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Chapter 1 

INTRODUCTION 

 

In an information age, data has been generated at an amazing rate. It is 
estimated that in the year 2009, nearly all sectors in US economy had at least an 
average of 200 terabytes of stored data per company with more than 1000 
employees [10]. A voluminous amount of data can be beneficial to analysts who can 
utilize it. To extract information from the raw data, data mining techniques are used.  
 Cluster analysis plays an important role in a wide variety of fields: social 
science, biology, statistic, pattern recognition, machine learning, and data mining. It 
divides a dataset into groups that are meaningful. The clusters should capture the 
structure of the dataset. In some cases, cluster analysis is a useful starting point for 
other processes.  
 A concept of meaningful groups of instances that share the common 
characteristics plays role in how people view and describe the world. Dividing objects 
into groups has never been a problem for human. For example, one can easily group 
people of the same age together. While grouping using computer is not so obvious.  
Hence, a clustering algorithm using computer has been developed.  
 In many applications, the notion of a cluster is not well-defined and can be 
related to other techniques that are used to divide a dataset into groups. For 
example, a clustering algorithm can be regarded as a form of classification in that it 
labels objects with class. However, it derives these labels only from the dataset 
itself. In contrast, a classification is supervised learning that learn to label class 
instances. For this reason, a clustering algorithm is referred to as an unsupervised 
learning [2]. 
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 There are several clustering algorithms used by data scientists. They can be 
categorized into four main types: hierarchical, partitioning, density based, and grid 
based. Each type of clustering algorithms is explained next.  

The first category is the hierarchical algorithm [13]. It builds a tree of clusters 
based on a bottom-up and a top-down method. A bottom-up method starts with a 
single point forming a cluster and merges two or more clusters to form a new one.  A 
top-down method starts with one cluster containing all instances then it splits into 
several clusters according to some criteria. The process continues until a stopping 
criterion is met. The algorithm has flexibility in the level of granularity and can work 
on any attribute type. However, a user must set a parameter to control the result. 

Next category is a partitioning based clustering algorithm, which divides a 
dataset into several groups. K-means clustering algorithm [8] is one of the oldest and 
widely used clustering algorithms. The objects that are close together are more 
similar, hence they should be grouped into the same cluster. The K-means clustering 
algorithm starts with K initial centroids, where K is a user-specified parameter. Each 
instance is assigned to the closest centroid. The centroid of each cluster is then 
updated based on all points assigned to the cluster until the centroid remains the 
same. Due to the popularity of the K-means, it is used as the standard comparison 
technique.  

The third category is the density based method. The implementation of a 
density based clustering algorithm is to partition finite set of instances using concept 
of density, connectivity, and boundary. The most used density based clustering 
algorithm is DBSCAN [5, 8]. It is a density-based clustering that locates region of high 
density separated from one another by a region of low density. The density of any 
point depends on the specific radius, eps. DBSCAN can be explained using the 
following notations. A point is a core point if its neighbor exceeds a certain threshold, 
MinPts. A border point has the number of neighbors less than MinPts, but falls within 
the neighborhood of a core point. A noise point is any point that is neither a core 
point nor a border point.  Given the definitions of the core point, the border 
point, and the noise point, DBSCAN algorithm can be described as follows. First, it 
labels all points as core, border, or noise points by their definitions. Noise points 
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need to be eliminated. The core points that are connected with other core points 
and border points are considered to be in the same group. It identifies a group of 
connected core points or border points as a single cluster.  

A grid based algorithm as the last category deals with data using the 
multirectangular segments [6]. It is a space partitioning method. A segment is a direct 
cartesian product of the individual attribute sub-ranges as units. The instances that 
are in units having similar density in their neighbor are considered to be in the same 
group. 

In this thesis, a new clustering algorithm Bi-orbital extreme pole clustering 
algorithm is proposed (BOEP). BOEP is based on the extreme poles, which is also 
used in the half-orbital extreme pole clustering algorithm (HOEP) [1]. HOEP was 
proposed by Kaveelerdpotjana, et al. and used the fundamental idea from a multi-
attribute frame. The multi-attribute frame uses two furthest pair of instances in the 
datasets (extreme poles) to build the core-vector. All instances in the dataset lie 
within the frame created from the core-vector and the extreme poles. Using this 
idea, HOEP partitions the dataset into bins and then creates a histogram based on 
number of instances in each bin. The histogram is used to partition instances into 
groups at a low frequency bin from the furthest end of the pole.  
 Research objective 

 The goal of the research is to create a new clustering algorithm based on the 
extreme pole concept. The algorithm is named bi-orbital extreme pole clustering 
algorithm (BOEP) from the usage of secondary dimension information. BOEP is 
compared with other popular existing clustering algorithms using Save and Have as their 
performance measures. 
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Thesis overview 

 The rest of the thesis is organized as follows. In chapter 2, notations, basic 
knowledge, and background of clustering algorithm are explained. Also, some of the 
popular clustering algorithms are shown. Next, the fundamental concepts used in the 
bi-orbital and extreme pole clustering algorithm are shown in chapter 3. The result 
on the simulated datasets and UCI datasets are on chapter 4. Lastly, the summaries 
and discussion are in chapter 5.  
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Chapter 2 

BACKGROUND KNOWLEDGE 

 
This chapter covers the background knowledge for this thesis which is split 

into three parts. First, the basic definitions are explained. Second, the clustering 
concept and algorithms from literatures are explained. Third, the literature review on 
HOEP that inspired the idea of this thesis is described.  
 
Notations: Let 

-   be a set of real numbers; 
-   be the number of all instances in a dataset; 
-                 be the     instance, having  -dimension for all 

         ; 
-                be the set of all instances; 
-   be the Euclidean space; 
-        be the distance function between instances   and  ; 
-    and    be the farthest pair of   called extreme poles; 
-       and       be the secondary extreme poles inside     bin layer; 
-     be the centroid of a group of instances; 
-    be the     cluster; 
-   be the multiplier of the length of connected centroids; 
-        be the     bin layer of a histogram; 
-        be the integer value representing the minimum points for a core; 
-             be the integer value representing the points around an 

interested point; 
-     be the radius that instances that are within the range of      

considered as            ; 
-   be a kernel in mean-shift clustering algorithm; 



 

 

6 

The notations above are used throughout this thesis. Next, the definitions of 
necessary concepts are explained.   
 
Vector space 

 A dataset is a collection of points, which are objects belonging to a space. 
The components of the vector are commonly called coordinates of the represented 
points. 
 A space for which we perform a cluster analysis has a distance measure, 
which gives a distance between any two points in the space. A Euclidean structure 
allows us to deal with metric notions such as orthogonally and length (or distance). 
First, the Euclidean structure is defined on a vector space. 

Definition: A real vector space   is a Euclidean space if and only if it is 
equipped with a symmetric bilinear form         which is also positive 
definite, where         , for every    . 

More explicitly,         satisfies the following axioms: 
                            
                            

                 
                 
               

    implies that           
The common Euclidean distance is a function that satisfies the metric definition.  
 
Metric 

Comparing similarity between instances is done using a measurement 
function. The distance between two instances    and   ,  (     ), is called a metric 
distance measure.  

Definition: Let   be an arbitrary set in a Euclidean space. A function 
              is a metric if the following conditions are satisfied for all 
        . 

1. Positiveness:          if    , and          if and only if    . 
2. Symmetry:              . 
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3. Triangle inequality:                      
A metric space is a set with a metric on it. In other words, a metric space is a 

pair       where   is a metric on  . Elements of   are called instances.  
 
       is referred to the distance between instances   and  . 
The most well-known is the Minkovski distance: 

 (     )   ∑    
    

    
 

   

 
 
  

Throughout this thesis, this metric measurement is used and the value   is chosen as 
2, or better known as the Euclidean distance. 
 
Centroid 

A centroid is a mean of positional coordinates of instances in a group. It is 
considered as a representation of a group. Below is an example of centroid of a 
dataset of four instances. 

 
Table 2.1: Instances of four people showing their heights and weights 

Name Height(cm) Weight(kg) 

Chalee 181 70 
Manee 150 45 
Meena 165 65 
Sudjai 160 80 

 
Table 2.1 shows the heights and the weights of four people. The centroid is a 

vector of the mean heights and the mean of weights. 
Table 2.2: Centroid of the dataset 

 Height(cm) Weight(kg) 

Centroid 164 65 
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Below is the illustration of the dataset on two-dimensional space. The horizontal axis 
represents the height and the vertical axis represents the weight. The dataset is 
plotted in “*” and the centroid is in “o”.  
 

 
Figure 2.1: Illustration of centroid of four instances in the dataset 

 
Linkage 

 The main decision to make when using hierarchical clustering [13] is the 
distance criterion between groups. There are several ways to describe such distances. 
Below are examples of description of distance between groups.  

Single-linkage 

 The Single-linkage criterion: hierarchical clustering merges groups based on 
the shortest distance over all possible pairs. That is 

Dist-SingleLink (     ) =               
        . 
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Complete-linkage 

 The complete-linkage criterion: Rather than choosing the shortest distance, in 
complete-linkage clustering the distance between two groups is determined by the 
largest distance over all possible pairs. That is 

Dist-CompleteLink (     ) =              
        . 

Average-linkage 

 The average-linkage criterion: Rather than using the smallest or largest 
distance, when using the average-linkage criterion, we average over all possible pairs 
between groups. That is 

Dist-AverageLink (     ) = 
 

        
∑ ∑         

    

   

    

   
. 

 

Histogram 

 A histogram is a graphical representation of an estimated distribution of a 
dataset. A histogram divides the entire range of values from a single numeric 
attribute into a series of non-overlap adjacent intervals called “bin”, then it 
determines the number of values within each interval. Usually, each bin has the 
same size. The rectangle is constructed over the bin with the height proportional to 
the number of cases in each bin.  
 The number of suitable bins depends solely on a user. However, some 
statisticians have suggested the optimal number of bins. One of them is the Sturges’ 
formula. 

 
Sturges’ formula 

Herbert Sturges considered an idealized frequency histogram with k bins 
where the     bin count is the binomial coefficient (   

 
)            . As k 

increases, this ideal frequency histogram approaches the shape of a normal 
distribution. The total sample size is   ∑ (   

 
)                  

    by the 
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binomial expansion. So the number of classes to choose when constructing a 
histogram from a normal data is          . This is called sturges’ rule [7]. 
 
Kernel 

 The mean-shift clustering algorithm [2] is a mode-seeking process on a surface 
constructed with a kernel. Hence, the definition and notation of the kernel is 
explained in this section.  

Definition: Let   be the n-dimensional Euclidean space,   . Denote its     

component of     by   . The norm of     is a nonnegative number ‖ ‖ such 

that ‖ ‖  ∑ |  |
  

   . The inner product of   and   in   is 〈   〉  ∑    
     . A 

function       is said to be a kernel if there exists a profile   [   ]   , such 
that 

       ‖ ‖   
and  
 1.   is nonnegative 
 2.   is non-increasing:           if     
 3.   is piecewise continuous and ∫         

 

 
 

Kernel example: the unit Gaussian kernel 
       ‖ ‖ 

  
The two dimensional unit Gaussian kernel is illustrated in Figure 2.2. 

 
Figure 2.2: the unit Gaussian kernel  
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Extreme poles and the core-vector 

The idea of extreme poles came from the multi-attributed frame, which is 
proposed in the “Network intrusion detection by using multi-attributed frame 
decision tree” [12]. This paper suggests the new approach of a decision tree which is 
one of algorithms in classification. It uses an idea of the farthest pair, which is a pair 
of two instances that have the maximum distance, to limit the considered region. 
The first step is finding the farthest pair which is called the extreme poles. After 
finding the farthest pair, the vector core is created from this pair. Consequently, there 
are two lines perpendicular with the vector core at the poles and the region of 
instances is partitioned into three sub regions: right region, middle region, and left 
region in figure 2.3.  

 
 

 
Figure 2.3: Three sub regions  

 
Since the vector core is generated from the two extreme poles that have the 

largest distance, this guarantee that all instances lie in the middle region. After that, 
all instances are projected onto this core. Hence, an instance is represented by a 
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single value, and then the splitting point is found so that all instances in the middle 
region will be divided into specified class and unspecified class. The algorithm is 
conducted recursively with the unspecified class until the stopping criteria are met. 

The concept of the farthest pair of the same class represents the border of 
this class along the core-vector. For example, a dataset with two target classes called 
positive and negative has both poles as positive. Then no positive instance lies in the 
right and the left regions: all instances in the right and the left regions are negative 
instances. On the other hand, if both poles are negative, there is also no negative 
instance that lies in the right and the left regions. Moreover, if the target classes of 
two extreme poles are different, the target class in the right and the left regions can 
be still guaranteed. By the properties of the farthest pair, the target class of instances 
in the right region is not the same as the target class of the right pole. Similarly, the 
target class of instances in the left region is not the same as the target class of the 
left pole. In other words, we can always guarantee the target class of all instances in 
the right and the left regions. So there is only the middle region left to be 
considered. 
 
Clustering algorithm 

 In this subsection, well-known clustering algorithms of each type are 
explained.  
 
Hierarchical clustering algorithm 

 In data mining, an hierarchical clustering algorithm [13] is a method of cluster 
analysis that builds hierarchy of clusters. Generally, there are two approaches.  
 Agglomerative: A bottom up approach starts in its own cluster and pairs of 
clusters are merged. 
 Divisive: A top down approach starts with one single cluster then divides into 
several clusters using the splitting criteria. 
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Simple hierarchical agglomerative clustering algorithm pseudo code: 

INPUT:                 is the set of real vector,   be the 
    instance, Group-wise distance Dist(    ). 
OUTPUT: Clusters of instances:            
1        >Active set starts out empty 
2 for n = 1,…,N do 
3                >Add each instances as its own 

cluster 
4 end for 
5 while       do 
6   

    
  = argmin Dist(     )     >Choose a pair in   with 

best distance 
7           

       
     >remove each from active set 

8            
    

     >add union from active cup 
9 end while 
 

K-means clustering algorithm 

 K-means clustering algorithm [7] aims to group instances based on attributes 
into   number of groups.   is a positive integer input by a user. The grouping is done 
by minimizing the sum of square of the distance between instances and the 
corresponding cluster centroid. The objective of K-means clustering is to minimize 
the total intra-cluster variance, or, the squared error function: 

    ∑∑    
   

      
 

 

   

 

   

 

 
where   is the total number of clusters,   is the number of instances,      is the 
centroid for the cluster   . 
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K-means Pseudo code: 
INPUT:                 is the set of real vector,   be the 
    instance,  is the number of pre-determined number of 
cluster. 
OUTPUT: Clusters of instances:            
1 Clusters the data into   groups where    is predefined. 

2 Select   points at random as cluster centers. 

3 Assign objects to their closest cluster center 
according to the Euclidean distance function. 

4 Calculate the centroid or mean of all objects in each 
cluster. 

5 Repeat steps 2, 3 and 4 until the same points are 
assigned to each cluster in consecutive rounds. 

K-Means algorithm is relatively an efficient method. However, a user needs to 
specify the number of clusters in advance and the final results are sensitive to 
initialization and often terminates at a local optimum. Unfortunately there is no 
global theoretical method to find the optimal number of clusters. A practical 
approach is to compare the outcomes of multiple runs by varying k and chooses the 
best one based on a predefined measure. In general, a large k probably decreases 
the error but increases the risk of over fitting. 

Example of K-means 

In this example, k-means algorithm uses 3 random centroids. In the first 
round, instances are assigned to the closest centroids. After instances are assigned to 
a centroid, the centroid is updated. In the second round, instances are assigned to 
the updated centroids, and the centroids are updated again.  

In round 2, 3, and 4, which are shown in Figure 2.4 (b),(c),(d) respectively, one 
centroid move from the top cluster to the lower right one. K-means algorithm 
terminated in Figure 2.4 (d), because no more change occur, the centroids have 
identified the grouping of instances. 
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(a) Iteration 1                         (b) Iteration 2 

      
 (c) Iteration 3                         (d) Iteration 4 

Figure 2.4: K-means algorithm finds three clusters in sample dataset 

 

DBSCAN 

 The DBSCAN algorithm was introduced by Ester, et al [5], and relies on a 
density-based notion of clusters. Clusters are identified by investigating the density of 
instances. The region with high density of instances depicts the existence of clusters 
whereas the region with low density of instances indicates noises or outliers. The 
algorithm is suited to deal with noises and is able to identify clusters with difference 
sizes and shapes. 
 In DBSCAN, the density of instances depends on a specific radius. For 
example, if the radius is too large then all points will have a density of  , which is 
the total number of instances in the dataset. If the radius is too small then all points 
will have the density of 1. 
 The approach of DBSCAN needs the following definitions describing each type 
of instances.  



 

 

16 

 Core points: An instance is a core point if the number of points within a given 
neighborhood around the point as determined by the distance function and a user 
specific distance parameter, Eps, and the number of points exceeds a certain 
threshold, MinPts, which is also a user input parameter.  
 Border points: A border point is not a core point but fall within the 
neighborhood of a core point.  
 Noise points: A noise point is any point that is neither a core point nor a 
border point.  
 

 
Figure 2.5: Noise point, Border point, and Core point 

 
DBSCAN Pseudocode: 
INPUT:                 is the set of real vector,   be the     
instance, eps, MinPts. 
OUTPUT: Clusters of instances:            
 1 DBSCAN(S, eps, MinPts) 
    2 C = 0 

3 for each unvisited point P in dataset D mark P as 
visited 

4 NeighborPts = regionQuery(P, eps) 
    5 if sizeof(NeighborPts) < MinPts 
    6 mark P as NOISE 
    7 else 
    8 C = next cluster 
          



 

 

17 

Half-orbital extreme poles clustering algorithm 

The half-orbital extreme poles clustering algorithm (HOEP) [1] is a clustering 
algorithm that utilized the extreme poles and the core-vector. HOEP divides the 
core-vector into bins and counts the number of instances inside each bin to create a 
histogram. Based on the histogram, HOEP uses the user input parameter   to 
determine the splitting location. If there is a histogram bin that has lower value than 
 , HOEP will mark instances from the selected pole to the splitting bin as a cluster. 
The algorithm iterates until there is no non-clustered instances.  
 
Pseudo code 

INPUT:                 is the set of real vector,   be the     
instance, parameter  . 
OUTPUT: Clusters of instances:            

1   =  ,   = 0 and    =   
2 Create distance matrix 
3 Find extreme poles   and   in   
4 Construct a vector core  ̅, calculate the number of 

intervals  , and divide it into   intervals 
5 Set   =   as the center of the balls 
6 For       . determine   and   

 . 
7 If there exists an interval   such that   

  <   and    
  > 

  and     >   for 
all     create splitting point 
 

 

 
(a) 
 
 

Extreme pole 

Extreme pole 
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(b) 
 

  
 

(c) 

 

  
 

(d) 
 

Bin 

Histogram 

Threshold  

The first cluster Un-clustered instances 
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(e) 
 

 
(f) 
 

Figure 2.6: HOEP algorithm 
 
Mean-shift smoothing algorithm 

The mean-shift smoothing algorithm [2] is designed to reduce noises of data. 
However, the technique can be used as a clustering algorithm as well. In this thesis, 
an one dimensional mean-shift clustering algorithm is used to find the clusters within 
each bin. The mean-shift clustering algorithm is a clustering technique that does not 
constrain the shape of the clusters. The algorithm uses iterative process to shift each 
instance to the average of its neighborhood. Because the dataset is segmented into 
bins, they can be viewed as the one-dimensional data using the one-dimensional 
mean-shift smoothing algorithm. The kernel used is a normal distributed kernel. The 
kernel density estimator is as follow 

      
 

 
∑   

    

 
  

   . 
where,  , is the radius of the kernel.  
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Figure 2.7: Illustration of the kernel density estimator on the one-dimensional space. 
 The mean-shift algorithm can be thought of as a fixed-point iteration:  
 1 Compute the mean-shift vector:  

         
∑      (‖

    
 

‖
 
) 

   

∑    (‖
    

 
‖

 
) 

   

   

 2 Translate the density estimation window:         

              .  
 3 Iterate step 1, 2 until convergence. 
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Figure 2.8: Mean shift procedure. Starting at the data point x1, the mean shift 
procedure is executed to find the stationary points of the density function. Subscripts 
denote the mean shift iterations, the shaded and the black dots denote the input 
data points and the successive window centers, respectively, and the dotted circles 
denote the density estimation windows. 
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Chapter 3 

BI-ORBITAL EXTREME POLE CLUSTERING ALGORITHM 

 

The name bi-orbital came from the usage of two hierarchies of the extreme 
poles. The first hierarchy is the primary extreme poles, which are two furthest pair of 
instances in a dataset. The second hierarchy is the second dimension in the form of 
mean-shift clusters in each bin. In this chapter, the main algorithm of BOEP is 
described.   
 
Bi-orbital extreme pole clustering algorithm 

 
The bi-orbital extreme pole clustering algorithm uses the extreme poles as a 

basis. All instances are assigned into bins based on the distance from the extreme 
poles. The algorithm then performs the one-dimensional mean-shift smoothing 
algorithm to find the groups within each bin. The groups are linked together if they 
are within the defined distance of other groups. The linked groups are considered to 
be in the same cluster.  
 The input of BOEP is the dataset, unless a user specifies the split ratio. 
INPUT:                is the set of real vectors. 
OUTPUT:   is the number of instance and              are Clusters of instances. 
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Figure 3: Example of 2-dimensional dataset 

 
Figure 3: From the distance matrix, two extreme poles    and     is found 

 
 First, BOEP runs on the input dataset,  . Next, a distance matrix is created 
based on the Euclidean distance. The extreme poles are then identified as    and 
  . The distance between the extreme poles is calculated and then divided into   
equally size bins using Sturges’ rule. After that, BOEP assigns each instance into bins 
based on the distance from the poles. The distance of instances from the pole are 
projected so that the algorithm gives out the same result whether starting from    or 
  . 
 
 

𝑝  

𝑝  
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Figure 3.1: BOEP bin section 

 
 Inside each bin, BOEP considered instances inside it as a one-dimensional 
data using the one-dimensional mean-shift clustering algorithm to group data. Where, 
the kernel estimator is        

 

 
∑        

 
   . In this thesis, the kernel is the 

normal distributed kernel. Then BOEP performs the mean-shift algorithm by letting 
   be the starting maximum,         

 

 
∑         

 
    until   does not 

change.  
 
 

 
Figure 3.2: 1-dimensional Mean-shift clustering algorithm with normal distributed 

kernel estimator 
 

bin 
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Figure 3.3: The “+” signs show centroids of groups within each bin 

 

 
(a) 

 
(b) 
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(c) 

 
(d) 

 
(e) 
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(f) 

Figure 3.4: Linked centroids algorithm in BOEP from (a) to (f) working from the first bin 
to the last 

 
Figure 3.5: Instances that have their representative centroids too far apart are split 

  
 After the mean-shift algorithm is done, BOEP identifies the centroids of each 
group. Next, BOEP assumes that the pole    is the starting centroid of the first 
cluster. After that, BOEP calculates the distance between all centroids in bin number 
1 and the pole,   . If the distance between    and the centroids are less than the 
width of the bin time   where   is the split ratio then merge all instances 
correspond to those centroids with   . The centroids that are not merged are 
considered to be on a different cluster and are considered as starting centroids for 
the new clusters. Next, BOEP calculates the distance between centroids in bin 
number 2 and the centroids from the established clusters from the previous bin. If 
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the centroids in the bin number 2 met the same criteria, then all instances 
correspond to the centroids in the bin number 2 are merge with the original cluster. 
BOEP works from the bin number 1 to the bin number  . The algorithm stops when 
there is no merging happen or all centroids are assigned with their own cluster.  
 The split ratio,   indicates the distance that the user want to split groups of 
instances. Although, the user can freely choose   the default number   in this thesis 
is from the result in chapter 4, which is 1.4.  
 
 

Pseudo code 

Input:                is the set of real vectors. 
Parameter   is the ratio of the number of insignificant 
instances by the total number of instances. (default is 
set to 0.05).  
Output:   is the number of clusters found and clusters of 
instances:            

1: Create distance matrix   
2:      
3: Find primary extreme poles   and    from  , 

compute                  . 
4: Calculate the number of intervals   using Sturge’s 

rule, and divide distance between poles into   intervals. 
5: For         determine   , where 

                         
6: If there exists an interval   such that      and 

       and      for all    . Mark this bin as a 
splitting interval. 

7: Find the secondary extreme pole       and       
8: Perform step 4 and the mean-shift smoothing 

algorithm.  
9: From the grouped data in each bin, calculate the 

centroid of instances as     
  where     is the group 

number,     is the bin number.  
10: For           connect two adjacent centroids if 

|    
 
       

 |    
        

 
 for all   in bin(i) and for all   in 

bin(i+1). Assign instances belonging to the connected 
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centroids in   . If there are centroids that are not 
linked and have a small number of instances, then they 
are marked as outliers.  

11. Repeat until there is a disconnected component 
then      . Perform until all centroids are either 
connected or marked as outliers.   
   

The split ratio   implicitly controls the number of clusters. If two centroids 
have the distance greater than the ratio of   multiplied by the width of the primary 
bins, then two groups represented by each centroid are not connected.  
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Chapter 4 

RESULTS 

 
In order to compare the performance of our algorithm, two sets of the 

datasets are used to compare BOEP with other algorithms. The first set is the 
simulated dataset using the multivariate normal distribution. Each experiment runs 
on 30 datasets. Each time, the dataset is re-randomized. The second datasets are the 
UCI standard datasets, namely IRIS, WINE, and E-COLI. The performance measures 
used in this thesis are introduced in this chapter as well. 
 
Performance measure 

Homogeneity and separation 

Generally, the performance measure of a clustering algorithm is subjective as 
it depends on the technique used. This thesis uses the cluster homogeneity and the 
cluster separation, since they reflect the fundamental aspects of a good cluster, its 
tightness and its separation. The two indices are implemented as suggested by 
Shamir and Sharan [11]: homogeneity and separation. Homogeneity is calculated as 
the average distance between each instance and the centroid of the cluster it 
belongs to. That is,  

     
 

 
∑            

 

 

where    is the     instance and       is the centroid of the cluster that    belongs 
to;   is the total number of instances;   is the distance function.  

Separation is calculated as the weighted average distances between cluster 
centroids:  

     
 

∑    
      

∑   
   

   

 (     )  
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where    and    are the centroids of     and     clusters, and    
 and    

 are the 
number of instances in the     and     clusters. Thus      reflects the compactness 
of the clusters while      reflects the overall distances between clusters. Decreasing 
     or increasing      suggests the improvement in the clustering results.  
 
Accuracy 

In this thesis, the simulated datasets with the target is used to compare BOEP 
against HOEP. So the accuracy measurement can be used. Accuracy is a statistical 
measure of a binary classification. It is the proportion of correct cases and the total 
number of cases tested.  

          
                             

          
 

 
 
Paired t-tests 

 A paired t-test is used to compare two population means, where a user has a 
sample with passing through two different treatments. The paired t-test is used to 
verify that there is a statistical difference between the two results or not. 
 Procedure for carrying out a paired t-test 
 Suppose a sample of n students were given a diagnostic test before studying 
a particular subject and then after completing the subject. The paired t-test 
compares the result of before and after the teaching to see whether it has an 
improvement. The paired t-test uses the results from the sample dataset to draw 
conclusions about the impact of the effectiveness of the teaching. 

Let   = test score before the teaching,   = test score after the teaching. 
To test the null hypothesis that the true mean difference is zero, the 

procedure is as follows: 
 1. Calculate the difference between two observations on each pair, 
         . 
 2. Calculate the mean difference,  ̅. 
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 3. Calculate the standard deviation of the difference,   , and use this to 
calculate the standard error of the mean difference,   ( ̅)  

  

√ 
. 

 4. Calculate the t-statistic, which is given by    
 ̅

    ̅ 
. Under the null-

hypothesis, this statistic follows a t-distribution with     degrees of freedom. 
 5. Use the table of the t-distribution to compare the value for   to the      
distribution. This will give the p-value for the paired t-test. 
 
Simulated datasets 

In order to test BOEP against HOEP, three sets of the multivariate normal 
distribution datasets have been simulated. Each algorithm performs on 30 datasets. 
After the dataset is clustered by both BOEP and HOEP, it is re-simulated. 
 To set the default value of the split ratio  , BOEP is performed on a two-
cluster datasets of 150 instances and varies the split ratio   to find the maximum 
accuracy. 
 
Example of dataset 

An example of the simulated datasets of two clusters is presented as a three-
column table. The dataset is randomized on the first and the second attribute. The 
third column shows a predetermined group number of instances or target. 
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150x3 Array{Float64,2}: 

 -0.0689604    1.14357     1 

 -0.0248324    0.51816     1 

 -0.18861      0.598494    1 

 -0.0842013    1.17624     1 

 -0.13386     -1.33394     1 

  0.0475169    0.776314    1 

 -0.181772    -0.329255    1 

 -0.0471964   -0.565142    1 

  0.0666232   -2.76184     1 

 -0.0567685    0.681248    1 

  0.0345231    0.208358    1 

 -0.00282261  -0.00360017  1 

 -0.0614223   -0.606468    1 

  ⋮                            
  0.594595    -1.50892     2 

  0.684975     0.499665    2 

  0.93559      0.351138    2 

  0.653031     0.186264    2 

  0.742039     1.31565     2 

  0.758822    -0.789609    2 

  0.598095     1.14412     2 

  0.585074    -0.097069    2 

  0.85951     -1.61091     2 

  0.673575    -0.0547816   2 

  0.82566      0.275523    2 

  0.726748     0.266445    2 

 
 

 
Figure 4.1: 2-dimensional plot of two-cluster dataset 
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Table 4.1: the accuracy value of BOEP after varying the split ratio 

 
  accuracy 
1 0.380000 

1.1 0.366666 
1.2 0.933333 
1.3 0.900000 
1.4 0.966666 
1.5 0.800000 
1.6 0.522222 
1.7 0.500000 
1.8 0.500000 
1.9 0.500000 

 
 
 

 
Figure 4.2: Accuracy plot after varying the split ratio 
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 The split ratio is an important parameter in BOEP; it controls how to combine 
two groups according to their centroids distance. Nevertheless, there is one more 
important parameter in BOEP that needs investigation. The ratio of the number of 
insignificant instances by the total number of instances   is the significance level in 
BOEP which is set as 0.05. However, the other significance levels can also be used 
depending on the dataset. In BOEP, the significance level is used to determine if the 
instances in bin is worthy of consideration. To test the effect of the significance level 
and the accuracy of BOEP, the significance level   is varied and then following the 
same testing procedure as the testing of splitting ratio. 
 

Table 4.2: Accuracy value of BOEP after varying the significance level 
  accuracy 

0.00 0.933333334 

0.01 0.946666667 
0.02 0.92 

0.03 0.97066667 
0.04 0.97333334 

0.05 0.97333334 

0.06 0.92 
0.07 0.89333333 

0.08 0.7 

0.09 0.76666667 
0.10 0.66666667 
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Figure 4.3: Accuracy plot of each significance level 

 
Figure 4.4: Example of BOEP setting significance level too high and it ignores too 

many instances. 
 

 From table 4.2, the significance level does affect the accuracy in BOEP. If the 
significance level is set too low, then BOEP will include some outliers into 
consideration. If the significance level is set too high, then BOEP will ignore many 
instances as seen in Figure 4.4. Hence, throughout this thesis, the significance level is 
set at 0.05. 
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After the split ratio   and   are acquired, three types of datasets are 
simulated 30 times each for HOEP and BOEP to perform. The accuracy result is 
shown in table 4.3. 

 
Table 4.3: Accuracy result after performing HOEP and BOEP on three types of 

datasets 

Cluster 
algorithm 

HOEP BOEP 

Dataset Set1 Set2 Set3 Set1 Set2 Set3 

Accuracy 1.00000 0.5 0.76666 0.98777 1.0000 0.8 
1.00000 0.93333 0.76666 1.00000 1.0000 0.91111 

1.00000 0.53333 0.75 0.96666 0.93333 0.96666 

1.00000 0.51111 0.66666 1.00000 0.96666 0.89999 
1.00000 0.5 0.7 0.98777 1.00000 1.00000 

1.00000 0.5 0.66666 1.00000 1.00000 1.00000 
1.00000 0.5 0.76666 0.96666 1.0000 0.91111 

1.00000 0.5 0.5 1.00000 1.0000 0.76666 

1.00000 1.00000 0.66666 1.00000 1.0000 0.8 
1.00000 0.76666 0.66666 1.00000 0.91111 0.8 

1.00000 0.66666 0.7 1.00000 1.00000 0.91111 

1.00000 1.00000 0.66666 0.96666 1.00000 0.91111 
1.00000 0.5 0.76666 1.00000 1.0000 0.96666 

1.00000 0.5 0.5 1.00000 1.0000 0.89999 

1.00000 0.5 0.5 1.00000 1.0000 1.00000 
1.00000 0.56666 0.76666 1.00000 0.9333 0.91111 

1.00000 0.56666 0.75 0.98777 0.91111 0.96666 
1.00000 0.5 0.76666 0.98777 0.91111 0.89999 

1.00000 0.5 0.76666 1.00000 1.0000 1.00000 

1.00000 1.0000 0.76666 0.96666 1.0000 0.91111 
1.00000 1.00000 0.5 1.00000 1.0000 0.96666 
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1.00000 1.00000 0.5 0.98777 0.9333 0.89999 

1.00000 0.93333 0.76666 1.00000 0.91111 1.00000 
1.00000 0.96666 0.5 0.98777 0.91111 1.00000 

1.00000 0.96666 0.5 1.00000 1.00000 0.91111 

1.00000 0.5 0.66666 0.96666 1.0000 0.76666 
1.00000 0.5 0.7 1.00000 1.0000 0.8 

1.00000 1.00000 0.66666 1.00000 0.9333 0.8 

1.00000 0.5 0.76666 0.96666 0.91111 0.91111 
 1.00000 0.93333 0.76666 1.00000 0.91111 1.00000 

1.00000 0.96666 0.5 0.98777 0.91111 1.00000 
 

From the table 4.3, Set1 is the one-cluster dataset, Set2 is the two-cluster 
dataset, and Set3 is the three-cluster dataset. The accuracy results are analyzed 
using the paired t-tests. The paired t-test results are shown next.  

 

One-cluster simulation   

Mean 1 0.990672 

Variance 0 0.000184 

Observations 30 30 

Pearson Correlation #DIV/0! 
 Hypothesized Mean 

Difference 0 
 Df 29 
 t Stat 3.634223 
 P(T<=t) one-tail 0.000577 
 t Critical one-tail 1.703288 
 P(T<=t) two-tail 0.001155 
 t Critical two-tail 2.051831 
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Two-cluster simulation    

Mean 0.693252 0.970234 

Variance 0.050904 0.001537 

Observations 30 30 

Pearson Correlation -0.09338 
 Hypothesized Mean 

Difference 0 
 df 29 
 t Stat -6.30174 
 P(T<=t) one-tail 4.8E-07 
 t Critical one-tail 1.703288 
 P(T<=t) two-tail 9.59E-07 
 t Critical two-tail 2.051831   
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Three-cluster simulation    

Mean 0.666663 0.910314 

Variance 0.011172 0.005605 

Observations 30 30 

Pearson Correlation 0.091887 
 Hypothesized Mean 

Difference 0 
 Df 29 
 t Stat -10.4153 
 P(T<=t) one-tail 2.94E-11 
 t Critical one-tail 1.703288 
 P(T<=t) two-tail 5.89E-11 
 t Critical two-tail 2.051831   

 
 The paired t-tests show that in Set1, there is no statistical difference between 
the results of BOEP and HOEP. In Set2 and Set3, the paired t-test confirms the 
significant improvement of the results of BOEP over HOEP. 
 

Table 4.4: Accuracy of HOEP and BOEP on the set of one, two, and three clusters 
Algorithm Set1 SD Set2 SD Set3 SD 

BOEP 0.990572 0.013348 0.97126 0.038895 0.90651 0.07632 
HOEP 1 0 0.686588 0.22444 0.670111 0.105443 

 
From table 4.4, BOEP recognizes all target clusters perfectly while HOEP 

misclassifies some instances. Figure 4.5 is the case that HOEP fails to detect the 
linear separation between clusters while BOEP succeeds.  
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Figure 4.5: Example of simulated two-cluster dataset that HOEP fails to detect the 

cluster separation. 
 

UCI dataset 

The UCI dataset is used to compare the performance of four algorithms. 
Three datasets are chosen which are IRIS, WINE, and E-COLI. All datasets are chosen 
for their continuous attributes. The IRIS dataset is used for its popularity as a 
common dataset. The WINE dataset is chosen for its 13 attributes. Lastly, the E-COLI 
dataset is chosen for its outliers in order to see the impact of outliers on each 
clustering algorithm. 

HOEP, DBSCAN, and BOEP detect their own number of clusters from a 
dataset. However, k-means needs the user to input the number of clusters. In order 
to compare these algorithms fairly, the number of clusters used is from HOEP best 
detected. 
 Next, the detail information of IRIS, WINE, and E-COLI datasets are shown.  
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IRIS dataset  
Table 4.5: IRIS dataset information 

Data Set 
Characteristics:   

Multivariate Number of 
Instances: 

150 Area: Life 

Attribute 
Characteristics: 

Real Number of 
Attributes: 

4 Date 
Donated 

1988-07-
01 

Associated Tasks: Classification Missing 
Values? 

No Number of 
Web Hits: 

1003372 

 
 
WINE dataset 

Table 4.6: WINE dataset information 

Data Set 
Characteristics:   

Multivariate Number of 
Instances: 

178 Area: Physical 

Attribute 
Characteristics: 

Integer, Real Number of 
Attributes: 

13 Date 
Donated 

1991-07-
01 

Associated Tasks: Classification Missing 
Values? 

No Number of 
Web Hits: 

545707 

 
 
E-COLI dataset 

Table 4.7: E-COLI dataset information 

Data Set 
Characteristics:   

Multivariate Number of 
Instances: 

336 Area: Life 

Attribute 
Characteristics: 

Real Number of 
Attributes: 

8 Date 
Donated 

1996-
09-01 

Associated Tasks: Classification Missing 
Values? 

No Number of 
Web Hits: 

109970 
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From table 4.8, BOEP has better cluster homogeneity than other clustering 
algorithms as shown in the values of Have. However, the cluster seperation of BOEP is 
slightly worst than HOEP. Nevertheless, the cluster seperation of BOEP still better 
than both DBSCAN and K-means. The bar chart comparison is shown in the next 
section. 

 
 

Table 4.8: Performance comparison on the UCI dataset 
Algorithm BOEP HOEP DBSCAN K-means 

#cluster 
Dataset                                         
Iris 0.6351 3.8708 0.8460 3.9488 0.7124 3.7072 0.6488 3.1362 3 
Wine 248.58 0.00 260.56 0.00 255.63 0.00 260.56 0.00 1 
E-coli 0.2899 0.5677 0.2952 0.5757 0.3853 0.5687 0.2963 0.4553 2 

 
Figure 4.6 to 4.8 show the comparison of cluster homogeneity of BOEP, HOEP, 

DBSCAN, and K-means on IRIS, WINE, and E-COLI datasets. From the three graphs, the 
homogeneity value, Have, of BOEP is the lowest. This indicates that the clusters from 
BEOP are tighter than that of other algorithms.  
 

 
Figure 4.6: Bar graph shows the Have value of each clustering algorithm on IRIS dataset 
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Figure 4.7: Bar graph shows the Have value of each clustering algorithm on WINE 

dataset 
 
 

 
 

Figure 4.8: Bar graph shows the Have value of each clustering algorithm on E-COLI 
dataset 

 
 Figure 4.9 to 4.10 show the comparison of cluster separation of BOEP, HOEP, 
DBSCAN, and K-means. In the case of separation, the higher number indicates the 
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better cluster separation. From the graph, BOEP, HOEP, and DBSCAN have similar 
values of cluster separation. Nevertheless, HOEP has the best cluster separation out 
of all algorithms tested, with BOEP as the second best.  

 
Figure 4.9: Bar graph shows the Save value of each clustering algorithm on IRIS dataset 
 

 

 
Figure 4.10: Bar graph shows the Save value of each clustering algorithm on E-COLI 

dataset 
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Figure 4.11 shows clusters of IRIS dataset. BOEP rejects some instances that 
are too far from the connected centroids and the numbers of data in each bin are 
too small. Because of that, the BOEP has better performance than k-means in both 
homogeneity and cluster separation.  

 
 

 
Figure 4.11: Plot between 1st and 2nd attribute of the Iris dataset. (Top) K-means 
clustered. (Bottom) BOEP clustered. The outliers that detected by BOEP are in the 

circles. 
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Chapter 5 

CONCLUSION AND DISCUSSION 

 
The bi-orbital extreme pole clustering algorithm based on the concept of the 

extreme poles similar to the half-orbital extreme pole clustering algorithm adds the 
second dimension. By including the second dimension, it allows the algorithm to 
identify nonconvex clusters and performs homogeneity better than HOEP. The 
improvement of BOEP over HOEP is tested using the simulated datasets of one, two, 
and three clusters. The results are verified using the paired t-test to show the 
statistical difference of the pair results. In the one-cluster case, there is no statistical 
improvement between the two algorithms. Both algorithms detect one-cluster 
multivariate normal distribution equally well. However, in the two-cluster case and 
the three-cluster case, BOEP has the statistical improvement result over HOEP. This 
shows that BOEP is able to detect two and three clusters better than HOEP.  

In addition, the spliting ratio   that combines the centroids lowers the 
homogeneity value, which means that clusters assigned by BOEP are tighter than that 
of other algorithms. Moreover, the mean-shift algorithm in the second dimension is 
able to pick out outliers, so the performance improvement can be seen in the result 
section with the UCI datasets. 

The secondary dimension in BOEP is flexible since it does not rely on the 
core-vector. This approach is similar to DBSCAN but using less computation.  
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Future work 

 BOEP is able to detect the clusters better than HOEP. Overall cluster 
homogeneity and cluster separation is also improved over other algorithms. 
However, the BOEP still needs the user input parameters. In the future, the needs of 
the user input parameter could be eliminated. Additionally, assigning instances into 
bins is suitable for distributed work load. Since, the distributed algorithm can assign 
each bin to an individual computing core.  

 
[1-13] 
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