ความสัมพันธ์ทางพันธุกรรม และปัจจัยเสี่ยงที่เกี่ยวข้องกับเชื้อแคมไพโลแบคเตอร์ในห่วงโซ่การผลิตไก่ เนื้อในประเทศไทย

นางสาวสกาวพร ประจันตะเสน

บทคัดย่อและแฟ้มข้อมูลฉบับเต็มของวิทยานิพนธ์ตั้งแต่ปีการศึกษา 2554 ที่ให้บริการในคลังปัญญาจุฬาฯ (CUIR) เป็นแฟ้มข้อมูลของนิสิตเจ้าของวิทยานิพนธ์ ที่ส่งผ่านทางบัณฑิตวิทยาลัย

The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository (CUIR) are the thesis authors' files submitted through the University Graduate School.

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรดุษฎีบัณฑิต สาขาวิชาสัตวแพทยสาธารณสุข ภาควิชาสัตวแพทยสาธารณสุข คณะสัตวแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2558 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

GENETIC RELATEDNESS AND RISK FACTORS ASSOCIATED WITH CAMPYLOBACTER IN TH AI BROILER PRODUCTION CHAIN

Miss Sakaoporn Prachantasena

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Program in Veterinary Public Health Department of Veterinary Public Health Faculty of Veterinary Science Chulalongkorn University Academic Year 2015 Copyright of Chulalongkorn University

Thesis Title	GENETIC	REL	ATEDN	IESS	AND	RISK	FAC	TORS
	ASSOCIAT	ΓED	WITH	CAM	PYLOB	ACTER	IN	THAI
	BROILER F	PROD	OUCTIO	N CH	AIN			
Ву	Miss Saka	opor	n Pracl	hanta	sena			
Field of Study	Veterinary	y Pub	olic Hea	alth				
Thesis Advisor	Taradon I	Luang	gtongk	um, D).V.M.,	Ph.D.		

Accepted by the Faculty of Veterinary Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Doctoral Degree

>Dean of the Faculty of Veterinary Science (Professor Roongroje Thanawongnuwech, D.V.M., M.Sc., Ph.D.)

THESIS COMMITTEE

Chairman (Associate Professor Alongkorn Amonsin, D.V.M., Ph.D.)Thesis Advisor (Taradon Luangtongkum, D.V.M., Ph.D.)Examiner (Associate Professor Rungtip Chuanchuen, D.V.M., M.Sc., Ph.D.)Examiner (Associate Professor Suphachai Nuanualsuwan, D.V.M., M.P.V.M., Ph.D.)External Examiner (Associate Professor Prapansak Chaveerach, D.V.M., Ph.D.) สกาวพร ประจันตะเสน : ความสัมพันธ์ทางพันธุกรรม และปัจจัยเสี่ยงที่เกี่ยวข้องกับเชื้อแคมไพโลแบค เตอร์ในห่วงโซ่การผลิตไก่เนื้อในประเทศไทย (GENETIC RELATEDNESS AND RISK FACTORS ASSOCIATED WITH CAMPYLOBACTER IN THAI BROILER PRODUCTION CHAIN) อ.ที่ปรึกษา วิทยานิพนธ์หลัก: อ. น.สพ. ดร. ธราดล เหลืองทองคำ, หน้า.

แคมไพโลแบคเตอร์เป็นเชื้อแบคทีเรียก่อโรคอาหารเป็นพิษที่มีความสำคัญทางสาธารณสุขเป็นอย่างมาก การสัมผัสหรือรับประทานอาหารโดยเฉพาะอย่างยิ่งเนื้อไก่ที่ปนเปื้อนเชื้อจัดเป็นสาเหตุสำคัญของการติดเชื้อแคม ้ไพโลแบคเตอร์ การศึกษาเชิงระบาดวิทยาของเชื้อแคมไพโลแบคเตอร์ในอุตสาหกรรมการผลิตเนื้อไก่จึงเป็นหนึ่งใน แนวทางสำคัญที่อาจช่วยลดจำนวนผู้ป่วยโรคอาหารเป็นพิษจากเชื้อนี้ อย่างไรก็ตาม ในปัจจุบัน การศึกษาเกี่ยวกับ เชื้อแคมไพโลแบคเตอร์ในประเทศไทยยังมีอยู่อย่างจำกัด ดังนั้นการศึกษานี้จึงมีวัตถุประสงค์เพื่อ 1) ศึกษาความชุก และปัจจัยเสี่ยงของการติดเชื้อแคมไพโลแบคเตอร์ในฝุงไก่เนื้อของประเทศไทย และ 2) วิเคราะห์ความสัมพันธ์ทาง พันธุกรรมของเชื้อแคมไพโลแบคเตอร์ที่แยกได้จากกระบวนการผลิตเนื้อไก่ในประเทศไทย การศึกษานี้ได้ทำการเก็บ ตัวอย่างลำไส้และข้อมูลการเลี้ยงจากฝูงไก่เนื้อในเขตภาคกลางและภาคตะวันออกของประเทศไทยจำนวน 250 ฝูง ผลการเพาะเชื้อและข้อมูลการเลี้ยงจะถูกนำไปวิเคราะห์ด้วยวิธี logistic regression model (LRM) และ generalized estimating equations (GEE) เพื่อทำการศึกษาปัจจัยเสี่ยงที่เกี่ยวข้องกับการติดเชื้อแคมไพโลแบค เตอร์ในฝูงไก่เนื้อ นอกจากนี้ผู้วิจัยยังได้ทำการศึกษาความสัมพันธ์ทางพันธุกรรมของเชื้อแคมไพโลแบคเตอร์ตลอด ้วงจรการผลิตเนื้อไก่ทั้งหมด 5 แห่งและวิเคราะห์ลักษณะทางพันธุกรรมของเชื้อที่แยกได้ด้วยวิธี *flaA* SVR sequencing และ multilocus sequence typing ผลการศึกษาพบว่า จากฝูงไก่จำนวน 250 ฝูง มีฝูงไก่ที่ให้ ผลบวกต่อเชื้อแคมไพโลแบคเตอร์จำนวน 119 ฝูง (47.60%; 95% CI 41.41 - 53.79%) โดยฝูงที่ติดเชื้อจะมีความ ชุกภายในฝูงค่อนข้างสูง (มากกว่า 75%) ในการศึกษาครั้งนี้พบว่าเชื้อ C. jejuni เป็นสายพันธุ์หลักที่พบ รองลงไป เป็น C. coli จากการวิเคราะห์ปัจจัยเสี่ยงที่เกี่ยวข้องกับการติดเชื้อแคมไพโลแบคเตอร์ในฝูงไก่เนื้อ พบว่าการมี ประวัติการติดเชื้อแคมไพโลแบคเตอร์ในฝูงที่เลี้ยงก่อนหน้าเป็นปัจจัยเสี่ยงที่สำคัญที่สุดสำหรับการศึกษาครั้งนี้ จาก การศึกษาลักษณะพันธุกรรมของเชื้อแคมไพโลแบคเตอร์ที่แยกได้จากวงจรการผลิตเนื้อไก่จำนวน 311 เชื้อ สามารถ ระบุลักษณะทางพันธุกรรมของเชื้อได้ทั้งหมด 29 แบบด้วยวิธี *fla*A SVR sequencing นอกจากนี้เชื้อบางส่วนที่ถูก นำมาวิเคราะห์ด้วยวิธี multilocus sequence typing สามารถแยกลักษณะทางพันธุกรรมได้ 17 แบบ โดย clonal complexes ที่พบส่วนใหญ่ได้แก่ CC-45 CC-353 CC-354 และ CC-574 โดยภาพรวม เชื้อที่แยกได้จากพ่อ แม่พันธุ์มีความแตกต่างจากเชื้อที่พบในฝูงไก่เนื้อและโรงเชือด ในขณะที่เชื้อที่พบในฝูงไก่เนื้อมักมีความสัมพันธ์ทาง พันธุกรรมใกล้เคียงกับเชื้อที่แยกได้จากอุปกรณ์ในโรงเชือดและเนื้อไก่ การศึกษานี้แสดงให้เห็นถึงความสำคัญของ การจัดการฟาร์มและโรงเชือดอย่างถูกสุขลักษณะ รวมไปถึงการใช้ระบบความปลอดภัยทางชีวภาพ (biosecurity) ที่เข้มงวดในฟาร์มไก่เนื้อ เพื่อควบคุมและป้องกันการถ่ายทอดเชื้อแคมไพโลแบคเตอร์จากฟาร์มไปยังผู้บริโภค

ภาควิชา สัตวแพทยสาธารณสุข สาขาวิชา สัตวแพทยสาธารณสุข ปีการศึกษา 2558

ลายมือชื่อนิสิต	
ลายมือชื่อ อ.ที่ปรึกษาหลัก	

5375955431 : MAJOR VETERINARY PUBLIC HEALTH

KEYWORDS: BROILER / CAMPYLOBACTER / GENETIC RELATEDNESS / RISK FACTORS

SAKAOPORN PRACHANTASENA: GENETIC RELATEDNESS AND RISK FACTORS ASSOCIATED WITH CAMPYLOBACTER IN THAI BROILER PRODUCTION CHAIN. ADVISOR: TARADON LUANGTONGKUM, D.V.M., Ph.D., pp.

Campylobacter is considered as the major foodborne bacterial pathogen worldwide. Consumption and handling of contaminated food, particularly poultry meat product, are the important cause of Campylobacter infection. To reduce the number of human cases, the epidemiology of Campylobacter in poultry must be better understood. In Thailand, only limited information on Campylobacter in chicken meat production has been reported. Therefore, the objectives of this study were 1) to determine the prevalence and risk factors associated with Campylobacter in Thai broiler flocks and 2) to investigate genetic relatedness of Campylobacter strains isolated from broiler production chain in Thailand. Campylobacter colonization status was identified in 250 broiler flocks which were mainly raised in central and eastern parts of Thailand. Moreover, farm and flock data was collected by structured questionnaires. To identify risk factors associated with Campylobacter colonization in broiler flocks, logistic regression model (LRM) and generalized estimating equations (GEE) were performed. The distribution and genetic relatedness of Campylobacter were determined in 5 broiler production chains. flaA SVR sequencing and multilocus sequence typing (MLST) were used as genotyping methods in this study. Of 250 examined broiler flocks, 119 flocks were tested positive for Campylobacter (47.60%; 95% CI 41.41 - 53.79%). Most positive flocks had high level of within-flock prevalence (>75%). C. jejuni was the predominant species observed in this study, followed by C. coli. For the risk factor analysis, the history of *Campylobacter* colonization in previous flocks was identified as the most important risk factor associated with Campylobacter colonization in examined broiler flocks. Amongst 311 Campylobacter isolates from breeders to slaughterhouses selected for genetic characterization, 29 flaA SVR alleles and 17 sequence types (STs) were identified. The common clonal complexes (CCs) found in this study were CC-45, CC-353, CC-354 and CC-574. Mostly, C. jejuni isolated from breeders were distantly related to those isolated from broilers and chicken carcasses, while C. jejuni isolates from the slaughterhouse environment and meat products were similar to those isolated from broilers. Our findings underline the importance of hygienic practices on farm and slaughterhouse as well as strict biosecurity as the effective tool for reducing the transmission of Campylobacter from chickens to humans.

Department: Veterinary Public Health Field of Study: Veterinary Public Health Academic Year: 2015

Student's Signature	
Advisor's Signature	

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to all those people who involved with this dissertation, without their help and support it would certainly never have been through. First of all, I would like to express my sincere thanks to Dr. Taradon Luangtongkum, my thesis advisor for his valuable guidance, constant encouragement and edit my writing. I would also like to thank all committee members for their valuable comments and suggestions. In addition, I would especially like to thank my colleagues at the Campylobacter and Acrobacter Research Laboratory for their help and precious friendship during my stay at Chulalongkorn University. Finally, I would like to take this opportunity to express my deepest gratitude to my beloved family for their understanding, continuous support and encouragement whenever I was in need.

CONTENTS

Page
 iv

THAI ABSTRACTiv
ENGLISH ABSTRACTv
ACKNOWLEDGEMENTSvi
CONTENTS
LIST OF TABLES
LIST OF FIGURES
LIST OF ABBREVIATIONS
CHAPTER I INTRODUCTION
CHAPTER II LITERATURE REVIEW
2.1 General characteristics of <i>Campylobacter</i>
2.2 Ecological distribution and epidemiology of <i>Campylobacter</i>
2.2.1 Epidemiology of <i>Campylobacter</i> in human5
2.2.2 Epidemiology of <i>Campylobacter</i> in domestic animals
2.3 Prevalence of <i>Campylobacter</i> in commercial broilers
2.4 Distribution and molecular epidemiology of Campylobacter in broiler
production chain
2.5 Molecular techniques for genetic characterization of <i>Campylobacter</i>
2.6 Distribution of <i>Campylobacter</i> sequence types in human and poultry
2.7 Risk factors associated with <i>Campylobacter</i> colonization in broiler flocks
2.8 Logistic regression model and generalized estimating equations
CHAPTER III MATERIALS AND METHODS
3.1 Prevalence and risk factors associated with <i>Campylobacter</i> in broiler flocks 19

Page

3.1.1 Sample collection	19
3.1.2 Isolation and identification of <i>Campylobacter</i>	22
3.1.3 Risk factors analysis	23
3.2 Distribution and genetic relatedness of Campylobacter isolated from	
poultry production chain	26
3.2.1 Description of examined farms	26
3.2.2 Sample collection	30
3.2.3 Campylobacter isolation and identification	35
CHAPTER IV RESULTS	40
4.1 Prevalence and risk factors associated with <i>Campylobacter</i> in broiler flocks.	40
4.1.1 Campylobacter colonization in broiler flocks	40
4.1.2 Descriptive information of participating broiler farms	51
4.1.3 Risk factors associated with Campylobacter colonization in Thai	
broiler flocks	57
4.1.3.1 Logistic regression model	57
Univariate analysis	57
Multivariate analysis	59
4.1.3.2 Generalized estimating equation (GEE)	62
Univariate analysis	62
Multivariate analysis	63
4.2 Distribution and genetic relatedness of Campylobacter isolated from	
poultry production chain	66
4.2.1 Distribution of Campylobacter in Thai poultry production chain	66

4.2.2 Genetic characterization of Campylobacter isolated from poultry	
production chain	.70
CHAPTER V DISCUSSIONS	. 80
5.1 Prevalence and risk factors associated with Campylobacter colonization in	
broiler flocks	. 80
5.1.1 Prevalence of <i>Campylobacter</i> in broiler flock	. 80
5.1.2 Risk factors associated with Campylobacter colonization in Thai	
broiler flocks	.81
5.1.3 Seasonal effect of Campylobacter prevalence in Thai broiler flocks	.83
5.2 Distribution and genetic relatedness of Campylobacter isolated from	
poultry production chain	. 84
5.2.1 Correlation between MLST and <i>flaA</i> SVR sequencing	. 85
5.2.2 Distribution and genetic relatedness of Campylobacter isolated from	
poultry production process	. 85
CONCLUSION AND SUGGESTION	. 90
REFERENCES	. 92
APPENDIX	104
Appendix A Culture media for Campylobacter isolation	105
Appendix B Prevalence and risk factors associated with Campylobacter in Thai	
broiler flocks	108
Questionnaire (farm section)	108
Questionnaire (flock section)	112
Appendix C Distribution of <i>Campylobacter</i> in broiler production chains	142
Appendix D Genetic characterization of Campylobacter	166

ix

	Page
Appendix E New sequence type identified in this study	177
VITA	178

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

LIST OF TABLES

Table 1 Set of primers for <i>Campylobacter</i> identification	23
Table 2 Information of six broiler production chains participating in this study	29
Table 3 Sample collection plan of this study	32
Table 4 Set of primers for PCR amplification and sequencing of MLST	39
Table 5 Two-year study on <i>Campylobacter</i> colonization of 20 Thai broiler farms during 2012 to 2014	45
Table 6 Campylobacter prevalence in dry and wet seasons	47
Table 7 Continuous data of participating broiler flocks	52
Table 8 Categorical data of participating broiler flocks	53
Table 9 Results of univariate analysis in logistic regression model	58
Table 10 Results from the multivariate logistic regression model	59
Table 11 Results of univariate analysis in generalized estimating equation	62
Table 12 Results of multivariate analysis by GEE	64
Table 13 Distribution of <i>Campylobacter</i> in 6 chicken meat production chains in Thailand	68
Table 14 Within-flock prevalence and predominant genotypes of Campylobacter	
during the rearing period	74
Table 15 Campylobacter genotypes detected in chicken meat production units	75
Table 16 Correlation between MLST and <i>flaA</i> SVR sequencing	79

LIST OF FIGURES

Figure 1 Range of function $f(Y)$ depending on the value of Y	. 15
Figure 2 Correlation structures that commonly used for GEE approach	. 16
Figure 3 General outline of the study	. 18
Figure 4 Location of target broiler farm participating in this study	.21
Figure 5 Types of sample collected throughout the broiler production chain	. 34
Figure 6 Within-flock prevalence of <i>Campylobacter</i> in examined broiler flocks	.41
Figure 7 Species identification of <i>Campylobacter</i> in examined broiler flocks	. 41
Figure 8 Distribution of <i>Campylobacter</i> prevalence in Thai broiler flocks during January 2012 to April 2014	. 43
Figure 9 Prevalence of <i>Campylobacter</i> in dry and wet seasons	. 46
Figure 10 Average daily rainfalls of studied broiler flocks in central region of Thailand during January 2012 to April 2014	. 48
Figure 11 Ambient temperature of studied broiler flocks in central region of Thailand during January 2012 to April 2014	. 49
Figure 12 Relative humidity of studied broiler flocks in central region of Thailand during January 2012 to April 2014	. 50
Figure 13 Distribution of clonal complexes identified in five broiler production chains	71
Figure 14 Phylogenetic relationship of <i>Campylobacter jejuni</i> from various sources of broiler production processes.	. 78

LIST OF ABBREVIATIONS

bp	base pair(s)
°C	degree(s) Celsius
С.	Campylobacter
DNA	deoxyribonucleic acid(s)
dNTP	deoxyribonucleoside triphosphate(s)
mCCDA	modified Charcoal Cefoperazone Deoxycholate Agar
min	minute(s)
ml	millilitre(s)
PCR	polymerase chain reaction
spp.	species
U	unit

CHAPTER I

Over the last decade, campylobacteriosis has been considered as the most prevalent bacterial gastrointestinal disease in humans worldwide, particularly in developed countries. *Campylobacter jejuni* is the most common species associated with human infection, followed by *Campylobacter coli*. In humans, ingestion of a small number of bacterial cells could cause mild to severe diarrhea, abdominal pain and fever (Humphrey, et al., 2007; Levin, 2007). Generally, this illness can be recovered without any treatments. However, serious complications (e.g., Guillain-Barré syndrome, Reiter's syndrome and Reactive arthritis) can sometimes occur (Schonberg-Norio, et al., 2010). Foods of animal origin, especially poultry and poultry products, are considered as the important sources of human infection.

The epidemiology of *Campylobacter* in broiler production chain has been investigated worldwide. In European member countries, 2.0 to 100.0% of chicken flocks were tested positive for *Campylobacter*, while the high prevalence of *Campylobacter* was reported in US broiler flocks (EFSA, 2011; Hiett, et al., 2002; Luangtongkum, et al., 2006). Similarly, a wide range of colonization rates was described in Asian countries such as China (77.80%), Vietnam (31.90%) and Japan (47.20%) (Carrique-Mas, et al., 2014; Chen, et al., 2010; Haruna, et al., 2012). In Thailand, the prevalence of *Campylobacter* in chickens was reported between 11.2 and 64.0 percent (Chokboonmongkol, et al., 2013; Padungtod and Kaneene, 2005; Saengthongpinit, et al., 2010). To reduce the prevalence of *Campylobacter* in broiler chickens, studies on flock colonization should be conducted.

In chicken meat production chain, breeder and broiler flocks were generally colonized with high prevalence of *Campylobacter*, while this organism was rarely reported in hatchery (Newell and Fearnley, 2003). In addition, most of *Campylobacter* isolated from breeders were genetically unrelated to those of consecutive broiler flocks and meat products, while similarity between *Campylobacter* from broiler flocks and meat products was more common (O'Mahony, et al., 2011; Patriarchi, et al., 2011). These findings indicated that broilers are the primary source of *Campylobacter* contamination in chicken meat production chain.

To develop effective intervention measures for *Campylobacter* on broiler farms, risk factors associated with *Campylobacter* colonization during rearing period must be clarified. Age at slaughter, degree of biosecurity strictness, rodent infestation and presence of *Campylobacter* in previous batches were previously identified as the main risk factors associated with *Campylobacter* colonization in broilers (Barrios, et al., 2006; Bouwknegt, et al., 2004; Ellis-Iversen, et al., 2009; McDowell, et al., 2008). However, potential risk factors could vary between different areas.

Besides risk factors mentioned above, *Campylobacter* colonization in broiler flocks reared in temperate zone was also different between seasons. In Nordic countries, the peak of colonization rate in chickens was observed in summer (Boysen, et al., 2011; Jore, et al., 2010; Jorgensen, et al., 2011). Humidity, temperature, sunlight and rainfall were suggested as the climatic factors that facilitate the survival of *Campylobacter* during summer time in temperate zone (Bi et al., 2008; Lawes et al., 2012; Zweifel et al., 2008), while the effect of climatic factors on *Campylobacter* colonization in poultry has not been widely investigated in tropical region including Thailand.

To successfully reduce *Campylobacter* contamination in poultry meat products, control of *Campylobacter* at both farm and slaughter levels should be carried out. Since the information of *Campylobacter* in Thai chicken production is still limited, investigation on the epidemiology of this organism is necessary. Therefore, the objectives of this study were to determine the prevalence and risk factors associated with *Campylobacter* colonization in Thai broiler flocks and to investigate genetic relatedness of *Campylobacter* isolated from poultry production chain in Thailand.

CHAPTER II LITERATURE REVIEW

2.1 General characteristics of Campylobacter

Campylobacter is gram negative, microaerophilic, non-spore forming bacteria. Generally, its appearance is described as gull wing-like shaped, S-shaped or spiralshaped rod cell with 0.2 µm to 0.8 µm wide and 0.5 µm to 5 µm long. This organism can change into the coccoid form when exposing to the unpleasant condition or being in the stationary growth phase. With its unipolar or bipolar flagella, *Campylobacter* can exhibit darting or corkscrew-like movement (Levin, 2007). This fastidious bacterium needs to grow under microaerobic atmosphere which contains low level of oxygen (approximately 5%) (Silva et al., 2011). Generally, it unable to grow at temperature below 30°C and above 45°C, while its optimal temperature is between 37°C to 42°C. *Campylobacter jejuni, C. coli, C. lari* and *C. upsaliensis* are described as thermotolerant *Campylobacter* (Silva et al., 2011).

2.2 Ecological distribution and epidemiology of *Campylobacter*

Campylobacter can be extensively found in various sources, particularly in the intestinal tract of animals. Although *Campylobacter* lack of the ability to multiply when being outside the animal host, it can survived in several environment condition such as farm equipment, surface water and marine aquatic environment (Jokinen et al., 2011). Domestic animal and wildlife were considered as the primary sources of *Campylobacter* shedding into environment.

2.2.1 Epidemiology of Campylobacter in human

Symptoms of foodborne campylobacteriosis in humans are characterized by watery diarrhea, abdominal cramp and fever (Schonberg-Norio et al., 2010). The infective dose of this foodborne pathogen is relatively low, which is approximately 500 - 800 cells of bacteria (Young et al., 2007). Once humans are infected with *Campylobacter*, symptoms usually develop within 24 - 72 hours (Zilbauer et al., 2008). Severity of the symptom depends on the virulence of the bacteria and susceptibility of the patients. Generally, this gastrointestinal disease is self-limiting and rarely required the antibiotic treatment. Although the illness could recovered spontaneously, several complications of *Campylobacter* infection including Guillain-Barré syndrome (GBS), reactive arthritis, post-infectious irritable bowel syndrome and potentially immunoproliferative small intestinal disease, could occur, particularly in elderly people (Baker et al., 2012). GBS which is an acute demyelination of the peripheral nerve causing acute flaccid paralysis was frequently reported (Zilbauer et al., 2008).

Campylobacter was the most common causative bacterial agent associated with human gastroenteritis in industrialized world (Scallan et al., 2011). *Campylobacter jejuni* was considered as the major cause of *Campylobacter* infection in human. The incidence rate of *C. jejuni* infection in EU member countries rose from 43.9 cases per 100,000 populations in 2008 to 45.6 per 100,000 populations in 2009 (EFSA, 2011a). In the United Kingdom, the number of *Campylobacter* infected cases increased significantly over the last 20 years from 33,280 cases in 1989 to 64,582 cases in 2011 (Nichols et al., 2012). In US, it was estimated that 2.4 million of *Campylobacter* infection cases were annually occurred. Unfortunately, incidence of this illness is not routinely recorded in developing countries. In Thailand, 28% of children admitted to hospitals with mucous bloody diarrhea between 1998 and 2000 were infected with *C. jejuni* (Bodhidatta et al., 2002). Moreover, this organism was reported as the major cause of diarrhea in people who travelled to Thailand (Serichantalergs et al., 2010).

Campylobacter infection was frequently associated with consumption of contaminated water and food, particularly food of animal origin. Unpasteurized milk was described as the cause of *Campylobacter* infection of several outbreaks. *Campylobacter* was isolated from various types of animal meat or aquatic product such as pork, lamb, beef, shell fish, etc. Handling, preparation or consumption of poultry meat was considered as the major cause of human infection (Hussain et al., 2007; Wilson et al., 2008).

2.2.2 Epidemiology of *Campylobacter* in domestic animals

Campylobacter is commonly found in intestinal tract of warm-blooded animals as the commensal organism, particularly in avian species. In some cases, the illness caused by *Campylobacter* was reported in young domestic animals such as dog, cat and piglet (Newell and Fearnley, 2003). In other hand, asymptomatic infection frequently occurred in food animal, such as chicken, cattle and swine. High prevalence of *Campylobacter* was described in domestic poultry species which was considered as the significant source of *Campylobacter* transmission in human.

2.3 Prevalence of Campylobacter in commercial broilers

Campylobacter contamination in poultry meat production has been extensively studied. In Europe, the European Food Safety Authority (EFSA) reported that Campylobacter contamination in broiler carcasses in member countries, e.g., Germany, Greece, Netherland, Spain, Sweden and United Kingdom, ranged from 4.9% to 100% (EFSA, 2011). In the US, the prevalence of *Campylobacter* contamination on retail broiler meats varied among states ranging from 41.0% to 61.3% (Zhao et al., 2001; Williams and Oyarzabal, 2012). In Oceania, the prevalence of *Campylobacter* isolated from New Zealand retail chickens was 69.7% (NZFSA, 2011). In Asia, the rate of Campylobacter contamination in retail broiler meats was similar to those of other parts of the world (Luu et al., 2006; Suzuki and Yamamoto, 2009; Rahimi et al., 2010; Lay et al., 2011). In Vietnam, 31% of retail chickens were contaminated with Campylobacter (Luu et al., 2006), while 80.9% of broiler products of Cambodia were contaminated with this organism (Lay et al., 2011). In Thailand, Campylobacter contamination rate in retail broiler meats ranged from 15.0 to 90.6 percent. Saengthongpinit et al. (2010) and Meeyam et al. (2004) reported that 61.3% of retail

chickens in the central and 90.6% of chicken meats from fresh markets in the northern were contaminated with *Campylobacter*. In Bangkok, 15.0% of chicken meats from fresh markets and 35.0% of chicken meats from supermarkets were positive for *Campylobacter jejuni* (Vindigni et al., 2007).

High prevalence of *Campylobacter* in broiler flocks has been reported in several countries, such as United Kingdom (75.3%), France (76.1%) and Spain (88.0%) (EFSA, 2011). Similarly, high colonization rate of *Campylobacter* in broiler batches was also reported in the US (87.5%) (Hiett et al., 2002b). In Asia, the prevalence of *Campylobacter* in broiler flocks varied from 11.2 to 83.3 percent (Meeyam et al., 2004; Ansari-Lari et al., 2011; Sasaki et al., 2011; Rejab et al., 2012). Study in Iran revealed that 76.0% of broiler flocks were colonized with *Campylobacter* (Ansari-Lari et al., 2011), whereas 43.5% of Japanese broiler flocks were *Campylobacter* positive (Sasaki et al., 2011). The prevalence of *Campylobacter* in Malaysian broiler flocks was relatively high (83.3%) (Meeyam et al., 2004; Rejab et al., 2012), while lower level of colonization rate was reported in Vietnam (31.90%) (Carrique-Mas et al., 2014). In Thailand, *Campylobacter* colonization rate in broilers was described ranging from 11.2 to 64.0 percent (Padungtod and Kaneene, 2005; Chokboonmongkol et al., 2013).

2.4 Distribution and molecular epidemiology of *Campylobacter* in broiler production chain

Although Campylobacter colonization in broilers possibly occur via either vertical transmission or horizontal transmission, several studies suggested that vertical transmission is not likely to be the main route of *Campylobacter* transmission in poultry (Pearson et al., 1996; Callicott et al., 2006; O'Mahony et al., 2011). Breeder flocks were found to be highly colonized with Campylobacter, but this organism was rarely recovered from fertile eggs (Sahin, 2003). Natural transmission of Campylobacter through the egg was rarely occurred due to the inability to penetrate the egg shell (Shanker et al., 1986; Sahin et al., 2003). Unlike vertical transmission, horizontal transmission seems to be more important for Campylobacter transmission in broiler production chain. Many studies suggested that potential origins of *Campylobacter* on broiler farms might be drinking water, farm workers, domesticated animals near the broiler farms, wild animals, insects, pests and organic matter from previous flock (Newell and Fearnley, 2003; Bates et al., 2004; Hald et al., 2004; Ridley et al., 2011). Hald and colleagues (2004) described the genetic similarity between isolated from flies around broiler houses and those from broilers. Likewise, Bull and colleagues (2006) found that genotype of *Campylobacter* isolated from environmental samples including feed, water, drinker and air was similar to Campylobacter strains from chickens. Similarly, Messens and colleagues (2009) revealed that Campylobacter isolated from nipple water had the same

genotypic pattern with the strains cultured from cecal samples of broilers. The carryover of *Campylobacter* in positive flock transmitted to the new consecutive flock was proposed and proven by *fla* typing and pulsed-field gel electrophoresis (PFGE) in the study of Shreeve and colleagues (2002). In addition, some studies also reported that transport cages can be the source of *Campylobacter* contamination in broiler production (Hansson et al., 2005; Ellerbroek et al., 2010). Although many possible sources of *Campylobacter* on broiler farms were suggested in previous studies, the exact origins were still unclear (Messens et al., 2009).

Contamination of *Campylobacter* frequently reported in slaughterhouses environment and broiler meat products (Miwa et al., 2003; Takahashi et al., 2006; Melero et al., 2012). Intestinal content of chicken was considered as the initial sources of *Campylobacter* in slaughterhouses. During slaughtering process, *Campylobacter* can be recovered from scalding water, defeathering machines, chilling water and eviscerating tools (Miwa et al., 2003; Peyrat et al., 2008; Figueroa et al., 2009). Unsurprisingly, cross-contamination between broiler flocks usually arise from insufficient cleaning and disinfection procedure of processing plants (Peyrat et al., 2008). *Campylobacter* contamination in slaughterhouse can be reduced by proper hygienic operation or treatment of the carcasses. One of the effective measures to prevent and control of *Campylobacter* contamination is reducing the load of *Campylobacter* carried into slaughterhouses (Reich et al., 2008).

2.5 Molecular techniques for genetic characterization of *Campylobacter*

To reveal genetic diversity in epidemiological investigation of Campylobacter, genotyping methods were gradually developed for several decade, e.g., multilocus enzyme electrophoresis (MLEE), repetitive element sequence-based PCR (rep-PCR), amplified fragment length polymorphism (AFLP), PCR-restriction fragment length polymorphism analysis of the *flaA* gene (*flaA*-RFLP), sequencing of the short variable region of the *flaA* gene (*flaA* SVR sequencing), pulse-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). Repetitive element sequence-based PCR is PCR technique which identified bacterial genotype by targeting on repeated DNA sequences of bacteria such as repetitive extragenic palindromic elements, enterobacterial repetitive intergenic consensus elements and BOX elements (Giesendorf et al., 1994; Hiett et al., 2006; Patchanee et al., 2012). Restriction fragment length polymorphism of *flaA* gene or *flaA*-RFLP differentiates bacterial genotype by fragmenting on *flaA* gene which encodes the flagellin protein of Campylobacter (Harrington et al., 2003). This gene is also used for identify Campylobacter genotype by determining the sequence of short variable region of flaA gene or flaA SVR sequencing (Meinersmann et al., 1997b). Although pulse field gel electrophoresis or PFGE is the gold standard method for Campylobacter genotyping, determination of bacterial genotype by sequencing of house-keeping genes or MLST is becoming popular in the recent decade (Pittenger et al., 2009). With this method, the information of *Campylobacter* epidemiology in local and global

scale could be comparable via central internet database (Levesque et al., 2008; Colles and Maiden, 2012). However, to get the most reliable information, more than one genotyping techniques should be performed (O'Mahony et al., 2011).

2.6 Distribution of *Campylobacter* sequence types in human and poultry sources

As one of the most reproducible genotyping techniques, MLST was widely applied for epidemiological investigations for *Campylobacter*. According to previous findings, *C. jejuni* population comprise of many clonal complexes which were distantly related to each other. In contrast, *C. coli* population could be divided only into three distinct clades (Colles and Maiden, 2012). ST-21 complex was extensively identified in wide-ranging sources, particularly in domestic animals and human. Moreover, this clonal complex was considered to be associated with human infection worldwide and has been reported as a common clonal complex in poultry. Similarly, ST-45 complex is known as one of the most common clonal complexes identified in human cases, various types of animal hosts and environmental samples. There is evidence indicating that members of the ST-45 complex were environmentally adapted strains, which can survive under unfavorable conditions better than other strains (Sheppard et al., 2007). Similar to the ST-45 complex, the ST-353 one was also mentioned as one of the common clonal complexes recovered from human cases

and poultry (Sheppard et al., 2009). ST-354 and ST-574 were reported as the predominant strains found in human and poultry samples of Thailand.

2.7 Risk factors associated with *Campylobacter* colonization in broiler flocks

To identify possible risk factors associated with *Campylobacter* colonization in broiler flocks, cross-sectional survey and cohort study was conducted in several studies (Barrios et al., 2006; Hansson et al., 2010; Agunos et al., 2014). Management in farms, such as partial depopulation, poor biosecurity, sanitary practices, age of birds and flock size, was identified to be the important risk factors for Campylobacter colonization in broiler farms (Lawes et al., 2012). Likewise, untreated drinking water use on broiler farms was revealed as a possible factor associated with Campylobacter colonization (Sasaki et al., 2011). In addition, the presence of animal reservoirs, e.g., insects, pests, domestic and wild animals on or near broiler farms was significantly associated with Campylobacter colonization in broilers (Lyngstad et al., 2008; McDowell et al., 2008; Ellis-Iversen et al., 2009). Hygiene barriers and pest interventions were investigated to be the protective factors of Campylobacter colonization in broiler flocks (Hald et al., 2000; Hald et al., 2007). These findings emphasized that farm management is involved with *Campylobacter* colonization in broiler flocks. Seasonality of *Campylobacter* prevalence in broiler production was reported by several publications, particularly in temperate zone. In northern hemisphere, number of *Campylobacter* colonization in broiler flocks was relatively

low, while prevalence of positive flock increased sharply in summer time. Similarly, *Campylobacter* contamination rate in retail chicken meat also exhibited in the seasonal pattern (Boysen et al., 2011).

2.8 Logistic regression model and generalized estimating equations

Identification of causal and disease relationship is always considered as the main objective in epidemiological study. To achieve the most accurate result, the statistical method that is the most appropriate for the characteristic of data is needed. As the most popular method among others in epidemiological investigation, logistic regression is the mathematical model that can be used to identify the association between multiple independent variables and a dichotomous dependent variable, such as disease (Hosmer and Lemeshow, 2000). The function of this model, called f(Y), is in the basic logistic regression formula as below:

$$f(Y) = \alpha + \beta_1 X_1 + \beta_2 X_2 + ... + \beta_k X_k$$
 Eq. 1

Let Y = response variable or dependent variable, X = independent variable, $\beta_1, \beta_2, ..., \beta_k$ = regression parameters and α = intercept.

The output of logistic regression is the estimation of risk (probability) which is always ranging from 0 to 1 depending on the value of Y, while the value of Y could vary from $-\infty$ to ∞ (Figure 1). In term of epidemiological study, the prediction of probability gives the risk of the individual to get disease.

Figure 1 Range of function f(Y) depending on the value of Y

Similar to other statistical approaches, several assumptions are needed to be confirmed before operating the logistic regression model. If the assumption cannot be met in some cases, such as clustered or repeated data, alternative approaches should be carried out in order to avoid the incorrected conclusion. Generalized estimating equation (GEE) is known as the common technique used in large epidemiological studies because of its ability to handle many types of unmeasured data. This method is the extension of generalized linear models (GLMs) and classified as the semiparametric regression technique (Liang and Zeger, 1986). The basic formula of GEE (Eq. 2) is similar to GLM but full specification is not required.

Estimation of the parameter is commonly performed by quasi-likelihood equations without the assumption of normal distribution on dependent response. For this technique, multi-variables can be included within single analysis. To provide the correct estimation, choosing the right correlation structure is necessary. There are four correlation structure that frequently be used; independence, exchangeable, autoregressive of first order and unstructured (Figure 2).

Figure 2 Correlation structures that commonly used for GEE approach

CHAPTER III MATERIALS AND METHODS

This study consisted of two major phases; 3.1) prevalence and risk factors associated with *Campylobacter* in broiler flocks, and 3.2) genetic relatedness of *Campylobacter* isolated from broiler production chain (Figure 3). For phase 1, *Campylobacter* colonization status of twenty broiler farms was investigated consecutively for two years. Criteria of farm selection were including farm location (within 4 - 5 hours distance to Bangkok), cooperation of farm owner and production capacity of broiler farms (approximately 5 production cycles per year). Amongst 20 selected farms, 6 broiler farms were selected to be the subject for longitudinal investigation throughout the broiler production chain. *Campylobacter* positive status of broiler flocks, farm location and willingness of farm owner to participate in the study were considered as the criteria of target farms in phase 2.

Chulalongkorn University

Figure 3 General outline of the study

3.1 Prevalence and risk factors associated with Campylobacter in broiler flocks

In this study, *Campylobacter* colonization status of 20 broiler flocks was determined and information of each broiler farm was also collected. Information will be analyzed by statistical method to identify risk factors associated with *Campylobacter* colonization in broiler flocks.

3.1.1 Sample collection

Examined population in this study consisted of 250 broiler flocks from 48 broiler farms, which belong to two integrated poultry production companies; company A and B/C (Figure 4). To conduct the preliminary survey, *Campylobacter* colonization of 48 broiler farms were consecutively investigated for 2 production cycles. After that, 20 broiler farms were selected with the criteria of farm location (in central or eastern of Thailand), production capacity of the farm (approximately 5 production cycles per year) and cooperation of farmer to provide the farm data. Two-year sample collection was continuously conducted on 20 broiler farms in order to display the pattern of *Campylobacter* colonization throughout the year. Ten intact ceca per flock were collected in 2 participating slaughterhouses which were mainly located at the central and eastern part of Thailand. Chicken intestines were aseptically removed from the carcasses during the evisceration step, and then separately put into sterile plastic bag. Samples were kept on ice before laboratory process.

To obtain farm and flock-specific information, questionnaires (Appendix B) were constructed and modified according to previous studies. The structured questionnaires including farm management data (e.g., antibiotic usage, pest control and restriction of domestic animals), farm layout (e.g., house structure, house condition and feeding system), sanitary practice (e.g., carcasses disposal, frequency of boot dip disinfectant change and type of disinfectant used) and animal welfare practice (e.g., feed withdrawal period, flock density and light management) were used to obtain information from sampled broiler flocks. Data collection of examined flocks was performed by well-trained veterinarians or farm staffs.

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

Figure 4 Location of target broiler farm participating in this study (red). The shape size indicates the number (density) of examined flocks located in each province (The picture was taken from www.bangkok-market.com)

3.1.2 Isolation and identification of Campylobacter

Campylobacter isolation in cecal samples was performed by the direct plating method according to the previous published protocol (Hook et al., 2005). Ceca were aseptically incised, then cecal content were directly streaked onto Modified Charcoal-Cefoperazone-Deoxycholate agar or mCCDA (CM0739; Oxoid Ltd., Basingstoke, Hampshire, United Kingdom) supplemented with Campylobacter selective supplement (SR0155; Oxoid Ltd., Basingstoke, Hampshire, United Kingdom). For bacterial enumeration, cecal content was diluted in normal saline solution and inoculate onto mCCDA. The inoculated plates were incubated at 42°C for 48 hours under microaerobic conditions (5% of oxygen, 10% of carbon dioxide and 85% of nitrogen). Suspected Campylobacter colonies (greyish, metallic sheen, flat and moist) were primarily confirmed by their cell morphology according to the ISO 10272-1: 2006 standard. Campylobacter species were identified by multiplex-PCR method according to the previous published protocols as in Table 1 (Linton et al., 1996; Wang et al., 2002). Campylobacter suspected colonies were suspended in 100 µl of distilled water (Hyclone®, Thermo Scientific, Utah, USA). Cell mixtures were heated at 100 °C for 10 minutes and centrifuged to separate cell debris. The supernatant was used as DNA template in PCR reaction (25 μ l) containing 2.5 μ l of 10x reaction buffer; 200 µM of deoxynucleoside triphosphate; 0.5 µM of *C. jejuni* and *C. coli* primers; 25 ng of DNA template; and 0.625 U of Takara Ex Taq TM (Takara Bio Inc., Japan). PCR was performed in a thermocycler (Biometra GmbH, Germany) under the conditions as

follows: 30 cycles of denaturation at 94 °C for 1 minute, amplification at 58 °C for 1 minute and extension at 72 °C for 1 minute. PCR products were examined on 1.5% agarose gel in 1xTris-acetate-EDTA (TAE) buffer and visualized by ultraviolet transilluminator. *Campylobacter* positive status of broiler flock was determined by the presence of *Campylobacter* colonies in cecal samples.

Table I set of primers for campyloodcler identification			
Primer	Sequence (5'-3')	Size (bp)	
16SF	GGA TGA CAC TTT TCG GAG C	816	
16SR	CAT TGT AGC ACG TGT GTC		
CJF	ACT TCT TTA TTG CTT GCT GC	323	
CJR	GCC ACA ACA AGT AAA GAA GC		
CCF	GTA AAA CCA AAG CTT ATC GTG	126	
CCR	TCC AGC AAT GTG TGC AAT G		

Table 1 Set of primers for Campylobacter identification

3.1.3 Risk factors analysis

Data obtained from broiler farms was verified and entered into a Microsoft Excel database (Microsoft Corporation). Frequency, mean, standard error and confident interval were calculated using online GraphPad Prism[®] (GraphPad Software, Inc.). Possible explanatory variables were combined with *Campylobacter* colonization status of broiler flocks to identify the risk factors associated with *Campylobacter*
colonization in broiler flock. The data was grouped into 2 groups by season i.e., wet season (May to October) and dry season (November to April). The difference of *Campylobacter* prevalence between seasons was determined by chi-square test. In addition, the records of climatic factors (i.e., rainfall, ambient temperature and relative humidity) during the rearing period of each examined flocks was obtained from Thai Meteorological Department (TMD).

Since broiler farms were investigated continuously for 2 years in order to describe the pattern of *Campylobacter* colonization throughout the year, the response data in this study should be clustered by farm. However, there is still unclear whether the response variables of these flocks are related to each other since broiler flocks from each production cycles were not actually the same individual. Thus, to identify risk factors associated with *Campylobacter* in broiler flocks, logistic regression model (for independent data) and generalized estimating equation (for repeated data) were performed (Liang and Zeger, 1986; Hosmer and Lemeshow, 2000). Statistical analysis procedures were carried out using SAS version 9.0 (SAS institute Inc., Cary, NC). Campylobacter colonization status (positive or negative) was considered as the dependence or response variable (Y) which was defined as follows: Y=1 if Campylobacter positive and Y=0 if Campylobacter negative. Similarly, independence variables (farm and flock characteristic data) were defined as X=1 if the factor was found and X=0 if the factor was do not found. The general forms of those models are described as below (Eq. 3 and 4):

$$f(Y) = \log(\frac{p_{ij}}{1 - p_{ij}})$$
 Eq. 3

Let $\beta_1, \beta_2, ..., \beta_k$ are regression parameters or estimating values, and α is the intercept of prediction model as below:

$$f(Y) = \alpha + \beta_1 X_1 + \beta_2 X_2 + ... + \beta_k X_k$$
 Eq. 4

For logistic regression model (proc LOGISTIC), univariate analysis was used as a screening method for measuring associations between explanatory variables and *Campylobacter* colonization of broiler flocks. In univariate procedure of logistic regression model, Wald test and chi-square test were conducted in order to crudely estimate the statistical association between exposure variables and *Campylobacter* colonization status. The significant exposure variables, which were reasonable in biological or statistical aspect, were further tested by multivariable analysis. In multivariable analysis, stepwise selection was used to complete the model developing process. Test for multicollinearity among variables was performed to confirm that variables in the model are not related to each other. Null hypothesis of the model was tested by likelihood ratio statistic. Hosmer and Lemeshow goodness of fit test was performed to determine how well the model fits to the studied data.

For GEE analysis, repeated statement (**repeated subject**=*subjecteffect*/**options**) in **GENMOD** procedure was used for activating the GEE command to measure the correlation between *Campylobacter* colonization in broilers and the variable. In this study, the working correlation structure was specified through the **type = EXCH** option for an exchangeable structure. In addition, **within=within-** **subject** option is used to specified an ordering for unequally spaced repeated measures or repeated measures with missing time points. To calculate odd ratio estimation of independent variables, **'estimate'** command were applied. Similar to logistic regression model, the formula used to transform the coefficient value into odd ratio is display as follow:

$$OR = e^b$$
 or $OR = \exp(\beta)$ Eq. 5

Univariate analysis was applied to all independent factors to screen only the factors possibly associated with dependent variable ($p \le 0.05$). Then, GEE model with multiple factors was performed. Stepwise backward elimination procedure was manually conducted until the most suitable model is achieved. Test for multicollinearity among variables was applied to confirm whether variables in the model are not related to each other. Goodness-of-fit test was determined by Pearson chi-square/DF and mean deviance. Finally, two types of model based estimators (i.e., Model-based and Empirical variance estimators) were used to determine how well the GEE model correctly fit to the studied data.

3.2 Distribution and genetic relatedness of Campylobacter isolated from

poultry production chain

3.2.1 Description of examined farms

During June to August 2012, six chicken production chains (chains A, B, C, D, E and F) of two poultry companies in Thailand (companies A and B/C) were chronologically investigated from breeder farm to slaughterhouse (Table 2). However, because of refusal of the company, we could not conduct the investigation in slaughterhouse of chain F. In this study, chicken production units (i.e., breeder farms, hatcheries, broiler farms and slaughterhouses) were located distantly from each other. Investigated broiler flock was supplied by single breeder farm affiliated with the same company. In company 1, fertile eggs from breeder flocks B and C were sent to the same hatchery, while sample collection in hatchery of chain A was taken place in another one. For company 2, fertile egg of three production chains (chains D, E and F) were sent to the same hatchery located in the north eastern province. Broiler farms A, D and E were located in the eastern region of Thailand, while broiler farms B and C were located in the central region. Only broiler farm F was located in the north eastern part of Thailand. Size of broiler farms ranged from 11,200 square meters (farm D) to 384,000 square meters (farm F). Broiler farm A is an antibiotic-free farm with the production capacity of 100,000 chickens per year. Broiler farms B and C are located next to each other. Farm B consisted of 10 houses and produced approximately 1,000,000 chickens per year, while farm C was composed of 7 houses and produced around 700,000 chickens per year. Unlike farms A, B and C, broiler farms D and E had only 1 house with the production capacity of 93,000 and 60,000 chickens per year, respectively. Amongst participating farms, broiler farm F had the largest farm area (384,000 square meters) which could produce 160,000 chickens per year with their four rearing houses. Slaughter age of studied broiler flocks ranged

between 32 to 42 days. Flocks A, B and C were slaughtered in large scale processing plants, whereas flocks D and E were slaughtered in a small scale plant.

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

	farm	S1	S2	S2	S3	S3	NS
	Number of house in	7	10	7	4	4	4
Broiler farm	Farm location	Prachinburi	Lopburi	Lopburi	Prachinburi	Prachinburi	Nakhon Ratchasima
	Code name	A	В	U	Ω	ш	ш
2 () () () () ()	пацспегу	H1	H2	H2	H3	H3	H3
Breeder	farm	Br1	Br2-1*	Br2-2*	Br3-1 [#]	Br3-2 [#]	Br4
	Company	A	A	A	B/C	B/C	B/C
	LIUCK	A	В	U	Ω	ш	ш

~
study
this
.⊆
participating
chains
uction
prod
broiler
.×
of
Information
C CD
Table

 $^{*,\,\#}$ Reared in the same farm but not in the same flock

NS not sampling

3.2.2 Sample collection

In this study, samples were longitudinally collected from breeder farms to slaughterhouses (Table 3). In total, 2,889 samples from breeder flocks, hatcheries, broiler flocks and slaughterhouses were collected from six broiler production chains. *Campylobacter* colonization in breeder flock was determined by cloacal swab samples. Eggs produced from previously sampled breeder flocks were tracked to hatcheries. Egg trays and egg incubators exposed to target egg batches were swabbed on their surface. Egg shell was randomly taken after chicks were hatched. Prior to chick placement, environmental samples of disinfected house were investigated to determine the contamination of *Campylobacter*. Feces-soiled tray liners were collected on the day of chick arrival. Broiler flocks were visited regularly during the rearing period as described in Figure 5. Cloacal swabs from live birds and environmental samples (litter, water from nipple drinkers, water inlet and shoe covers) were taken on each visit. Insects and other pests in farming area were captured as available.

At slaughterhouse, disinfected transport crates were swabbed before being used. Slaughterhouse equipment were sampled at before and after slaughter process of target flock (Figure 5). Three areas on breast comforter surface were randomly swabbed lengthwise. Shackles were sampled at hanging area and evisceration area. Eviscerating equipment and packaging tables were wiped thoroughly. Water samples were collected from bird washing machine, inside/outside washing machine and chiller tanks. For chicken related samples, cloacal swabs from live birds were collected before they were slaughtered. Carcass rinse was performed after scalding, plucking, evisceration, I/O washer and chilling steps using buffered peptone water. Intact ceca were randomly taken at evisceration area. Meat products from postchilled chicken i.e., carcass portioning and meat trimming were investigated. All samples were kept on ice during transport to the laboratory and processed within 4 hours after sampling.

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

IdDle	o sample collection plan o	n this study	
	Estimated number of	Number of studied	Estimated total number of
	samples collected per	flocks	samples
	flock		
Breeder flock			
- Cloacal swabs	30	Q	180
Hatchery			
- Equipment and environmental	30	Q	180
samples (e.g., egg tray, incubator and tap			
water)			
Broiler house			
<u>Before rearing period</u>			
- Boot swab samples ^a	Ŋ	Q	30
- House equipment and	25	Q	150
environmental			
samples (e.g., feeder, litter, boots			
and water)			

Table 3 Sample collection plan of this study

32

	OULDERING PLANT OF LINES SLAV		
	Estimated number	Number of	Estimated total number
	of samples	studied flocks	of samples
	collected per flock		
<u>During rearing period</u> (approximately 6 weeks)			
- Boot swab samples ^b (5 samples/week)	30	9	180
- House equipment and environmental	06	9	540
samples (e.g., litter, water, pests and feed) (15			
samples/week)	180	6	1,080
- Cloacal swabs (30 samples/week)			
Slaughterhouse ^d			
- Cloacal swabs	10	5 ^d	50
- Equipment and environmental samples (e.g.,	06	$5^{\rm d}$	450
shackle, chilling water, tap water, etc.) ^c			
<u>Total (Approximate)</u>	490		2,840
^a Area of boot swab sampling at downtime period: anteroom of the target hous	e, inside target house and area ar	ound the house.	

Table 3 Sample collection plan of this study (Cont.)

^b Area of boot swab sampling during rearing period: path-leading to the house, anteroom of the target house, inside the target house, area around the house and inside the adjacent house.

 $^{\rm c}$ Samples were collected before and during slaughtering process of the selected flock.

 $^{\rm d}$ Only 5 flocks could be investigated at slaughterhouses.

Figure 5 Types of sample collected throughout the broiler production chain

^a Area of boot swab sampling at downtime period: anteroom of the target house, inside the target house and

area around the house.

^b Area of boot swab sampling during the rearing period: path-leading to the house, anteroom of the target house, inside the target house, area around the house and inside the adjacent house. ^c Flocks D and E were visited at 7^{th} , 14^{th} , 21^{st} , 28^{th} , 35^{th} day of the rearing period, while other flocks were visited

at 7th, 14th, 17th, 21st, 24th, 28th, 31st, 35th, 38th day of the rearing period.

3.2.3 Campylobacter isolation and identification

Samples were examined by direct plating and selective enrichment methods. The direct plating method was used for *Campylobacter* isolation from cloacal swab and cecal samples (Hook et al., 2005). In brief, samples were streaked directly onto *Campylobacter* blood-free selective agar (CM0739; Oxoid Ltd., Basingstoke, Hampshire, United Kingdom) supplemented with *Campylobacter* selective supplement (SR0155; Oxoid Ltd., Basingstoke, Hampshire, United Kingdom). Samples were incubated at 42 °C for 48 hours under microaerobic conditions (5% O_2 , 10% CO_2 and 85% N_2).

Environmental and meat samples were examined by selective enrichment culturing method. Samples were transferred into Exeter broth consisting of nutrient broth No. 2 (CM0067; Oxoid Ltd., Basingstoke, Hampshire, United Kingdom), *Campylobacter* growth supplement (sodium metabisulphite, 250 mg/liter; sodium pyruvate, 250 mg/liter; and ferrous sulfate, 250 mg/liter), *Campylobacter* selective supplement (trimethoprim, 10 mg/liter; rifampicin, 5 mg/liter; polymyxin B, 2,500 IU/liter; cefoperazone, 15 mg/liter; and amphotericin B, 2 mg/liter) and 5% sheep blood. One part of animal feed, egg shell, litter, meat products and chilling water were put into nine parts of Exeter broth. Cotton swabs from any surfaces were immersed into 10 ml of broth. A liter of clean water samples (drinking water and tap water) were filtered through 0.45 µm membrane filters (GN-6 Metricel[®], Pall, USA). Then, filtered membrane filters were immersed in the 20 ml of Exeter broth. Insects

(darkling beetles and house flies) were crushed, and then added in 10 ml of broth. Rodents and lizards were tested for *Campylobacter* in their feces and skin surface, respectively. Enrichment broths inoculated with samples were incubated under microaerobic conditions for 48 hours at 37°C. Thereafter, enriched samples were spread onto mCCDA and incubated in microaerobic conditions for 48 hours at 42°C. Suspected Campylobacter colonies were confirmed by cell morphology and multiplex polymerase chain reaction (Linton et al., 1996; Wang, 2002). Campylobacter suspected colonies were suspended in 100 µl of distilled water (Hyclone®, Thermo Scientific, Utah, USA). Cell mixtures were heated at 100 °C for 10 minutes and centrifuged to separate cell debris. The supernatant was used as DNA template in PCR reaction (25 µl) containing 2.5 µl of 10x reaction buffer; 200 µM of deoxynucleoside triphosphate; 0.5 µM of *C. jejuni* and *C. coli* primers; 25 ng of DNA template; and 0.625 U of Takara Ex Taq TM (Takara Bio Inc., Japan). PCR were amplified in a thermocycler (Biometra GmbH, Germany) under the conditions as follows: 30 cycles of denaturation at 94 °C for 1 minute, amplification at 58 °C for 1 minute and extension at 72 \degree for 1 minute. PCR products were examined on 1.5% agarose gel in 1x Tris-acetate-EDTA (TAE) buffer and visualized by ultraviolet transilluminator. In addition, presumptive Campylobacter colonies were stored in skim milk with 30% glycerol at -80°C for further study.

3.2.4 Genetic characterization of Campylobacter jejuni

Randomly selected colonies of *Campylobacter jejuni* isolated from each production unit were primarily subtyped by *flaA* short variable region. Representatives of *flaA* SVR genotypes were further characterized by multilocus sequence typing (MLST). DNA extraction procedure was performed using Wizard[®] Genomic DNA purification kit (Promega, Madison, USA).

Short variable region of *flaA* gene was amplified with primers FLA242FU (5'-CTA TGG ATG AGC AAT TWA AAA T-3') and FLA625RU (5'-CAA GWC CTG TTC CWA CTG AAG-3') as previously described (Meinersmann et al., 1997a). PCR products were purified by NucleoSpin[®] Gel and PCR Clean-up kit (MACHEREY-NAGEL, Düren, Germany) and sent for DNA sequencing at First BASE Laboratories (Selangor Darul Ehsan, Malaysia). To determine allelic numbers, nucleotide sequences were submitted into the online database (http://pubmlst.org/*Campylobacter*/flaA/).

MLST was performed according to the previously published protocol (Dingle et al., 2001). Internal fragments of seven housekeeping genes (i.e., *aspA*, aspartase A; *glnA*, glutamine synthetase; *gltA*, citrate synthase; *glyA*, serine hydroxymethyltransferase; *pgm*, phosphoglucomutase; *tkt*, transketolase; and *uncA*, ATP synthase α subunit) were amplified and sequenced (Table 4). Allele numbers, sequence types (STs) and clonal complexes (CCs) were assigned according to the *Campylobacter* MLST database. Phylogenetic reconstruction using neighbour joining method was performed by importing trimmed sequences into Molecular Evolutionary Genetics Analysis (MEGA) software version 6.0.

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

	Ľ	Primer se	eduences	Amplicon
rocus	Function	Forward primer	Reverse primer	size (bp)
	Amplification	5'-AGT ACT AAT GAT GCT TAT CC-3	5'-ATT TCA TCA ATT TGT TCT TTG C-3'	
aspA	Sequencing	5'-CCA ACT GCA AGA TGC TGT ACC-3'	5'-TTA ATT TGC GGT AAT ACC ATC-3'	899
	Amplification	5'-TAG GAA CTT GGC ATC ATA TTA CC-3'	5'-TTG GAC GAG CTT CTA CTG GC-3'	
guna	Sequencing	5'-CAT GCA ATC AAT GAA GAA AC-3'	5'-TTC CAT AAG CTC ATA TGA AC-3'	1,202
	Amplification	5'-GGG CTT GAC TTC TAC AGC TAC TTG-3'	5'-CCA AAT AAA GTT GTC TTG GAC GG-3'	
BILA	Sequencing	5'-GTG GCT ATC CTA TAG AGT GGC-3'	5'-CCA AAG CGC ACC AAT ACC TG-3'	1,012
	Amplification	5'-GAG TTA GAG CGT CAA TGT GAA GG-3'	5'-AAA CCT CTG GCA GTA AGG GC-3'	
glyA	Sequencing	5'-AGC TAA TCA AGG TGT TTA TGC GG-3'	5'-AGG TGA TTA TCC GTT CCA TCG C-3'	010
	Amplification	5'-TAC TAA TAA TAT CTT AGT AGG-3'	5'-CAC AAC ATT TTT CAT TTC TTT TTC-3'	
рдт	Sequencing	5'-GT TTT AGA TGT GGC TCA TG-3'	5'-TTC AGA ATA GCG AAA TAA GG-3'	1,150
	Amplification	5'-GCA AAC TCA GGA CAC CCA GG-3'	5'-AAA GCA TTG TTA ATG GCT GC-3'	
ואנ	Sequencing	5'-GCT TAG CAG ATA TTT TAA GTG-3'	5'-ACT TCT TCA CCC AAA GGT GCG-3'	1,102
	Amplification	5'-ATG GAC TTA AGA ATA TTA TGG C-3'	5'-GCT AAG CGG AGA ATA AGG TGG-3'	
unca	Sequencing	5'-TGT TGC AAT TGG TCA AAA GC-3'	5'-TGC CTC ATC TAA ATC ACT AGC-3'	1,120

Table 4 Set of primers for PCR amplification and sequencing of MLST

CHAPTER IV RESULTS

4.1 Prevalence and risk factors associated with Campylobacter in broiler flocks

4.1.1 Campylobacter colonization in broiler flocks

Of 250 broiler flocks participating in the study, 119 flocks (47.60%; 95% Cl 41.41 - 53.79%) were identified as *Campylobacter* positive. Overall, 1,048 *Campylobacter* isolates were recovered from 2,500 cecal samples. The proportion of *Campylobacter* positive cecal samples of each flock was defined as within-flock prevalence which varied from 10 to 100 percent (84.93%, 95% Cl 80.77 – 89.09%). In the present study, approximately 80% of broiler flocks had high within-flock prevalence (>75%) (Figure 6). Bacterial enumeration in cecal content ranged from 4.00 log₁₀ to 8.97 log₁₀ CFU per gram (8.06 log₁₀ CFU per gram, SE = 7.49, 95% Cl = 7.93 – 8.16). The most of broiler flocks were positive for *Campylobacter jejuni* (84.87%), while only 6.72% of *Campylobacter* positive flocks were colonized with *C. coli.* In addition, the prevalence of mixed infection between *C. jejuni* and *C. coli* was reported as 8.40% (Figure 7).

Figure 6 Within-flock prevalence of Campylobacter in examined broiler flocks

Figure 7 Species identification of Campylobacter in examined broiler flocks

To determine monthly prevalence of *Campylobacter* colonization in broiler flocks throughout the year, *Campylobacter* colonization data was categorized by month of sampling (Figure 8). In 2012, *Campylobacter* prevalence was reported ranging from 18.75 to 52.94 percent during January to May, while the sharp increase of *Campylobacter* colonization rate was reported during June to November. Likewise, in 2013, *Campylobacter* prevalence in July to December was reported from 54.55 to 75.00 percent which was higher than that of the rest in the same year. In 2014, low monthly prevalence was found during January to March and then increase to 100% on April (Figure 8).

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

Among 48 preliminary farms, 20 broiler farms were selected for two-year investigation. The actual names of each farm were covered and replaced as A1 – A30 for broiler flock affiliated with company A and B/C1 – B/C19 for broiler flock from company B. Participating broiler farms for two-year investigation were A2, A5, A10, A13, A15, A17, A19, A22, A23, A30, B/C2, B/C3, B/C4, B/C6, B/C7, B/C8, B/C10, B/C11, B/C13 and B/C15. The prevalence of each farm throughout the study was reported between 8.33 and 87.50 percent (Table 5). Farms A5, A17, A22, A23 and B/C6 were highly colonized with *Campylobacter* (from 75.00% to 87.50%), while farms A2, A10 and A30 were colonized once throughout the investigation.

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

Earn				Cam	pylobacter	· colonizati	ion status o	of broiler fl	ocks				Overall prevalence
	Cycle 1	Cycle 2	Cycle 3	Cycle 4	Cycle 5	Cycle 6	Cycle 7	Cycle 8	Cycle 9	Cycle 10	Cycle 11	Cycle 12	(percent)
A2	z	z	z	z	٩	z	z	z	z	z	NS	NS	10.00
A5	z	ط	٩	٩	٩	٩	٩	٩	٩	٩	z	z	75.00
A10	z	z	z	z	۵.	z	z	z	z	z	z	z	8.33
A13	z	z	٩	٩	٩	٩	٩	z	z	٩	z	٩	58.33
A15	٩	ط	٩	٩	٩	٩	z	z	z	z	z	z	50.00
A17	z	٩	٩	٩	٩	٩	٩	٩	NS	NS	NS	NS	87.50
A19	٩	z	z	٩	z	٩	z	z	z	z	ط	z	33.33
A22	٩	z	٩	٩	٩	z	٩	٩	٩	٩	z	٩	75.00
A23	z	٩	٩	٩	٩	٩	٩	٩	٩	٩	٩	z	83.33
A30	z	z	z	z	۵.	z	z	z	z	NS	NS	NS	11.11
B/C2	٩	ط	٩	٩	z	٩	z	z	NS	NS	NS	NS	62.50
B/C3	z	z	NS	٩	NS	z	z	z	٩	٩	NS	NS	37.50
B/C4	z	٩	٩	٩	٩	z	z	z	٩	z	NS	NS	50.00
B/C6	٩	٩	z	٩	٩	٩	NS	NS	NS	NS	NS	NS	83.33
B/C7	z	ط	٩	Ъ	NS	z	z	z	٩	NS	NS	NS	50.00
B/C8	٩	٩	٩	Р	٩	z	z	z	٩	٩	٩	z	66.67
B/C10	٩	z	٩	NS	۵.	٩	z	NS	NS	NS	NS	NS	66.67
B/C11	z	z	z	z	٩	٩	٩	٩	٩	٩	NS	NS	60.00
B/C13	٩	z	٩	٩	٩	z	z	٩	z	NS	NS	NS	55.56
B/C15	ط	z	٩	Ъ	z	z	z	z	٩	٩	NS	NS	50.00

Table 5 Two-year study on Campylobacter colonization of 20 Thai broiler farms during 2012 to 2014

P = positive, N = negative, NS = not sampled

To determine the seasonality of *Campylobacter* in Thai broiler flocks, *Campylobacter* colonization status was repeatedly observed in broiler flocks reared in the same broiler farm for 2 years (during 2012 to 2013). *Campylobacter* colonization data was categorized into 2 groups i.e., wet season (May to October) and dry season (November to April). Out of 250 investigated broiler flocks, 143 flocks were slaughtered in dry season and 107 flocks were slaughtered in wet season. The prevalence of *Campylobacter* was 37.76% (54/143) in dry season and 60.75% (65/107) in wet season (Figure 9). From the raw data of each year (Table 6), most of *Campylobacter* prevalence in dry season was lower than that of wet season. In addition, the statistical analysis show significant difference between prevalence in wet season and prevalence in dry season (chi-square = 12.0590, p = 0.0005).

Figure 9 Prevalence of Campylobacter in dry and wet seasons

	Season	Prevalence of Campylobacter (%)
January 2012 - April 2012	Dry	32.00
May 2012 - October 2012	Wet	66.67
November 2012 - April 2013	Dry	46.94
May 2013 - October 2013	Wet	52.27
November 2013 - April 2014	Dry	36.84

Table 6 Campylobacter prevalence in dry and wet seasons

To display the association between climatic factors and *Campylobacter* colonization throughout a year, daily record of 3 climatic factors (i.e., rainfall, ambient temperature and relative humidity) were obtained from Thai meteorological department (TMD). In 2012 and 2013, average daily rainfall during June to November was obviously high comparing to those of the remaining months (Figure 10). Interestingly, prevalence of *Campylobacter* in 2012 was also remarkable during June to November. Similarly, *Campylobacter* colonization rate in 2013 was relatively high during July to December comparing to the remaining months of that year. This finding indicated that *Campylobacter* colonization pattern was consistent to the average daily rainfall. In contrast, the ambient temperature and relative humidity was relatively steady throughout the year (Figures 11 and 12).

4.1.2 Descriptive information of participating broiler farms

To identify risk factors associated with *Campylobacter* colonization in broiler flocks, farm and flock data of each examined flock was collected by structured questionnaires. The obtained data could be categorized into 2 types; 10 continuous variables and 45 categorical variables (Table 7 and 8, respectively).

Participating broiler farms were mainly located in central and eastern parts of Thailand. Wide range of production capacity was described between 36,000 and 2,500,000 chickens per year. Arbor Acre, Ross and Cobb were the major breeds of the examined flocks. All-in all-out system was used in every participating flock without partial depopulation. Moreover, the standard farm management practices such as frequency of footwear disinfectant replacement, dead bird disposal, pest control and downtime period (at least two weeks), was commonly found in this study. The flocks were slaughtered at an average age of 37.87 ± 0.24 days (ranging from 30 to 45 days).

	•		
Variable	Sample size	Average ± SEM	Minimum -
			Maximum
Farm size (square meter)	204	70,070.59 ±	8,000 -
		7,440.86	384,000
Number of rearing house	243	9.09 ± 1.02	1 – 72
Production capacity (chicken	243	547,270.78 ±	36,000 -
per year)		45,779.12	2,500,000
Age of target house (month)	192	110.73 ± 5.56	6 - 360
Average temperature within	158	29.19 ± 0.08	23.00 - 33.11
target rearing house (C)			
Humidity within target rearing	158	69.21 ± 0.60	50.00 - 82.49
house (%)			
Mortality rate (%)	222	2.67 ± 0.11	0.02 - 11.00
Culling rate (%)	211	1.91 ± 0.22	0.03 - 36.38
Slaughter age (days)	227	37.87 ± 0.24	30 - 45
Number of chicken in target	228	16,023.54 ±	4,794 –
rearing house		494.11	53,142

Table 7 Continuous data of participating broiler flocks

จุฬาลงกรณ์มหาวิทยาลัย

Chulalongkorn University

		Campyl	obacter
	Sample size	colonizat	ion status
	-	positive	negative
Feeding system			
Trough feeder	17	10	7
Pan feeder	177	88	89
Both	49	17	32
Drinking water system			
Nipple drinker without cup	57	22	35
Nipple drinker with cup	186	93	93
Bell type	49	17	32
Presence of anteroom			
Yes	197	92	105
No	46	23	23
Presence of damage on target			
house			
Yes	102	46	56
No	111141 19	69	72
Ground area around target	UNIVERSITY		
house			
Weed	13	10	3
Dirt	155	77	78
Gravel	24	3	21
Concrete	168	89	79

Table 8 Categorical data of participating broiler flocks

	·	Campyl	obacter
	Sample size	colonizat	ion status
	-	positive	negative
Organic acid supplement use in			
drinking water			
Yes	213	105	108
No	30	10	20
Antibiotic supplement in food			
Yes	149	80	69
No	90	35	55
Type of disinfectant in water			
No disinfection	22	5	17
Hypochlorite (ClO-)	57	13	44
Chlorine dioxide (ClO ₂)	164	97	67
Source of water in farm			
Underground water	229	111	118
Tap water	28	18	10
Surface water	13 13	2	11
Presence of surface water in	N UNIVERSITY		
surrounding area			
Yes	155	81	74
No	86	33	53
Frequency of dipping water			
change			
More than once a day	81	42	39
Once a day	160	72	88

Table 8 Categorical data of participating broiler flocks (Cont.)

		Campyl	obacter
	Sample size	colonizat	ion status
	_	positive	negative
Cleaning method for drinking			
water system			
Cleaning with water	79	36	43
Cleaning with acidity solution	153	68	85
Cleaning with disinfectant solution	90	47	43
Pest control management	122		
Bird	186	101	85
Fly	74	25	49
Darkling beetle	44	25	19
Duration for flock clearance	4		
Less than 1 day	18	11	7
1 – 2 day (s)	64	26	38
3 – 7 days	161	78	83
Duration for feed depletion			
Less than 6 hours	92 8	54	38
6 – 8 hours Chulalongkori	40 BST	11	29
9 – 12 hours	111	50	61
Presence of domestic animal in			
farm area			
Yes	55	17	38
No	175	97	78

Table 8 Categorical data of participating broiler flocks (Cont.)

	Consulo	Campyl	obacter
	Sample	colonizat	ion status
	SIZE -	positive	negative
Presence of domestic animal in			
farm adjacent			
Yes	93	41	52
No	122	63	59
Presence of damaging on			
watering equipment			
Yes	112	51	61
No	119	58	61
Presence of pest in target house			
area			
Bird	98	50	48
House lizard	146	71	75
Fly	159	80	79
Darkling beetle	116	60	56
Duration of bird transport to	วิทยาลัย		
slaughterhouse			
30 minutes – 2 hours	101	34	67
2 – 6 hours	43	26	17
More than 6 hours	86	49	37
Presence of Campylobacter in			
previous flock			
Yes	96	64	32
No	99	35	64

Table 8 Categorical data of participating broiler flocks (Cont.)

4.1.3 Risk factors associated with Campylobacter colonization in Thai broiler flocks

4.1.3.1 Logistic regression model

Univariate analysis

Variables significantly associated with Campylobacter colonization in univariate analysis ($p \le 0.05$) are displayed in Table 9. From univariate screening, 18 factors were identified as possible risk factors associated with *Campylobacter* colonization in Thai broiler flocks. These factors included the use of trough feeder and pan feeder, age of target house, gravel area around the target house, concrete area around the target house, antibiotic supplement in food, no disinfection in water, use of hypochlorite as a disinfectant in water, use of chlorine dioxide as a disinfectant in water, use of surface water as a main water source in the farm, presence of surface water in the farm area, bird control management, fly control management, feed withdrawal less than 6 hours, feed withdrawal for 6 - 8 hours, presence of domestic animals in farm area, duration of bird transport to slaughterhouse for 30 minutes – 2 hours, duration of bird transport to slaughterhouse more than 6 hours and history of *Campylobacter* in previous flock. Among these variables, four variables (i.e., use of hypochlorite as a disinfectant in water, use of chlorine dioxide as a disinfectant in water, duration of bird transport to slaughterhouse for 30 minutes – 2 hours and history of *Campylobacter* in previous flock) showed the high *p*-value.

Variable	β	SE	<i>p</i> -value
Farm size	0.0052	0.0017	0.0023
Number of house in farm	0.0404	0.0132	0.0021
Production capacity	0.0006	0.0002	0.0031
Use of 2 feeding types (trough feeder and pan	0.6639	0.3332	0.0463
feeder)			
Age of house	0.00505	0.00221	0.0106
Gravel area around the target house	1.9424	0.6336	0.0022
Concrete area around the target house	-0.7308	0.2879	0.0111
Antibiotic supplement in food	-0.5816	0.2722	0.0326
Type of disinfectant in water: no disinfection	1.2146	0.5266	0.0211
Type of disinfectant in water: hypochlorite	1.3826	0.3496	< 0.0001
Type of disinfectant in water: chlorine dioxide	-1.5044	0.3131	< 0.0001
Source of water in farm: surface water	1.6782	0.7799	0.0314
Presence of surface water in farm area	-0.5451	0.2748	0.0471
Pest control management: bird	-1.1906	0.3437	0.0005
Pest control management: fly	0.8064	0.2911	0.0056
Feed withdrawal: less than 6 hours	-0.7292	0.2692	0.0068
Feed withdrawal: 6 – 8 hours	1.0288	0.3811	0.0069
Presence of domestic animals in farm area	0.9875	0.3307	0.0028
Duration of bird transport to slaughterhouse:	1.0497	0.2753	0.0001
30 minutes – 2 hours			
Duration of bird transport to slaughterhouse:	-0.7400	0.2748	0.0071
more than 6 hours			
History of Campylobacter in previous flock	-1.2808	0.3022	< 0.0001

Table 9 Results of univariate analysis in logistic regression model

Multivariate analysis

Among 18 candidate variables, 11 variables were neglected by stepwise selection procedure, while including of remaining seven variables in the model resulted in the acceptable significance level (Table 10). To test null hypothesis of the model, the estimation value of parameters (β) in the full model was set equal to zero and evaluated by the likelihood ratio statistic. In this study, we could reject the null hypothesis since the *p*-value of the hypothesis test is less than 0.0001. According to Hosmer and Lemeshow goodness-of-fit test (test for R²), the *p*-value was 0.4343 indicating that this model has no evidence of lack of fit. Therefore, we can conclude that this model is fit for the data.

Parameter	β*	Odd	95% CI		
จหาลงกรณ์มหาวิทย	าลัย	ratio			
Intercept	4.1644	64.3263			
Age of target house	-0.0052	0.9950	0.987-1.003		
The use of trough feeder and pan feeder	-6.9461	0.0011	<0.001-0.068		
Concrete area around the target house	-1.9039	0.1490	0.020-1.085		
Feed withdrawal: less than 6 hours	-1.8943	0.1500	0.018-1.263		
Presence of domestic animals in farm area	1.6522	5.2180	0.729-37.355		
Duration of bird transport to slaughterhouse:	-3.0293	0.0480	0.005-0.474		
30 minutes – 2 hours					
Presence of Campylobacter in previous	0.7819	2.1860	0.951-5.024		
flock					

Table 10 Results from the multivariate logistic regression model

* Analyzed by maximum likelihood estimates
According to the result of multivariate analysis, seven variables (i.e., age of target house [A], the use of trough feeder and pan feeder [FS], concrete area around the target house [C], feed withdrawal less than 6 hours [FW], presence of domestic animals in farm area [D], duration of bird transport to slaughterhouse for 30 minutes – 2 hours [T] and presence of *Campylobacter* in previous flock [H]) were considered to be the potential variables associated with *Campylobacter* colonization in broiler flocks. Thus, the prediction model could be constructed from these variables as follows:

Y = -0.01(A) - 6.95(FS) - 1.90(C) - 1.89(FW) + 1.65(D) - 3.03(T) + 0.78(H) + 4.16 Eq. 6 We could calculate the odd ratio from coefficient value and explain the results as follows:

1) Every one-unit increase of the house age will increase the risk of *Campylobacter* colonization in broiler flock for 0.9950 times. Thus, this variable is considered as protective factor.

2) Broiler flock with two types of feeding system i.e., trough feeder and pan feeder will have risk of *Campylobacter* colonization for 0.0011 times comparing to the flock that use only single type of feeding system. Thus, this variable is considered as protective factor.

3) Broiler flock reared in house surrounded by concrete will have risk of *Campylobacter* colonization for 0.1490 times comparing to the flock that does not surrounded by concrete. Thus, this variable is considered as protective factor.

4) The risk of *Campylobacter* colonization in broiler flock that fasted less than 6 hours is 0.15 times of the risk of broiler flock fasted longer than 6 hours. Thus, this variable is considered as protective factor.

5) The risk of *Campylobacter* colonization in broiler flock with the presence of other domestic animals on the farm area is 5.2180 times of the risk of broiler flock that have not evidence of other domestic animals on the farm area. Thus, this variable is considered as risk factor.

6) The broiler flock which is transferred to slaughterhouse during 30 minutes - 2 hours will have the risk of *Campylobacter* colonization in the flock for 0.0408 times comparing to the flock which is transferred more than 2 hours. Thus, this variable is considered as protective factor.

7) The risk of *Campylobacter* colonization in broiler flock with the history of *Campylobacter* positive status is 2.1860 times comparing to the flock that has no history of *Campylobacter*. Thus, this variable is considered as risk factor.

In summary, risk factors identified by logistic regression analysis were the presence of other domestic animals on the farm area and the history of *Campylobacter* positive status, while the remaining factors were defined as protective factor.

4.1.3.2 Generalized estimating equation (GEE)

Univariate analysis

Seventeen variables were significantly associated with *Campylobacter* colonization in broiler flocks (Table 11). These included farm size, number of house in farm, production capacity, gravel area around the target house, no disinfection in water, use of hypochlorite as a disinfectant in water, use of chlorine dioxide as a disinfectant in water, use of tap water as a main water source in the farm, presence of surface water in farm area, bird control management, fly control management, feed withdrawal for less than 6 hours, presence of domestic animals in farm area, duration of bird transport to slaughterhouse for 30 minutes – 2 hours, duration of bird transport to slaughterhouse more than 6 hours, number of chicken in target house and history of *Campylobacter* in previous flock. Twelve out of 17 variables were similar to the results of univariate screening in logistic regression method.

Variable	β	SE	<i>p</i> -value
Farm size	-0.0055	0.0018	0.0017
Number of house in farm	-0.0494	0.0183	0.0068
Production capacity	-0.0008	0.0003	0.0177
Gravel area around the target house	-1.7290	0.5194	0.0009
Type of disinfectant in water: no disinfection	-1.3735	0.5998	0.022
Type of disinfectant in water: hypochlorite	-1.2379	0.5740	0.031
Type of disinfectant in water: chlorine	1.4489	0.4610	0.0017
dioxide			
Source of water in farm: tap water	1.0316	0.3366	0.0022
Presence of surface water in farm area	1.2340	0.4790	0.0100

Table 11 Results of univariate analysis in generalized estimating equation

Variable	β	SE	<i>p</i> -value
Pest control management: bird	1.2482	0.5711	0.0289
Pest control management: fly	-1.0567	0.4977	0.0338
Feed withdrawal: less than 6 hours	1.1097	0.3348	0.0009
Presence of domestic animals in farm area	-1.0724	0.5134	0.0367
Duration of bird transport to slaughterhouse:	-1.3080	0.3436	0.0001
30 minutes – 2 hours			
Duration of bird transport to slaughterhouse:	1.1300	0.3556	0.0015
more than 6 hours			
Number of chicken in target rearing house	-0.0497	0.0214	0.0201
Presence of <i>Campylobacter</i> in previous	0.9049	0.3738	0.0155
flock			

Table 11 Results of univariate analysis in generalized estimating equation (Cont.)

Multivariate analysis

Eight out of 17 candidate variables were included in the model by stepwise backward elimination procedure These variables included number of house on the farm, gravel area around the target house, no disinfection in drinking water, feed withdrawal less than 6 hours, bird control management, the duration of bird transport to slaughterhouse for 30 minutes – 2 hours, number of chicken in the house and presence of *Campylobacter* in previous flock. However, the interaction between two variables i.e., number of chicken in the house and feed withdrawal less than 6 hours, was identified. Moreover, duration of bird transport to slaughterhouse for 30 minutes – 2 hours was identified as confounder of the model. Thus, these variables were removed. The final model contained 5 remaining variables i.e., number of house of the farm, gravel area around the target house, no disinfection in water, bird control management and presence of *Campylobacter* in previous flock (Table 12). Exchangeable correlation was specified as the correlation structure of this study. The acceptable correlation between variable (ρ) was displayed by empirical and model-based covariance matrix. Pearson chi-square/DF and mean deviance were 1.0448 and 1.2047, respectively. These values indicated that the model is not over dispersion and good fitted.

Parameter	β*	Odd ratio	95% CI
Intercept	1.3325	3.7900	
Number of house in farm	-0.0504	0.9509	-0.0667-(-0.0340)
Ground area around the target house:	-3.3808	0.0340	-4.2950-(-2.4665)
gravel			
No disinfection in water	-1.4594	0.2324	-1.9983-(-0.9205)
Bird control management	-1.1580	0.3142	-1.8828-(-0.4332)
Presence of Campylobacter in	0.9200	2.5091	0.1265-1.7135
previous flock			

Table 12 Results of multivariate analysis by GEE

* Analysis of maximum likelihood estimates

According to the result of multivariate analysis, five variables (i.e., number of house on the farm [N], gravel area around the target house [G], no disinfection in water [D], bird control management [P] and presence of *Campylobacter* in previous flock [H]) were included in the prediction model as follows:

$$Y = -0.05(N) - 3.38(G) - 1.46(D) - 1.16(P) + 0.92(H) + 1.33$$
Eq. 7

We could calculate the odd ratio from coefficient value and explain the results as follows:

1) One-unit increase of house number in the farm will increase the risk of *Campylobacter* colonization in broiler flocks for 0.9509 times. Thus, this variable is considered as protective factor.

2) The risk of *Campylobacter* colonization in broiler flock with the gravel area around the target house is 0.0340 times comparing to the flock that have no gravel area around the target house. Thus, this variable is considered as protective factor.

3) The risk of *Campylobacter* colonization in broiler flock with no water disinfection is 0.2324 times comparing to the flock that uses the disinfected drinking water. Thus, this variable is considered as protective factor.

4) The risk of *Campylobacter* colonization in broiler flock that uses the bird control management is 0.3142 times comparing to the flock that has no bird controlling programme. Thus, this variable is considered as protective factor.

5) The risk of *Campylobacter* colonization in broiler flock with the history of *Campylobacter* positive status is 2.5091 times comparing to the flock that have no history of *Campylobacter*. Thus, this variable is considered as risk factor.

In summary, the history of *Campylobacter* positive status was identified as the risk factor associated with *Campylobacter* colonization in broiler flocks by generalized estimating equation, while the remaining four variables were defined as protective factor.

4.2 Distribution and genetic relatedness of *Campylobacter* isolated from poultry production chain

4.2.1 Distribution of *Campylobacter* in Thai poultry production chain

To determine the potential sources of *Campylobacter* in broiler flock, six broiler production chains were investigated from breeder to slaughterhouse. Out of 2,889 examined samples, 615 samples were positive for *Campylobacter* species (21.29%). The prevalence in breeders, broiler farms and slaughterhouses were 63.33% (95/150), 13.43% (268/1,995) and 43.52% (252/579), respectively. In breeder flocks, the proportion of flocks colonized with *Campylobacter* ranged from 36.00 to 76.00% (Table 13). Isolates obtained from breeder flocks were mainly identified as *C. coli*. No *Campylobacter* was detected in hatchery-related samples i.e., egg incubators, egg trays, tap water and egg shell. Likewise, *Campylobacter* were absent in feces-soiled lining papers and environmental samples from the broiler house before chick placement.

During the rearing period, 0.00 to 48.75% of cloacal swab samples obtained from six broiler flocks were positive for *Campylobacter* (Table 14). In contrast to breeder isolates, all isolates recovered from broiler flocks were identified as *C. jejuni*. At the first visit (7th day), no *Campylobacter* was detected in any examined samples, while *Campylobacter* colonization the first identified on the 14th day in flocks D and E. For large farms (flocks A, B and C), *Campylobacter* could be isolated from chickens after 4 weeks of age. No *Campylobacter* isolate was recovered in broilers of flock F, although boot swab from path-leading to the target house was tested positive for this organism. Within-flock prevalence varied among positive broiler flocks from 3.33 to 93.33% (Table 14). Unlike the cloacal swab samples, less than 7 percent of samples from farm environment, such as boot swabs inside and outside the house, darkling beetles, flies and drinking water, were contaminated with *Campylobacter*. Generally, environmental samples were commonly tested positive after flock colonization.

In slaughterhouse, the high prevalence of *Campylobacter* was found in chicken related samples (caecum, cloacal swab, meat product and carcass rinse) ranging from 37.88 to 90.00% (Table 13). Several types of slaughterhouse equipment and environmental samples (e.g., breast comforter, shackle, eviscerating equipment, chilling water and packaging table) were contaminated with *Campylobacter* at the prevalence between 6.45 and 38.03%. *Campylobacter* were mostly recovered from environment and equipment in slaughterhouses after slaughter process was conducted, while a few of the disinfected equipment (i.e., transport crate, eviscerating equipment and hanging shackle) were occasionally positive for *Campylobacter*. In addition, no *Campylobacter* was found in tap water collected from the slaughterhouses. Similar to broiler flocks, *C. jejuni* was the predominant species found in slaughterhouses.

Table 13 Distribution of Campylobacter in 6 chicken meat production chains in Thailand

		Chicken-re	elated sample ^a		Environme	ntal sample ^b	
Production	Production unit	No. of positive samples	Species ident	ification (%)	No. of positive samples	Species identii	fication (%)
		/Total (%)	C. jejuni	C. coli	/Total (%)	C. jejuni	C. coli
A	Breeder farm	11/30 (36.67)	5/11 (45.45)	6/11 (54.55)	NS ^c	NS	NS
	Hatchery	0/10 (0.00)	n/a ^d	n/a	0/17 (0.00)	n/a	n/a
	Broiler farm	58/220 (26.36)	58/58 (100.00)	0/58 (0.00)	7/113 (6.19)	7/7 (100.00)	(00.0) 7/0
	Slaughterhouse	45/56 (80.36)	45/45 (100.00)	0/45 (0.00)	13/70 (18.57)	13/13 (100.00)	0/13 (0.00)
В	Breeder farm	23/30 (76.67)	6/23 (26.09)	17/23 (73.91)	NS	NS	NS
	Hatchery	0/10 (0.00)	n/a	n/a	0/17 (0.00)	n/a	n/a
	Broiler farm	80/220 (36.36)	80/80 (100.00)	0/80 (0:00)	0/113 (0.00)	n/a	n/a
	Slaughterhouse	34/66 (51.52)	34/34 (100.00)	0/34 (0.00)	27/71 (38.03)	27/27 (100.00)	0/27 (0.00)
υ	Breeder farm	21/30 (70.00)	8/21 (38.10)	13/21 (61.90)	NS	NS	NS
	Hatchery	0/10 (0.00)	n/a	n/a	0/17 (0.00)	n/a	n/a
	Broiler farm	2/250 (0.80)	2/2 (100.00)	0/2 (0.00)	1/123 (0.81)	1/1 (100.00)	0/1 (0.00)
	Slaughterhouse	25/66 (37.88)	25/25 (100.00)	0/25 (0.00)	25/71 (35.21)	25/25 (100.00)	0/25 (0.00)
Q	Breeder farm	17/24 (70.83)	2/17 (11.76)	15/17 (88.24)	NS	NS	NS
	Hatchery	0/10 (0.00)	n/a	n/a	0/17 (0.00)	n/a	n/a
	Broiler farm	32/160 (20.00)	32/32 (100.00)	0/32 (0.00)	4/135 (2.96)	4/4 (100.00)	0/4 (0.00)
	Slaughterhouse	36/40 (90.00)	36/36 (100.00)	0/36 (0.00)	11/37 (29.73)	11/11 (100.00)	0/11 (0.00)

Table 13 Distribution of Campylobacter in 6 chicken meat production chains in Thailand (cont.)

		Chicken-re	lated sample ^a		Environmer	ntal sample ^b	
Production	Production unit	No. of positive samples	Species ident	ification (%)	No. of positive samples	Species identii	ication (%)
		/Total (%)	C. jejuni	C. coli	/Total (%)	C. jejuni	C. coli
ш	Breeder farm	17/24 (70.83)	8/17 (47.06)	9/17 (52.94)	NS	NS	NS
	Hatchery	0/6 (0.00)	n/a	n/a	0/17 (0.00)	n/a	n/a
	Broiler farm	78/160 (48.75)	78/78 (100.00)	0/78 (0:00)	5/133 (3.76)	5/5 (100.00)	0/5 (0.00)
	Slaughterhouse	32/40 (80.00)	32/32 (100.00)	0/32 (0.00)	4/62 (6.45)	4/4 (100.00)	0/4 (0.00)
ш	Breeder farm	6/12 (50.00)	3/6 (50.00)	3/6 (50.00)	NS	NS	NS
	Hatchery	0/10 (0.00)	n/a	n/a	0/17 (0.00)	n/a	n/a
	Broiler farm	0/220 (0.00)	n/a	n/a	1/148 (0.68)	1/1 (100)	0/1 (0.00)
	Slaughterhouse	NS	NS	NS	NS	NS	NS
1							

^a Chicken-related samples include cloacal swab, carcass rinse, caecum, meat product.

^b Environmental samples include samples from hatchery (i.e., egg tray, egg incubator, tap water and egg shell), samples from broiler farm (i.e., boot swab, feeder, litter, water from nipple drinker, water from main pipeline, animal feed, footwear in the house and pest) and samples from slaughterhouse (i.e., transport crate, breast comforter, hanging shackle, eviscerating equipment, chilling water and packaging table). ^c NS, not sample.

^d n/a, not applicable.

69

4.2.2 Genetic characterization of *Campylobacter* isolated from poultry production chain

Since C. jejuni was the predominant Campylobacter species in this study, representative C. jejuni isolated from 5 positive broiler production chains (i.e., chains A, B, C, D and E) were selected for genetic characterization. *Campylobacter* isolated from chain F was not included in the genetic characterization due to the absence of sample collection in slaughterhouse and negative Campylobacter status in the broilers. Amongst 311 C. jejuni isolates characterized by flaA SVR sequencing and 108 isolates further genotyped by multilocus sequence typing (MLST), 29 flaA SVR alleles and 17 sequence types were identified. Fifteen sequence types were clustered into 10 clonal complexes, while 2 sequence types (ST-2131 and ST-2409) could not be grouped in any available clonal complex (Figure 13). Novel allelic sequences (asp 358, tkt 546 and tkt 553) and new sequence types (ST-6876, ST-6995 and ST-6996) were assigned. The most common clonal complex found in this study was CC-353 (e.g., ST-1075, ST-1232, ST-5213 and ST-5247), followed by CC-45 (e.g., ST-45 and ST-583). These clonal complexes were found to be distributed in every examined production chain, except for chain B.

Figure 13 Distribution of clonal complexes identified in five broiler production chains

In chains A, C, D and E, most of sequence types and *flaA* SVR genotypes of C. jejuni isolated from breeders and their respective progenies were distantly related (Figure 14). In contrast, genetic similarity between C. jejuni isolated from breeders and broilers was observed in chain B. A single dominant genotype (ST-464 or *flaA* SVR allele 54) was identified throughout the chicken meat production of chain B, even though a few strains i.e., ST-354 (or *flaA* SVR allele 18) and *flaA* SVR allele 783 were occasionally present. However, for the other production chains, multiple genotypes of C. jejuni were identified (Table 14). Substitution of the initial predominant genotype in broiler flock A was demonstrated, where the predominant strain changed from ST-574 (or *flaA* SVR allele 57) to ST-45 (or *flaA* SVR allele 22) during the rearing period (Table 15). This ST-45 strain was also reported as the predominant sequence type in the slaughterhouse. For the late colonized flock (flock C), a single strain (ST-2209 or *flaA* SVR allele 629) was identified. Although this sequence type was predominantly found in the chicken intestinal tract until slaughter, it was dominated by another sequence type (ST-354 or *flaA* SVR allele 18) on chicken carcasses (Table 15). Genetic diversity of *C. jejuni* was more frequently noticed at the end of the rearing period. This finding was obvious in flock E where multiple *flaA* SVR genotypes (i.e., 18, 45, 253, 255, 287, 854 and 1527) were detected, particularly at the day before the birds were sent to slaughterhouse (Table 14). In general, most C. jejuni contaminating on the slaughterhouse environment, equipment, carcass rinses and meat products were genetically similar to those found

in broiler flocks and caeca. In addition, meat products could be sometimes found the sequence types which were not reported in broiler flock in the same production line.

To reveal the source of *Campylobacter* in broiler farms, genetic comparison between C. jejuni isolated from broiler house surrounding before chick placement and C. jejuni isolated from broiler flocks was conducted (Table 15). In this study, no Campylobacter was recovered from farm environment before chick placement, while only one isolate was obtained from environmental samples collected before Campylobacter detection in broilers. However, this isolate which was recovered from water from nipple drinker of flock C (ST-45) was genetically different from those colonized in broiler flock (ST-2209). Generally, Campylobacter were recovered from the house environment after flocks became positive and predominant sequence types identified in both house environment and broiler flocks were quite similar. For instance, predominant strains of the birds in flocks A, D and E (i.e., ST-574, ST-1232 and ST-5247, respectively) were found to be the main sequence types in environmental samples such as boot swab, water from nipple drinker, flies and darkling beetles. The above findings indicated that the majority of *C. jejuni* present in farm environment mainly originated from broilers. The definite source of *Campylobacter* during rearing period is still unclear.

Table 14 Within-flock prevalence and predominant genotypes of Campylobacter during the rearing period

				Flock ag	ge (days)		
		14	21	28	31	35	38
<	Prevalence (percent)	0	0	0	70.00	36.67	86.67 ^a
ζ	Predominant sequence type (flaA SVR type)	n/a ^b	n/a	n/a	ST-574 (57)	ST-574 (57)	ST-45 (22)
	Prevalence (percent)	0	0	0	00.06	86.67	_e 00:06
۵	Predominant sequence type (flaA SVR type)	n/a	n/a	n/a	ST-464 (54)	ST-464 (54)	ST-464 (54)
Ĺ	Prevalence (percent)	0	0	0	0	0	6.67 ^a
ر	Predominant sequence type (flaA SVR type)	n/a	n/a	n/a	n/a	n/a	ST-2209 (629)
C	Prevalence (percent)	26.67	46.67	3.33	30.00 ^a	n/a	n/a
C	Predominant sequence type (flaA SVR type)	ST-1232 (783)	ST-1232 (783)	ST-1232 (783)	ST-1232 (783)	n/a	n/a
Ц	Prevalence (percent)	30.00	n/a	93.33	00:06	n/a	n/a
_	Predominant sequence type (flaA SVR type)	ST-5247 (287)	ST-5247 (287)	ST-5247 (287)	ST-1919 (253)	n/a	n/a

^a The last visit before the flock was sent to slaughterhouse.

^b n/a, not applicable.

Table 15 Campylobacter genotypes detected in chicken meat production units

					Genotype	
Flock	Production unit	Sample	Day	Number of isolate examined –	flaA SVR	MLST ^c
A	Breeding farm	Cloacal swab	1	5	353, 506, 783, 1211, 1485	1232 ^d , 6876
	Broiler farm	Cloacal swab day 31	31	11	18, 22, 57 , 312	354, 574
		Boot swab inside the target house ^a	31	1	22	45
		Cloacal swab day 35	35	6	57, 312	574
		Boot swab from path-leading to target house ^b	35	1	57	574
		Boot swab inside the target house ^a	35	1	57	574
		Boot swab from area around the house ^b	35	1	57	574
		Boot swab from adjacent house ^b	35	1	22	45
		Water from nipple drinker ^a	35	1	18	354
		Darkling beetle ^a	35	1	57	574
		Cloacal swab day 38	38	19	18, 22, 57	45, 354, 574
	Slaughterhouse	Cloacal swab and cecum	ı	10	18, 22, 57, 312	45 , 354, 574
		Transport crate	ı	3	45	2409
		Slaughterhouse equipment (before used)	,	2	18, 22	45, 354
		Chilling water	ı	3	22	45
		Meat and carcass rinse	ı	15	18, 22, 57, 177	45 , 354, 574, 583
В	Breeding farm	Cloacal swab		2	54	464
	Broiler farm	Cloacal swab day 31	31	15	54	464
		Cloacal swab day 35	35	13	54, 18	464 , 354
		Cloacal swab day 38	38	6	54	n/a
	Slaughterhouse	Cloacal swab and cecum	I	4	54	464
		Slaughterhouse equipment (after used)	ı	8	54 , 783	n/a
		Chilling water	ı	3	54	n/a
		Meat and carcass rinse	ı	10	54	n/a

Table 15 Campylobacter genotypes detected in chicken meat production units (Cont.)

-le e L				Lee and the state of the state	Genotype	
FLOCK	Production unit	sampre	Uay	Number of Isolate examined -	flaA SVR	MLST ^c
υ	Breeding farm	Cloacal swab		9	30, 34 , 54, 312	460, 574, 6996
	Broiler farm	Water from nipple drinker	14	1	22	45
		Cloacal swab	38	2	629	2209
	Slaughterhouse	Cloacal swab and cecum		4	68, 629, 1340	2209
		Transport crate	ı	2	783	5213
		Slaughterhouse equipment (after used)	ı	1	783	5213
		Chilling water	ı	1	1340	n/a
		Meat and carcass rinse	·	17	18 , 68, 783, 1340	354 , 2209
D	Breeding farm	Cloacal swab	ı	1	677	2131
	Broiler farm	Cloacal swab	15	5	783	1232
		Water from nipple drinker	15	1	783	1232
		Boot swab inside the target house	15	1	783	1232
		Cloacal swab	21	13	783	1232
		Cloacal swab	28	1	783	1232
		Cloacal swab	32	6	48, 783	1232 , 2131, 5213
		Boot swab inside the target house	32	1	783	1232
	Slaughterhouse	Cloacal swab and cecum	I	13	783	1232, 5213
		Slaughterhouse equipment (after used)	ı	5	22 , 783	1075
		Meat and carcass rinse		6	783	1232

Table 15 Campylobacter genotypes detected in chicken meat production units (Cont.)

		C	Č	Province of class for sodare M	Genotype	
LOCK		ממוז לאפר	Lay		flaA SVR	MLST ^c
ш	Breeding farm	Cloacal swab		5	21, 54, 45, 402, 48	2131
	Broiler farm	Cloacal swab	14	5	57, 287	5247
		Cloacal swab	21	14	253, 287	1919, 5247
		Boot swab from path-leading to target house	21	1	255	
		Boot swab inside the target house	21	1	1239	
		Boot swab from area around the house	21	1	1397	6995
		Flies	21	1	287	5247
		Cloacal swab	28	14	253, 255, 287	1919, 5247
		Boot swab from area around the house	28	1	287	n/a
		Cloacal swab	32	19		
	Slaughterhouse	Cloacal swab and cecum	·	4	253, 783 ,1527	n/a ^e
		Slaughterhouse equipment (after used)		3	45, 253, 652	n/a
		Meat and carcass rinse	,	9	45, 287 , 312, 652	5247
^a Envire	onment inside t	the target house				

 $^{\mathrm{b}}$ Environment outside the target house

 $^{\circ}$ Approximately 30% of flaA SVR sequencing tested samples were further genotyped by MLST.

 $^{\rm d}$ Bold letter stands for predominant strain.

^e n/a, not applicable.

Figure 14 Phylogenetic relationship of *Campylobacter jejuni* from various sources of broiler production processes. Distribution of sequence types in each production chain (i.e., A, B, C, D and E) and production unit (breeder farm, broiler farm and slaughterhouse) was represented by different shading pattern and geometric shape, respectively. Asterisk (*) defined as unassigned clonal complexes.

Mainly, *flaA* SVR sequencing provided the concordant results with MLST. However, these two methods sometimes produce the self-contradictory result. For example, *flaA* SVR 22 isolated from chains A and C were commonly identified as ST-45 but this *flaA* SVR type could be identified as the different sequence type i.e., ST-1075 (Table 16).

Clonal complex	Sequence type	flaA SVR types	Number of matched isolates
45	45	22	25
	583	177	1
52	1919	253	3
179	2209	68	2
		629	3
		1340	2
353	1075	22	1
	1232	353	1
		783	14
		1211	1
		1485	1
	5213	783	5
	5247	287	4
354	354	18	14
460	460	34	1
464	464	54	4
	6996*	34	1
		54	1
574	574	57	15
		312	1
682	6995*	1397	1
692	6876*	506	1
No assigned	2131	48	2
		677	1
	2409	45	3

Table 16 Correlation between MLST and *flaA* SVR sequencing

*Novel sequence type

CHAPTER V DISCUSSIONS

5.1 Prevalence and risk factors associated with *Campylobacter* colonization in broiler flocks

In this part, the prevalence, seasonality, species identification and bacterial enumeration along with risk factors associated with *Campylobacter* colonization in Thai broiler flocks were revealed. Generally, *Campylobacter* prevalence in wet season was mostly higher than that of dry season. Wide range of bacterial number in cecal content was reported with *Campylobacter jejuni* as a predominant species. Although risk factors identified by two statistical methods were different from each other, except for the history of *Campylobacter* colonization in previous flock.

5.1.1 Prevalence of *Campylobacter* in broiler flock

Wide range of *Campylobacter* prevalence has been reported in various climatic and geographical areas. For example, the prevalence of *Campylobacter* in broiler flocks from European member countries was reported ranging from 2 to 100 percent (EFSA, 2011a). In Asian countries, 31.90 and 83.30% of broiler flocks were *Campylobacter* positive (Chen et al., 2010; Rejab et al., 2012; Carrique-Mas et al., 2014). In this study, 47.60% of broiler flocks reared in central region of Thailand was colonized with *Campylobacter*. This finding was lower than the study of Padungtod and Kaneene (2005) which reported that 64% of broiler ceca in northern region of Thailand were positive for *Campylobacter*, while the study of Chokboonmongkol et

al. (2013) reported the relatively low prevalence (11.2%) in cecal samples collected from chickens in the northern region of Thailand. The mean of within-flock prevalence in the present study (84.93%) was higher than those previously reported in UK (81.60%) and Spain (60.50%) (Evans and Sayers, 2000; Torralbo et al., 2014). Although previous study in Thailand reported *C. coli* as the predominant species (Padungtod and Kaneene, 2005), our study and previous publications (Cardinale et al., 2004; McDowell et al., 2008; Sasaki et al., 2011) found that *C. jejuni* was the major species identified in broiler flocks. The difference of *Campylobacter* species between previous report in Thailand and our study could be explained by the variation of climate, farm management or surrounding area.

5.1.2 Risk factors associated with *Campylobacter* colonization in Thai broiler flocks

Although logistic regression model (LRM) is commonly performed in survey research, this method was sometimes limited by their own assumptions, including independence of the data. Generalized estimating equations (GEE) were invented to handle the study which has the correlated response variable within the same cluster. However, ignorance of repeated data was frequently found in many publications since the similarity between GEE and LRM results could be found in some cases. In this study, the data was obtained from subsequent broiler flocks reared under the same farm management which originated from the different production cycles. The dependency of response data was still doubtful and could be defined into two distinguishable ways: dependent and independent assumptions. Thus, GEE and LRM were used in this study to see whether the results of these two methods different from each other. With GEE approach, number of house in farm, ground area around the target house: gravel, type of disinfectant in water: no disinfection, pest control management: bird and presence of Campylobacter in previous flock were identified as the risk factors associated with *Campylobacter* colonization in broiler flocks, while 7 risk factors (i.e., age of the house, use of trough feeder and pan feeder, concrete area around the target house, feed withdrawal less than 6 hours, the presence of other domestic animals in farm area, duration of bird transport to slaughterhouse: 30 minutes - 2 hours and presence of Campylobacter in previous flock) were identified by LRM. From these findings, presence of Campylobacter in previous flock was the only common risk factor identified by both methods with the guite close estimating correlation value and standard error. The reason for the difference between these two methods is the way that outcome is modelled. For GEE, 49 independent clusters (farm) were included, while logistic regression have approximately 200 independent outcome measures.

Our finding indicated that the presence of *Campylobacter* in previous flock was strongly associated with *Campylobacter* colonization in Thai broiler flocks since this factor was identified as the risk factor by both LRM and GEE approaches. Although these organisms were not often recovered from the house environment after disinfection, *Campylobacter* could be introduced into broiler flocks by several ways. Farm environment such as puddle, organic matter or fecal material are the good support for survival of *Campylobacter* outside the bird. Alternatively, pest or wild animal surrounding the farm could be the potential reservoirs which carry *Campylobacter* to the next flocks (Newell et al., 2011).

5.1.3 Seasonal effect of *Campylobacter* prevalence in Thai broiler flocks

To identify the seasonality and climatic factors associated with *Campylobacter* colonization in Thai broiler flocks, broiler flocks from the same house were continually investigated for 2 years in order to minimize the effect from other factors such as farm management.

Seasonal variation of *Campylobacter* in broiler flocks was previously described, particularly in northern hemispheres. Several investigations in Norway, Denmark and Japan described the low prevalence of *Campylobacter* in broiler flocks during winter time, while the highest peak of *Campylobacter* colonization rate was found in summer (Boysen et al., 2011; Jonsson et al., 2012). In contrast, no evidence of seasonality of *Campylobacter* prevalence was reported in the UK study (Evans and Sayers, 2000). Several climatic factors, such as temperature, sunlight, humidity and rainfall, were suggested as the ecological factors influencing the survival of *Campylobacter* in environment (Sandberg et al., 2006; Hartnack et al., 2009). In temperate zone, climatic conditions in summer were associated with increasing of house flies which could support *Campylobacter* invasion into chicken flocks (Hald et al., 2007). Unlike the temperate zone, seasons of Thailand is mostly under the

influence of monsoon winds which correspond to the changes of rainfall, relative humidity and ambient temperature. In the present study, rainfall and relative humidity in wet season was higher than those of dry season, while the ambient temperature between seasons was not much different (Figures 10, 11 and 12). Unsurprisingly, seasonal pattern of *Campylobacter* prevalence in this study was distinct from previous reports.

5.2 Distribution and genetic relatedness of *Campylobacter* isolated from poultry production chain

Over the last decade, *Campylobacter* in the poultry production chain have been widely investigated in many countries. Although strategies for reducing the organism in poultry and poultry products were continuously progressed, the prevalence of *Campylobacter* was still found to be high (EFSA, 2011a). To improve the efficiency of *Campylobacter* interventions, the epidemiology and population biology of these bacteria in poultry need to be elucidated. This part of the study demonstrated the distribution and population structure of *Campylobacter* in Thai poultry production processes.

5.2.1 Correlation between MLST and *flaA* SVR sequencing

Combination between genotyping methods for *Campylobacter* was conducted in order to increase the discriminatory power for source tracking and epidemiological study (Behringer et al., 2011). Using of MLST along with *flaA* SVR sequencing usually produced the satisfied discriminatory results (Price et al., 2006). Although *flaA* SVR is limited to identify genotype in the long-term study, it was useful for screening before applying by more powerful method instead (Pittenger et al., 2009). Thus, combination between these two methods provided both short-term and long-term information of genetic diversity in *Campylobacter* population (Price et al., 2006). In present study, MLST and *flaA* SVR genotyping provided the concordant genotyping results even if some cases showed the different result (Table 16). 5.2.2 Distribution and genetic relatedness of *Campylobacter* isolated from poultry production process

Chulalongkorn University

In this study, all breeder flocks were colonized with *Campylobacter*, while none of the organism was recovered from hatchery samples or tray liners of day-oldchicks. Differences in *Campylobacter* genotypes identified in breeders and their following production units indicate that vertical transmission might not be the major route of *Campylobacter* transmission in Thai broiler production chain.

The presence of multiple strains of *Campylobacter* was identified in each broiler flock, particularly at the end of the rearing period. Additional strains were intermittently recovered from the flocks along the rearing period. These indicate breaches of biosecurity on the farms allowing ingress of *Campylobacter i*nto the broiler house. Interestingly, most of those new strains were distantly related to the pre-existing strains (Figure 14). In the past, several sources e.g., domestic and wild animals, contaminated water, farm staff and house equipment were identified as risk factors associated with *Campylobacter* colonization in broilers (Hermans et al., 2012). However, the evidence of potential source of *Campylobacter* was still unclear in this study. Improvement in personnel hygiene practices and biosecurity on the poultry farm should be the primary strategy to prevent *Campylobacter* introduction into broiler flocks at this moment.

Implementation of strict biosecurity practice was considered as the effective method to prevent or postpone *Campylobacter* colonization time in broiler flocks during the rearing period (Hermans et al., 2011). From the studies in Norway and Denmark, improvement of biosecurity was mentioned as the significant protective factor for *Campylobacter* colonization in poultry farms (Hofshagen and Kruse, 2005). In broiler farms B and C, which were located adjacent to each other, the predominant sequence types present in these farms (ST-464 and ST-2209, respectively) were unrelated (Figure 14). This finding indicated that proper farm management and farm biosecurity might be the effective way for *Campylobacter* prevention and control in broiler flocks.

From previous investigation, broiler flocks reared on larger farms were more likely to be colonized with *Campylobacter* than those reared on small farms (Arsenault et al., 2007). In contrast, early colonization (14th day) observed in the present study was found in small-scale farms (i.e., farms D and E). Meanwhile, *Campylobacter* were firstly detected in the late rearing period (31st to 38th day) of larger farms (i.e., farms A, B and C). According to farm data, large-scale farms in this study were operated with strict biosecurity and good management practices, while lower level of farm biosecurity was described in small-scale farms. Differences in farm management and biosecurity practices might be one of the explanations for this finding.

Meat products from *Campylobacter*-positive broiler flocks were more likely to be contaminated with this organism than the products from *Campylobacter*-free flocks (Reich et al., 2008). Increasing numbers of *Campylobacter* on carcasses was commonly reported after plucking and eviscerating procedure (Sasaki et al., 2013). In the present study, genetic relatedness between *Campylobacter* isolated from intestinal tract of broilers and samples collected from slaughterhouses e.g., eviscerating equipment, shackles, carcass rinses and meat products, was revealed. The existence of *Campylobacter* on poultry carcasses, the prevention of intestinal content leakage as well as effective cleaning and disinfection of slaughterhouse environment during slaughtering process should be emphasized. Management interventions e.g., logistic slaughter were also suggested as the supporting preventive methods (Sasaki et al., 2013).

The main clonal complexes identified in this study were ST-45, ST-353, ST-354 and ST-574 complex. ST-45 complex is known as one of the most common clonal complexes identified in human cases, various types of animal hosts and environmental samples (Habib et al., 2009). There is evidence indicating that members of the ST-45 complex were environmentally adapted strains, which can survive under unfavorable conditions better than other strains (Sheppard et al., 2007). Similar to the ST-45 complex, the ST-353 one was also mentioned as one of the common clonal complexes recovered from human cases and poultry (Ragimbeau et al., 2008). In the present study, at least one isolate from each production chain, except for chain B, was belonging to the ST-353 complex. Although the ST-354 and ST-574 complexes are not common at the global level, they were commonly found in this study. According to the MLST database, ST-354 and ST-574 were reported as the predominant strains found in human and poultry samples of Thailand. Interestingly, our study could not detect any ST-21 complex which was extensively known as the most common clonal complex identified in wide-ranging sources and associated with human infection worldwide (Sheppard et al., 2009). However, this clonal complex was not predominantly detected in Thailand. In addition, according to the MLST database (http://pubmlst.org/*Campylobacter/*), most of the clonal complexes identified in the present study were similar to clonal complexes previously reported in human cases in Thailand. This finding emphasizes

the importance of poultry as one of the significant sources of *Campylobacter* infection in humans.

Our findings reveal that *Campylobacter* were distributed throughout the Thai broiler production process. Flock colonization and carcass contamination with various genotypes of *Campylobacter* reflect the presence of several sources of *Campylobacter* during the poultry production process. To minimize *Campylobacter* contamination in chicken, interventions should be conducted both at the broiler farm and in the slaughterhouse. This study suggests that standard hygienic practices and biosecurity seem to be the most practical strategies for prevention and control of *Campylobacter* during broiler production process.

CONCLUSION AND SUGGESTION

Over the last decade, the presence of *Campylobacter* in poultry and poultry products were frequently reported. To generate the effective control and prevention strategies for *Campylobacter*, the epidemiology of these bacteria in broiler production process should be thoroughly investigated. In this study, *Campylobacter* colonization rate and within-flock prevalence in broiler flocks was 47.60% (95% CI 41.41 - 53.79%) and 84.93% (95% CI 80.77 – 89.09%), respectively. The prevalence of *Campylobacter* was high during May to October which is considered as the wet season in Thailand, while previous investigations, which were mostly conducted in temperate zones, reported the high prevalence of *Campylobacter* during summer. History of *Campylobacter* positive in previous flocks was strongly associated with *Campylobacter* colonization in broiler flocks in this study.

Genetic characterization of *C. jejuni* revealed that these organisms were distributed throughout the production process. Flock colonization and carcass contamination with various genotypes of *Campylobacter* reflect the presence of various sources of *Campylobacter* during poultry production process. Vertical transmission was unlikely considered as the major route of *Campylobacter* transmission in broiler production chain in our study since the difference of *Campylobacter* genotypes identified in breeders and their progenies was found. Instead, horizontal transmission could be the potential transmission route in this study.

For poultry producers and farmers, strict biosecurity and good management practices on broiler farms are the primary strategies for controlling *Campylobacter* at the pre-harvest level. At the post-harvest level, proper disinfection process seems like the most suitable method to reduce *Campylobacter* since *Campylobacter* contamination is usually inevitable in the slaughterhouse environment after the introduction of *Campylobacter* positive chickens into the slaughtering process. To minimize *Campylobacter* contamination in chicken meat, interventions should be focused at both farm and slaughterhouse levels.

REFERENCES

- Agunos A, Waddell L, Leger D and Taboada E 2014. A systematic review characterizing on-farm sources of *Campylobacter* spp. for broiler chickens. PLoS One. 9(8): e104905.
- Ansari-Lari M, Hosseinzadeh S, Shekarforoush SS, Abdollahi M and Berizi E 2011. Prevalence and risk factors associated with campylobacter infections in broiler flocks in Shiraz, southern Iran. Int J Food Microbiol. 144(3): 475-479.
- Arsenault J, Letellier A, Quessy S and Boulianne M 2007. Prevalence and risk factors for *Salmonella* and *Campylobacter* spp. carcass contamination in broiler chickens slaughtered in Quebec, Canada. J Food Prot. 70(8): 1820-1828.
- Baker MG, Kvalsvig A, Zhang J, Lake R, Sears A and Wilson N 2012. Declining Guillain-Barre syndrome after campylobacteriosis control, New Zealand, 1988-2010. Emerg Infect Dis. 18(2): 226-233.
- Barrios PR, Reiersen J, Lowman R, Bisaillon JR, Michel P, Fridriksdottir V, Gunnarsson E, Stern N, Berke O, McEwen S and Martin W 2006. Risk factors for *Campylobacter* spp. colonization in broiler flocks in Iceland. Prev Vet Med. 74(4): 264-278.
- Bates C, Hiett KL and Stern NJ 2004. Relationship of *Campylobacter* isolated from poultry and from darkling beetles in New Zealand. Avian Dis. 48(1): 138-147.
- Behringer M, Miller WG and Oyarzabal OA 2011. Typing of *Campylobacter jejuni* and *Campylobacter coli* isolated from live broilers and retail broiler meat by flaA-RFLP, MLST, PFGE and REP-PCR. J Microbiol Methods. 84(2): 194-201.
- Bi P, Cameron AS, Zhang Y and Parton KA 2008. Weather and notified *Campylobacter* infections in temperate and sub-tropical regions of Australia: an ecological study. J Infect. 57:317-323.
- Bodhidatta L, Vithayasai N, Eimpokalarp B, Pitarangsi C, Serichantalergs O and Isenbarger DW 2002. Bacterial enteric pathogens in children with acute

dysentery in Thailand: increasing importance of quinolone-resistant *Campylobacter*. Southeast Asian J Trop Med Public Health. 33(4): 752-757.

- Bouwknegt M, van de Giessen AW, Dam-Deisz WD, Havelaar AH, Nagelkerke NJ and Henken AM 2004. Risk factors for the presence of *Campylobacter* spp. in Dutch broiler flocks. Prev Vet Med. 62(1): 35-49.
- Boysen L, Vigre H and Rosenquist H 2011. Seasonal influence on the prevalence of thermotolerant *Campylobacter* in retail broiler meat in Denmark. Food Microbiol. 28(5): 1028-1032.
- Bull SA, Allen VM, Domingue G, Jorgensen F, Frost JA, Ure R, Whyte R, Tinker D, Corry JE, Gillard-King J and Humphrey TJ 2006. Sources of Campylobacter spp. colonizing housed broiler flocks during rearing. Appl Environ Microbiol. 72(1): 645-652.
- Callicott KA, Friethriksdottir V, Reiersen J, Lowman R, Bisaillon JR, Gunnarsson E, Berndtson E, Hiett KL, Needleman DS and Stern NJ 2006. Lack of evidence for vertical transmission of *Campylobacter* spp. in chickens. Appl Environ Microbiol. 72(9): 5794-5798.
- Cardinale E, Tall F, Gueye EF, Cisse M and Salvat G 2004. Risk factors for *Campylobacter* spp. infection in Senegalese broiler-chicken flocks. Prev Vet Med. 64(1): 15-25.
- Carrique-Mas JJ, Bryant JE, Cuong NV, Hoang NV, Campbell J, Dung TT, Duy DT, Hoa NT, Thompson C, Hien VV, Phat VV, Farrar J and Baker S 2014. An epidemiological investigation of *Campylobacter* in pig and poultry farms in the Mekong delta of Vietnam. Epidemiol Infect. 142(7): 1425-1436.
- Chen X, Naren GW, Wu CM, Wang Y, Dai L, Xia LN, Luo PJ, Zhang Q and Shen JZ 2010. Prevalence and antimicrobial resistance of *Campylobacter* isolates in broilers from China. Vet Microbiol. 144(1-2): 133-139.
- Chokboonmongkol C, Patchanee P, Golz G, Zessin KH and Alter T 2013. Prevalence, quantitative load, and antimicrobial resistance of *Campylobacter* spp. from broiler ceca and broiler skin samples in Thailand. Poult Sci. 92(2): 462-467.
- Colles FM and Maiden MC 2012. *Campylobacter* sequence typing databases: applications and future prospects. Microbiology. 158(Pt 11): 2695-2709.

- Dingle KE, Colles FM, Wareing DR, Ure R, Fox AJ, Bolton FE, Bootsma HJ, Willems RJ, Urwin R and Maiden MC 2001. Multilocus sequence typing system for *Campylobacter jejuni*. J Clin Microbiol. 39(1): 14-23.
- EFSA 2011. Scientific Opinion on *Campylobacter* in broiler meat production: control options and performance objectives and/or targets at different stages of the food chain. EFSA Journal. 9(4): 2105.
- Ellerbroek LI, Lienau JA and Klein G 2010. *Campylobacter* spp. in broiler flocks at farm level and the potential for cross-contamination during slaughter. Zoonoses Public Health. 57(7-8): e81-88.
- Ellis-Iversen J, Jorgensen F, Bull S, Powell L, Cook AJ and Humphrey TJ 2009. Risk factors for *Campylobacter* colonisation during rearing of broiler flocks in Great Britain. Prev Vet Med. 89(3-4): 178-184.
- Evans SJ and Sayers AR 2000. A longitudinal study of campylobacter infection of broiler flocks in Great Britain. Prev Vet Med. 46(3): 209-223.
- Figueroa G, Troncoso M, Lopez C, Rivas P and Toro M 2009. Occurrence and enumeration of *Campylobacter* spp. during the processing of Chilean broilers. BMC Microbiol. 994.
- Giesendorf BA, Goossens H, Niesters HG, Van Belkum A, Koeken A, Endtz HP, Stegeman H and Quint WG 1994. Polymerase chain reaction-mediated DNA fingerprinting for epidemiological studies on *Campylobacter* spp. J Med Microbiol. 40(2): 141-147.
- Habib I, Louwen R, Uyttendaele M, Houf K, Vandenberg O, Nieuwenhuis EE, Miller WG, van Belkum A and De Zutter L 2009. Correlation between genotypic diversity, lipooligosaccharide gene locus class variation, and caco-2 cell invasion potential of *Campylobacter jejuni* isolates from chicken meat and humans: contribution to virulotyping. Appl Environ Microbiol. 75(13): 4277-4288.
- Hald B, Skovgard H, Bang DD, Pedersen K, Dybdahl J, Jespersen JB and Madsen M 2004. Flies and *Campylobacter* infection of broiler flocks. Emerg Infect Dis. 10(8): 1490-1492.

- Hald B, Sommer HM and Skovgard H 2007. Use of fly screens to reduce *Campylobacter* spp. introduction in broiler houses. Emerg Infect Dis. 13(12): 1951-1953.
- Hald B, Wedderkopp A and Madsen M 2000. Thermophilic *Campylobacter* spp. in Danish broiler production: a cross-sectional survey and a retrospective analysis of risk factors for occurrence in broiler flocks. Avian Pathol. 29(2): 123-131.
- Hansson I, Ederoth M, Andersson L, Vagsholm I and Olsson Engvall E 2005. Transmission of *Campylobacter* spp. to chickens during transport to slaughter. J Appl Microbiol. 99(5): 1149-1157.
- Hansson I, Engvall EO, Vagsholm I and Nyman A 2010. Risk factors associated with the presence of *Campylobacter*-positive broiler flocks in Sweden. Prev Vet Med. 96(1-2): 114-121.
- Harrington CS, Moran L, Ridley AM, Newell DG and Madden RH 2003. Inter-laboratory evaluation of three flagellin PCR/RFLP methods for typing *Campylobacter jejuni* and *C. coli*: the CAMPYNET experience. J Appl Microbiol. 95(6): 1321-1333.
- Hartnack S, Doherr MG, Alter T, Toutounian-Mashad K and Greiner M 2009. *Campylobacter* monitoring in German broiler flocks: an explorative time series analysis. Zoonoses Public Health. 56(3): 117-128.
- Haruna M, Sasaki Y, Murakami M, Ikeda A, Kusukawa M, Tsujiyama Y, Ito K, Asai T and Yamada Y 2012. Prevalence and antimicrobial susceptibility of *Campylobacter* in broiler flocks in Japan. Zoonoses Public Health. 59(4): 241-245.
- Hermans D, Martel A, Garmyn A, Verlinden M, Heyndrickx M, Gantois I, Haesebrouck F and Pasmans F 2012. Application of medium-chain fatty acids in drinking water increases *Campylobacter jejuni* colonization threshold in broiler chicks. Poult Sci. 91(7): 1733-1738.
- Hermans D, Van Deun K, Martel A, Van Immerseel F, Messens W, Heyndrickx M, Haesebrouck F and Pasmans F 2011. Colonization factors of *Campylobacter jejuni* in the chicken gut. Vet Res. 4282.
- Hiett KL, Cox NA, Buhr RJ and Stern NJ 2002a. Genotype analyses of *Campylobacter* isolated from distinct segments of the reproductive tracts of broiler breeder hens. Curr Microbiol. 45(6): 400-404.
- Hiett KL, Seal BS and Siragusa GR 2006. *Campylobacter* spp. subtype analysis using gel-based repetitive extragenic palindromic-PCR discriminates in parallel fashion to *fla*A short variable region DNA sequence analysis. J Appl Microbiol. 101(6): 1249-1258.
- Hiett KL, Stern NJ, Fedorka-Cray P, Cox NA, Musgrove MT and Ladely S 2002b. Molecular subtype analyses of *Campylobacter* spp. from Arkansas and California poultry operations. Appl Environ Microbiol. 68(12): 6220-6236.
- Hofshagen M and Kruse H 2005. Reduction in flock prevalence of *Campylobacter* spp. in broilers in Norway after implementation of an action plan. J Food Prot. 68(10): 2220-2223.
- Hook H, Fattah MA, Ericsson H, Vagsholm I and Danielsson-Tham ML 2005. Genotype dynamics of *Campylobacter jejuni* in a broiler flock. Vet Microbiol. 106(1-2): 109-117.
- Hosmer DW and Lemeshow S 2000. Applied Logistic Regression, Second Edition. John Wiley & Sons, Inc.
- Humphrey T, O'Brien S and Madsen M 2007. Campylobacters as zoonotic pathogens: a food production perspective. Int J Food Microbiol. 117(3): 237-257.
- Hussain AM, Flint NJ, Livsey SA, Wong R, Spiers P and Bukhari SS 2007. Bickerstaff's brainstem encephalitis related to *Campylobacter jejuni* gastroenteritis. J Clin Pathol. 60(10): 1161-1162.
- Jokinen C, Edge TA, Ho S, Koning W, Laing C, Mauro W, Medeiros D, Miller J, Robertson W, Taboada E, Thomas JE, Topp E, Ziebell K and Gannon VP 2011. Molecular subtypes of *Campylobacter* spp., *Salmonella enterica*, and *Escherichia coli* O157:H7 isolated from faecal and surface water samples in the Oldman River watershed, Alberta, Canada. Water Res. 45(3): 1247-1257.
- Jonsson ME, Chriel M, Norstrom M and Hofshagen M 2012. Effect of climate and farm environment on *Campylobacter* spp. colonisation in Norwegian broiler flocks. Prev Vet Med. 107(1-2): 95-104.

- Jore S, Viljugrein H, Brun E, Heier BT, Borck B, Ethelberg S, Hakkinen M, Kuusi M, Reiersen J, Hansson I, Engvall EO, Lofdahl M, Wagenaar JA, van Pelt W and Hofshagen M 2010. Trends in *Campylobacter* incidence in broilers and humans in six European countries, 1997-2007. Prev Vet Med. 93(1): 33-41.
- Jorgensen F, Ellis-Iversen J, Rushton S, Bull SA, Harris SA, Bryan SJ, Gonzalez A and Humphrey TJ 2011. Influence of season and geography on *Campylobacter jejuni* and *C. coli* subtypes in housed broiler flocks reared in Great Britain. Appl Environ Microbiol. 77(11): 3741-3748.
- Lawes JR, Vidal A, Clifton-Hadley FA, Sayers R, Rodgers J, Snow L, Evans SJ and Powell LF 2012. Investigation of prevalence and risk factors for *Campylobacter* in broiler flocks at slaughter: results from a UK survey. Epidemiol Infect. 140(10): 1725-1737.
- Lay KS, Vuthy Y, Song P, Phol K and Sarthou JL 2011. Prevalence, numbers and antimicrobial susceptibilities of *Salmonella* serovars and *Campylobacter* spp. in retail poultry in Phnom Penh, Cambodia. J Vet Med Sci. 73(3): 325-329.
- Levesque S, Frost E, Arbeit RD and Michaud S 2008. Multilocus sequence typing of *Campylobacter jejuni* isolates from humans, chickens, raw milk, and environmental water in Quebec, Canada. J Clin Microbiol. 46(10): 3404-3411.
- Levin RE 2007. *Campylobacter jejuni*: A review of its characteristics, pathogenicity, ecology, distribution, subspecies characterization and molecular methods of detection. Food Biotechnology. 21(3-4): 271-347.
- Liang KY and Zeger SL 1986. Longitudinal Data Analysis Using Generalized Linear Models. Biometrika. 73(1): 13 - 22.
- Linton D, Owen RJ and Stanley J 1996. Rapid identification by PCR of the genus *Campylobacter* and of five *Campylobacter* species enteropathogenic for man and animals. Res Microbiol. 147(9): 707-718.
- Luangtongkum T, Morishita TY, Ison AJ, Huang S, McDermott PF and Zhang Q 2006. Effect of conventional and organic production practices on the prevalence and antimicrobial resistance of *Campylobacter* spp. in poultry. Appl Environ Microbiol. 72(5): 3600-3607.

- Luu QH, Tran TH, Phung DC and Nguyen TB 2006. Study on the prevalence of *Campylobacter* spp. from chicken meat in Hanoi, Vietnam. Ann N Y Acad Sci. 1081273-275.
- Lyngstad TM, Jonsson ME, Hofshagen M and Heier BT 2008. Risk factors associated with the presence of *Campylobacter* species in Norwegian broiler flocks. Poult Sci. 87(10): 1987-1994.
- McDowell SW, Menzies FD, McBride SH, Oza AN, McKenna JP, Gordon AW and Neill SD 2008. *Campylobacter* spp. in conventional broiler flocks in Northern Ireland: epidemiology and risk factors. Prev Vet Med. 84(3-4): 261-276.
- Meeyam T, Padungtod P and Kaneene JB 2004. Molecular characterization of *Campylobacter* isolated from chickens and humans in northern Thailand. Southeast Asian J Trop Med Public Health. 35(3): 670-675.
- Meinersmann RJ, Helsel LO, Fields PI and Hiett KL 1997a. Discrimination of *Campylobacter jejuni* isolates by *fla* gene sequencing. J Clin Microbiol. 35(11): 2810-2814.
- Meinersmann RJ, Hiett KL and Tarplay A 1997b. Cloning of an outer membrane protein gene from *Campylobacter jejuni*. Curr Microbiol. 34(6): 360-366.
- Melero B, Juntunen P, Hanninen ML, Jaime I and Rovira J 2012. Tracing *Campylobacter jejuni* strains along the poultry meat production chain from farm to retail by pulsed-field gel electrophoresis, and the antimicrobial resistance of isolates. Food Microbiol. 32(1): 124-128.
- Messens W, Herman L, De Zutter L and Heyndrickx M 2009. Multiple typing for the epidemiological study of contamination of broilers with thermotolerant *Campylobacter*. Vet Microbiol. 138(1-2): 120-131.
- Miwa N, Takegahara Y, Terai K, Kato H and Takeuchi T 2003. *Campylobacter jejuni* contamination on broiler carcasses of *C. jejuni*-negative flocks during processing in a Japanese slaughterhouse. Int J Food Microbiol. 84(1): 105-109.
- Newell DG, Elvers KT, Dopfer D, Hansson I, Jones P, James S, Gittins J, Stern NJ, Davies R, Connerton I, Pearson D, Salvat G and Allen VM 2011. Biosecuritybased interventions and strategies to reduce *Campylobacter* spp. on poultry farms. Appl Environ Microbiol. 77(24): 8605-8614.

Newell DG and Fearnley C 2003. Sources of *Campylobacter* colonization in broiler chickens. Appl Environ Microbiol. 69(8): 4343-4351.

- Nichols GL, Richardson JF, Sheppard SK, Lane C and Sarran C 2012. *Campylobacter* epidemiology: a descriptive study reviewing 1 million cases in England and Wales between 1989 and 2011. BMJ Open. 2(4).
- NZFSA 2011. *Campylobacter* spp. in uncooked retail chicken meats. MAF Technical Paper 2011/56.
- O'Mahony E, Buckley JF, Bolton D, Whyte P and Fanning S 2011. Molecular epidemiology of *Campylobacter* isolates from poultry production units in southern Ireland. PLoS One. 6(12): e28490.
- Padungtod P and Kaneene JB 2005. *Campylobacter* in food animals and humans in northern Thailand. J Food Prot. 68(12): 2519-2526.
- Patchanee P, Chokboonmongkol C, Zessin KH, Alter T, Pornaem S and Chokesajjawatee N 2012. Comparison of multilocus sequence typing (MLST) and repetitive sequence-based PCR (rep-PCR) fingerprinting for differentiation of *Campylobacter jejuni* isolated from broiler in Chiang Mai, Thailand. J Microbiol Biotechnol. 22(11): 1467-1470.
- Patriarchi A, Fox A, Maunsell B, Fanning S and Bolton D 2011. Molecular characterization and environmental mapping of *Campylobacter* isolates in a subset of intensive poultry flocks in Ireland. Foodborne Pathog Dis. 8(1): 99-108.
- Patrick ME, Christiansen LE, Waino M, Ethelberg S, Madsen H and Wegener HC 2004. Effects of climate on incidence of *Campylobacter* spp. in humans and prevalence in broiler flocks in Denmark. Appl Environ Microbiol. 70(12): 7474-7480.
- Pearson AD, Greenwood MH, Feltham RK, Healing TD, Donaldson J, Jones DM and Colwell RR 1996. Microbial ecology of *Campylobacter jejuni* in a United Kingdom chicken supply chain: intermittent common source, vertical transmission, and amplification by flock propagation. Appl Environ Microbiol. 62(12): 4614-4620.

- Peyrat MB, Soumet C, Maris P and Sanders P 2008. Recovery of *Campylobacter jejuni* from surfaces of poultry slaughterhouses after cleaning and disinfection procedures: analysis of a potential source of carcass contamination. Int J Food Microbiol. 124(2): 188-194.
- Pittenger LG, Englen MD, Parker CT, Frye JG, Quinones B, Horn ST, Son I, Fedorka-Cray PJ and Harrison MA 2009. Genotyping *Campylobacter jejuni* by comparative genome indexing: an evaluation with pulsed-field gel electrophoresis and flaA SVR sequencing. Foodborne Pathog Dis. 6(3): 337-349.
- Price EP, Huygens F and Giffard PM 2006. Fingerprinting of *Campylobacter jejuni* by using resolution-optimized binary gene targets derived from comparative genome hybridization studies. Appl Environ Microbiol. 72(12): 7793-7803.
- Ragimbeau C, Schneider F, Losch S, Even J and Mossong J 2008. Multilocus sequence typing, pulsed-field gel electrophoresis, and *fla* short variable region typing of clonal complexes of *Campylobacter jejuni* strains of human, bovine, and poultry origins in Luxembourg. Appl Environ Microbiol. 74(24): 7715-7722.
- Rahimi E, Momtaz H, Ameri M, Ghasemian-Safaei H and Ali-Kasemi M 2010. Prevalence and antimicrobial resistance of *Campylobacter* species isolated from chicken carcasses during processing in Iran. Poult Sci. 89(5): 1015-1020.
- Reich F, Atanassova V, Haunhorst E and Klein G 2008. The effects of *Campylobacter* numbers in caeca on the contamination of broiler carcasses with *Campylobacter*. Int J Food Microbiol. 127(1-2): 116-120.
- Rejab SB, Zessin KH, Fries R and Patchanee P 2012. *Campylobacter* in chicken carcasses and slaughterhouses in Malaysia. Southeast Asian J Trop Med Public Health. 43(1): 96-104.
- Ridley A, Morris V, Gittins J, Cawthraw S, Harris J, Edge S and Allen V 2011. Potential sources of *Campylobacter* infection on chicken farms: contamination and control of broiler-harvesting equipment, vehicles and personnel. J Appl Microbiol. 111(1): 233-244.
- Saengthongpinit C, Kanarat S, Sirinarumitr T, Amavisit P and Sakpuaram T 2010. Amplified Fragment Length Polomorphism Analysis of *Campylobacter jejuni* and *Campylobacter coli* from Broiler Farms and Different Processing Stages in

Poultry Slaughterhouses in the Central Region of Thailand. Kasetsart J. 44401 - 410.

- Sahin O, Kobalka P and Zhang Q 2003. Detection and survival of *Campylobacter* in chicken eggs. J Appl Microbiol. 95(5): 1070-1079.
- Sandberg M, Nygard K, Meldal H, Valle PS, Kruse H and Skjerve E 2006. Incidence trend and risk factors for campylobacter infections in humans in Norway. BMC Public Health. 6179.
- Sasaki Y, Maruyama N, Zou B, Haruna M, Kusukawa M, Murakami M, Asai T, Tsujiyama Y and Yamada Y 2013. *Campylobacter* cross-contamination of chicken products at an abattoir. Zoonoses Public Health. 60(2): 134-140.
- Sasaki Y, Tsujiyama Y, Tanaka H, Yoshida S, Goshima T, Oshima K, Katayama S and Yamada Y 2011. Risk factors for *Campylobacter* colonization in broiler flocks in Japan. Zoonoses Public Health. 58(5): 350-356.
- Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA, Roy SL, Jones JL and Griffin PM 2011. Foodborne illness acquired in the United States--major pathogens. Emerg Infect Dis. 17(1): 7-15.
- Schonberg-Norio D, Mattila L, Lauhio A, Katila ML, Kaukoranta SS, Koskela M, Pajarre S, Uksila J, Eerola E, Sarna S and Rautelin H 2010. Patient-reported complications associated with *Campylobacter jejuni* infection. Epidemiol Infect. 138(7): 1004-1011.
- Serichantalergs O, Pootong P, Dalsgaard A, Bodhidatta L, Guerry P, Tribble DR, Anuras S and Mason CJ 2010. PFGE, Lior serotype, and antimicrobial resistance patterns among *Campylobacter jejuni* isolated from travelers and US military personnel with acute diarrhea in Thailand, 1998-2003. Gut Pathog. 2(1): 15.
- Shanker S, Lee A and Sorrell TC 1986. *Campylobacter jejuni* in broilers: the role of vertical transmission. J Hyg (Lond). 96(2): 153-159.
- Sheppard SK, Dallas JF, MacRae M, McCarthy ND, Sproston EL, Gormley FJ, Strachan NJ, Ogden ID, Maiden MC and Forbes KJ 2009. *Campylobacter* genotypes from food animals, environmental sources and clinical disease in Scotland 2005/6. Int J Food Microbiol. 134(1-2): 96-103.

- Sheppard SK, McCarthy ND, Colles FM, Richardson JF, Cody AJ, Brick G, Meldrum RJ, Elson R, O'Brien S, Owen RJ and Maiden MCJ 2007. *Campylobacter* from retail poultry: MLST analysis and the origin of human infection. Zoonoses and Public Health. 5436-36.
- Shreeve JE, Toszeghy M, Ridley A and Newell DG 2002. The carry-over of *Campylobacter* isolates between sequential poultry flocks. Avian Dis. 46(2): 378-385.
- Silva J, Leite D, Fernandes M, Mena C, Gibbs PA and Teixeira P 2011. *Campylobacter* spp. as a Foodborne Pathogen: A Review. Front Microbiol. 2200.
- Suzuki H and Yamamoto S 2009. *Campylobacter* contamination in retail poultry meats and by-products in the world: a literature survey. J Vet Med Sci. 71(3): 255-261.
- Takahashi R, Shahada F, Chuma T and Okamoto K 2006. Analysis of *Campylobacter* spp. contamination in broilers from the farm to the final meat cuts by using restriction fragment length polymorphism of the polymerase chain reaction products. Int J Food Microbiol. 110(3): 240-245.
- Torralbo A, Borge C, Allepuz A, Garcia-Bocanegra I, Sheppard SK, Perea A and Carbonero A 2014. Prevalence and risk factors of *Campylobacter* infection in broiler flocks from southern Spain. Prev Vet Med. 114(2): 106-113.
- Vindigni SM, Srijan A, Wongstitwilairoong B, Marcus R, Meek J, Riley PL and Mason C 2007. Prevalence of foodborne microorganisms in retail foods in Thailand. Foodborne Pathog Dis. 4(2): 208-215.
- Wang G, Clark CG, Taylor TM, Pucknell C, Barton C, Price L, Woodward DL and Rodgers FG 2002. Colony multiplex PCR assay for identification and differentiation of *Campylobacter jejuni*, *C. coli*, *C. lari*, *C. upsaliensis*, and *C. fetus* subsp. fetus. J Clin Microbiol. 40(12): 4744-4747.
- Wang H 2002. Rapid methods for detection and enumeration of *Campylobacter* spp. in foods. J AOAC Int. 85(4): 996-999.
- Williams A and Oyarzabal OA 2012. Prevalence of *Campylobacter* spp. in skinless, boneless retail broiler meat from 2005 through 2011 in Alabama, USA. BMC Microbiol. 12184.

- Wilson DJ, Gabriel E, Leatherbarrow AJ, Cheesbrough J, Gee S, Bolton E, Fox A, Fearnhead P, Hart CA and Diggle PJ 2008. Tracing the source of campylobacteriosis. PLoS Genet. 4(9): e1000203.
- Young KT, Davis LM and DiRita VJ 2007. *Campylobacter jejuni*: molecular biology and pathogenesis. Nature Reviews Microbiology. 5(9): 665-679.
- Zhao C, Ge B, De Villena J, Sudler R, Yeh E, Zhao S, White DG, Wagner D and Meng J 2001. Prevalence of *Campylobacter* spp., *Escherichia coli*, and *Salmonella* serovars in retail chicken, turkey, pork, and beef from the Greater Washington, D.C., area. Appl Environ Microbiol. 67(12): 5431-5436.
- Zilbauer M, Dorrell N, Wren BW and Bajaj-Elliott M 2008. *Campylobacter jejuni*mediated disease pathogenesis: an update. Trans R Soc Trop Med Hyg. 102(2): 123-129.
- Zweifel C, Scheu KD, Keel M, Renggli F and Stephan R 2008. Occurrence and genotypes of *Campylobacter* in broiler flocks, other farm animals, and the environment during several rearing periods on selected poultry farms. Int J Food Microbiol. 125:182-187.

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

Appendix A

Culture media for *Campylobacter* isolation

1. Campylobacter enrichment broth (Exeter)

Nutrient broth No. 2

5% Lysed horse blood

Campylobacter selective supplement

Campylobacter growth supplement

2. Campylobacter selective supplement (Exeter)

Antimicrobial agent	Concentration in medium (mg/litre)
Amphotericin B	2
Cefoperazone	15
Polymyxin B	2,500 IU
Rifampicin	5
Trimethoprim	10

3. Campylobacter growth supplement

Typical formula	Concentration in medium (mg/litre)

Sodium pyruvate	250
Sodium metabisulphite	250
Ferrous sulphate	250

4. Campylobacter blood-free selective agar base (mCCDA) (CM0739; Oxoid)

Typical formula	(gm/litre)
Nutrient broth No.2	25.00
Bacteriological charcoal	4.00
Casein hydrolysate	3.00
Sodium desoxycholate	1.00
Ferrous sulphate	0.25
Sodium pyruvate	0.25
Agar	12.00

pH 7.4 ± 0.2 @ 25°C

5. CCDA selective supplement

Antimicrobial agent	Concentration in medium (mg/litre)
Cefoperazone	32
Amphotericin B	10

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

Appendix B

Duculance	ام مر م		f+			Comment	Jaha atau	•	Th - !	h	fleater
Prevalence	and	lisk	lactors	associated	with	camp	ylooucler	IN	rnar	proiter	TLOCKS

Cobb

□ Closed system

Questionnaire (farm section)

Farm description

- Size of farm..... Rai/square meter
- Number of houses in farm.....
- Production capacity chickens per year
- Breed of chicken

🗆 Ross

House structure

- Type of the selected house

 \Box Opened system

- Age of the target house.....month
- Type of feeder

 \Box Trough feeder

- Type of drinker

🗆 Nipple drinker	🗆 Bell drinker	🗆 Both type

□ Pan feeder

- Presence of anteroom

🗆 Yes	

- Anteroom sharing between houses

🗆 Yes 🔅 🗋 No

 \Box Arber acres

🗆 Both

House condition					
- Roof and wall condition					
🗆 Normal	□ Normal □ Having some cracks or damage				
- Environment surrounding	the house				
□ Weed	□ Soil □ Gravel □				
Concrete					
Medicine & chemical					
- Organic acid in drinking w	ater				
□ Yes					
- Antibiotic mixing in anima	il feed				
□ Yes					
- Antibiotic usage in chicke	n				
□ Yes					
- Feed additive provided					
□ Yes					
- Vaccination program					
□ New castle disease	\Box Infectious bronchitis \Box Infectious bursal				
disease					
Watering system					
- Sources of water					
\Box underground wat	er 🗆 tap water				

□ surface water		□ other sources
- Disinfectants for water treatment		
□ Hypochlorite		□ Chlorine dioxide
□ Oxidizing disinfectant		🗆 Organic acid
Others		\Box No water disinfection
- Surface water in farm area		
□ Yes	🗆 No	
Sanitary practice		
- Duration of down time		
□ Less than 1 week	□ 1 – 2 wee	Ks □ More than 2 weeks
- Foot dip at the house entrance		
□ Yes	□ No	
- Frequency of foot dip changing		
□ More than 1 time/day	🗆 1 times/da	ay 🔲 every 2- 3 day
- Chemical for nipple drinker cleani	ing	
□ Water	🗆 Acid	□ Disinfectant
- Waste management (i.e. used- lit	ter, feces)	
\Box Discarded (outside the fa	arm)	□ Buried □
Incinerated		
- Management of dead chickens		
	□ Buried	🗆 Sale

- Type of pest that control	ling program wa	as available			
□ Rodents	\Box Rodents		ds		
□ Flies			🗆 Other		
Animal management					
- Chicken intensity	chicken p	per m ²			
- The shortest lighting time	during rearing p	periodh	nours/day		
- Depopulation time (in the	e farm)				
□ <1 day	🗆 1-2 day	🗌 3-7 day	□ > 1		
week					
- Feed withdrawal time					
□ <6 hours	□6-8 hours	9-12 hours	□>12		
hours					
Pets in the farm					
- Presence of pets in farm					
🗆 Dog	🗆 Cat	🗆 Cattle	□ Swine		
□ Small ruminant	🗆 Bird	□ Duck/goos	e 🗆		
other					
- Presence of pets in adjacent area					
🗆 Dog	□ Cat	🗆 Cattle	□ Swine		
□ Small ruminant	🗆 Bird	□ Duck/goose	🗆 other		

- In case of cats are preser	nt in farm, the cats ha	ve access to		
□ Poultry houses	\Box Feed stores	□ Outside farming area		
Questionnaire (flock sectio	n)			
Farm record				
- Average temperature				
- Average humidity				
- Mortality rate				
- Culling rate				
- Condition of drinking wat	erer			
🗆 Normal	🗆 Damage	e 🗆 🗆 etc.		
- Carcasses disposal				
□ 1 time/day	2 times/day	□ more than 3 times/day		
- Litter replacement during	rearing period			
☐ Yestimes during rearing period				
□ No				
- Chicken transferring betw	een flocks			
□ Yes				
□ No				
- Health problem of the flo	ock			
Pododermatitis		Hock burn		
🗆 Avian pathogenic E.coli		Other health problem		

- Extensive death during rearing period								
\square Yes (please specify the suspected cause)								
□ No								
- Antibiotic use during rearing period								
\Box Yes (please specify the objective of use).								
□ No								
- Presence of the pest								
□ Bird	□ Rodent							
House lizard	Cockroach							
🗆 Fly	□ Darkling beetle							
□ No pest in the house								
- Duration of bird catching for slaughter								
Less than 30 minutes								
Between 30 minutes – 2 hours								
□ Between 2 – 6 hours								
□ More than 6 hours								
- Slaughter agedays								

Independent variable	Definition
Farm size (square meter)	The area of target farm in square meter
	(SI unit)
Number of rearing house	The number of broiler house located in
	the target farm
Production capacity	The number of chicken produced from
(chicken per year)	the target farm per year
Age of target rearing house	Approximate age of target house since
(month)	from the first employed
Average temperature within target	Average temperature recorded in the
rearing house (C)	house during rearing period
Humidity within target rearing	Average humidity recorded in the house
house (%)	during rearing period
Mortality rate (%)	Summary of mortality rate at the end of
	rearing period
Culling rate (%)	Summary of culling rate at the end of
	rearing period
Slaughter age (days)	Age of birds at the day of flock clearance
Number of chicken in target ONGKO	The number of chicken in the flock at the
rearing house	end of rearing period
Feeding system	Type of feeding equipment providing in
	the house i.e., trough feeder, pan feeder
	and both types
Drinking water system	Type of waterer system providing in the
	house i.e., nipple drinker without cup,
	nipple drinker with cup and bell waterer
Presence of anteroom	Presence of the store room in the front of
	target house
Damage on target house structure	Presence of damage on the structure of
	target house

Table B-1 Definition of independent variable in the questionnaires

Independent variable	Definition
Ground area around the target	Type of ground area around the target
house	house i.e., weed, gravel, dirt and concrete
Organic acid supplement use in	Using of organic acid in drinking water
drinking water	Using Or Organic acid in drinking watch
Antibiotic supplement in animal	Presence of antibiotic addition in animal
feed	feed
Type of disinfectant in water	Type of disinfectant for water disinfection
	or no disinfection
Source of water in farm	Source of water supply for farm;
	underground water, tap water and surface
	water
Presence of surface water in	Presence of surface water on surrounding
surrounding area	area of the farm
Frequency of foot dip disinfectant	Frequency of foot dip disinfectant change;
change	once a day and more than once a day
Cleaning method for drinking	Cleaning method for waterer equipment;
water equipment	cleaning with water, cleaning with acidity
	solution and cleaning with disinfectant
	solution
Pest control management	Presence of pest control program or
	facility in the target house
Duration for flock clearance	Duration of flock clearance in the farm;
(within the farm)	start from the first house until the last
	house in the farm
Duration for bird catching	Duration of bird catching for slaughter in
	the target house
Duration for feed withdrawal	Duration of feed withdrawal before
	slaughter

Independent variable	Definition
Presence of domestic animal in	Presence of domestic animal, such as
farm area/adjacent	dog, cat, cattle, swine or bird, within farr
	area or adjacent to farm area
Presence of any damage on	Presence of crack, leaking or break on
waterer equipment	waterer equipment
Presence of pest in target house	Presence of pest found in target house
area	area; bird, house lizard, fly and darkling
	beetle
Seasonal time at slaughter	The season that target flock was
	slaughtered; dry and wet season
History of Campylobacter in	Presence of Campylobacter positive
previous flock	status on previous broiler flock

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

No.	Farm	Company	Farm size (m ²)	House number	Production capacity (chicken/year)	Chicken breed
1	A1	А	352,000	72	1620000	n/a
2	A2	А	352,000	72	1620000	n/a
3	A3	А	80,000	12	700000	n/a
4	A4	А	25,600	3	222500	n/a
5	A5	A	144,000	17	2000000	n/a
6	A6	А	8,000	5	340000	n/a
7	A7	А	40,000	12	1200000	n/a
8	A8	A	128,000	10	1435000	Arber acre & Ross
9	A9	А	n/a	22	2019500	Arber acre & Ross
10	A10	А	8,000	3	230400	n/a
11	A11	А	n/a	10	1512000	Arber acre & Ross
12	A12	А	128,000	10	1537500	Arber acre & Ross
13	A13	А	32,000	10	1000000	Arber acre
14	A14	А	n/a	27	2484000	Arber acre& Ross
15	A15	А	24,000	7	700000	Arber acre
16	A16	А	64,000	12	1035000	Arber acre & Ross
17	A17	А	16,000	2	105000	Arber acre & Ross
18	A18	А	n/a	1	80000	n/a
19	A19	А	32,000	2	112000	Arber acre & Ross
20	A20	А	48,000	10	735000	Arber acre & Ross
21	A21	А	32,000	5	400000	Arber acre & Ross
22	A22	А	n/a	9	985000	Arber acre & Ross
23	A23	А	n/a	2	100000	n/a
24	A24	А	n/a	7	705500	Arber acre & Ross
25	A25	А	n/a	14	1298500	Arber acre & Ross
26	A26	А	n/a	3	280000	n/a
27	A27	А	n/a	7	685000	Arber acre & Ross
28	A28	A	n/a	3	192000	Arber acre & Ross
29	A29	A	80,000	14	2250000	Arber acre & Ross
30	A30	A	272,000	30	2500000	Arber acre

Table B-2 Raw data obtained from questionnaires

No.	Farm	Company	Farm size (m ²)	House number	Production capacity (chicken/year)	Chicken breed
31	B/C2	B/C	11,200	1	93,000	Cobb, Arber acre
32	B/C3	B/C	22,400	1	36,000	Cobb, Arber acre
33	B/C4	B/C	17,600	1	60,000	Cobb, Arber acre
34	B/C6	B/C	11,200	1	96,000	Cobb, Arber acre
35	B/C7	B/C	8,000	1	60,000	Cobb, Arber acre
36	B/C8	B/C	19,200	1	90,000	Cobb, Arber acre
37	B/C9	B/C	19,200	1	90,000	Cobb, Arber acre
38	B/C10	B/C	11,200	1	96,000	Cobb, Arber acre
39	B/C11	B/C	19,200	1	72,000	Cobb, Arber acre
40	B/C13	B/C	19,200	1	72,000	Cobb, Arber acre
41	B/C14	B/C	16,000	1	72,000	Cobb, Arber acre
42	B/C15	B/C	19,200	1	45,000	Cobb, Arber acre
43	B/C12-1	B/C	384,000	4	160,000	Cobb
44	B/C12-2	B/C	384,000	4	160,000	Cobb
45	B/C1	B/C	16,000	1	72,000	Cobb, Arber acre

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

Na	F	Comment	Type of	Feeding	Drinking water	Presence of
NO.	Farm	Company	house	system	system	anteroom
1	A1	А	Close system	Pan feeder	Nipple without cup	Yes
2	A2	A	Close system	Pan feeder	Nipple without cup	Yes
3	A3	A	Close system	Pan feeder	Nipple with cup	No
4	A4	A	Close system	Both type	Nipple with cup	Yes
5	A5	A	Close system	Trough feeder	Nipple with cup	Yes
6	A6	A	Close system	Pan feeder	Nipple with cup	No
7	A7	A	Close system	Pan feeder	Nipple with cup	Yes
8	A8	A	Close system	Pan feeder	Nipple without cup	No
9	A9	A	Close system	Pan feeder	Nipple and bell drinker	No
10	A10	A	Close system	Both type	Nipple with cup	Yes
11	A11	A	Close system	Pan feeder	Nipple and bell drinker	No
12	A12	A	Close system	Pan feeder	Nipple without cup	No
13	A13	A	Close system	Pan feeder	Nipple without cup	Yes
14	A14	A	Close system	Pan feeder	Nipple and bell drinker	No
15	A15	A	Close system	Pan feeder	Nipple without cup	Yes
16	A16	A	Close system	Pan feeder	Nipple with cup	Yes
17	A17	A	Close system	Pan feeder	Nipple without cup	Yes
18	A18	А	Close system	Pan feeder	Nipple with cup	No
19	A19	А	Close system	Both type	Nipple with cup and bell drinker	Yes
20	A20	А	Close system	Pan feeder	Nipple with cup	Yes
21	A21	А	Close system	Pan feeder	Nipple with cup	Yes
22	A22	А	Close system	Both type	Nipple and bell drinker	No
23	A23	А	Close system	Pan feeder	Nipple and bell drinker	No
24	A24	A	Close system	Both type	Nipple and bell drinker	Yes
25	A25	A	Close system	Pan feeder	Nipple and bell drinker	No
26	A26	A	Close system	Pan feeder	Nipple with cup	No
27	A27	A	Close system	Pan feeder	Nipple and bell drinker	No
28	A28	A	Close system	Both type	Nipple with cup	No
29	A29	A	Close system	Pan feeder	Nipple with cup	Yes
30	A30	A	Close system	Both type	Nipple without cup	Yes

Ne	F	Comment	Type of	Feeding	Drinking	Presence of
NO.	Farm	Company	house	system	water system	anteroom
31	B/C2	B/C	Close system	Pan feeder	Nipple with cup	Yes
32	B/C3	B/C	Close system	Pan feeder	Nipple with cup	Yes
33	B/C4	B/C	Close system	Pan feeder	Nipple with cup	Yes
34	B/C6	B/C	Close system	Pan feeder	Nipple with cup	Yes
35	B/C7	B/C	Close system	Pan feeder	Nipple with cup	Yes
36	B/C8	B/C	Close system	Pan feeder	Nipple with cup	Yes
37	B/C9	B/C	Close system	Pan feeder	Nipple with cup	Yes
38	B/C10	B/C	Close system	Pan feeder	Nipple with cup	Yes
39	B/C11	B/C	Close system	Pan feeder	Nipple with cup	Yes
40	B/C13	B/C	Close system	Pan feeder	Nipple with cup	Yes
41	B/C14	B/C	Close system	Pan feeder	Nipple with cup	Yes
42	B/C15	B/C	Close system	Pan feeder	Nipple with cup	Yes
43	B/C12-1	B/C	Close system	Trough feeder	Nipple with cup	Yes
44	B/C12-2	B/C	Close system	Trough feeder	Nipple with cup	Yes
45	B/C1	B/C	Close system	Pan feeder	Nipple with cup	Yes

No.	Farm	Company	Age of house (month)	Damage of target house	Ground area around the target house	Organic acid supplement in drinking water
1	A1	A	300	Yes	Concrete	Yes
2	A2	А	300	Yes	Concrete	Yes
3	A3	А	24	Yes	Concrete	Yes
4	A4	А	81	Yes	Soil gravel	No
5	A5	A	120	Yes	Weed concrete	Yes
6	A6	А	240	Yes	Concrete	Yes
7	A7	А	120	No	Concrete	Yes
8	A8	A	6	No	Gravel	Yes
9	A9	A	n/a	No	Concrete	Yes
10	A10	A	132	Yes	Soil gravel	No
11	A11	А	n/a	No	Concrete	Yes
12	A12	А	6	No	Gravel	Yes
13	A13	А	96	No	Concrete	Yes
14	A14	А	n/a	No	Concrete	Yes
15	A15	А	96	No	Concrete	Yes
16	A16	А	72	Yes	Soil	No
17	A17	А	72	Yes	Soil	No
18	A18	А	n/a	Yes	Concrete	Yes
19	A19	А	n/a	Yes	Soil	Yes
20	A20	А	72	Yes	Soil	No
21	A21	А	60	Yes	Soil	Yes
22	A22	А	n/a	Yes	Soil	Yes
23	A23	А	n/a	Yes	Concrete	Yes
24	A24	А	n/a	Yes	Weed	No
25	A25	А	n/a	No	Gravel	Yes
26	A26	А	n/a	Yes	Concrete	Yes
27	A27	А	n/a	No	Concrete	Yes
28	A28	А	n/a	Yes	Soil	Yes
29	A29	А	24	Yes	Soil	Yes
30	A30	А	36	No	Soil	Yes

No.	Farm	Company	Age of house (month)	Damage of target house	Ground area around the target house	Organic acid supplement in drinking water
31	B/C2	B/C	12	No	Soil, Concrete	Yes
32	B/C3	B/C	132	No	Soil, Concrete	Yes
33	B/C4	B/C	120	No	Soil, Concrete	Yes
34	B/C6	B/C	24	No	Soil, Concrete	Yes
35	B/C7	B/C	108	No	Soil, Concrete	Yes
36	B/C8	B/C	120	No	Soil, Concrete	Yes
37	B/C9	B/C	48	No	Soil, Concrete	Yes
38	B/C10	B/C	12	No	Soil, Concrete	Yes
39	B/C11	B/C	84	No	Soil, Concrete	Yes
40	B/C13	B/C	120	No	Soil, Concrete	Yes
41	B/C14	B/C	120	No	Soil, Concrete	Yes
42	B/C15	B/C	120	No	Soil, Concrete	Yes
43	B/C12-1	B/C	360	Yes	Gravel	No
44	B/C12-2	B/C	360	Yes	Gravel	No
45	B/C1	B/C	120	No	Soil, Concrete	Yes

GHULALUNGKUKN UNIVEKSIIT

No.	Farm	Company	Antibiotic supplement in animal feed	Type of disinfectant in water	Source of water in farm	Presence of surface water in surrounding
1	A1	А	No	Hypochlorite	Underground	No
2	A2	A	No	Hypochlorite	Underground	No
3	A3	А	Yes	Chlorine dioxide	Surface	Yes
4	A4	А	Yes	Hypochlorite	Surface	Yes
5	A5	А	No	Chlorine dioxide	Underground	Yes
6	A6	А	Yes	Chlorine dioxide	Underground & Surface	No
7	A7	А	Yes	Chlorine dioxide	Underground	Yes
8	A8	А	N/A	Chlorine dioxide	Surface	No
9	A9	А	No	No disinfection	Underground	No
10	A10	А	Yes	Hypochlorite	Underground	Yes
11	A11	А	No	No disinfection	Underground	No
12	A12	А	N/A	Chlorine dioxide	Surface	No
13	A13	А	Yes	Chlorine dioxide	Underground	No
14	A14	А	No	No disinfection	Underground	No
15	A15	А	Yes	Chlorine dioxide	Underground	No
16	A16	А	No	Hypochlorite	Underground	No
17	A17	А	No	Hypochlorite	Underground	No
18	A18	А	Yes	Chlorine dioxide	Underground	No
19	A19	А	No	No disinfection	Underground	Yes
20	A20	А	No	Hypochlorite	Underground	No
21	A21	А	No	Hypochlorite	Surface	No
22	A22	А	No	Chlorine dioxide	Underground	Yes
23	A23	А	Yes	Chlorine dioxide	Underground	No
24	A24	А	No	Hypochlorite	n/a	Yes
25	A25	А	No	Hypochlorite	n/a	No
26	A26	А	Yes	Chlorine dioxide	Underground	No
27	A27	А	No	No disinfection	Underground	No
28	A28	А	No	No disinfection	Underground	n/a
29	A29	А	No	Hypochlorite	Surface	No
30	A30	А	No	Hypochlorite	Underground	Yes

			Antibiotic	Type of	Courses of	Presence of
No.	Farm	Company	supplement in	disinfectant in	Source of	surface water
			animal feed	water	water in farm	in surrounding
31	B/C2	B/C	Yes	Chlorine dioxide	Underground, tap water	Yes
32	B/C3	B/C	Yes	Chlorine dioxide	Underground	Yes
33	B/C4	B/C	Yes	Chlorine dioxide	Underground	Yes
34	B/C6	B/C	Yes	Chlorine dioxide	Underground, tap water	Yes
35	B/C7	B/C	Yes	Chlorine dioxide	Underground, tap water	Yes
36	B/C8	B/C	Yes	Chlorine dioxide	Underground	Yes
37	B/C9	B/C	Yes	Chlorine dioxide	Underground	Yes
38	B/C10	B/C	Yes	Chlorine dioxide	Underground, tap water	Yes
39	B/C11	B/C	Yes	Chlorine dioxide	Underground	Yes
40	B/C13	B/C	Yes	Chlorine dioxide	Underground	Yes
41	B/C14	B/C	Yes	Chlorine dioxide	Underground	Yes
42	B/C15	B/C	Yes	Chlorine dioxide	Underground	Yes
43	B/C12-1	B/C	No	Hypochlorite	Underground	No
44	B/C12-2	B/C	No	Hypochlorite	Underground	No
45	B/C1	B/C	Yes	Chlorine dioxide	Underground	Yes

CHULALONGKORN UNIVERSITY

No.	Farm	Company	Frequency of foot dip	Reagent for drinking	Pest control management	
			disinfectant change	equipment cleaning		
1	A1	A	once a day	Acid	Rodent	
2	A2	A	once a day	Acid	Rodent	
3	A3	A	> once a day	Water and disinfectant	Rodent, bird, darkling beetle	
4	A4	A	once a day	Water and acid	Rodent, fly	
5	A5	A	> once a day	Water and acid	Rodent, fly	
6	A6	A	> once a day	Water and disinfectant	Rodent, bird, darkling beetle	
7	A7	A	> once a day	Water and disinfectant	Rodent, bird, fly, darkling beetle	
8	A8	A	once a day	Disinfectant	Rodent, fly	
9	A9	A	> once a day	Water and acid	Rodent, fly	
10	A10	А	once a day	Water and acid	Rodent, fly	
11	A11	А	> once a day	Water and acid	Rodent, fly	
12	A12	A	once a day	Disinfectant	Rodent, fly	
13	A13	А	> once a day	Water and disinfectant	Rodent, bird, fly, darkling beetl	
14	A14	A	> once a day	Water and acid	Rodent, fly	
15	A15	A	> once a day	Water and disinfectant Rodent, bird, fly, darklin		
16	A16	A	> once a day	Disinfectant Rodent, bird		
17	A17	A	> once a day	Disinfectant	Rodent, bird	
18	A18	A	> once a day	Water and disinfectant	Rodent, bird, darkling beetle	
19	A19	A	once a day	Disinfectant	Rodent, bird	
20	A20	А	> once a day	Disinfectant	Rodent, bird	
21	A21	A	> once a day	Disinfectant	Rodent, bird	
22	A22	A	once a day	Disinfectant	Rodent, bird	
23	A23	A	> once a day	Water and disinfectant	Rodent, bird, darkling beetle	
24	A24	А	once a day	Disinfectant	Rodent	
25	A25	A	> once a day	Water and acid	Rodent, fly	
26	A26	A	> once a day	Water and disinfectant	Rodent, bird, darkling beetle	
27	A27	A	> once a day	Water and acid	Rodent, fly	
28	A28	A	Every 2-3 days	Disinfectant	Rodent, bird	
29	A29	A	> once a day	Disinfectant	Rodent, bird	
30	A30	A	once a day	Acid	Rodent, bird, fly	

No.	Farm	Company	Frequency of foot dip disinfectant change	Reagent for drinking equipment cleaning	Pest control management
31	B/C2	B/C	once a day	Acid	Rodent, bird
32	B/C3	B/C	once a day	Acid	Rodent, bird
33	B/C4	B/C	once a day	Acid	Rodent, bird
34	B/C6	B/C	once a day	Acid	Rodent, bird
35	B/C7	B/C	once a day	Acid	Rodent, bird
36	B/C8	B/C	once a day	Acid	Rodent, bird
37	B/C9	B/C	once a day	Acid	Rodent, bird
38	B/C10	B/C	once a day	Acid	Rodent, bird
39	B/C11	B/C	once a day	Acid	Rodent, bird
40	B/C13	B/C	once a day	Acid	Rodent, bird
41	B/C14	B/C	once a day	Acid	Rodent, bird
42	B/C15	B/C	once a day	Acid	Rodent, bird
43	B/C12-1	B/C	once a day	Acid	Rodent
44	B/C12-2	B/C	once a day	Acid	Rodent
45	B/C1	B/C	once a day	Acid	Rodent, bird

No.	Farm	Company	Duration for flock clearance in broiler farm	Duration for feed withdrawal	Presence of domestic animal in farm area/adjacent
1	A1	А	3-7 days	6-8 hours	Yes
2	A2	Α	3-7 days	6-8 hours	Yes
3	A3	A	3-7 days	9-12 hours	Yes
4	A4	A	1-2 day(s)	9-12 hours	Yes
5	A5	A	3-7 days	6-8 hours	Yes
6	A6	A	1-2 day(s)	9-12 hours	Yes
7	A7	A	3-7 days	9-12 hours	Yes
8	A8	A	3-7 days	6-8 hours	n/a
9	A9	Α	3-7 days	9-12 hours	Yes
10	A10	Α	1-2 day(s)	6-8 hours	Yes
11	A11	A	3-7 days	9-12 hours	Yes
12	A12	A	3-7 days	6-8 hours	n/a
13	A13	Α	1-2 day(s)	9-12 hours	Yes
14	A14	Α	3-7 days	9-12 hours	Yes
15	A15	A	1-2 day(s)	9-12 hours	Yes
16	A16	A	3-7 days	9-12 hours	Yes
17	A17	A	1-2 day(s)	9-12 hours	Yes
18	A18	A	Less than 1 day	9-12 hours	Yes
19	A19	A	1-2 day(s)	9-12 hours	Yes
20	A20	A	3-7 days	9-12 hours	Yes
21	A21	A	1-2 day(s)	9-12 hours	Yes
22	A22	A	3-7 days	9-12 hours	Yes
23	A23	A	Less than 1 day	9-12 hours	No
24	A24	A	3-7 days	9-12 hours	Yes
25	A25	A	3-7 days	9-12 hours	Yes
26	A26	A	1-2 day(s)	9-12 hours	Yes
27	A27	A	3-7 days	9-12 hours	Yes
28	A28	A	1-2 day(s)	9-12 hours	Yes
29	A29	A	3-7 days	9-12 hours	Yes
30	A30	A	3-7 days	9-12 hours	n/a

			Duration for flock	Duration for	Presence of	
No.	Farm	Company	clearance in broiler	feed	domestic animal in	
			farm	withdrawal	farm area/adjacent	
31	B/C2	B/C	3-7 days	< 6 hours	No	
32	B/C3	B/C	3-7 days	< 6 hours	No	
33	B/C4	B/C	3-7 days	< 6 hours	No	
34	B/C6	B/C	3-7 days	< 6 hours	No	
35	B/C7	B/C	3-7 days	< 6 hours	No	
36	B/C8	B/C	3-7 days	< 6 hours	No	
37	B/C9	B/C	3-7 days	< 6 hours	No	
38	B/C10	B/C	3-7 days	< 6 hours	No	
39	B/C11	B/C	3-7 days	< 6 hours	No	
40	B/C13	B/C	3-7 days	< 6 hours	No	
41	B/C14	B/C	3-7 days	< 6 hours	No	
42	B/C15	B/C	3-7 days	< 6 hours	No	
43	B/C12-1	B/C	Less than 1 day	9-12 hours	Yes	
44	B/C12-2	B/C	Less than 1 day	9-12 hours	Yes	
45	B/C1	B/C	3-7 days	< 6 hours	No	

CHULALONGKORN UNIVERSITY

No.	Farm	Company	Average temperature within the house (C)	Humidity within the house (%)	Mortality rate (%)	
1	A1	А	27.3 – 29.0	73.0 – 75.0	4.13 - 4.34	
2	A2	A	26.7 – 29.0	64.5 – 82.5	1.21 – 2.89	
3	A3	A	29.0 – 29.7	60.0 – 74.9	3.33 - 11.00	
4	A4	A	30	60.0	3.70	
5	A5	A	26.0 - 30.0	62.0 – 72.0	1.23 – 5.17	
6	A6	A	28.5 - 30.0	57.5 – 76.0	2.00 – 2.37	
7	A7	A	29.0	60.0 – 65.0	0.78 – 5.82	
8	A8	A	28.0	60.0 - 65.0	1.99 – 2.10	
9	A9	A	30.0	60.0	n/a	
10	A10	A	23.0 - 31.0	50.0 - 80.0	1.00 - 2.56	
11	A11	A	30.0	60.0	n/a	
12	A12	A	28.0 60.0		8.92	
13	A13	A	28.0 - 31.0 60.0 - 77.5		0.65 – 2.02	
14	A14	A	30.0 60.0		n/a	
15	A15	A	27.0 - 32.0	60.0 – 77.5	0.94 - 3.1	
16	A16	A	30.0	70.0	2.50	
17	A17	A	27.0 - 34.0	59.0 – 75.0	0.50 – 1.51	
18	A18	A	29.0	50.0	5.68	
19	A19	A	27.7 – 31.5	65.7 - 75.0	1.06 - 3.68	
20	A20	A	28.0	70.0 – 75.0	1.50	
21	A21	A	30.0 - 32.0	70.0 – 75.0	1.50 – 2.50	
22	A22	A	26.5 - 30.2	64.0 - 75.1	1.66 – 9.86	
23	A23	A	27.2 - 33.1	55.6 – 78.0	0.98 - 3.34	
24	A24	A	30.0	70.0	2.48	
25	A25	A	30.0	60.0	1.70 -2.60	
26	A26	A	29.0	60.0	2.88	
27	A27	А	30.0	60.0	n/a	
28	A28	А	28.5 - 30.0	60.0 – 75.0	1.63 – 1.86	
29	A29	A	30.0	70.0 – 75.0	1.50 – 2.50	
30	A30	A	27.3 - 30.9	73.0 - 80.0	1.54 - 5.08	

No.	Farm	Company	Average temperature within	Humidity within target rearing bouse (%)	Mortality rate (%)
21	B/C2	R/C	28 20	76	1.07 7.61
51	D/ CZ	D/ C	20 - 29	10	1.97 - 7.01
32	B/C3	B/C	28 - 29	76	2.07 – 4.92
33	B/C4	B/C	28 - 29	76	1.79 – 3.62
34	B/C6	B/C	28 - 29	76	1.57 – 3.73
35	B/C7	B/C	28 - 29	76	1.96 – 4.47
36	B/C8	B/C	28 - 29	76	2.66 – 4.82
37	B/C9	B/C	28 - 29	76	3.11 – 3.59
38	B/C10	B/C	28 - 29	76	2.75 – 8.51
39	B/C11	B/C	28 - 29	76	0.77 – 4.14
40	B/C13	B/C	28 - 29	76	0.63 – 6.25
41	B/C14	B/C	28 - 29	76	3.40 - 3.63
42	B/C15	B/C	28 - 29	76	1.92 – 7.26
43	B/C12-1	B/C	n/a	n/a	n/a
44	B/C12-2	B/C	n/a	n/a	n/a
45	B/C1	B/C	28 - 29	76	2.06

จุฬาลงกรณิมหาวิทยาลัย Chulalongkorn University

No.	Farm	Company	Culling rate Slaughter ag (%) (days)		Number of chicken in target house	Presence of damage on waterer
1	A1	A	2.31 – 2.32	39	14,280	Yes
2	A2	A	0.63 – 4.57	39 – 41	12,852 – 16,830	Yes
3	A3	A	4.08 - 8.56	39	12,036 – 13,260	Yes
4	A4	A	0.80	41	15,000	Yes
5	A5	A	0.36 – 1.8	39 – 42	20,910 – 27,336	Yes
6	A6	A	1.37 – 2.19	41	8,058 – 9,996	No
7	A7	A	1.21 – 4.36	40 - 42	21,930 – 22,032	Yes
8	A8	A	2.00	42	31,008 – 31,212	No
9	A9	A	n/a	39 -41	15,810 – 17,034	No
10	A10	A	1.91 – 7.03	39 – 42	14,658 – 53,142	Yes
11	A11	A	n/a	39	24,888 – 29,478	No
12	A12	A	n/a	40	27,030	No
13	A13	A	0.49 – 2.85	37 -42	19,380 – 24,480	Yes
14	A14	A	n/a	37 -42	15,606 – 16,524	No
15	A15	A	0.62 - 3.12	38 – 41	23,256 – 29,070	Yes
16	A16	A	5.00	41	17,850	No
17	A17	A	1.11- 3.50	37 – 40	9,486 - 12,500	Yes
18	A18	А	6.71	40	20,400	No
19	A19	А	0.32 – 1.53	38 – 42	9,200 - 11,730	Yes
20	A20	А	3.50 – 5.00	39	16,500	No
21	A21	A	2.50 – 3.50	41	9,200	No
22	A22	А	0.32 - 36.38	38 – 43	18,054 – 21,930	Yes
23	A23	А	0.95 – 3.06	39 – 41	9,486 – 11,730	No
24	A24	А	n/a	42	19,894	Yes
25	A25	А	5.6 - 6.8	39 – 40	11,832 – 12,138	Yes
26	A26	A	2.02	41	16,320	Yes
27	A27	A	n/a	37 – 40	17,136	Yes
28	A28	А	0.32	42	10,210 - 10,710	No
29	A29	А	3.00 - 5.00	40 - 41	17,850 – 24,200	No
30	A30	A	1.01 - 22.28	30 - 43	13,260 - 16,524	Yes
No.	Farm	Company	Culling rate (%)	Slaughter age (days)	Number of chicken in target house	Presence of damage on waterer
-----	---------	---------	---------------------	-------------------------	---	-------------------------------------
31	B/C2	B/C	0.24 – 1.25	31 - 38	13,260 - 16,320	Yes
32	B/C3	B/C	0.08 - 1.42	31 – 37	4,794 – 6,630	Yes
33	B/C4	B/C	0.08 - 1.18	31 – 42	9,690 - 11,220	Yes
34	B/C6	B/C	0.12 - 1.03	31 - 40	15,300 - 16,320	Yes
35	B/C7	B/C	0.26 – 2.15	31 – 40	9,690 - 11,730	Yes
36	B/C8	B/C	0.29 – 1.75	31 - 39	14,790 - 16,320	Yes
37	B/C9	B/C	1.04 - 1.74	31 – 33	15,000 - 16,014	Yes
38	B/C10	B/C	0.26 – 1.53	31 – 36	15,045 - 16,320	Yes
39	B/C11	B/C	0.24 – 2.24	31 – 41	10,200 - 12,750	Yes
40	B/C13	B/C	0.29 – 3.54	30 – 38	11,730 - 12,750	Yes
41	B/C14	B/C	0.40 - 0.90	31 – 38	12,000 - 12,240	Yes
42	B/C15	B/C	0.03 – 2.63	31 – 41	7,500 - 8,466	Yes
43	B/C12-1	B/C	n/a	n/a	n/a	n/a
44	B/C12-2	B/C	n/a	n/a	n/a	n/a
45	B/C1	B/C	0.77	32	12,000	No

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

No.	Farm	Company	Presence of pest in target house area	Duration for bird catching
1	A1	A	House lizard, fly, darkling beetle	30 minutes – 2 hours
2	A2	A	Bird, House lizard, fly, darkling beetle	30 minutes – 2 hours
3	A3	A	Fly, darkling beetle	30 minutes – 2 hours
4	A4	A	House lizard	< 30 minutes
5	A5	A	Bird, House lizard, fly, rodent, darkling beetle	30 minutes – 2 hours
6	A6	A	Fly, darkling beetle	30 minutes – 2 hours
7	A7	A	House lizard, fly	30 minutes – 2 hours
8	A8	A	Fly, darkling beetle	2 – 6 hours
9	A9	A	None	30 minutes – 2 hours
10	A10	A	Fly, darkling beetle	2 – 6 hours
11	A11	A	None	30 minutes – 2 hours
12	A12	A	Fly, darkling beetle	2 – 6 hours
13	A13	A	Bird, House lizard, fly, rodent, darkling beetle	30 minutes – 2 hours
14	A14	A	None	30 minutes – 2 hours
15	A15	A	Bird, House lizard, fly, rodent, darkling beetle	30 minutes – 2 hours
16	A16	A	House lizard	30 minutes – 2 hours
17	A17	A	Bird, House lizard, fly, rodent, darkling beetle	30 minutes – 2 hours
18	A18	A	Fly, darkling beetle	30 minutes – 2 hours
19	A19	A	Bird, House lizard, fly, rodent, darkling beetle	30 minutes – 2 hours
20	A20	A	House lizard	30 minutes – 2 hours
21	A21	A	House lizard	30 minutes – 2 hours
22	A22	A	Bird, House lizard, fly, rodent, darkling beetle	2 – 6 hours
23	A23	A	Bird, House lizard, fly, rodent, darkling beetle	30 minutes – 2 hours
24	A24	A	Bird, House lizard, fly, rodent, darkling beetle	30 minutes – 2 hours
25	A25	A	None	30 minutes – 2 hours
26	A26	A	Fly, darkling beetle	30 minutes – 2 hours
27	A27	A	None	30 minutes – 2 hours
28	A28	A	House lizard, fly, rodent, darkling beetle	30 minutes – 2 hours
29	A29	A	House lizard	30 minutes – 2 hours
30	A30	A	Bird, House lizard, fly, darkling beetle	30 minutes – 2 hours

No.	Farm	Company	Presence of pest in target house area	Duration for bird catching
31	B/C2	B/C	Bird, House lizard, fly, rodent, cockroach, darkling beetle	> 6 hours
32	B/C3	B/C	Bird, House lizard, fly, rodent, cockroach, darkling beetle	> 6 hours
33	B/C4	B/C	Bird, House lizard, fly, rodent, cockroach, darkling beetle	> 6 hours
34	B/C6	B/C	Bird, House lizard, fly, rodent, cockroach, darkling beetle	> 6 hours
35	B/C7	B/C	Bird, House lizard, fly, rodent, cockroach, darkling beetle	> 6 hours
36	B/C8	B/C	Bird, House lizard, fly, darkling beetle	> 6 hours
37	B/C9	B/C	House lizard, fly, darkling beetle	> 6 hours
38	B/C10	B/C	Bird, House lizard, fly, cockroach, darkling beetle	> 6 hours
39	B/C11	B/C	Bird, House lizard, fly, darkling beetle	> 6 hours
40	B/C13	B/C	Bird, House lizard, fly, darkling beetle	> 6 hours
41	B/C14	B/C	House lizard, fly, darkling beetle	> 6 hours
42	B/C15	B/C	Bird, House lizard, fly, cockroach, darkling beetle	> 6 hours
43	B/C12-1	B/C	n/a	n/a
44	B/C12-2	B/C	n/a	n/a
45	B/C1	B/C	House lizard, darkling beetle	> 6 hours

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

	Slaughter	Campylobacter	Positive sample/	Bacterial	Species identification (%)		
Farm	date	colonization	Examined sample	number	Cioluni	C. coli	C. jejuni
			(%)	(CFU/g)	c. jejum	0.000	and C. coli
A1	16/1/2012	negative					
	22/3/2012	negative					
A2	16/1/2012	negative					
	26/3/2012	negative					
	1/6/2012	negative					
	13/8/2012	negative					
	27/10/2012	positive	9/10 (90)	1.12E+08	100	0	0
	7/1/2013	negative					
	18/3/2013	negative					
	3/6/2013	negative					
	7/8/2013	negative					
	21/10/2013	negative					
A3	17/1/2012	positive	9/10 (90)	5.60E+06	100	0	0
	27/3/2012	positive	8/10 (80)	8.76E+07	100	0	0
A4	17/1/2012	negative					
A5	26/1/2012	negative	10/10 (100)	1.00E+07	100	0	0
	4/4/2012	positive	10/10 (100)	4.47E+07	100	0	0
	11/6/2012	positive	10/10 (100)	5.99E+07	100	0	0
	20/8/2012	positive	10/10 (100)	3.25E+08	100	0	0
	27/10/2012	positive	9/10 (90)	3.68E+07	100	0	0
	11/1/2013	positive	10/10 (100)	1.49E+08	100	0	0
	2/4/2013	positive					
A5	12/6/2013	positive	10/10 (100)	1.25E+08	100	0	0
	20/8/2013	positive	6/10 (60)	1.02E+08	100	0	0
	1/11/2013	positive	10/10 (100)	N/A	100	0	0
	10/1/2014	negative					
	15/3/2014	negative					
A6	26/1/2012	negative					
	2/4/2012	negative					
A7	26/1/2012	negative					
	7/4/2012	negative					
A8	31/1/2012	negative					
	27/4/2012	negative					
A9	31/1/2012	negative					
	9/4/2012	negative					

Table B-3 Campylobacter isolations from broiler flocks in Thailand

	Slaughter	Campylobac	Positive sample/	Bacterial	Species identification (%)		
Farm	data	ter	Examined sample	number	C iciupi	C. coli	C. jejuni
	uale	colonization	(%)	(CFU/g)	c. jejuni	C. 200	and C. coli
A10	1/2/2012	negative					
	7/4/2012	negative					
	14/6/2012	negative					
	25/8/2012	negative					
	29/10/2012	positive	10/10 (100)	5.35E+05	100	0	0
	3/1/2013	negative					
	18/3/2013	negative					
	4/6/2013	negative					
	15/8/2013	negative					
A10	26/10/2013	negative					
	9/1/2014	negative					
	24/3/2014	negative					
A11	1/2/2012	negative					
	10/4/2012	negative					
A12	1/2/2012	negative					
	2/5/2012	negative					
A13	2/2/2012	negative					
	11/4/2012	negative					
	20/6/2012	positive	5/10 (50)	3.20E+05	100	0	0
	31/8/2012	positive	10/10 (100)	8.63E+07	100	0	0
	6/11/2012	positive	10/10 (100)	N/A	100	0	0
	17/1/2013	positive	10/10 (100)	N/A	100	0	0
	6/4/2013	positive	10/10 (100)	1.49E+08	100	0	0
	20/6/2013	negative					
	28/8/2013	negative					
	7/11/2013	positive	10/10 (100)	N/A	100	0	0
	18/1/2014	negative					
	27/3/2014	positive	8/10 (80)	2.64E+07	100	0	0
A14	2/2/2012	negative					
	11/4/2012	negative					
A15	4/2/2012	positive	10/10 (100)	2.80E+06	100	0	0
	10/3/2012	positive	10/10 (100)	4.53E+08	0	100	0
	14/5/2012	positive	8/10 (80)	<104	100	0	0
	23/7/2012	positive	2/10 (20)	<104	100	0	0
	29/9/2012	positive	10/10 (100)	N/A	100	0	0
	13/12/2012	positive	9/10 (90)	N/A	100	0	0
	1/3/2013	negative					

	Claughtor	Campylobac	Positive sample/	Bacterial	erial Species ident		ation (%)
Farm	data	ter	Examined sample	number	Ciciuni	(coli	C. jejuni
	uale	colonization	(%)	(CFU/g)	C. jejuni	C. 200	and C. coli
A15	15/5/2013	negative					
	22/7/2013	negative					
	2/10/2013	negative					
	13/12/2013	negative					
	19/2/2014	negative					
A16	16/1/2012	negative					
A17	17/1/2012	negative					
	27/3/2012	positive	10/10 (100)	1.41E+08	100	0	0
	9/8/2012	positive	10/10 (100)	2.59E+07	20	80	0
	17/12/2012	positive	8/10 (80)	5.54E+07	100	0	0
	23/2/2013	positive	10/10 (100)	3.68E+07	100	0	0
	2/5/2013	positive	10/10 (100)	1.11E+08	100	0	0
	6/7/2013	positive	8/10 (80)	1.57E+07	100	0	0
	14/9/2013	positive	8/10 (80)	1.02E+08	100	0	0
A18	18/1/2012	negative					
A19	26/1/2012	positive	10/10 (100)	2.94E+08	100	0	0
	22/3/2012	negative					
	23/5/2012	negative					
	30/7/2012	positive	2/10 (20)	3.50E+05	100	0	0
	9/10/2012	negative					
	11/12/2012	positive	10/10 (100)	1.85E+08	100	0	0
	18/2/2013	negative					
	16/4/2013	negative					
	4/7/2013	negative					
	13/9/2013	negative					
	14/11/2013	positive	7/10 (70)	3.90E+07	100	0	0
	17/1/2014	negative					
A20	26/1/2012	negative					
	7/4/2012	negative					
A21	31/1/2012	negative					
	19/4/2012	negative					
A22	31/1/2012	positive	10/10 (100)	1.87E+08	0	100	0
	10/4/2012	negative					
	22/6/2012	positive	8/10 (80)	3.73E+07	100	0	0
	1/9/2012	positive	8/10 (80)	7.50E+06	100	0	0
	8/11/2012	positive	9/10 (90)	4.57E+07	88.89	11.11	0
	17/1/2013	negative					

	Slaughter	Campylobac	Positive sample/	Bacterial	Specie	s identific	ation (%)
Farm	Staugniter	ter	Examined sample	number	C. initial	C. aali	C. jejuni
	date	colonization	(%)	(CFU/g)	C. jejuni	C. COU	and C. coli
	2/4/2013	positive	10/10 (100)	2.71E+07	100	0	0
A22	28/6/2013	positive	10/10 (100)	1.66E+06	100	0	0
	18/9/2013	positive	10/10 (100)	2.74E+08	100	0	0
	3/12/2013	positive	6/10 (60)	1.00E+04	100	0	0
	6/2/2014	negative					
	25/4/2014	positive	10/10 (100)	5.46E+08	0	100	0
A23	1/2/2012	negative					
	26/3/2012	positive	10/10 (100)	3.23E+07	100	0	0
	31/5/2012	positive	7/10 (70)	9.60E+07	100	0	0
	6/8/2012	positive	10/10 (100)	7.47E+07	100	0	0
	16/10/2012	positive	2/10 (20)	<1.00E+04	100	0	0
	26/12/2012	positive	10/10 (100)	2.94E+08	100	0	0
	11/3/2013	positive	10/10 (100)	3.15E+08	100	0	0
	30/5/2013	positive	10/10 (100)	3.22E+07	100	0	0
	6/8/2013	positive	10/10 (100)	1.79E+07	100	0	0
	18/10/2013	positive	10/10 (100)	9.42E+07	100	0	0
	23/12/2013	positive	10/10 (100)	6.35E+07	100	0	0
	17/3/2014	negative					
A24	1/2/2012	positive	1/10 (10)	<1.00E+04	100	0	0
A25	2/2/2012	positive	10/10 (100)	8.90E+07	100	0	0
	10/4/2012	negative					
A26	3/2/2012	negative					
A27	4/2/2012	negative					
	12/4/2012	negative					
A28	6/2/2012	negative					
	9/4/2012	positive	10/10 (100)	2.56E+08	100	0	0
A29	6/2/2012	negative					
	18/4/2012	negative					
A30	24/2/2012	negative					
	5/5/2012	negative					
	13/7/2012	negative					
	25/9/2012	negative					
	19/12/2012	positive	3/10 (30)	3.26E+06	100	0	0
	7/3/2013	negative					
	19/5/2013	negative					
	28/7/2013	negative					
	12/12/2013	negative					

	Slaughter	Campylobac	Positive sample/	Bacterial	Specie	s identific	ation (%)
Farm	staugnier	ter	Examined sample	number	C istusi	C. aali	C. jejuni
	date	colonization	(%)	(CFU/g)	C. jejuni	C. COU	and C. coli
B/C1	15/2/2012	positive	6/10 (60)	1.40E+05	100	0	0
B/C2	23/2/2012	positive	10/10 (100)	1.74E+07	100	0	0
	23/4/2012	positive	3/10 (30)	1.31E+08	100	0	0
	23/6/2012	positive	9/10 (90)	9.24E+08	0	100	0
	18/8/2012	positive	10/10 (100)	1.29E+06	100	0	0
	19/10/2012	negative					
	1/12/12	positive	30/30 (100)	2.87E+08	100	0	0
B/C2	15/2/2013	negative					
	7/5/2013	negative					
B/C3	23/2/2012	negative					
	20/4/2012	negative					
	14/8/2012	positive	3/10 (30)	<1.00E+04	100	0	0
	26/12/2012	negative					
	2/3/2013	negative					
	24/6/2013	negative					
	27/8/2013	positive	9/10 (90)	1.19E+07	100	0	0
	16/10/2013	positive	6/10 (60)	N/A	100	0	0
B/C4	27/2/2012	negative					
	19/4/2012	positive	10/10 (100)	N/A	100	0	0
	15/6/2012	positive	8/10 (80)	5.21E+08	100	0	0
	11/8/2012	positive	10/10 (100)	4.32E+06	100	0	0
	15/10/2012	positive	26/30 (86.67)	9.02E+05	100	0	0
	1/12/12	negative					
	18/2/2013	negative					
	19/4/2013	negative					
	19/6/2013	positive	7/10 (70)	7.95E+07	100	0	0
	15/8/2013	negative					
B/C5	27/2/2012	Positive	9/10 (90)	3.50E+07	100	0	0
B/C6	13/3/2012	positive	8/10 (80)	6.50E+06	100	0	0
	17/5/2012	positive	5/10 (50)	2.25E+08	100	0	0
	6/7/2012	negative					
	5/9/2012	positive	7/10 (70)	2.17E+08	100	0	0
	1/11/2012	positive	10/10 (100)	7.65E+05	100	0	0
	3/1/2013	positive	10/10 (100)	1.51E+08	100	0	0
B/C7	14/3/2012	negative					
	17/5/2012	positive	10/10 (100)	1.71E+08	100	0	0
	14/7/2012	positive	10/10 (100)	4.55E+06	100	0	0

	Slaughter	Campylobac	Positive sample/	Bacterial	Specie	s identific	ation (%)
Farm	staugnier	ter	Examined sample	number	C initial	C. aali	C. jejuni
	date	colonization	(%)	(CFU/g)	C. jejuni	C. COU	and C. coli
B/C7	8/9/2012	positive	6/10 (60)	2.95E+08	0	100	0
	9/1/2013	negative					
	13/3/2013	negative					
	6/5/2013	negative					
	14/8/2013	positive	10/10 (100)	1.60E+05	100	0	0
B/C8	14/3/2012	positive	8/10 (80)	1.76E+08	100	0	0
	11/5/2012	positive	1/10 (10)	<1.00E+04	100	0	0
	5/7/2012	positive	10/10 (100)	2.89E+08	100	0	0
	28/8/2012	positive	10/10 (100)	1.06E+08	100	0	0
	26/10/2012	positive	10/10 (100)	3.18E+07	90	10	0
	29/12/2012	negative					
	4/3/2013	negative					
	3/5/2013	negative					
B/C8	1/7/2013	positive	7/10 (70)	N/A	71.43	28.57	0
	18/8/2013	positive	6/10 (60)	9.27E+07	100	0	0
	15/10/2013	positive	10/10 (100)	5.04E+06	100	0	0
B/C9	16/3/2012	positive	9/10 (90)	5.53E+06	100	0	0
	3/5/2012	negative					
	28/6/2012	positive	10/10 (100)	3.48E+07	60	40	0
B/C10	16/3/2012	positive	10/10 (100)	1.32E+07	100	0	0
	11/5/2012	negative					
	9/7/2012	positive	9/10 (90)	3.36E+08	0	88.89	11.11
	5/11/2012	positive	9/10 (90)	3.00E+05	100	0	0
	4/1/2013	positive	5/10 (50)	1.51E+08	100	0	0
	8/3/2013	negative					
B/C11	19/3/2012	negative					
	14/5/2012	negative					
	13/7/2012	negative					
	13/9/2012	negative					
	12/11/2012	positive	10/10 (100)	2.69E+08	100	0	0
	11/1/2013	positive	10/10 (100)	8.78E+07	100	0	0
	13/3/2013	positive	10/10 (100)	9.70E+06	100	0	0
	9/5/2013	positive	10/10 (100)	1.30E+07	100	0	0
	11/9/2013	positive	9/10 (90)	6.03E+06	66.67	33.33	0
	14/10/2013	positive	10/10 (100)	1.29E+08	0	30	70
B/C12-1	23/3/2012	negative					

	Slaughter	Campylobac	Positive sample/	Bacterial	Specie	s identific	ation (%)
Farm	data	ter	Examined sample	number	Ciciuni	C. coli	C. jejuni
	uale	colonization	(%)	(CFU/g)	c. jejuni	C. 200	and C. coli
B/C12-2	23/3/2012	negative					
	16/6/2012	positive	1/10 (10)	<1.00E+04	0	100	0
	30/8/2012	negative					
	2/12/2012	negative					
B/C13	23/3/2012	positive	9/10 (90)	1.46E+06	100	0	0
	8/5/2012	negative					
	4/7/2012	positive	10/10 (100)	6.48E+07	100	0	0
	30/8/2012	positive	10/10 (100)	2.58E+08	50		50
	22/10/2012	positive	9/10 (90)	6.49E+08	0	100	0
	27/12/2012	negative					
	30/4/2013	negative					
	23/8/2013	positive	8/10 (80)	4.65E+07	87.5	12.5	
	18/10/2013	negative	N/A				
B/C14	30/3/2012	negative					
	24/5/2012	positive	8/10 (80)	<1.00E+04	100	0	0
B/C15	30/3/2012	positive	10/10 (100)	1.35E+07	100	0	0
	22/5/2012	negative					
	15/7/2012	positive	8/10 (80)	2.71E+08	0	100	0
	19/9/2012	positive	10/10 (100)	2.65E+06	100	0	0
	11/12/2012	negative					
	20/2/2013	negative					
B/C15	17/4/2013	negative					
	10/6/2013	negative					
	31/7/2013	positive	10/10 (100)	2.13E+07	100	0	0
	25/9/2013	positive	6/10 (60)	4.95E+07	100	0	0
B/C16	20/4/2012	negative					
	15/6/2012	positive	9/10 (90)	6.18E+07	100	0	0
B/C17	17/4/2012	positive	6/10 (60)	<104	100	0	0
	11/6/2012	negative					
B/C18	30/4/2012	negative					

Appendix C Distribution of Campylobacter in broiler production chains

			Spe	cies identificatio	n			
Date	Samples	Sample number	Positive /total (%)	C. jejuni (%)	C. coli (%)			
Broiler flock								
	Cloacal swab	30	11/30 (36.67)	5/11 (45.45)	6/11 (54.55)			
Hatchery								
Davi 1	Egg tray	10	0/10 (0)	n/a	n/a			
Day 1	Tap water	1	0/1 (0)	n/a	n/a			
Day 18	Egg incubator	6	0/6 (0)	n/a	n/a			
Day 21	Egg shell	10	0/10 (0)	n/a	n/a			
Downtime peri	iod							
	Feeder for small chicken	6	0/6 (0)	n/a	n/a			
	Feeder for the old chicken	6	0/6 (0)	n/a	n/a			
	New litter	3	0/3 (0)	n/a	n/a			
Downtime	Footwear in the house	2	0/2 (0)	n/a	n/a			
(before	Water from nipple drinker	6	0/1 (0)	n/a	n/a			
placement)	Water from main pipeline	1	0/1 (0)	n/a	n/a			
	Animal feed	1	0/1 (0)	n/a	n/a			
	Boot swab inside the target house	1	0/1 (0)	n/a	n/a			
	Boot swab from area around the house	2	0/2 (0)	n/a	n/a			
Rearing period								
Day 0	Paper lining	10	0/10 (0)	n/a	n/a			
Day 7	Boot swab from path-leading to the house	1	0/1 (0)	n/a	n/a			
Day I	Boot swab inside the target house	1	0/1 (0)	n/a	n/a			

Table C-1 Campylobacter isolation from broiler production chain of Chain A23

		Sample	Spe	cies identificatio	on
Date	Samples	number	Positive /total	C. jejuni	C. coli
	Boot swab from area around the house	2	0/2 (0)	n/a	n/a
	Boot swab inside the adjacent house	1	0/1 (0)	n/a	n/a
Day 7	Litter	3	0/3 (0)	n/a	n/a
	Water from nipple drinker	6	0/6 (0)	n/a	n/a
	Water from main pipeline	1	0/1 (0)	n/a	n/a
	Cloacal swab	30	0/29 (0)	n/a	n/a
	Boot swab from path-leading to the house	1	0/1 (0)	n/a	n/a
	Boot swab inside the target house	1	0/1 (0)	n/a	n/a
	Boot swab from area around the house	2	0/2 (0)	n/a	n/a
	Boot swab inside the adjacent house	1	0/1 (0)	n/a	n/a
Day 14	Litter	3	0/3 (0)	n/a	n/a
	Water from nipple drinker	6	0/6 (0)	n/a	n/a
	Water from main pipeline	1	0/1 (0)	n/a	n/a
	Rodent	1	0/1 (0)	n/a	n/a
	Flies	1	0/1 (0)	n/a	n/a
Day 17	Cloacal swab	30	0/30 (0)	n/a	n/a
Day II	Boot swab inside the target house	1	0/1 (0)	n/a	n/a
	Cloacal swab	30	N/A		
	Boot swab from path-leading to the house	1	0/1 (0)	n/a	n/a
	Boot swab inside the target house	1	0/1 (0)	n/a	n/a
Day 21	Boot swab from area around the house	2	0/2 (0)	n/a	n/a
	Boot swab inside the adjacent house	1	0/1 (0)	n/a	n/a
	Litter	3	0/3 (0)	n/a	n/a
	Water from nipple drinker	6	0/6 (0)	n/a	n/a
	Water from main pipeline	1	0/1 (0)	n/a	n/a

		Sample	Species identification		
Date	Samples	number	Positive /total (%)	C. jejuni (%)	C. coli (%)
Day 21	Flies	1	0/1 (0)	n/a	n/a
Day 24	Cloacal swab	30	0/30 (0)	n/a	n/a
Duy 24	Boot swab inside the target house	1	0/1 (0)	n/a	n/a
	Cloacal swab	30	0/30 (0)	n/a	n/a
	Boot swab from path-leading to the house	1	0/1 (0)	n/a	n/a
	Boot swab inside the target house	1	0/1 (0)	n/a	n/a
	Boot swab from area around the house	2	0/2 (0)	n/a	n/a
Day 28	Boot swab inside the adjacent house	1	0/1 (0)	n/a	n/a
	Litter	3	0/3 (0)	n/a	n/a
	Water from nipple drinker	6	0/6 (0)	n/a	n/a
	Water from main pipeline	1	0/1 (0)	n/a	n/a
	Flies	1	0/1 (0)	n/a	n/a
D 21	Cloacal swab	30	21/30 (70)	21/21 (100)	0/21 (0)
Day 51	Boot swab inside the target house	1	1/1 (100)	1/1 (100)	0/1 (0)
	Cloacal swab	30	11/30 (36.67)	11/11 (100)	0/11 (0)
	Boot swab from path-leading to the house	1	1/1 (100)	1/1 (100)	0/1 (0)
	Boot swab inside the target house	1	1/1 (100)	1/1 (100)	0/1 (0)
	Boot swab from area around the house	2	1/2 (50)	1/1 (100)	0/1 (0)
D 05	Boot swab inside the adjacent house	1	1/1 (100)	1/1 (100)	0/1 (0)
Day 35	Litter	3	0/3 (0)	n/a	n/a
	Water from nipple drinker	6	1/6 (16.67)	1/1 (100)	0/1 (0)
	Water from main pipeline	1	0/1 (0)	n/a	n/a
	Flies	1	0/1 (0)	n/a	n/a
	Darkling beetle	1	1/1 (100)	1/1 (100)	0/1 (0)

		Sample	Species identification		
Date	Samples	number	Positive /total (%)	C. jejuni (%)	C. coli (%)
D	Cloacal swab	30	26/30 (86.67)	26/26 (100)	0/26 (0)
Day 38	Boot swab inside the target house	1	0/1 (0)	n/a	n/a
Slaughterhouse					
	Transport crate	5	3/5 (60)	3/3 (100)	0/3 (0)
Before	Breast comforter	3	0/3 (0)	n/a	n/a
process	Hanging shackle	10	0/10 (0)	n/a	n/a
	Eviscerating equipment	15	2/15 (13.33)	2/2 (100)	0/2 (0)
	Cloacal swab	5	5/5 (100)	5/5 (100)	0/5 (0)
	Carcass rinse	25	20/25 (80)	20/20 (100)	0/20 (100)
	Meat product	16	10/16 (62.50)	10/10 (100)	0/10 (0)
	Breast comforter	3	0/3 (0)	n/a	n/a
After process	Hanging shackle	10	3/10 (30)	3/3 (100)	0/3 (0)
	Eviscerating equipment	15	0/15 (0)	n/a	n/a
	Tap water (I/O washer and bird washer)	2	0/2 (0)	n/a	n/a
	Chilling water	6	4/6 (66.67)	4/4 (100)	0/4 (0)
	Packaging table	1	1/1 (100)	1/1 (100)	0/1 (0)

			Species identification		
Date	Samples	Sample number	Positive /total (%)	C. jejuni (%)	C. coli (%)
Breeder flock					
	Cloacal swab	30	23/30 (76.67)	6/23 (26.09)	17/23 (73.91)
Hatchery					
Day 1	Egg tray	10	0/10 (0)	n/a	n/a
Day I	Tap water	1	0/1 (0)	n/a	n/a
Day 18	Egg incubator	6	0/6 (0)	n/a	n/a
Day 21	Egg shell	10	0/10 (0)	n/a	n/a
Downtime pe	riod				
	Feeder for small chicken	6	0/6 (0)	n/a	n/a
	Feeder for the old chicken	6	0/6 (0)	n/a	n/a
	New litter	3	0/3 (0)	n/a	n/a
Downtime	Footwear in the house	2	0/2 (0)	n/a	n/a
period (before	Water from nipple drinker	6	0/6 (0)	n/a	n/a
chicken	Water from main pipeline	1	0/1 (0)	n/a	n/a
placement)	Animal feed	1	0/1 (0)	n/a	n/a
	Boot swab from anteroom of target house	1	0/1 (0)	n/a	n/a
	Boot swab inside the target house	1	0/1 (0)	n/a	n/a
	Boot swab from area around the house	2	0/2 (0)	n/a	n/a
Rearing perio	d				
Day 0	Paper lining	10	0/10 (0)	n/a	n/a
	Boot swab from path-leading to the house	1	0/1 (0)	n/a	n/a
Day 7	Boot swab from anteroom of target house	1	0/1 (0)	n/a	n/a
	Boot swab inside the target house	1	0/1 (0)	n/a	n/a

Table C-2 Campylobacter isolation from broiler production chain of Chain A13

	Samples	Sample	Species identification		
Date		number	Positive	C. jejuni	C. coli
	Boot swab from area around the house	2	0/2 (0)	n/a	n/a
	Boot swab inside the adjacent house	1	0/1 (0)	n/a	n/a
	Litter	3	0/3 (0)	n/a	n/a
Day 7	Water from nipple drinker	6	0/6 (0)	n/a	n/a
	Water from main pipeline	1	0/1 (0)	n/a	n/a
	Pest	n/a	n/a	n/a	n/a
	Cloacal swab	30	n/a	n/a	n/a
	Boot swab from path-leading to the house	1	0/1 (0)	n/a	n/a
	Boot swab from anteroom of target house	1	0/1 (0)	n/a	n/a
	Boot swab inside the target house	1	0/1 (0)	n/a	n/a
	Boot swab from area around the house	2	0/2 (0)	n/a	n/a
Day 14	Boot swab inside the adjacent house	1	0/1 (0)	n/a	n/a
	Litter	3	0/3 (0)	n/a	n/a
	Water from nipple drinker	6	0/6 (0)	n/a	n/a
	Water from main pipeline	1	0/1 (0)	n/a	n/a
	Pest	n/a	n/a	n/a	n/a
	Cloacal swab	30	0/30 (0)	n/a	n/a
Day 17	Boot swab inside the target house	1	0/1 (0)	n/a	n/a
	Cloacal swab	30	0/30 (0)	n/a	n/a
	Boot swab from path-leading to the house	1	0/1 (0)	n/a	n/a
	Boot swab from anteroom of target house	1	0/1 (0)	n/a	n/a
Day 21	Boot swab inside the target house	1	0/1 (0)	n/a	n/a
	Boot swab from area around the house	2	0/2 (0)	n/a	n/a
	Boot swab inside the adjacent house	1	0/1 (0)	n/a	n/a
	Litter	3	0/3 (0)	n/a	n/a

	Samples	Sample	Species identification			
Date		number	Positive	C. jejuni	C. coli	
	Water from pipelo drinker	6	/total (%)	(%)	(%)	
		0	0/8 (0)	T/a	n/a	
Day 21	Water from main pipeline	1	0/1 (0)	n/a	n/a	
	Pest	n/a	n/a	n/a	n/a	
Day 24	Cloacal swab	30	0/30 (0)	n/a	n/a	
Day 24	Boot swab inside the target house	1	0/1 (0)	n/a	n/a	
	Cloacal swab	30	0/30 (0)	n/a	n/a	
	Boot swab from path-leading to the house	1	0/1 (0)	n/a	n/a	
	Boot swab from anteroom of target house	1	0/1 (0)	n/a	n/a	
	Boot swab inside the target house	1	0/1 (0)	n/a	n/a	
Day 28	Boot swab from area around the house	2	0/2 (0)	n/a	n/a	
Day 20	Boot swab inside the adjacent house	1	0/1 (0)	n/a	n/a	
	Litter	3	0/3 (0)	n/a	n/a	
	Water from nipple drinker	6	0/6 (0)	n/a	n/a	
	Water from main pipeline	1	0/1 (0)	n/a	n/a	
	Pest	n/a	n/a	n/a	n/a	
Day 31	Cloacal swab	30	27/30 (90)	27/27 (100)	0/27 (0)	
-	Boot swab inside the target house	1	0/1 (0)	n/a	n/a	
	Cloacal swab	30	26/30 (86.67)	26/26 (100)	0/26 (0)	
	Boot swab from path-leading to the house	1	0/1 (0)	n/a	n/a	
	Boot swab from anteroom of target house	1	0/1 (0)	n/a	n/a	
Dav 35	Boot swab inside the target house	1	0/1 (0)	n/a	n/a	
,	Boot swab from area around the house	2	0/2 (0)	n/a	n/a	
	Boot swab inside the adjacent house	1	0/1 (0)	n/a	n/a	
	Litter	3	0/3 (0)	n/a	n/a	
	Water from nipple drinker	6	0/6 (0)	n/a	n/a	

		Sample	Species identification		
Date	Samples	number	Positive /total (%)	C. jejuni (%)	C. coli (%)
D	Water from main pipeline	1	0/1 (0)	n/a	n/a
Day 35	Pest	n/a	n/a	n/a	n/a
Day 38	Cloacal swab	30	27/30 (90)	27/27 (100)	0/27 (0)
	Boot swab inside the target house	1	0/1 (0)	n/a	n/a
Slaughterhous	e				
	Transport crate	5	0/5 (0)	n/a	n/a
Before	Breast comforter	3	0/3 (0)	n/a	n/a
process	Hanging shackle	10	0/10 (0)	n/a	n/a
	Eviscerating equipment	15	1/15 (6.67)	1/1 (100)	0/1 (0)
	Cloacal swab	15	0/15 (0)	n/a	n/a
	Carcass rinse	25	17/25 (68)	17/17 (100)	0/17 (0)
	Meat product	16	7/16 (43.75)	7/7 (100)	0/7 (0)
	Breast comforter	3	1/3 (33.33)	1/1 (100)	0/1 (0)
After process	Hanging shackle	10	10/10 (100)	10/10 (100)	0/100 (0)
	Eviscerating equipment	15	11/15 (73.33)	11/11 (100)	0/11 (0)
	Tap water (I/O washer and bird washer)	2	0/2 (0)	n/a	n/a
	Chilling water	4	3/4 (75)	3/3 (100)	0/3 (0)
	Packaging table	4	1/4 (25)	1/1 (100)	0/1 (0)

			Species identification		
Date	Samples	Sample number	Positive/total (%)	C. jejuni (%)	C. coli (%)
Breeder flock					
	Cloacal swab	30	21/30 (70)	8/21 (38.1)	13/21 (61.9)
Hatchery					
Day 1	Egg tray	10	0/10 (0)	n/a	n/a
Day I	Tap water	1	0/1 (0)	n/a	n/a
Day 18	Egg incubator	6	0/6 (0)	n/a	n/a
Day 21	Egg shell	10	0/10 (0)	n/a	n/a
Downtime per	iod				
	Feeder for small chicken	6	0/6 (0)	n/a	n/a
	Feeder for the old chicken	6	0/6 (0)	n/a	n/a
	New litter	3	0/3 (0)	n/a	n/a
Downtime	Footwear in the house	2	0/2 (0)	n/a	n/a
period (before	Water from nipple drinker	6	0/1 (0)	n/a	n/a
chicken	Water from main pipeline	1	0/1 (0)	n/a	n/a
placement)	Animal feed	1	0/1 (0)	n/a	n/a
	Boot swab from anteroom of target house	1	0/1 (0)	n/a	n/a
	Boot swab inside the target house	1	0/1 (0)	n/a	n/a
	Boot swab from area around the house	2	0/2 (0)	n/a	n/a
Rearing period	,				
Day 0	Paper lining	10	0/10 (0)	n/a	n/a
	Boot swab from path-leading to the house	1	0/1 (0)	n/a	n/a
Day 7	Boot swab from anteroom of target house	1	0/1 (0)	n/a	n/a
	Boot swab inside the target house	1	0/1 (0)	n/a	n/a

Table C-3 Campylobacter isolation from broiler production chain of Chain A15

	Samples	Sample	Species identification		
Date		number	Positive/total	C. jejuni	C. coli
	Post such from area around the house	2	(%)	(%)	(%)
		2	0/2 (0)	TV d	TV d
	Boot swab inside the adjacent house	1	0/1 (0)	n/a	n/a
	Litter	3	0/3 (0)	n/a	n/a
Day 7	Water from nipple drinker	6	0/6 (0)	n/a	n/a
	Water from main pipeline	1	0/1 (0)	n/a	n/a
	Pest	n/a	n/a	n/a	n/a
	Cloacal swab	30	0/30 (0)	n/a	n/a
	Boot swab from path-leading to the house	1	0/1 (0)	n/a	n/a
	Boot swab from anteroom of target house	1	0/1 (0)	n/a	n/a
	Boot swab inside the target house	1	0/1 (0)	n/a	n/a
Day 14	Boot swab from area around the house	2	0/2 (0)	n/a	n/a
Day 14	Boot swab inside the adjacent house	1	0/1 (0)	n/a	n/a
	Litter	3	0/3 (0)	n/a	n/a
	Water from nipple drinker	6	1/6 (16.67)	1/1 (100)	0/1 (0)
	Water from main pipeline	1	0/1 (0)	n/a	n/a
	Pest	n/a	n/a	n/a	n/a
Day 17	Cloacal swab	30	0/30 (0)	n/a	n/a
Day 17	Boot swab inside the target house	1	0/1 (0)	n/a	n/a
	Cloacal swab	30	0/30 (0)	n/a	n/a
	Boot swab from path-leading to the house	1	0/1 (0)	n/a	n/a
	Boot swab from anteroom of target house	1	0/1 (0)	n/a	n/a
Day 21	Boot swab inside the target house	1	0/1 (0)	n/a	n/a
	Boot swab from area around the house	2	0/2 (0)	n/a	n/a
	Boot swab inside the adjacent house	1	0/1 (0)	n/a	n/a
	Litter	3	0/3 (0)	n/a	n/a

		Sample	Spe	Species identification			
Date	Samples	number	Positive/total (%)	C. jejuni (%)	C. coli (%)		
	Water from nipple drinker	6	0/6 (0)	n/a	n/a		
Day 21	Water from main pipeline	1	0/1 (0)	n/a	n/a		
	Pest	n/a	n/a	n/a	n/a		
	Cloacal swab	30	0/30 (0)	n/a	n/a		
Day 24	Boot swab inside the target house	1	0/1 (0)	n/a	n/a		
	Cloacal swab	30	0/30 (0)	n/a	n/a		
	Boot swab from path-leading to the house	1	0/1 (0)	n/a	n/a		
	Boot swab from anteroom of target house	1	0/1 (0)	n/a	n/a		
	Boot swab inside the target house	1	0/1 (0)	n/a	n/a		
	Boot swab from area around the house	2	0/2 (0)	n/a	n/a		
Day 28	Boot swab inside the adjacent house	1	0/1 (0)	n/a	n/a		
	Litter	3	0/3 (0)	n/a	n/a		
	Water from nipple drinker	6	0/6 (0)	n/a	n/a		
	Water from main pipeline	1	0/1 (0)	n/a	n/a		
	Pest	n/a					
D 24	Cloacal swab	30	0/30 (0)	n/a	n/a		
Day 31	Boot swab inside the target house	1	0/1 (0)	n/a	n/a		
	Cloacal swab	30	0/30 (0)	n/a	n/a		
	Boot swab from path-leading to the house	1	0/1 (0)	n/a	n/a		
	Boot swab from anteroom of target house	1	0/1 (0)	n/a	n/a		
Day 25	Boot swab inside the target house	1	0/1 (0)	n/a	n/a		
Uay 33	Boot swab from area around the house	2	0/2 (0)	n/a	n/a		
	Boot swab inside the adjacent house	1	0/1 (0)	n/a	n/a		
	Litter	3	0/3 (0)	n/a	n/a		
	Water from nipple drinker	6	0/6 (0)	n/a	n/a		

		Sample	Species identification		
Date	Samples	number	Positive/total (%)	C. jejuni (%)	C. coli (%)
	Water from main pipeline	1	0/1 (0)	n/a	n/a
Day 35	pest	n/a	n/a	n/a	n/a
5 00	Cloacal swab	30	2/30 (6.67)	2/2 (100)	0/2 (0)
Day 38	Boot swab inside the target house	1	0/1 (0)	n/a	n/a
Slaughterhous	e				
	Transport crate	5	2/5 (40)	2/2 (100)	0/2 (0)
Before	Breast comforter	3	0/3 (0)	n/a	n/a
process	Hanging shackle	10	0/10 (0)	n/a	n/a
	Eviscerating equipment	15	1/15 (6.67)	1/1 (100)	0/1 (0)
	Cloacal swab	15	6/15 (40)	6/6 (100)	0/6 (0)
	Carcass rinse	25	10/25 (40)	10/10 (100)	0/10 (0)
	Meat product	16	9/16 (56.25)	9/9 (100)	0/9 (0)
	Breast comforter	3	0/3 (0)	n/a	n/a
After process	Hanging shackle	10	9/10 (90)	9/9 (100)	0/9 (0)
	Eviscerating equipment	15	10/15 (66.67)	10/10 (100)	0/10 (0)
	Tap water (I/O washer and bird washer)	2	0/2 (0)	n/a	n/a
	Chilling water	4	3/4 (75)	3/3 (100)	0/3 (0)
	Packaging table	4	0/4 (0)	n/a	n/a

			Species identification		
Date	Samples	Sample number	Positive /total (%)	C. jejuni (%)	C. coli (%)
Breeder farm					
	Cloacal swab	24	17/24 (70.83)	2/17 (11.76)	15/17 (88.24)
Hatchery					
Day 1	Egg tray	10	0/10 (0)	n/a	n/a
Day I	Tap water	1	0/1 (0)	n/a	n/a
Day 18	Egg incubator	6	0/6 (0)	n/a	n/a
Day 21	Egg shell	10	0/10 (0)	n/a	n/a
Downtime pe	riod				
	Feeder for small chicken	6	0/6 (0)	n/a	n/a
	Feeder for the old chicken	6	0/6 (0)	n/a	n/a
	New litter	3	0/3 (0)	n/a	n/a
Downtime	Footwear in the house	2	0/2 (0)	n/a	n/a
period (before	Water from nipple drinker	6	0/1 (0)	n/a	n/a
chicken	Water from main pipeline	1	0/1 (0)	n/a	n/a
placement)	Animal feed	1	0/1 (0)	n/a	n/a
	Boot swab from anteroom of target house	1	0/1 (0)	n/a	n/a
	Boot swab inside the target house	1	0/1 (0)	n/a	n/a
	Boot swab from area around the house	2	0/2 (0)	n/a	n/a
Rearing perio	d				
	Paper lining	10	0/10 (0)	n/a	n/a
Dura	Boot swab from path-leading to the house	1	0/1 (0)	n/a	n/a
Day U	Boot swab from anteroom of target house	1	0/1 (0)	n/a	n/a
	Boot swab inside the target house	1	0/1 (0)	n/a	n/a

Table C-4 *Campylobacter* isolation from broiler production chain of Chain B/C2

	Samples	Sample	Species identification		
Date		number	Positive/total	C. jejuni	C. coli
			(%)	(%)	(%)
	Boot swab from area around the house	2	0/2 (0)	n/a	n/a
Day 0	Litter	3	0/3 (0)	n/a	n/a
Day 0	Water from nipple drinker	6	0/6 (0)	n/a	n/a
	Water from main pipeline	1	0/1 (0)	n/a	n/a
	Cloacal swab	30	0/30 (0)	n/a	n/a
	Boot swab from path-leading to the house	1	0/1 (0)	n/a	n/a
	Boot swab from anteroom of target house	1	0/1 (0)	n/a	n/a
	Boot swab inside the target house	1	0/1 (0)	n/a	n/a
	Boot swab from area around the house	2	0/2 (0)	n/a	n/a
Day 7	Litter	3	0/3 (0)	n/a	n/a
	Water from nipple drinker	6	0/6 (0)	n/a	n/a
	Water from main pipeline	1	0/1 (0)	n/a	n/a
	Dust	1	0/1 (0)	n/a	n/a
	Darkling beetle	1	0/1 (0)	n/a	n/a
	Flies	1	0/1 (0)	n/a	n/a
	Cloacal swab	30	8/30 (26.67)	8/8 (100)	0/8 (0)
	Boot swab from path-leading to the house	1	0/1 (0)	n/a	n/a
	Boot swab from anteroom of target house	1	0/1 (0)	n/a	n/a
	Boot swab inside the target house	1	1/1 (100)	1/1 (100)	0/1 (0)
Day 14	Boot swab from area around the house	2	0/2 (0)	n/a	n/a
Day 14	Litter	3	0/3 (0)	n/a	n/a
	Water from nipple drinker	6	1/6 (16.67)	1/1 (100)	0.1 (0)
	Water from main pipeline	1	0/1 (0)	n/a	n/a
	Animal feed	1	0/1 (0)	n/a	n/a
	Dust	1	0/1 (0)	n/a	n/a

	Samples	Sample number	Species identification			
Date			Positive/total	C. jejuni (%)	C. coli (%)	
	Darkling beetle	1	0/1 (0)	n/a	n/a	
Day 14	Flies	1	0/1 (0)	n/a	n/a	
	Cloacal swab	30	14/30 (46.67)	14/14 (100)	0/14 (0)	
	Boot swab from path-leading to the house	1	0/1 (0)	n/a	n/a	
	Boot swab from anteroom of target house	1	0/1 (0)	n/a	n/a	
	Boot swab inside the target house	1	0/1 (0)	n/a	n/a	
	Boot swab from area around the house	2	0/2 (0)	n/a	n/a	
Day 21	Litter	3	0/3 (0)	n/a	n/a	
	Water from nipple drinker	6	1/6 (16.67) 1/1 (100)		0/1 (0)	
	Water from main pipeline	1	0/1 (0)	n/a	n/a	
	Dust	1	0/1 (0) n/a		n/a	
	Darkling beetle	1	0/1 (0)	n/a	n/a	
	Flies	1	0/1 (0)	n/a	n/a	
	Cloacal swab	30	1/30 (3.33)	1/1 (100)	0/1 (0)	
	Boot swab from path-leading to the house	1	0/1 (0)	n/a	n/a	
	Boot swab from anteroom of target house	1	0/1 (0)	n/a	n/a	
	Boot swab inside the target house	1	0/1 (0)	n/a	n/a	
	Boot swab from area around the house	2	0/2 (0)	n/a	n/a	
D-11 20	Litter	3	0/3 (0)	n/a	n/a	
Day 28	Water from nipple drinker	6	0/6 (0)	n/a	n/a	
	Water from main pipeline	1	0/1 (0)	n/a	n/a	
	Animal feed	1	0/1 (0)	n/a	n/a	
	Dust	1	0/1 (0)	n/a	n/a	
	Darkling beetle	1	0/1 (0)	n/a	n/a	
	Flies	1	0/1 (0)	n/a	n/a	

	Samples	Sampla	Species identification			
Date		number	Positive/total	C. jejuni	C. coli	
	Closed such	30	(%)	(%)	(%)	
		50	9/ 50 (50)	, ,	0/9(0)	
	Boot swap from path-leading to the house	1	0/1 (0)	n/a	n/a	
	Boot swab from anteroom of target house	1	0/1 (0)	n/a	n/a	
	Boot swab inside the target house	1	1/1 (100)	1/1 (100)	0/1 (0)	
	Boot swab from area around the house	2	0/2 (0)	n/a	n/a	
	Litter	3	0/3 (0)	n/a	n/a	
Day 32	Water from nipple drinker	6	0/6 (0)	n/a	n/a	
	Water from main pipeline	1	0/1 (0)	n/a	n/a	
	Animal feed	1	0/1 (0) n/a		n/a	
	Dust	1	0/1 (0) n/a		n/a	
	Darkling beetle	1	0/1 (0)	n/a	n/a	
	Flies	1	0/1 (0)	n/a	n/a	
Slaughterhou	ise					
	Breast comforter	3	0/3 (0)	n/a	n/a	
Before process	Hanging shackle	10	1/10 (10)	1/1 (100)	0/1 (0)	
	Eviscerating equipment	6	0/6 (0)	n/a	n/a	
	Cloacal swab	5	5/5 (100)	5/5 (100)	0/5 (0)	
	Carcass rinse	25	21/25 (84)	21/21 (100)	0/21 (0)	
	Breast comforter	3	0/3 (0)	n/a	n/a	
After	Hanging shackle	5	4/5 (80)	4/4 (100)	0/4 (0)	
process	Eviscerating equipment	6	5/6 (83.33)	5/5 (100)	0/5 (0)	
	Tap water (I/O washer)	1	0/1 (0)	n/a	n/a	
	Chilling water	2	0/2 (0)	n/a	n/a	
	Packaging table	1	1/1 (100)	1/1 (100)	0/1 (0)	

			Species identification			
Date	Samples	Sample number	Positive/total (%)	C. jejuni (%)	C. coli (%)	
Breeder flock						
	Cloacal swab	24	17/24 (70.83)	8/17 (47.06)	9/17 (52.94)	
Hatchery						
Day 1	Egg tray	6	0/6 (0)	n/a	n/a	
Day 1	Tap water	1	0/1 (0)	n/a	n/a	
Day 18	Egg incubator	6	0/6 (0)	n/a	n/a	
Day 21	Egg shell	10	0/10 (0)	n/a	n/a	
Downtime pe	riod					
	Feeder for small chicken	6	0/6 (0)	n/a	n/a	
	Feeder for the old chicken	6	0/6 (0)	n/a	n/a	
	New litter	3	0/3 (0)	n/a	n/a	
Downtime	Footwear in the house	2	0/2 (0)	n/a	n/a	
period (before	Water from nipple drinker	6	0/1 (0)	n/a	n/a	
chicken	Water from main pipeline	1	0/1 (0)	n/a	n/a	
placement)	Animal feed	1	0/1 (0)	n/a	n/a	
	Boot swab from anteroom of target house	1	0/1 (0)	n/a	n/a	
	Boot swab inside the target house	1	0/1 (0)	n/a	n/a	
	Boot swab from area around the house	2	0/2 (0)	n/a	n/a	
Rearing perio	d					
	Paper lining	10	0/10 (0)	n/a	n/a	
Day 0	Boot swab from path-leading to the house	1	0/1 (0)	n/a	n/a	
	Boot swab from anteroom of target house	1	0/1 (0)	n/a	n/a	

Table C-5 Campylobacter isolation from broiler production chain of Chain B/C 4

		Sample	Species identification			
Date	Samples	number	Positive/total	C. jejuni	C. coli	
			(%)	(%)	(%)	
	Boot swab inside the target house	1	0/1 (0)	n/a	n/a	
	Boot swab from area around the house	2	0/2 (0)	n/a	n/a	
Day 0	Litter	3	0/3 (0)	n/a	n/a	
	Water from nipple drinker	6	0/6 (0)	n/a	n/a	
	Water from main pipeline	1	0/1 (0)	n/a	n/a	
	Cloacal swab	30	0/30 (0)	n/a	n/a	
	Boot swab from path-leading to the house 1		0/1 (0)	n/a	n/a	
	Boot swab from anteroom of target house	1	0/1 (0)	n/a	n/a	
	Boot swab inside the target house	1	0/1 (0)	n/a	n/a	
Day 7	Boot swab from area around the house	2	0/2 (0)	n/a	n/a	
	Litter	3	0/3 (0)	n/a	n/a	
	Water from nipple drinker	6	0/6 (0)	n/a	n/a	
	Water from main pipeline	1	0/1 (0)	n/a	n/a	
	Darkling beetle	1	0/1 (0)	n/a	n/a	
	Cloacal swab	30	9/30 (30)	9/9 (100)	0/9 (0)	
	Boot swab from path-leading to the house	1	0/1 (0)	n/a	n/a	
	Boot swab from anteroom of target house	1	0/1 (0)	n/a	n/a	
	Boot swab inside the target house	1	0/1 (0)	n/a	n/a	
	Boot swab from area around the house	2	0/2 (0)	n/a	n/a	
Day 14	Litter	3	0/3 (0)	n/a	n/a	
	Water from nipple drinker	6	0/6 (0)	n/a	n/a	
	Water from main pipeline	1	0/1 (0)	n/a	n/a	
	Animal feed	1	0/1 (0)	n/a	n/a	
	Dust	1	0/1 (0)	n/a	n/a	
	Darkling beetle	1	0/1 (0)	n/a	n/a	

		Sample	Species identification			
Date	Samples	number	Positive/total	C. jejuni (%)	C. coli (%)	
Day 14	Flies	1	0/1 (0)	n/a	n/a	
	Cloacal swab	30	14/30 (46.67)	14/14 (100)	0/14 (0)	
	Boot swab from path-leading to the house	1	1/1 (100)	1/1 (100)	0/1 (0)	
	Boot swab from anteroom of target house	1	0/1 (0)	n/a	n/a	
	Boot swab inside the target house	1	1/1 (100)	1/1 (100)	0/1 (0)	
	Boot swab from area around the house	2	1/2 (50)	1/1 (100)	0/1 (0)	
Day 21	Litter	3	0/3 (0)	n/a	n/a	
	Water from nipple drinker	6	1/6 (16.67)	1/1 (100)	0/1 (0)	
	Water from main pipeline	1	0/1 (0) n/a		n/a	
	Dust	1	0/1 (0) n/a		n/a	
	Darkling beetle	1	0/1 (0)	n/a	n/a	
	Flies	1	1/1 (100)	1/1 (100)	0/1 (0)	
	Cloacal swab	30	28/30 (93.33)	28/28 (100)	0/28 (0)	
	Boot swab from path-leading to the house	1	0/1 (0)	n/a	n/a	
	Boot swab from anteroom of target house	1	0/1 (0)	n/a	n/a	
	Boot swab inside the target house	1	0/1 (0)	n/a	n/a	
	Boot swab from area around the house	2	1/2 (50)	1/1 (100)	0/1 (0)	
Day 28	Litter	3	0/3 (0)	n/a	n/a	
	Water from nipple drinker	6	0/6 (0)	n/a	n/a	
	Water from main pipeline	1	0/1 (0)	n/a	n/a	
	Dust	1	0/1 (0)	n/a	n/a	
	Darkling beetle	1	0/1 (0)	n/a	n/a	
	Flies	1	0/1 (0)	n/a	n/a	
D-11 20	Cloacal swab	30	27/30 (90)	27/27 (100)	0/27 (0)	
Day 32	Boot swab from path-leading to the house	1	0/1 (0)	n/a	n/a	

		Sample	Species identification			
Date	Samples	number	Positive/total	C. jejuni	C. coli	
	Boot swab from anteroom of target house	1	0/1 (0)	(%) n/a	(%) n/a	
	Boot swah inside the target house	1	0/1 (0)	n/a	n/a	
		-	0/1 (0)			
	Boot swab from area around the house	2	0/2 (0)	n/a	n/a	
	Litter	3	0/3 (0)	n/a	n/a	
Day 32	Water from nipple drinker	6	0/6 (0)	n/a	n/a	
Duy 52	Water from main pipeline	1	0/1 (0)	n/a	n/a	
	Animal feed	1	0/1 (0)	n/a	n/a	
	Dust	1	0/1 (0)	n/a	n/a	
	Darkling beetle	1	0/1 (0)	n/a	n/a	
	Flies	1	0/1 (0)	n/a	n/a	
Slaughterhous	e					
	Breast comforter	3	0/3 (0)	n/a	n/a	
Before process	Hanging shackle	10	0/10 (0)	n/a	n/a	
	Eviscerating equipment	6	0/6 (0)	n/a	n/a	
After process	Cloacal swab	5	5/5 (100)	5/5 (100)	0/5 (0)	
	Carcass rinse	25	17/25 (68)	17/17 (100)	0/17 (0)	
	Breast comforter	3	0/3 (0)	n/a	n/a	
	Hanging shackle	10	0/10 (0)	n/a	n/a	
	Eviscerating equipment	5	2/5 (40)	2/2 (100)	0/2 (0)	
	Tap water (I/O washer)	1	0/1 (0)	n/a	n/a	
	Chilling water	2	0/2 (0)	n/a	n/a	
	Packaging table	1	1/1 (100)	1/1 (100)	0/1 (0)	

			Species identification			
Date	Samples	Sample number	Positive/total (%)	C. jejuni (%)	C. coli (%)	
Breeder flock						
	Cloacal swab	12	6/12 (50)	3/6 (50)	3/6 (50)	
Hatchery						
Day 1	Egg tray	10	0/10 (0)	n/a	n/a	
	Tap water	1	0/1 (0)	n/a	n/a	
Day 18	Egg incubator	6	0/6 (0)	n/a	n/a	
Day 21	Egg shell	10	0/10 (0)	n/a	n/a	
Downtime per	iod					
	Feeder for small chicken	6	0/6 (0)	n/a	n/a	
	Feeder for the old chicken	6	0/6 (0)	n/a	n/a	
	New litter	3	0/3 (0)	n/a	n/a	
Downtime	Footwear in the house	2	0/2 (0)	n/a	n/a	
period (before	Water from nipple drinker	6	0/6 (0)	n/a	n/a	
chicken	Water from main pipeline	1	0/1 (0)	n/a	n/a	
placement)	Boot swab from anteroom of target house	1	0/1 (0)	n/a	n/a	
	Boot swab inside the target house	1	0/1 (0)	n/a	n/a	
	Boot swab from area around the house	2	0/2 (0)	n/a	n/a	
	Boot swab inside the adjacent house	1	0/1 (0)	n/a	n/a	
Rearing period	1					
	Paper lining	10	0/10 (0)	n/a	n/a	
D-11 0	Boot swab from path-leading to the house	1	0/1 (0)	n/a	n/a	
Day V	Boot swab from anteroom of target house	1	0/1 (0)	n/a	n/a	
	Boot swab inside the target house	1	0/1 (0)	n/a	n/a	

Table C-6 Campylobacter isolation from broiler production chain of Chain B/C12-2

		Sample	Species identification			
Date	Samples	number	Positive/total (%)	C. jejuni (%)	C. coli (%)	
	Boot swab from area around the house	2	0/2 (0)	n/a	n/a	
	Boot swab inside the adjacent house	1	0/1 (0)	n/a	n/a	
Day 0	Litter	3	0/3 (0)	n/a	n/a	
	Water from nipple drinker	6	0/6 (0)	n/a	n/a	
	Water from main pipeline	1	0/1 (0)	n/a	n/a	
	Cloacal swab	30	0/30 (0)	n/a	n/a	
	Boot swab from path-leading to the house	1	0/1 (0)	n/a	n/a	
	Boot swab from anteroom of target house	1	0/1 (0)	n/a	n/a	
	Boot swab inside the target house	1	0/1 (0) n/a		n/a	
Day 7	Boot swab from area around the house	2	0/2 (0)	n/a	n/a	
	Boot swab inside the adjacent house	1	0/1 (0)	n/a	n/a	
	Litter	3	0/3 (0)	n/a	n/a	
	Water from nipple drinker	6	0/6 (0)	n/a	n/a	
	Water from main pipeline	1	0/1 (0)	n/a	n/a	
	Cloacal swab	30	0/30 (0)	n/a	n/a	
	Boot swab from path-leading to the house	1	1/1 (100)	1/1 (100)	0/1 (0)	
	Boot swab from anteroom of target house	1	0/1 (0)	n/a	n/a	
	Boot swab inside the target house	1	0/1 (0)	n/a	n/a	
Day 14	Boot swab from area around the house	2	0/2 (0)	n/a	n/a	
Day 14	Boot swab inside the adjacent house	1	0/1 (0)	n/a	n/a	
	Litter	3	0/3 (0)	n/a	n/a	
	Water from nipple drinker	6	0/6 (0)	n/a	n/a	
	Water from main pipeline	1	0/1 (0)	n/a	n/a	
	Animal feed	1	0/1 (0)	n/a	n/a	

	Samples	Sample	Species identification			
Date		number	Positive/total	C. jejuni	C. coli	
	Dust	1	0/1 (0)	(%) n/a	(%) n/a	
Day 14	Flies	1	0/1 (0)	n/a	n/a	
	Cloacal swab	30	0/30 (0)	n/a	n/a	
	Reat such from path leading to the house	1	0/1 (0)		2/2	
	Boot swab from patri-teading to the house		0/1 (0)	11/a	11/a	
	Boot swab from anteroom of target house	1	0/1 (0)	n/a	n/a	
	Boot swab inside the target house	1	0/1 (0)	n/a	n/a	
	Boot swab from area around the house	2	0/2 (0)	n/a	n/a	
Day 21	Boot swab inside the adjacent house	1	0/1 (0)	n/a	n/a	
	Litter	3	0/3 (0)	n/a	n/a	
	Water from nipple drinker	6	0/6 (0)	n/a	n/a	
	Water from main pipeline	1	0/1 (0)	n/a	n/a	
	Dust	1	0/1 (0)	n/a	n/a	
	Rodent	1	0/1 (0)	n/a	n/a	
	Cloacal swab	30	0/30 (0)	n/a	n/a	
	Boot swab from path-leading to the house	1	0/1 (0)	n/a	n/a	
	Boot swab from anteroom of target house	1	0/1 (0)	n/a	n/a	
	Boot swab inside the target house	1	0/1 (0)	n/a	n/a	
	Boot swab from area around the house	2	0/2 (0)	n/a	n/a	
	Boot swab inside the adjacent house	1	0/1 (0)	n/a	n/a	
Day 28	Litter	3	0/3 (0)	n/a	n/a	
	Water from nipple drinker	6	0/6 (0)	n/a	n/a	
	Water from main pipeline	1	0/1 (0)	n/a	n/a	
	Animal feed	1	0/1 (0)	n/a	n/a	
	Dust	1	0/1 (0)	n/a	n/a	
	Flies	1	0/1 (0)	n/a	n/a	

		Sample	Species identification			
Date	Samples	number	Positive/total (%)	C. jejuni (%)	C. coli (%)	
	Cloacal swab	30	0/30 (0)	n/a	n/a	
	Boot swab from path-leading to the house	1	0/1 (0)	n/a	n/a	
	Boot swab from anteroom of target house	1	0/1 (0)	n/a	n/a	
	Boot swab inside the target house	1	0/1 (0)	n/a	n/a	
	Boot swab from area around the house	2	0/2 (0)	n/a	n/a	
Day 35	Boot swab inside the adjacent house	1	0/1 (0)	n/a	n/a	
	Litter	3	0/3 (0)	n/a	n/a	
	Water from nipple drinker	6	0/6 (0)	n/a	n/a	
	Water from main pipeline	1	0/1 (0)	n/a	n/a	
	Animal feed	1	0/1 (0)	n/a	n/a	
	Dust	1	0/1 (0)	n/a	n/a	
	Cloacal swab day 42	30	0/30 (0)	n/a	n/a	
	Cloacal swab day 43	30	0/30 (0)	n/a	n/a	
	Boot swab from path-leading to the house	1	0/1 (0)	n/a	n/a	
	Boot swab from anteroom of target house	1	0/1 (0)	n/a	n/a	
Day 43	Boot swab inside the target house	1	0/1 (0)	n/a	n/a	
	Boot swab from area around the house	2	0/2 (0)	n/a	n/a	
	Boot swab inside the adjacent house	1	0/1 (0)	n/a	n/a	
	Water from nipple drinker	6	0/6 (0)	n/a	n/a	
	Water from main pipeline	1	0/1 (0)	n/a	n/a	

Sample		flaA-	Sequence		
Production unit	Type of sample	SVR	type	Clonal complex	
Breeder	Cloacal swab1	783	1232	ST-353 complex	
Breeder	Cloacal swab2	1485	1232	ST-353 complex	
Breeder	Cloacal swab3	1211	1232	ST-353 complex	
Breeder	Cloacal swab4	506	6876	ST-692 complex	
Breeder	Cloacal swab5	353	1232	ST-353 complex	
Broiler day 31	Cloacal swab1	57	574	ST-574 complex	
Broiler day 31	Cloacal swab2	57	574	ST-574 complex	
Broiler day 31	Cloacal swab3	57	574	ST-574 complex	
Broiler day 31	Cloacal swab4	18	354	ST-354 complex	
Broiler day 31	Cloacal swab5	18	354	ST-354 complex	
Broiler day 31	Cloacal swab6	312	NT*		
Broiler day 31	Cloacal swab7	57	NT		
Broiler day 31	Cloacal swab8	22	NT		
Broiler day 31	Cloacal swab9	57	NT		
Broiler day 31	Cloacal swab10	57		NT	
Broiler day 31	Cloacal swab11	57		NT	
Broiler day 31	Boot swab inside the target house	22	45	ST-45 complex	
Broiler day 35	Cloacal swab1	57	574	ST-574 complex	
Broiler day 35	Cloacal swab2	57	574	ST-574 complex	
Broiler day 35	Cloacal swab3	57	574	ST-574 complex	
Broiler day 35	Cloacal swab4	57		NT	
Broiler day 35	Cloacal swab5	312		NT	
Broiler day 35	Cloacal swab6	57		NT	
Broiler day 35	Boot swab from path-leading to the house	57	574	ST-574 complex	
Broiler day 35	Boot swab inside the target house	57	574	ST-574 complex	
Broiler day 35	Boot swab from area around the house	57	574	ST-574 complex	
Broiler day 35	Water from nipple drinker	18	354	ST-354 complex	
Broiler day 35	Darkling beetle	57	574	ST-574 complex	

Appendix D Genetic characterization of Campylobacter

Table D-1 Genetic characterization of *Campylobacter* isolated from Chain A23

166

Sample			Sequence		
Production	Time of comple	<i>flaA-</i> SVR	type	Clonal complex	
unit	Type of sample				
Broiler day 35	Boot swab inside the adjacent house	22	45	ST-45 complex	
Broiler day 38	Cloacal swab1	57	574	ST-574 complex	
Broiler day 38	Cloacal swab2	22	45	ST-45 complex	
Broiler day 38	Cloacal swab3	22	45	ST-45 complex	
Broiler day 38	Cloacal swab4	18	354	ST-354 complex	
Broiler day 38	Cloacal swab5	18		NT	
Broiler day 38	Cloacal swab6	22	45	ST-45 complex	
Broiler day 38	Cloacal swab7	22		NT	
Broiler day 38	Cloacal swab8	22		NT	
Broiler day 38	Cloacal swab9	18		NT	
Broiler day 38	Cloacal swab10	22		NT	
Broiler day 38	Cloacal swab11	22	NT		
Broiler day 38	Cloacal swab12	22	NT		
Broiler day 38	Cloacal swab13	22	NT		
Broiler day 38	Cloacal swab14	22	NT		
Broiler day 38	Cloacal swab15	18	NT		
Broiler day 38	Cloacal swab16	22	NT		
Broiler day 38	Cloacal swab17	57		NT	
Broiler day 38	Cloacal swab18	57		NT	
Broiler day 38	Cloacal swab19	18		NT	
Slaughterhouse	Transport crate1	45	2409	NT	
Slaughterhouse	Transport crate2	45	2409	NT	
Slaughterhouse	Transport crate3	45	2409	NT	
Slaughterhouse	Eviscerating equipment (before used)	22	45	ST-45 complex	
Slaughterhouse	Knife (before used)	18	354	ST-354 complex	
Slaughterhouse	Chilling water1	22	45	ST-45 complex	
Slaughterhouse	Chilling water2	22	45	ST-45 complex	
Slaughterhouse	Chilling water3	22	45	ST-45 complex	
	Carcass rinse (after scalding	F7	574	CT 574	
Slaughternouse	process) 1	57	574	51-574 complex	
Slaughterhouse	Carcass rinse (after scalding	20		NT	
	process) 2	22			
Slaughterhouse	Carcass rinse (after scalding process) 3	22		NT	
Sample		floA-SVB	Sequence	Clonal complex	
-----------------	--	----------	----------	----------------	
Production unit	Type of sample	JUAST	type	etonat comptex	
Slaughterhouse	Carcass rinse (after defeathering process) 1	22	45	ST-45 complex	
Slaughterhouse	Carcass rinse (after defeathering process) 2	312		NT	
Slaughterhouse	Carcass rinse (after defeathering process) 3	18	NT		
Slaughterhouse	Carcass rinse (after defeathering process) 4	22	NT		
Slaughterhouse	Carcass rinse (after eviscerating process) 1	22	45	ST-45 complex	
Slaughterhouse	Carcass rinse (after eviscerating process) 2	22		NT	
Slaughterhouse	Carcass rinse (after eviscerating process) 3	312		NT	
Slaughterhouse	Carcass rinse (after eviscerating process) 4	18		NT	
Slaughterhouse	Carcass rinse (after inside-outside washing process) 1	22	45	ST-45 complex	
Slaughterhouse	Carcass rinse (after inside-outside washing process) 2	22	NT		
Slaughterhouse	Carcass rinse (after inside-outside washing process) 3	1582	NT		
Slaughterhouse	Carcass rinse (after chilling process)	22	45	ST-45 complex	
Slaughterhouse	Cloacal swab1	18	354	ST-354 complex	
Slaughterhouse	Cloacal swab2	22	45	ST-45 complex	
Slaughterhouse	Cloacal swab3	312	574	ST-574 complex	
Slaughterhouse	Cloacal swab4	22	45	ST-45 complex	
Slaughterhouse	Cloacal swab5	18	354	ST-354 complex	
Slaughterhouse	Cecum1	22	45	ST-45 complex	
Slaughterhouse	Cecum2	22	45	ST-45 complex	
Slaughterhouse	Cecum3	22	45	ST-45 complex	
Slaughterhouse	Cecum4	22	45	ST-45 complex	
Slaughterhouse	Cecum5	57	574	ST-574 complex	
Slaughterhouse	Fillet (untrimmed)	22	45	ST-45 complex	
Slaughterhouse	Breast (untrimmed)1	57	574	ST-574 complex	
Slaughterhouse	Breast (untrimmed)2	22	45	ST-45 complex	
Slaughterhouse	Wing (untrimmed)	22	45	ST-45 complex	
Slaughterhouse	Thigh (untrimmed)1	177	583	ST-45 complex	
Slaughterhouse	Thigh (untrimmed)2	22	45	ST-45 complex	
Slaughterhouse	Thigh (untrimmed)3	22	45	ST-45 complex	
Slaughterhouse	Fillet (trimmed)	18	354	ST-354 complex	
Slaughterhouse	Thigh (trimmed)	18	354	ST-354 complex	
Slaughterhouse	Wing (trimmed)	18	354	ST-354 complex	

* NT =not test

Sample			Sequence	Clonal
Production	T. (<i>flaA-</i> SVR	type	complex
unit	Type of sample			
Breeder	Cloacal swab1	54	464	ST-464
Breeder	Cloacal swab2	54	Ν	IT
Broiler day 31	Cloacal swab1	54	Ν	IT
Broiler day 31	Cloacal swab2	54	Ν	IT
Broiler day 31	Cloacal swab3	54	Ν	IT
Broiler day 31	Cloacal swab4	54	Ν	IT
Broiler day 31	Cloacal swab5	54	Ν	IT
Broiler day 31	Cloacal swab6	54	Ν	IT
Broiler day 31	Cloacal swab7	54	Ν	IT
Broiler day 31	Cloacal swab8	54	464	ST-464
Broiler day 31	Cloacal swab9	54	NT	
Broiler day 31	Cloacal swab10	54	NT	
Broiler day 31	Cloacal swab11	54	NT	
Broiler day 31	Cloacal swab12	54	NT	
Broiler day 31	Cloacal swab13	54	Ν	IT
Broiler day 31	Cloacal swab14	54	Ν	IT
Broiler day 31	Cloacal swab15	54	Ν	IT
Broiler day 35	Cloacal swab1	54	Ν	IT
Broiler day 35	Cloacal swab2	54	Ν	IT
Broiler day 35	Cloacal swab3	54	Ν	IT
Broiler day 35	Cloacal swab4	54	Ν	IT
Broiler day 35	Cloacal swab5	54	Ν	IT
Broiler day 35	Cloacal swab6	54	Ν	IT
Broiler day 35	Cloacal swab7	54	Ν	IT
Broiler day 35	Cloacal swab8	54	464	ST-464
Broiler day 35	Cloacal swab9	54	Ν	IT
Broiler day 35	Cloacal swab10	54	Ν	IT
Broiler day 35	Cloacal swab11	18	Ν	IT
Broiler day 35	Cloacal swab12	18	354	ST-354

Table D-2 Genetic characterization of Campylobacter isolated from Chain A13

Sample			Clause Clause	
Production	Turna of sample	<i>flaA-</i> SVR	Sequence	Clonal
unit	Type of sample		type	complex
Broiler day 35	Cloacal swab13	18	Ν	IT
Broiler day 38	Cloacal swab1	54	NT	
Broiler day 38	Cloacal swab2	54	Ν	IT
Broiler day 38	Cloacal swab3	54	Ν	IT
Broiler day 38	Cloacal swab4	54	NT	
Broiler day 38	Cloacal swab5	54	Ν	IT
Broiler day 38	Cloacal swab6	54	Ν	IT
Slaughterhouse	Breast comforter	54	Ν	IT
Slaughterhouse	Carcass trimming table	54	Ν	IT
Slaughterhouse	Eviscerating equipment1	783	Ν	IT
Slaughterhouse	Eviscerating equipment2	783	Ν	IT
Slaughterhouse	Knife1	54	NT	
Slaughterhouse	Knife 2	783	NT	
Slaughterhouse	Vent gun1	783	NT	
Slaughterhouse	Vent gun2	783	NT	
Slaughterhouse	Breast (untrimmed) 1	54	NT	
Slaughterhouse	Wing (untrimmed) 2	54	NT	
Slaughterhouse	Fillet (untrimmed) 3	54	NT	
Slaughterhouse	Fillet (untrimmed) 4	54	Ν	IT
Slaughterhouse	Breast (trimmed) 1	54	Ν	IT
Slaughterhouse	Wing (trimmed) 2	54	Ν	IT
Slaughterhouse	Carcass rinse (after scalding	54	Ν	IT
	process)1			
Slaughterhouse	Carcass rinse (after inside-outside	54	Ν	IT
	washing process)1			
Slaughterhouse	Carcass rinse (after inside-outside	54	Ν	IT
	washing process)2			
Slaughterhouse	Cecum1	54	Ν	IT
Slaughterhouse	Cecum2	54	464	ST-464
Slaughterhouse	Cecum3	54	Ν	IT
Slaughterhouse	Cecum4	54	Ν	IT
Slaughterhouse	Chilling water1	54	Ν	IT
Slaughterhouse	Chilling water2	54	Ν	IT
Slaughterhouse	Chilling water3	54	NT	

Sample		floA_SVR	Sequence	Clonal
Production unit	Type of sample	JUA-SVN	type	complex
Breeder	Cloacal swab1	312	574	ST-574
Breeder	Cloacal swab2	54	6996	ST-464
Breeder	Cloacal swab3	30	Ν	Т
Breeder	Cloacal swab4	34	Ν	Т
Breeder	Cloacal swab5	34	460	ST-460
Breeder	Cloacal swab6	34	6996	ST-464
Broiler day 14	Water from nipple drinker	22	45	ST-45
Broiler day 38	Cloacal swab1	629	2209	ST-179
Broiler day 38	Cloacal swab2	629	2209	ST-179
Slaughterhouse	Cloacal swab1	629	2209	ST-179
Slaughterhouse	Cloacal swab2	629	Ν	Т
Slaughterhouse	Cloacal swab3	1340	2209	ST-179
Slaughterhouse	Knife	783	5213	ST-353
Slaughterhouse	Transport crate1	783	5213	ST-353
Slaughterhouse	Transport crate2	783	NT	
Slaughterhouse	Carcass rinse (after defeathering process)1	18	354	ST-354
Slaughterhouse	Carcass rinse (after defeathering process)2	18	Ν	Т
Slaughterhouse	Carcass rinse (after eviscerating process) 1	68	2209	ST-179
Slaughterhouse	Carcass rinse (after inside-outside washing process) 1	1340	Ν	Т
Slaughterhouse	Carcass rinse (after inside-outside washing process) 2	1340	2209	ST-179
Slaughterhouse	Carcass rinse (after inside-outside washing process) 3	18	Ν	T
Slaughterhouse	Carcass rinse (after chilling process) 1	18	Ν	Т
Slaughterhouse	Carcass rinse (after chilling process) 2	1340	Ν	Т
Slaughterhouse	Carcass rinse (after chilling process) 3	18	Ν	Т
Slaughterhouse	Cecum 1	68	2209	ST-179
Slaughterhouse	Chilling water	1340	Ν	Т
Slaughterhouse	Breast (untrimmed) 1	18	Ν	Т
Slaughterhouse	Breast (untrimmed) 2	18	354	ST-354
Slaughterhouse	Wing (untrimmed) 3	18	Ν	T
Slaughterhouse	Wing (untrimmed) 4	783	Ν	Т
Slaughterhouse	Breast (trimmed)1	18	Ν	Т
Slaughterhouse	Wing (trimmed) 2	18	354	ST-354
Slaughterhouse	Thigh (untrimmed) 3	18	Ν	Т

Table D-3 Genetic characterization of *Campylobacter* isolated from Chain A15

Sample			Sequence	Clonal
Production unit	Type of sample	flaA-SVR	type	complex
Breeder	Cloacal swab	677	2131	n/a
Broiler day 15	Cloacal swab1	783	1232	ST-353
Broiler day 15	Cloacal swab2	783	1232	ST-353
Broiler day 15	Cloacal swab3	783	١	1T
Broiler day 15	Cloacal swab4	783	١	ΙT
Broiler day 15	Cloacal swab5	783	١	ΙT
Broiler day 15	Water from nipple drinker	783	1232	ST-353
Broiler day 15	Boot swab inside the target house	783	1232	ST-353
Broiler day 21	Cloacal swab1	783	1232	ST-353
Broiler day 21	Cloacal swab2	783	1232	ST-353
Broiler day 21	Cloacal swab3	783	١	ΙT
Broiler day 21	Cloacal swab4	783	١	ΙT
Broiler day 21	Cloacal swab5	783	NT	
Broiler day 21	Cloacal swab6	783	NT	
Broiler day 21	Cloacal swab7	783	NT	
Broiler day 21	Cloacal swab8	783	NT	
Broiler day 21	Cloacal swab9	783	NT	
Broiler day 21	Cloacal swab10	783	NT	
Broiler day 21	Cloacal swab11	783	NT	
Broiler day 21	Cloacal swab12	783	١	١T
Broiler day 21	Cloacal swab13	783	١	1T
Broiler day 21	Water from nipple drinker	783	١	1T
Broiler day 28	Cloacal swab	783	1232	ST-353
Broiler day 32	Cloacal swab1	783	1232	ST-353
Broiler day 32	Cloacal swab2	783	5213	ST-353
Broiler day 32	Cloacal swab3	783	1232	ST-353
Broiler day 32	Cloacal swab4	783	2131	n/a
Broiler day 32	Cloacal swab5	783	١	ΙT
Broiler day 32	Cloacal swab6	783	١	1T
Broiler day 32	Cloacal swab7	783	١	JT
Broiler day 32	Cloacal swab8	783	١	IT
Broiler day 32	Cloacal swab9	783	١	IT
Broiler day 32	Boot swab inside the target house	48	1232	ST-353
Slaughterhouse	Cloacal swab1	783	1	IT
Slaughterhouse	Cloacal swab2	783	1232	ST-353

Table D-4 Genetic characterization of *Campylobacter* isolated from Chain B/C2

Sample			Sequence	Clonal
Production unit	Type of sample	JIAA-SVR	type	complex
Slaughterhouse	Cloacal swab3	783	5213	ST-353
Slaughterhouse	Cecum 1	783	5213	ST-353
Slaughterhouse	Cecum 2	783	NT	
Slaughterhouse	Cecum 3	783	1232	ST-353
Slaughterhouse	Cecum 4	783	1	NT
Slaughterhouse	Cecum 5	783	1	NT
Slaughterhouse	Cecum 6	783	1	NT
Slaughterhouse	Cecum 7	783	1	NT
Slaughterhouse	Cecum 8	783	1	NT
Slaughterhouse	Cecum 9	783	1	NT
Slaughterhouse	Cecum 10	783	NT	
Slaughterhouse	Knife	783	NT	
Slaughterhouse	Eviscerating equipment	783	NT	
Slaughterhouse	Hanging shackle 1	783	NT	
Slaughterhouse	Hanging shackle 2	783	NT	
Slaughterhouse	Carcass trimming table	22	1075	ST-353
Slaughterhouse	Carcass rinse (after scalding process)1	783	1	NT
Slaughterhouse	Carcass rinse (after scalding process) 2	783	1	NT
Slaughterhouse	Carcass rinse (after defeathering process) 1	783	1	NT
Slaughterhouse	Carcass rinse (after defeathering process) 2	783	1	NT
Slaughterhouse	Carcass rinse (after eviscerating process)	783	NT	
Slaughterhouse	Carcass rinse (after inside-outside washing process) 1	783	1	NT
Slaughterhouse	Carcass rinse (after inside-outside washing process) 2	783	1	NT
Slaughterhouse	Carcass rinse (after chilling process) 1	783	1	NT
Slaughterhouse	Carcass rinse (after chilling process) 2	783	1	NT

Sample			Sequence	
Production unit	Type of sample	flaA-SVK	/R type	Clonal complex
Breeder	Cloacal swab1	45	1	NT
Breeder	Cloacal swab2	402	1	NT
Breeder	Cloacal swab3	48	2131	n/a
Breeder	Cloacal swab4	21	1	NT
Breeder	Cloacal swab5	54	1	NT
Broiler day 14	Cloacal swab1	287	1	NT
Broiler day 14	Cloacal swab2	287	1	NT
Broiler day 14	Cloacal swab3	287	1	NT
Broiler day 14	Cloacal swab4	287	5247	ST-353
Broiler day 14	Cloacal swab5	57	NT	
Broiler day 21	Cloacal swab1	287	NT	
Broiler day 21	Cloacal swab2	287	NT	
Broiler day 21	Cloacal swab3	287	5247	ST-353
Broiler day 21	Cloacal swab4	253	1919	ST-52
Broiler day 21	Cloacal swab5	287	NT	
Broiler day 21	Cloacal swab6	253	1919	ST-52
Broiler day 21	Cloacal swab7	287	1	NT
Broiler day 21	Cloacal swab8	287	1	NT
Broiler day 21	Cloacal swab9	287	1	NT
Broiler day 21	Cloacal swab10	287	1	NT
Broiler day 21	Cloacal swab11	287	1	NT
Broiler day 21	Cloacal swab12	287	1	NT
Broiler day 21	Cloacal swab13	253	1	NT
Broiler day 21	Cloacal swab14	287	NT	
Broiler day 21	Boot swab from path-leading to the		1	NT
	house	255		
Broiler day 21	Boot swab inside the target house	1239	1	NT
Broiler day 21	Boot swab from area around the		1	NT
	house			
Broiler day 21	Flies	287	5247	ST-353

Table D-5 Genetic characterization of *Campylobacter* isolated from Chain B/C4

Sample		flod CVD	Sequence	Clonal
Production unit	Type of sample	<i>flaA</i> -SVR	type	complex
Broiler day 28	Cloacal swab1	287	NT	
Broiler day 28	Cloacal swab2	287	Ν	IT
Broiler day 28	Cloacal swab3	287	N	IT
Broiler day 28	Cloacal swab4	253	1919	ST-52
Broiler day 28	Cloacal swab5	287	5247	ST-353
Broiler day 28	Cloacal swab6	287	N	IT
Broiler day 28	Cloacal swab7	287	N	IT
Broiler day 28	Cloacal swab8	287	N	IT
Broiler day 28	Cloacal swab9	287	N	IT
Broiler day 28	Cloacal swab10	255	N	IT
Broiler day 28	Cloacal swab11	287	N	IT
Broiler day 28	Cloacal swab12	287	NT	
Broiler day 28	Cloacal swab13	287	NT	
Broiler day 28	Cloacal swab14	287	NT	
Broiler day 28	Boot swab from area around the house	287	Ν	Π
Broiler day 32	Cloacal swab1	253	N	IT
Broiler day 32	Cloacal swab2	253	N	IT
Broiler day 32	Cloacal swab3	255	N	IT
Broiler day 32	Cloacal swab4	253	Ν	IT
Broiler day 32	Cloacal swab5	253	Ν	IT
Broiler day 32	Cloacal swab6	253	Ν	IT
Broiler day 32	Cloacal swab7	255	Ν	IT
Broiler day 32	Cloacal swab8	854	Ν	IT
Broiler day 32	Cloacal swab9	287	Ν	IT
Broiler day 32	Cloacal swab10	45	Ν	IT
Broiler day 32	Cloacal swab11	253	Ν	IT
Broiler day 32	Cloacal swab12	45	N	IT
Broiler day 32	Cloacal swab13	18	Ν	IT
Broiler day 32	Cloacal swab14	253	N	IT
Broiler day 32	Cloacal swab15	1527	N	IT
Broiler day 32	Cloacal swab16	253	N	IT

Sample		flad SVP	Sequence	Clonal
Production unit	Type of sample	JUUA-SVR	type	complex
Broiler day 32	Cloacal swab17	45	Ν	ΙT
Broiler day 32	Cloacal swab18	1527	١	1T
Broiler day 32	Cloacal swab19	253	١	IΤ
Slaughterhouse	Carcass rinse (after scalding process)1	287	Ν	IΤ
Slaughterhouse	Carcass rinse (after scalding process) 2	57	Ν	ΙT
Slaughterhouse	Carcass rinse (after defeathering process) 1	287	١	1T
Slaughterhouse	Carcass rinse (after defeathering process) 2	312	Ν	IΤ
Slaughterhouse	Carcass rinse (after defeathering process) 3	287	Ν	ΙT
Slaughterhouse	Carcass rinse (after defeathering process) 4	45	١	ΙT
Slaughterhouse	Carcass rinse (after defeathering process) 5	253	Ν	ΙT
Slaughterhouse	Carcass rinse (after eviscerating process) 1	652	Ν	IΤ
Slaughterhouse	Carcass rinse (after eviscerating process) 2	287	Ν	ΙT
Slaughterhouse	Carcass rinse (after eviscerating process) 3	45	Ν	ΙT
Slaughterhouse	Carcass rinse (after eviscerating process) 4	45	Ν	IΤ
Slaughterhouse	Carcass rinse (after eviscerating process) 5	287	Ν	ΙT
Slaughterhouse	Carcass rinse (after inside-outside		Ν	ΙT
	washing process) 1	287		
Slaughterhouse	Carcass rinse (after inside-outside		٩	ΙT
	washing process) 2	287		
Slaughterhouse	Carcass rinse (after inside-outside		١	1
	washing process) 3	287		
Slaughterhouse	Carcass rinse (after chilling process) 1	287	١	ΙT
Slaughterhouse	Carcass rinse (after chilling process) 2	287	١	ΙT
Slaughterhouse	Carcass rinse (after chilling process) 3	22	١	ΙT
Slaughterhouse	Carcass rinse (after chilling process) 4	253	٢	ΙT
Slaughterhouse	Carcass rinse (after chilling process) 5	57	Ν	1T
Slaughterhouse	Cecum 1	1527	١	ΙT
Slaughterhouse	Cecum 2	253	١	1
Slaughterhouse	Cecum 3	783	١	1
Slaughterhouse	Cecum 4	783	١	1T
Slaughterhouse	Knife	253	Ν	ΙT
Slaughterhouse	Eviscerating equipment	45	Ν	IT
Slaughterhouse	Carcass trimming table	652	Ν	IT

Appendix E New sequence type identified in this study

asp 358

tkt 546

TTACATTTGAGCGGCTATGACTTAAGCTTAGAAGATCTTAAAAATTTCCGCCAACTTCATTCTAAAACCCCTGG ACACCCTGAAATTTCAACTCTTGGAGTAGAAATCGCTACAGGCCCTTTAGGACAAGGCGTTGCCAATGCTGTA GGCTTTGCTATGGCAGCAAAAAAAGCACAAAATTTGCTAGGCAGTGATTTAATCGATCATAAAATTTATTGTCT TTGCGGAGATGGGGATTTACAAGAAGGCATTTCTTATGAAGCTTGTTCTTTAGCAGGACTTCACAAACTTGATA ACTTCATACTCATTTATGATAGCAACAATATCTCCATAGAAGGCGATGTAGGTTTAGCCTTTAACGAAAATGTA AAAATGCGTTTTGAAGCACAAGGATTTGAAGTTTTAAGTATAAATGGACACGATTATGAAGAAATCAATAAAGC CTTAGAACAAGCTAAA

tkt 553

TTACATTTAAGTGGCTATGATTTAAGCTTAGAAGATCTTAAAAATTTCCGCCAACTTCATTCTAAAACCCCAGG ACACCCTGAAATTTCAACTCTTGGAGTAGAAATCGCTACAGGTCCTTTAGGACAAGGCGTTGCCAATGCTGTA GGCTTTGCTATGGCGGCAAAAAAAGCACAAAATTTACTAGGTAGCAATTTAATCGATCATAAAATTTATTGTCT TTGCGGAGATGGAGATTTACAAGAAGGCATTTCTTATGAAGCTTGTTCTTTAGCAGGACTTCACAAACTTGATA ACTTCATACTCATTTATGATAGCAACAATATCTCCATAGAAGGCGATGTAGGTTTAGCCTTTAATGAAAATGTA AAAATGCGTTTTGAAACACAAGGATTTGAAGTTTTAAGTATAAATGGACATGATTATGAAGAAATTAATAAAGC CTTAGAACAAGCTAAA

VITA

Miss Sakaoporn Prachantasena was born on September 19, 1985 in Bangkok, Thailand. She completed with the Degree of Veterinary Sciences (D.V.M.) from the Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand in 2010. After that, she enrolled in Doctor of Philosophy Program at the Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University since academic year 2010.

จุฬาสงกรณมหาวทยาลย Chulalongkorn University

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University