button
The line is
commented
according to te
rule of
associated
language

 Select the commented line
 Press TOGGLE COMMENTS

button again
The line is
uncommented

16 Test case name Test INDENT/UNINDENT Expected
result

 Javascript
 Java
 Python
 Test

Step/Substep
Open file under test File is open

correctly
 Choose the corresponding language in the

combobox
 Select some lines
 Click INDENT button The selected

lines are
indented from

56

the beginning
by one tab

 Select some other lines
 Click UNINDENT button The spaces at

the beginning
of each
selected lines
are decreased
by one tab
(nothing
happen if that
line does not
begin with
space)

17 Test case name Test TOGGLE LINES Expected
result

 Javascript
 Java
 xhtml,xml,xpath
 Test

Step/Substep
Open file under test File is open

correctly
 Choose the corresponding language in the

combobox
 Press TOGGLE LINES button Line numbers

disappear
 Press TOGGLE LINES button Line numbers

reappear

57

18 Test case name Test SURROUND WITH TRY
CATCH

Expected
result

 Java
 Test

Step/Substep
Open file under test File is open

correctly
 Choose the corresponding language in the

combobox
 Click on a blank line
 Press SURROUND WITH TRY

CATCH button
A try/catch
block appear
at that
position

 Select some texts that span across multiple
lines

 Press SURROUND WITH TRY
CATCH button

All lines that
contain the
selected texts
are surrounded
by a try/catch
block

19 Test case name Test SURROUND SELECTION
WITH WHILE

Expected
result

 Java
 Test

Step/Substep
Open file under test File is open

correctly
 Choose the corresponding language in the

combobox
 Click on a blank line

58

 Press SURROUND SELECTION
WITH WHILE button

A while block
appear at that
position

 Select some texts that span across multiple
lines

 Press SURROUND SELECTION
WITH WHILE button

All lines that
contain the
selected texts
are surrounded
by a while
block

20 Test case name Test SURROUND WITH IF Expected
result

 Java
 Test

Step/Substep
Open file under test File is open

correctly
 Choose the corresponding language in the

combobox
 Select some texts that span across multiple

lines
 Press SURROUND WITH IF

button
All lines that
contain the
selected texts
are surrounded
by an if block

59

21 Test case name Test OUTPUT EXPRESSION TO
SYSTEM.OUT

Expected
result

 Java
 Test

Step/Substep
Open file under test File is open

correctly
 Choose the corresponding language in the

combobox
 Select some texts that span across multiple

lines
 Press OUTPUT EXPRESSION TO

SYSTEM.OUT button
The selected
texts are
surrounded by
System.out.pri
ntln("The
value of
SELECTED
TEXTS = " +
(SELECTED
TEXTS));

22 Test case name Test SURROUND LINES WITH
BLOCK COMMENTS

Expected
result

 Java
 Test

Step/Substep
Open file under test File is open

correctly
 Choose the corresponding language in the

combobox
 Select some texts that span across multiple

lines

60

 Press SURROUND LINES WITH
BLOCK COMMENTS button

All lines that
contain the
selected texts
are surrounded
by /* and */

23 Test case name Test language combobox

 Test
Step/Substep

Open file under test File is open
correctly

 Choose the corresponding
language in the combobox

The UI
components
are displayed
correctly

 Choose some other language
in the combobox

The UI
components
are displayed
correctly

 Change back to the
corresponding language in the
combobox

The UI
components
are displayed
correctly

24 Test case name Test QUICK FIND function

 Test

Step/Substep
Open file under test File is open

correctly

61

 Press Ctrl+F QUICK FIND
dialog appears

 Type some text in QUICK FIND
text field

The typed text
appears in text
field and the
first matching
text is hilighted
in real time or
a warning
appears in
case no
matching text
exists

 If a match is found, proceed to
the next step

 Press NEXT button The next
matching text
is hilighted in
jsyntaxpane

 Press PREVIOUS button The matching
text from step
4 is hilighted in
jsyntaxpane

25 Test case name Test FIND/REPLACE function
(WRAP AROUND#1)

Expected
result

 Test

Step/Substep
Open file under test File is open

correctly

62

 Press DISPLAY FIND AND
REPLACE DIALOG button

FIND AND
REPLACE
dialog appears

 Type some text in FIND text
field

The typed text
appears in text
field

 Press NEXT button until the
last matching text is reached

The last
matching text
is hilighted

 Make sure that the WRAP
AROUND is not selected then
press NEXT button

A warning
dialog appears
informing that
Serch String
not found

 Select WRAP AROUND check
box

WRAP AROUND
check box
becomes
selected

 Press NEXT button The first
matching text
is hilighted

26 Test case name Test Expected
result

 Test

Step/Substep
Type some characters The characters

appear
 Press ENTER button The caret

moves to a

63

new line
below

64

Table 11 Test cases for JExifviewer
Sq Test step/Substep Expected result

1 Navigate to a directory That folder is selected and

the image files inside are
shown correctly

 Click on a column name The image files are sorted by
that column attribute

2 Hover the mouse over an image
file

The image tooltip information
is shown according to tooltip
setting

 Check the tooltip information The information is consistent
with image properties

3 Left-click on a row in the right
panel

An image appears in the
bottom-left panel

4 Right-click on a row in the right
panel

List pop-up menu appears

 Choose Rename command Rename dialog appears
 Type a new name in text field and

click OK button
The name changes while
other information remains the
same

65

5 Right-click on a row in the right
panel

List pop-up menu appears

 Choose Copy command A directory chooser appears
 Choose directory and press OK

button
The copied image appears in
the chosen directory

6 Right-click on a row in the right

panel
List pop-up menu appears

 Choose Move command A directory chooser appears
 Choose directory and press OK

button
The image is moved to the
chosen directory

7 Right-click on a row in the right

panel
List pop-up menu appears

 Choose Delete command Delete dialog appears
 Choose Yes button The image is removed

8 Right-click on a row in the right
panel

List pop-up menu appears

 Choose Delete command Delete dialog appears
 Choose No button Delete dialog disappears

9 Right-click on a row in the right
panel

List pop-up menu appears

 Choose Cancel command List pop-up menu disappears

10 Select an image An image appears in the
bottom-left panel

 Double-click on the image Full screen image is shown

66

 Double-click on the image again Full screen image disappears

11 Right-click on a directory Tree pop-up menu appears
 Choose Add shortcut command A shortcut with the same

directory name appears at the
root of the directory tree

12 Right-click on a shortcut Tree pop-up menu appears
 Choose Remove shortcut

command
The shortcut disappears

13 Right-click on a directory in the
top-left panel

Tree pop-up menu appears

 Choose Cancel command Tree pop-up menu disappears

14 Right-click on the image Image pop-up menu appears
 Choose +90 command The image is rotated 90

degrees clockwise

15 Right-click on the image Image pop-up menu appears
 Choose -90 command The image is rotated 90

degrees counterclockwise

16 Right-click on the image Image pop-up menu appears

67

 Choose 180 command The image is rotated 180
degrees

17 Right-click on the image Image pop-up menu appears
 Choose Flip horizontal command The image is flipped

horizontally

18 Middle-click on the image The image is flipped
horizontally

 Right-click on the image Image pop-up menu appears
 Choose Original command The image is reverted back to

original

19 Right-click on the image Image pop-up menu appears
 Choose Cancel command Image pop-up menu

disappears

68

VITA

VITA

Chalita Somsorn was born in Bangkok and received the B.S. in Computer
Science from Chulalongkorn University in 2013. Currently, studying for a M.S. in
Computer Science, Chulalongkorn University. The areas of interest are software
engineering,GUI application ,regression testing and software reliability models.

69

	THAI ABSTRACT
	ENGLISH ABSTRACT
	ACKNOWLEDGEMENTS
	CONTENTS
	Chapter 1 Introduction
	1.1. Introduction
	1.2. Problem Statement
	1.3. Expected Benefits
	1.4. Scope of Research
	1.5. Contributions
	1.6. Research Plan
	1.7. Document organization

	Chapter 2 Literature Review
	2.1 Regression Testing
	2.1.1 Techniques based on textual differencing
	2.1.2 Techniques based on program dependence graphs

	2.2 GUI Testing
	2.3 Fault seeding
	2.4 Criteria for when to stop testing

	Chapter 3 Research Methodology
	3.1. Cost estimation
	3.2. Reliability Models
	3.3. Applying fault seeding
	3.4. The proposed stopping criteria
	3.5. Research Methodology

	Chapter 4 Experiments and Results
	4.1. JSyntaxPane
	4.2. JExifViewer
	4.3. Results of

	REFERENCES
	VITA

